Platfor m-independent dynamic reconfiguration of distributed applications

Jodo Paulo A. AimeidaMarten van SinderénLuis Ferreira Pirésaind Maarten Wegddh?
4Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE, Enschede, The Netherlands
PLucent Technologies, Bell Labs Advanced Technologies EMEA Twente
Capitool 5, 7521 PL, Enschede, The Netherlands
{alme,sinderen,pires} @cs.utwente.nl, wegdam@lucent.com

Abstract

The aim of dynamic reconfiguration is to allow a
system to evolve incrementally from one configuration to
another at run-time, without restarting it or taking it off-
line. In recent years, support for transparent dynamic
reconfiguration has been added to middleware platforms,
shifting the complexity required to enable dynamic
reconfiguration to the supporting infrastructure. These
approaches to dynamic reconfiguration are mostly
platform-specific ~ and depend on particular
implementation approaches suitable for particular
platforms. In this paper, we propose an approach to
dynamic reconfiguration of distributed applications that
is suitable for application implemented on top of different
platforms. This approach supports a platform-
independent view of an application that profits from
reconfiguration transparency. In this view, requirements
on the ability to reconfigure components are expressed in
an abstract manner. These requirements are then satisfied
by platform-specific realizations.

1. Introduction

The reliance on distributed systems constrains the
possibility of restarting them or taking them dffd. It is
usually not acceptable, e.g., for economical oretyaf
reasons, to cause major disruptions in the sepriceided
by these systems [9]. The aim of dynamic reconétan
[5, 6,9, 17] is to allow a system to evolve incesally
from one configuration to another at run-time.
Reconfiguration can be needed, e.g., because th
resources the system is using will no longer belavia,
or the behaviour of the system needs to be addpjed
replacing some of its components.

Developing systems that can be dynamically
reconfigured is a complex task, since a developastm
ensure that dynamic reconfiguration results in erem
and useful system. In recent years, support fderift
QoS (quality-of-service) mechanisms, including dyiea
reconfiguration, load-balancing and replication
mechanisms, has been added to middleware

infrastructures [4, 16, 17]. This results in a slf the
complexity required to satisfy QoS constraints frtme
application to the supporting infrastructure. QoS
mechanisms implemented in middleware are applisatio
independent (i.e., generic to different applicatloand to

a large extent transparent to application devebiee.,
they hide from application developers the compjexit
required to achieve dynamic reconfiguration).

Ideally, it should be possible to leverage the fienef
transparent dynamic reconfiguration (and other
transparent QoS mechanisms) to distributed apjuitat
regardless of the particular middleware platformam of
which these applications are implemented. Howaweist
approaches to dynamic reconfiguration are platform-
specific, in that they depend on mechanisms availai a
particular middleware platform, or even on detafsa
specific implementation of a platform.

In this paper, we propose an approach to dynamic
reconfiguration that enables the reuse of gengniachic
reconfiguration functionality in different middlevea
platforms, while maintaining the separation of &mtlon
logic and dynamic reconfiguration concerns. When
applicable, our approach profits from the availapiof
middleware extension mechanisms, but it does noémid
on these mechanisms.

Our approach is based on the Model-Driven
Architecture (MDA) [10, 11]. In MDA development,
particular attention is paid to separately modgllend
explicitly relating platform-independent and platfe
specific aspects of a distributed application. Anomn
pattern in MDA development is to define a platform-

é'ndependent model (PIM) of a distributed applicatiand

to apply (parameterised) transformations to thisl Rd
obtain one or more platform-specific models (PSMéje
main benefit of this approach stems from the pdggito
derive different alternative PSMs from the same PIM
depending on the target platform, and to partially
automate the model transformation process and the
realization of the distributed application on sfiediarget
platforms. Models can be described in languageh asc
UML or specializations of UML [14] or other suitabl
design languages.

In our approach, we prescribe the use of platform-to define an abstract platform that supports rédiab
independent models when developing distributed asynchronous message exchange. These concepts may
applications. In these models, requirements orathikity also be specializations of concepts from the adbpte
to reconfigure components are expressed in anaabstr modelling language. For example, in UML 2.0 [14]et
manner. These requirements are then satisfied byreliability characteristics of “signals” exchangbdtween
platform-specific realizations, in platforms thaffeo “objects” is a semantic variation point. A UML Pilef
different levels of support to dynamic reconfigioatand may specialize UML 2.0 and state that “signals” are
different opportunities for extension. We also pdev exchanged reliably, thereby defining an abstraatf@im
some criteria for choosing between different redion that supports reliable asynchronous message exehang
strategies. Instead of implying an abstract platform definition

This paper is further structured as follows: setti from the adopted set of design concepts for platfor
provides some background on platform-independence;independent modelling, it may be useful or everessary
section 3 presents how dynamic reconfiguration isto define the characteristics of an abstract pilatfo
supported in platform-independent modelling; amdtisn explicitly, resulting in one or more separate aadsable
4 discusses realizations of platform-independerdetwin design artefacts. During platform-independent miaugl
different platforms. Finally, section 5 presentsmso parts of a pre-defined abstract platform model rbay

conclusions and outlines some future work. composed with the model of the distributed appiicat
For example, while UML 2.0 does not support group
2. Platfor m-independent design communication as a primitive design concept, it is

possible to specify the behaviour of a group

Platform-independence is a quality of a model that COmmunication sub-system in UML. This sub-system is
relates to the extent to which the model abstrimota the ~ then re-used in the design of the distributed apfibn.
characteristics of particular technology platfortnsorder ~ The abstract platform we present in section 3 wtteer
to refer to platform-independent or platform-spiecif —example of this approach.
models, one must define what a platform is. For the The different approaches to define an abstractoptat
purpose of this paper, we assume that distributedare depicted schematically in Figure 1.
applications are ultimately realized in some specif Explicitly identifying an abstract platform brings
object- or component-middleware technology that attention tobalancing between two conflicting goals: (i)
supports operation invocation and asynchronousagess Platform-independent modelling, and (ii) platforpesific
exchange, such as CORBA [12], .NET [8], and Web realization. On the one hand, an abstract platform
Services [18, 19]. Hence, a platform corresponds indicates directly the support available for design
ultimately to some specific middleware technologpe during platform-independent modelling, and therefor
goal of platform-independence is to facilitate the reflects the needs of application designers, inotud
realization of a distributed application on topdifferent ~ Portability requirements. On the other hand, artrabs
middleware platforms. platform is established by considering the setai&ptial

During platform-independent modelling, the target platforms and their (common and diverging)
application developer identifies some concerns trat ~ Characteristics; this bottom-up knowledge is usetful
postponed to platform-specific realization. Theseaerns ~ feduce the design space to be explored for platform
determine the characteristics of what we call astrabt Specific realization.
platform (as we have proposed in [2]). Capabilitésa Our problem at hand is then reformulated into: (i)
concrete platform are then used during platfornefige ~ defining an appropriate abstract platform that sufsp
realization to support the characteristics of thstmct ~ dynamic reconfiguration transparently, and, (iifinieg
platform. For example, if a platform-independensige transformations from a PIM of a distributed appica
contains application parts that interact througerapon that relies on this abstract platform to differeatget
invocations, then support for operation invocatisna ~ Middleware platforms.
characteristic of the abstract platform. If CORBA
selected as a target platform, this characteristic be 3. Support for dynamic reconfiguration in an
mapped to CORBA operation invocations. abstract platform

Characteristics of an abstract platform may be imabpl
by the set of design concepts used for describii®y t Reconfiguration is specified in terms of entitiesda
platform-independent model of a distributed appi@® operations on these entities. The definition ofitgnt
These concepts are often inherited from the adoptedjepends on the level of granularity of reconfigiarmat
modelling language. For example, the exchange ofgxamples of entities are objects, groups of objects
“signals” between “agents” in SDL [7] may be corsied components, groups of components, sub-systems,

set of design
concepts +
constraints

A : implied
abstract
> D platform
composition of
specific design
glpsglrigtict;d distributed
model application
model

@

Figure 1. Abstract platforms defined by (a)

set of design
concepts +
constraints

set of
pre-defined
design artefacts

')

#

abstract
platform
definition

composition of
specific design

incorporation of
pre-defined design
artefacts

A

pre-defined

artefacts from
abstract platform

)

(b)

choice of design concepts and

(b) pre-defined design artifacts

modules, bindings and groups of bindings. Typical
operations on entities are replacement, migraticeation
and removal. In this paper, we focus our attention
component replacement and migration:

1. Component replacement allows one version of a

component to be replaced by another version, while

preserving component identity. We use the term
version of a component to denote a set of
implementation constructs that realizes the compbne

components. Composite steps are often required for
reconfiguration of sets of related components. Betof
related components, a change to a comporemhay
require changes to other components that depenison
characteristics.

We introduce dynamic reconfiguration concepts in a
platform-independent design by specializing théamoof
a component, distinguishing betwemrstonfigurable and
non-reconfigurable components. Reconfigurable

The new version of a component may have functional components can benigrateable, replaceable or both

and QoS properties that differ from the old version
Nevertheless, the new version of the componentldhou
satisfy both the functional and QoS requirementhef
environment in which the component is inserted;, and

. Component migration means that a component is
moved from its current node to a destination node.

migrateable and replaceable. This allows a designer to
establish these distinctions at a platform-indepand
level, specifying which components may be manigaat
by reconfiguration operations in reconfiguratioepst. We
represent these specializations of the componeamnteq
in UML 2.0 [14] by introducing the stereotype

Component migration can be necessary, e.g., when areconfigurablecomponent», which can be applied to a UML

certain node has to be taken offline.

A system evolves incrementally from its current
configuration to a resulting configuration in a
reconfiguration step. A reconfiguration step is perceived
as an atomic action from the perspective of the
application. We distinguish between simple and
composite reconfiguration steps.sdnple reconfiguration
step consists of the execution of a reconfiguration
operation that involves a singkfected component. A
composite reconfiguration step consists of the execution
of reconfiguration operations involving severaleated

component. This stereotype has tagged values
isReplaceable and isMigrateable. UML statecharts can be
used to specify the behaviour of (reconfigurable)
components.

A (composite) reconfiguration step is specifiedabset
of simple reconfiguration steps. The definition af
replacement reconfiguration step identifies a camepb
to be replaced and establishes its new version. The
definition of a migration reconfiguration step idiéias the
component to be migrated and establishes its new
location. The location should be specified in terais

UML profile extending pre-defined artefacts
UML meta-model

<<metaclass>>
Class
(from Structured Classes) <<interface>>
ReconfigurationManager
create_reconfiguration_step
commit_reconfiguration_ste|
abstract platform <<metaclass>> SE=HDHC A
definition < Component A
(from Basic Components) ~ T
\ |
4 B
<<stereotype>> «component»
Reconfigurablecomponknt ReconfigurationManager
isReplaceable : boolean
isMigrateable : boolean
. \
~
«component» O_ «component»
Client ReconfigurationManager
specific
application <
using abstract
platiorm = |) =l
«reconfigurablecomponent» @ «reconfigurablecomponent»
Server @ BackEndServer
-~

Figure 2. Support for dynamic reconfiguration in an abstract platform

abstract (QoS) properties of the new location. A platformlogic to be composed with the concrete target
reconfiguration manager component represents the platform, and;

capabilities of the abstract platform of handing 2. Adjust the platform-specific model of the application,
reconfiguration steps. Reconfiguration steps are while preserving the requirements specified at

committed to and handled by the reconfiguration agan. platform-independent level, so that the application
The interface of the reconfiguration manager is an model can be composed with the target platform
abstraction of the IDL interfaces presented in [17] model. This may imply the introduction of (e.g., 0
Figure 2 depicts the definition of our abstractfplan mechanisms in the platform-specific design of the
in terms of a UML profile and the reconfiguration application.
manager component. In this paper, we focus on approach 1 to realipatio
since it enables a clear separation of applicatod
4. Platfor m-specific realization infrastructure functionality, as defined by the tadst
platform.
Platform-specific realization may be straightfordar ~ Approach 1 implies the introduction of some platfer

when the capabilities of the selected concretefgstat ~ Specificabstract platform logic to be composed with the
correspond (directly) to the characteristics of abstract ~ concrete target platform. The nature of this coritwos

platform. When this is not the case, we distinguish ~ depends on the particular requirements for theradist
contrasting extreme approaches to proceeding withPlatform. It may be possible to implement the adutr
platform-specific realization: platform logic on top of the concrete platform @epicted

1. Adjust the concrete platform, so that it corresponds to in Figure 3 alternative 1a). Nevertheless, this jposition
the abstract platform. In this approach, the bognda May also imply the introduction of platform-specifi
between abstract platform and platform-independent (Q0S) mechanisms in the middleware layer (as degpiict
distributed application model is preserved during Figure 3, alternatives 1b and 1c). In this case,
platform-specific realization. This implies the implementation restrictions imposed by the concrete
introduction of some platform-specificabstract platform play an important role.

Platform -Independent
Application Model

Abstract-Platform

(1a) /lb) / (1c)\ N)
~~ / \ N

Application (PSM)

Application (PSM)

Application (PSM)

Application (PSM)

Abstract-Platform Logic

CEEEE - Abstract - .
Platform Platform A
Concrete -Platform Logic Concrete -Platform Concrete -Platform

Figure 3. Alternative approaches to platform-specif ic realization

Figure 3 illustrates possible implementations of th DRS implementation please refer to [1, 17]. The DRS
different approaches to platform-specific realiaati freezes on-demand interactions with objects thatbaing
Different middleware platforms offer different reconfigured, driving the application to what idled a
possibilities for the embedding of QoS mechaniamhé reconfiguration safe state. In this state, the CRBlies
platform. In some platforms, modification or extiemsof the reconfiguration steps, and, after that, unfrsethe
internal components of the platform may be required interactions. Reconfigurable objects should besifiasl
(Figure 3, 1c). This may be undesirable or impdsdior into active and non-active objects, which shoulddbee
proprietary platforms (for which there is often access by developers during PIM marking (parameterisatdn
to the platform’s source code), or it may require transformation). The service requires that statess
agreement through long standardization cycles foroperations be included for reconfigurable objects.
platforms based on open standards. In additioernat Placeholder for these operations should be inclii¢ie
components of a platform are typically vendor-sfeci PIM-PSM transformation. Depending on the avail&pili
Extension of the concrete platform in a non-intvasi of behavioural models in the PIM, state derivatamd
manner is often the preferable way to adjust thecieie active/non-active classification could be automatedng
platform (Figure 3, 1b). Techniques that can belUse transformation.
non-intrusive extension include interceptors witbssage In the absence of possibilities for platform extens
reflection [12], aspect-oriented programming and approach la may still prove to be useful. Thidhés ¢ase
composition filters [3]. Using these extension for the realization on Web Services hosting platfer
mechanisms, it may be possible to separate dynamidVeb Services hosting platforms entail a number of
reconfiguration extensions from core standardized platforms that support the hosting of endpointscdkesd
middleware functionality. This approach, however, in WSDL [18] and that interact through SOAP [19].
depends on the availabilty and capabilities of Examples of these platforms are J2EE [15] and .[\&T
standardized extension mechanisms in middlewareSince Web Services do not imply a particular hagstin
platforms. infrastructure, these platforms provide their own
We have built a Dynamic Reconfiguration Service containers and (server-side and client-side) stdie
(DRS) for CORBA that follows approach 1b. This $eev suitability of approaches 1b and 1c depends orleie
provides reconfiguration transparency for CORBA of extension or adjustment that is possible withséh
application objects, supporting both simple and posite containers and stubs. Since we would like to canrsah
reconfiguration steps. The DRS has been implemdnted approach for Web Services that does not dependhen t
extending CORBA implementations through the use of hosting platform choice, approach la is preferiEde
portable interceptors, which are standardized siden transformation from PIM to PSM can introduce proxy
mechanisms for CORBA ORB implementations [12]. For web services that realize the same functionality as
details on the dynamic reconfiguration algorithnd d@he portable interceptors in the CORBA DRS.

References
5. Concluding remarks
[1] J. P. A. Almeida, M. Wegdam, M. van Sinderen, L
By separating infrastructure and application conser Nieuwenhuis. Transparent dynamic reconfiguratiorr fo
the development of distributed applications can be CORBA, Proc. 3rd Intl. Symposium on Distributed Objects
facilitated. We have shown an approach to the s¢ipar fg?g%;canons (DOA 2001), Rome, ltaly, Sept. 2001, pp.
of dynamic reconfiguration and application functbty '

. . L . . [2] J. P. A. Almeida, M. van Sinderen, L. FerrePaes, D.
that is suitable for applications being realizedtop of Quartel. A systematic approach to platform-indejgend

different middleware platforms. In this approachge t design based on the service concBpoc. 7th Intl. Conf. on
application developer does not have to be conceniitd Enterprise Distributed Object Computing (EDOC 2003),
mechanisms for dynamic reconfiguration. Support for Brisbane, Australia, Sept. 2003, pp. 112-123.
dynamic reconfiguration is provided as extensioos t [3] L. Bergmans and M. Aksit, Composing crosscuftin
middleware platforms or as reusable componentsatet concerns using composition filter§pmmunications of the
composed (or “woven”) with the application during = _ACM, Vol 44, No.10, Oct. 2001, 51-57. _
platform-specific realization. [4] C. B|(_:ian, V Issarr_ly, T. Saridakis, A. Zarras.dynamic

. . reconfiguration service for CORBA&roc. |IEEE Intl. Conf.

Platform-independent models are decoupled front thei

. - on Configurable Distributed Systems, May 1998.
corresponding platform-specific counterparts by (5] 3 kramer, J. Magee. Dynamic configuration dstributed

transformations, thereby adding a new dimensiotheo systemsIEEE Trans. on Software Engineering 11(4), April
discussion on the separation of application and 1985, pp. 424-436.

distribution infrastructure functionality. There Bome [6] J. Kramer, J. Magee. The evolving philosophensiblem:
degree of freedom between capabilities offered hy a dynamic change managemenEEE Trans. on Software
abstract platform and capabilities offered by ceter Engineering 16(11), Nov. 1990, pp. 1293-1306.
platforms. Identifying an abstract platform briragtention ~ [71 ITU-T, Recommendation Z.100 — CCITT Specificatiand
to balancing between two conflicting goals: (i) platform- Description - Language, - International - Telecommunioi

) .) ol Union (ITU), 2002.
independent modelling, and (i) platform-specific [8] Microsoft Corporation, Microsoft .NET remoting: A

realization. It makes no sense specifying platform- = “technical overview, July 2001, available at
independent models of applications that cannot be nttp://msdn.microsoft.com/library/

realized in available target platforms. Bottom-up [9] K. Moazami-Goudarzi.Consistency preserving dynamic
knowledge of the available platforms and their reconfiguration of distributed systems. Ph.D. thesis, Imperial
extension/adaptability ~ capabilities is therefore College, London, UK, March 1999.

fundamental to define appropriate abstract platform uo&%ﬂ?&l\%@%ﬁ%ﬁ?ﬁiﬁ OGrrr]:’sUc%idg'? grliViTJI ;rzcg(i)tfcture
sugggrtee(;(p\:\itcg trfza;p;rt(:‘aec:h vagia\Zeggsgrliser;d?r{g be[11] Object Management GroupDA-Guide, V1.0.1, omg/03-

load balanci hi d licati d oth 06-01, June 2003.
oa alancing, caching and replication, and other [12] Object Management GroupCommon Object Request

mechanisms that profit from distribution to satisppS Broker Architecture: Core Specification, Version 3.0, OMG
constraints. Ideally, it should be possible to celend document formal/02-12-06, Dec. 2002.

combine different mechanisms when designing a[13] Object Management GroupOnline Upgrades Draft
distributed application. We intend to investigate Adopted Specification, OMG document ptc/02-07-01, July
modularisation criteria for abstract platform défons to 2002.

enable this combination. A developer should themte ~ [14] Object Management GroupJML 2.0 Superstructure,

/03-08-02, Aug. 2003.
to compose an abstract platform from abstract quiatf ptc e .
definition “modules”. This modularisation would &léy [15] Sun MicrosystemsJava Web Services Developer Pack

. . L available at http://java.sun.com/webservices/doauisd
be reflected in transformation specifications and [16] L. A. Tewksbury, L. E. Moser, P. M. Melliar-Stn

ultimately at platform-specific level. Coordinating the simultaneous upgrade of multip@RBA
objects, Proc. 3rd Intl. Symp. on Distributed Objects and
Acknowledgements Applications (DOA 2001), Rome, Italy, Sept., 2001.

[17] M. Wegdam, Dynamic reconfiguration and load
distribution in component middleware, Ph.D. Thesis,
University of Twente, the Netherlands, 2003.

[18] World Wide Web ConsortiumWeb Services Description

This work is partly supported by the European
Commission, in context of the IST project MODA-TEL

(http://wva.modatgl.org), and by the Dutch Mini;toj' Language (WSDL) 1.1, W3C Note, March 2001, available at
Economic Affairs, in the context of the Equanetjpcd http://mww.w3.org/TR/wsdl
(http://equanet.cs.utwente.nl). [19] World Wide Web ConsortiunSOAP Version 1.2 Part 1:

Messaging Framework, W3C Proposed Recommendation,
May 2003, available at http://www.w3.org/TR/soagdartl/

