
From Requirements to Architectures for Better
Adaptive Software Systems

João Pimentel1,2, Konstantinos Angelopoulos2, Vı́tor E. Silva Souza3,
John Mylopoulos2, and Jaelson Castro1

1 Centro de Informática, Univ. Federal de Pernambuco (UFPE), Recife, Brazil
{jhcp,jbc}@ufpe.br

2 Department of Information Eng. and Computer Science, University of Trento, Italy
{angelopoulos,jm}@disi.unitn.it

3 Computer Science Dept., Federal University of Esprito Santo (Ufes), Vitória, Brazil
vitorsouza@inf.ufes.br

Abstract. The growing interest in developing adaptive systems has led
to numerous proposals for approaches aimed at supporting their develop-
ment. Some approaches define adaptation mechanisms in terms of archi-
tectural design, consisting of concepts such as components, connectors
and states. Other approaches are requirements-based, thus concerned
with goals, tasks, contexts and preferences as concepts in terms of which
adaptation is defined. By considering only a problem- or a solution-
oriented view, such proposals are limited in specifying adaptive behavior.
In this paper we present ongoing work on supporting the design and run-
time execution of adaptive software systems both at a requirements and
architectural level, as wells as its challenges, ranging from architectural
derivation from requirements to refined adaptation control mechanisms.

Keywords: adaptive systems, architectural design, adaptation control
mechanisms, requirements

1 Introduction and Objectives

In [1], the authors conducted a comparative study, concluding that requirements-
and architecture-based approaches for software adaptation share common ele-
ments, such as the use of feedback loops and of external control mechanisms.
However, there are also differences that reveal complementary advantages and
disadvantages of the two approaches. On one hand, requirements-based ap-
proaches capture and model the objectives of the system, but they lack awareness
about the capabilities and the limitations of the proposed solution. On the other
hand, architectural models provide guidance for the deployment of the monitor-
ing mechanisms and the effectors that apply the adaptation process on the target
system. The objectives of the system, however, are coded into the adaptation
strategy, making it difficult to handle changes at the requirements level.

Based on the results of this study, the authors have embarked on a research
project to better link requirements and architectural models by (a) developing



2 Pimentel, Angelopoulos, Souza, Mylopoulos, Castro

techniques for deriving architectural models from requirements, and (b) extend-
ing existing techniques for designing adaptive software so that they exploit both
requirements and architectural models.

2 Baseline

Our baseline is the Zanshin framework for the design of adaptive systems [2–4],
which in turn is founded on Goal-Oriented Requirements Engineering (GORE) [5].
Adopting from Control Theory the concept of feedback loop for adaptation, Zan-
shin augments goal models with requirements for monitoring and adaptation of
such loops.

To illustrate, Fig. 1 shows a goal model for an adaptive Automated Teller
Machine (ATM). Traditional i? elements (goals and tasks) are connected by
refinement/operationalization relations, using AND/OR Boolean semantics for
goal satisfaction. Zanshin introduces Awareness Requirements (AwReqs, repre-
sented by small circles) and Control Variables (rep. by diamonds).

Terminate1Session

Use1Cash1Sensor

Shutdown1ATM

Conduct1ATM
Transaction

Authenticate
Customer

Serve1Customers

Make1ATM
Available

Setup1Connection
to1BankDetect1Cash

Amount

Turn1ATM1On

Start1ATM

Provide1ATM

dt14

dt11

g10

g9

g8

g8 g9* dt14
(g8 g9)+ dt14

g7

t6

t5

dt11
dt12

dt11 dt12?
i1 (dt11|dt12)

t4

t3

t3 t4 t5 t6

g2

g2 g7* g10

g1

AR1:1Never1fail

VP1

Use1Operator
Entrydt12

NOA

Fig. 1. Goal-based requirements specification for an ATM.

AwReqs are the requirements for the monitoring component of the feedback
loop and impose requirements on the success/failure of other requirements by
talking about the states assumed by other requirements at runtime [2]. As such,
they represent situations in which the stakeholders would like the system to
adapt. In Fig. 1, AwReq AR1 states that task Detect Cash Amount should
never fail.

Control Variables (CVs) are elicited during System Identification [3], along-
side Variation Points (VPs) and qualitative relations between these two pa-
rameters (CVs and VPs) and indicators of requirements convergence, namely,
AwReqs. Examples in Fig. 1 are the VP for Detect Cash Amount (two ways of
satisfying it) and the CV Number of Operators Available (NOA). Differential
relations, e.g., ∆ (AR1/NOA) > 0 indicate how changes in parameters affect
indicators (in this case, increasing NOA increases the success of AR1 ).



From Requirements to Architectures for Better Adaptive Software Systems 3

Lastly, Evolution Requirements (EvoReqs) [4] specify when and how should
other requirements change at runtime. For example, an EvoReq may be “If re-
quirement R fails three times in a row, replace it with requirement R−”, where
R− is a weaker (i.e., easier to fulfil) requirement. Using these new classes of
requirements, Zanshin1 implements a feedback loop that supports adaptation of
a base system.

3 Research Agenda

We are interested in taking further the baseline by combining requirement models
with software architectures. Towards this end, we propose a systematic method-
ology for deriving architectural models from requirements. This research will
allow us to design adaptive software systems that exploit combined goal and
architectural models, thereby capturing allowable adaptations at both levels of
abstraction. Therefore, the system would have the maximum variety of alterna-
tives when it has to deal with failures or with environmental changes. The second
part of this work involves extending Zanshin to exploit combined goal and ar-
chitectural models, but also making it quantitative, in order to acquire higher
precision. Moreover, Zanshin will be extended to deal with multiple failures,
exploiting techniques inspired by Control Theory.

3.1 Architectural derivation

Architectural derivation is concerned with the generation of architectural models,
which can include: (a) components & connectors models for describing the system
structure; (b) statecharts for describing system behavior; and (c) feature model
for expressing the variability of system configuration. These different models
are complementary, each one capturing a particular view of the system being
designed, thus requiring different derivation approaches.

In previous work [6] [7], we proposed methods to derive the aforementioned
models from goal models. The key of that proposal was to derive the models
in such a way as to preserve the variability expressed in the goal model. How-
ever, when considering architectural derivation and its design decisions for the
particular case of adaptive systems, there are three new concerns that arise:

a. Additional variability — there may be different alternatives to accomplish a
given task. For instance, different algorithms and different technologies can
be applied, each with its different benefits and drawbacks. The alternatives
identified during architectural derivation will expand the space of adaptation
possibilities.

b. Additional control elements — besides referring to requirements concepts,
Zanshin elements (such as AwReqs and Control Variables) may also refer
to and have an influence on architectural concerns. For instance, the time
interval for a timed transition could be defined as a Control Variable, rather
than as a pre-defined, static interval.

1 See https://github.com/sefms-disi-unitn/Zanshin/wiki



4 Pimentel, Angelopoulos, Souza, Mylopoulos, Castro

c. Additional features to support adaptation — the support of self-adaptation
may require the inclusion of new features in the system. This is the case, for
instance, when the system requires some kind of instrumentation in order to
monitor the satisfaction of AwReqs.

In [8] we handled the identification of additional features, considering the
monitoring capabilities required to monitor runtime context. There, we were
concerned with the derivation of components & connectors. An approach for
eliciting future requirements, which can be used to identify additional variability
(both at requirements and architectural level) was presented in [9]. In [10] [11]
we explore additional variability derived from different web services that are
available in a pool of services.

Currently, we are working on including additional variability and additional
control elements, while supporting the derivation of statecharts. After all, stat-
echarts capturing system behavior constitute the most important architectural
view for adaptive systems.

The process for deriving statecharts from goal models comprises 7 steps. The
first step, Identify design tasks and constraints, allows to refine the requirements
model by including elements that are relevant from the architectural point of
view. Next, Assign tasks, consists of assigning the tasks that will not be per-
formed nor supported by the base software system — e.g., tasks that will be
performed by an external actor (human or otherwise). In the next step, Define
basic flow, the architect analyzes all refinements of the goal model and defines
flow expressions that define their runtime behavior. These expressions, which
allow to define flows with a notation akin to regular expressions, are used in
the next step (Generate base statechart) to create a skeleton of the statechart.
The statechart depicted in Fig. 2 was derived from the goal model in Fig. 1.
For this statechart, we selected the third flow expression of Detect Cash Amount
(dt11 dt12? — perform dt11, then optionally perform dt12) and the first flow
expression of Serve Customers (g8 g9* dt14 — perform g8, then perform g9
zero-or-more times, lastly perform dt14).

Shutdown ATM

Start ATM

Turn ATM 
On

Setup 
Connection 

to Bank

Make ATM 
Available

Use Cash 
Sensor

Use Operator 
Entry

Detect Cash
Amount

Authenticate 
Customer

Conduct ATM 
Transaction

Serve Customers

Terminate 
Session

Fig. 2. Statechart for a partial behavior refinement of the ATM system



From Requirements to Architectures for Better Adaptive Software Systems 5

In the remaining steps the statechart skeleton is refined, as follows. First, dur-
ing Specify transitions the architect defines events and conditions of the derived
transitions. Then, the statechart is enriched to describe the system’s adaptive
behavior, including the interaction with an external component that provides
adaptation-related functionality. This takes place during Specify adaptive behav-
ior. As a last step, Perform further refinements allows the architect to expand
the model in order to include technical details and other concerns that may not
have been handled earlier, by exploiting the statechart concept of sub-states.

3.2 Advancing runtime software adaptation mechanisms

Section 2 sketched Zanshin and how it defines adaptation mechanisms based on
parameters and indicators as well as qualitative relations among them. Given
the subjective nature of requirements, it is important to support such qualitative
mechanisms. However, in some scenarios, it is possible to identify quantitative
relations instead of qualitative. This is especially true for architectural models,
which are more tangible than requirements ones.

The use of quantitative relations will allow finer tuning of parameters when
restoring failed indicators, which in turn can reduce critical overshooting and
redundant oscillations. Methods such as regression analysis can then be used
to extract quantitative information about the relation among parameters and
indicators.

Moreover, such quantitative relations assist in solving the issue of multi-
ple failing indicators. Usually, software systems involve conflicting requirements
(e.g., cost and performance) that result in conflicting indicators (i.e., when one
is failing the other is succeeding and vice versa). When several indicators fail it is
hard to perform a trade-off analysis with a good degree of confidence using only
qualitative information. Thus, the quantitative relations, combined with priori-
tized indicators, can be exploited in order to apply optimization techniques and
identify the best possible adaptation.

4 Conclusions

We have presented ongoing work towards improving support for the development
of adaptive software systems. On one hand, the combination of requirements
and architectural models will provide a richer space of possible adaptations. The
proposed derivation methodology will facilitate the creation of adaptive systems
based on the Zanshin framework. On the other hand, the control mechanisms
of the framework itself will be improved, by tackling the occurrence of multiple
(and possibly conflicting) failures and using quantitative relations to increase
the precision of adaptation mechanisms.

As mentioned in Section 2, a prototype implementation of the Zanshin frame-
work is available. This implementation will be extended in order to support the



6 Pimentel, Angelopoulos, Souza, Mylopoulos, Castro

enhancements proposed in Section 3.2. A prototype tool for the derivation of
statecharts, as presented in Section 3.1, is currently under development2.

Acknowledgments. This work has been supported by the ERC advanced grant
267856 “Lucretius: Foundations for Software Evolution” and by Brazilian insti-
tutions CAPES and CNPq.

References

1. K. Angelopoulos, V. E. S. Souza, and J. Pimentel, “Requirements and Architectural
Approaches to Adaptive Software Systems: A Comparative Study,” in Proc. of
the 8th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (to appear), 2013.

2. V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos, “Awareness
Requirements,” in Software Engineering for Self-Adaptive Systems II (R. Lemos,
H. Giese, H. A. Müller, and M. Shaw, eds.), vol. 7475 of Lecture Notes in Computer
Science, pp. 133–161, Springer, 2013.

3. V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System Identification for
Adaptive Software Systems: A Requirements Engineering Perspective,” in Con-
ceptual Modeling ER 2011, pp. 346–361, 2011.

4. V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos,
“Requirements-driven software evolution,” Computer Science - Research and De-
velopment, pp. 1–19, 2012.

5. J. Mylopoulos, L. Chung, and E. S. K. Yu, “From Object-Oriented to Goal-
Oriented Requirements Analysis,” Communications of the ACM, vol. 42, no. 1,
pp. 31–37, 1999.

6. Y. Yu, J. C. S. do Prado Leite, A. Lapouchnian, and J. Mylopoulos, “Configuring
features with stakeholder goals,” in Proceedings of the 2008 ACM symposium on
Applied computing - SAC ’08, pp. 645–649, ACM Press, 2008.

7. Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. P. Leite, “From
Goals to High-Variability Software Design,” in Foundations of Intelligent Systems,
vol. 4994/2008, pp. 1–16, 2008.

8. J. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos, and F. Alencar, “Deriving
software architectural models from requirements models for adaptive systems: the
STREAM-A approach,” Requirements Engineering, vol. 17, no. 4, pp. 259–281,
2012.

9. J. Pimentel, J. Castro, H. Perrelli, E. Santos, and X. Franch, “Towards antici-
pating requirements changes through studies of the future,” in 5th International
Conference on Research Challenges in Information Science, pp. 1–11, IEEE, 2011.

10. J. Pimentel, J. Castro, E. Santos, and A. Finkelstein, “Towards Requirements and
Architecture Co-evolution,” in Advanced Information Systems Engineering Work-
shops, pp. 159–170, 2012.

11. X. Franch, P. Grunbacher, M. Oriol, B. Burgstaller, D. Dhungana, L. Lopez,
J. Marco, and J. Pimentel, “Goal-Driven Adaptation of Service-Based Systems
from Runtime Monitoring Data,” in 2011 IEEE 35th Annual Computer Software
and Applications Conference Workshops, pp. 458–463, IEEE, July 2011.

2 Available at https://github.com/jhcp/GoalArch/tree/master/papers


