
Organizing Empirical Studies as Learning Iterations in Design
Science Research Projects

Monalessa P. Barcellos
Ontology & Conceptual Modeling
Research Group (NEMO), Computer

Science Department, Federal
University of Espírito Santo

Vitória, ES, Brazil
monalessa@inf.ufes.br

Gleison Santos
Federal University of the State of Rio

de Janeiro
Rio de Janeiro, RJ, Brazil

gleison.santos@uniriotec.br

Tayana U. Conte
Federal University of Amazonas

Manaus, AM, Brazil
tayana@icomp.ufam.edu.br

Bianca Trinkenreich
Northern of Arizona University

Flagstaff, AZ, USA
bianca_trinkenreich@nau.edu

Patricia G. F. Matsubara
Federal University of Amazonas

Manaus, AM, & Federal University of
Mato Grosso do Sul

Campo Grande, MS, Brazil
patriciagfm@icomp.ufam.edu.br

ABSTRACT
Software Quality is a relevant topic that interests both Academy
and Industry. Hence, research on this topic should be aligned with
the Industry needs, which demands the adoption of research ap-
proaches that enable closer interaction between researchers and
practitioners. In this context, Design Science Research (DSR) stands
out as a way to reduce the gap between theory and practice. DSR
is a methodological approach to building innovative artifacts to
solve real-world problems and, at the same time, making a scientific
contribution. As a problem-oriented research method, DSR seeks
to understand the problem, build and evaluate artifacts that allow
transforming situations, changing their conditions to better or de-
sirable states. In DSR projects, empirical studies have been usually
applied to evaluate the proposed artifact. However, they can also
be used to support other activities. Over the last eight years, we
have successfully used empirical studies with different purposes
in DSR projects. We organized the studies as learning iterations
that provide useful knowledge to understand the problem, ground
the artifact, develop, evaluate and improve it. As a result, we have
experienced a more fluid DSR process and the proposed artifacts
have been better grounded and suitable for solving the aimed prob-
lem. In this paper, we share our experience by discussing how we
have used empirical studies as learning iterations in DSR projects,
presenting our approach to organizing empirical studies in a DSR
project according to the study purpose and the knowledge it in-
tends to capture, and summarizing two DSR projects that address
software quality issues and were developed by using such approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/22/11. . . $15.00
https://doi.org/10.1145/3571473.3571474

CCS CONCEPTS
• General and reference→ Empirical studies.

KEYWORDS
Design Science, Empirical Study, Empirical Software Engineering

ACM Reference Format:
Monalessa P. Barcellos, Gleison Santos, Tayana U. Conte, Bianca Trinken-
reich, and Patricia G. F. Matsubara. 2022. Organizing Empirical Studies as
Learning Iterations in Design Science Research Projects. In SBQS ’22: Brazil-
ian Symposium on Software Quality, Nov 7–10, 2022, Curitiba, Brazil. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3571473.3571474

1 INTRODUCTION
Knowledge about how to achieve software quality has increased
over the years as a result of the work of researchers that investigate
how software is or should be developed. However, technologies (e.g.,
procedures, methods, techniques, tools) proposed in the academic
universe do not always find acceptance by the industry. This may be
influenced by a possible lack of alignment between the research and
the industry needs. The alignment between academy and industry
is indispensable for researchers to produce useful results that enable
the industry to overcome challenges today and in the future. Such
results typically come from the observation of real problems and
scenarios, which provides inputs to propose new solutions [14].

In the last years, the interest in better aligning Software Engi-
neering (and, thus, Software Quality) research with industry needs
has increased [8]. Moreover, the adoption of Design Science Re-
search (DSR) has been recognized as a suitable methodological
approach for developing artifacts to solve real-world problems [50].
Researchers from the Software Quality community have adopted
DSR to support the creation of artifacts in diverse topics, such as
technical debt prioritization [34] and continuous planning [37].

DSR addresses the design and investigation of artifacts in context.
The artifacts are designed to interact with a problem context in
order to improve something in that context [48]. As a science, design
science has to do with the systematic creation of knowledge about,

https://orcid.org/0000-0002-6225-9478
https://orcid.org/0000-0003-0279-0440
https://orcid.org/000-0001-6436-3773
https://orcid.org/0000-0001-7302-6082
https://orcid.org/0000-0001-9230-3620
https://doi.org/10.1145/3571473.3571474
https://doi.org/10.1145/3571473.3571474

SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil Barcellos et al.

and with, design. It extends to the scientific study of design and the
use of design processes in the scientific creation of knowledge [6].

According to Hevner [15], DSR has an iterative process contain-
ing three interconnected cycles. In a nutshell, the Relevance cycle
initiates the research with the identification of the problem, applica-
tion context, requirements for the research and acceptance criteria
for the ultimate evaluation of the research results. The Design cycle
iterates between the construction of an artifact, its evaluation, and
subsequent feedback to refine the design further. The Rigor cycle
provides past knowledge to the project to ensure its innovation and
additions to the knowledge base as a result of the research.

Several authors (e.g., [48] and [6]) have suggested the use of
empirical studies in DSR projects to properly evaluate the proposed
artifact. Although the use of empirical studies in DSR projects has
focused on the Design cycle, particularly on the artifact evaluation
activity, they can also be used to support other activities related
to that and the other cycles of the DSR process. For example, pre-
liminary studies can be carried out in the Relevance cycle to better
understand the problem and establish the research requirements. In
the Design cycle, studies can also be performed to support decisions
on the artifact design aiming to meet the established requirements
properly. Even though some authors (e.g., [48]) state that empirical
studies can be performed in different moments of a DSR project,
there is still a lack of clear guidance on how to conduct such studies
with different purposes throughout a DSR project.

Over the last eight years, we have successfully used empirical
studies with different purposes in DSR projects. We organized the
studies as learning iterations (LIs) —i.e., studies performed in itera-
tions that allow the researcher to learn something— which provide
useful knowledge to understand the problem, develop the artifact,
evaluate and improve it. As a result, we have experienced a more
fluid DSR process, which harmonizes several studies in iterations,
contributing to research soundness. Moreover, the studies also con-
tribute to the development of better-grounded artifacts, which are
expected to be more suitable for solving the target problem.

Hevner [15] claims that it is vital that we as a research commu-
nity provide clear and consistent definitions, guidelines and deliv-
erables for the design and execution of high-quality DSR projects.
Understanding and communicating the DSR process is essential not
only to support acceptance among professionals but also to estab-
lish the credibility of DSR among the larger body of design science
researchers. In this sense, in this paper, we share our experience
by discussing how we have used empirical studies as LIs in DSR
projects. The main contributions of this paper are (i) the approach
that we have adopted in DSR projects to organize and harmonize
empirical studies considering the DSR cycles proposed by Hevner
[15]; (ii) the discussion about the use of empirical studies in DSR
projects; and (iii) examples of DSR projects where empirical studies
were applied as LIs aiming to build suitable and innovative artifacts.
By portraying empirical studies more explicitly in DSR cycles, we
also contribute to emphasizing DSR projects as scientific endeav-
ors. Through empirical studies, DSR projects go beyond solving a
relevant industry problem. They also advance our comprehension
of relevant phenomena, through a conscious pursuit of scientific
evidence [49].

The paper is organized as follows. Section 2 presents the back-
ground for the paper and discusses some related work. In Section 3,

we introduce the approach that we have used to organize empirical
studies in a DSR project according to the study purpose and the
knowledge it intends to capture. Section 4 briefly presents two DSR
projects developed using our approach. In Section 5, we make a
discussion on the harmonized use of empirical studies throughout
DSR projects. Finally, in Section 6, we make final considerations,
discuss limitations of our work and reflect on future research.

2 BACKGROUND
2.1 Design Science Research
Design science aims at creating and evaluating artifacts intended to
solve real-world problems. It involves a rigorous process to design
artifacts to solve observed problems, make research contributions,
evaluate the designs, and communicate the results. Such artifacts
may include constructs, models, methods and instantiations [16].
They may also include social innovations [3] or new properties of
technical, social or informational resources [17].

According to Hevner et al. [16], the fundamental principle of
DSR is that knowledge and understanding of a design problem
and its solution are acquired in the building and application of an
artifact. That is, DSR requires the creation of an innovative, pur-
poseful artifact for a specified problem domain. Because the artifact
is purposeful, it must yield utility for the specified problem. Hence,
a thorough evaluation of the artifact is crucial. Novelty is similarly
crucial since the artifact must be innovative, solving a heretofore
unsolved problem or solving a known problem in a more effective or
efficient manner. In this way, DSR differentiates from the practice of
design. The artifact itself must be rigorously defined, formally rep-
resented, coherent and internally consistent. The process by which
it is created (and often the artifact itself) incorporates or enables
a search process whereby a problem space is constructed and a
mechanism is posed or enacted to find an effective solution. Finally,
the results must be communicated effectively both to a technical
audience (researchers who will extend them and practitioners who
will implement them) and to a managerial audience (researchers
who will study them in context and practitioners who will decide
if they should be implemented within their organizations).

In the literature, there are some works defining processes, frame-
works or guidelines for DSR. Hevner [15], for example, based on
the framework combining Design Science and Behavioral Science
proposed in [16], presents DSR as a set of three closely related
cycles. The Relevance cycle bridges the contextual environment of
the research project with the design science activities. The Rigor
cycle, in turn, connects the design science activities with the knowl-
edge base of scientific foundations, experience, and expertise that
grounds the research project. The Design cycle iterates between
the core activities of building and evaluating the design artifacts
and processes of the research.

Peffers et al. [32] defined a process composed of six activities,
namely: Problem Identification and Motivation, Definition of the
Objectives for a Solution, Design and Development, Demonstration,
Evaluation, and Communication. Wieringa [48], in turn, claims
that DSR involves two parts: design and investigation. Each part is
addressed in a specific cycle. Design is treated in the Design cycle,
which is responsible for artifact development and evaluation. It is
part of a larger cycle, called Engineering cycle, in which the result

Organizing Empirical Studies as Learning Iterations in Design Science Research Projects SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil

of the Design cycle (i.e., a validated artifact) is transferred to the
real world, used, and evaluated. Investigation is addressed in the
Empirical cycle, which is a rational way to answer scientific knowl-
edge questions. Runeson et al. [35] propose the use of the design
science paradigm as a frame for articulating and communicating
prescriptive software engineering research contributions. In their
perspective, design science embraces problem conceptualization,
solution (or artifact) design, and validation of solution proposals,
with recommendations for practice phrased as technological rules.

Although these works provide useful guidelines for performing
DSR projects, some aspects still need clarification and additional
guidelines. Concerning empirical studies, Peffers et al. [32], Hevner
[15] and Hevner et al. [16] focus their use only on supporting arti-
fact evaluation activities. Wieringa [48], in turn, besides advocating
the use of empirical studies to evaluate the artifact in context, con-
siders that such studies can also be performed to investigate ques-
tions aiming to get relevant knowledge to build the artifact. Even
so, there are some gaps about which study should be performed at
different moments of a DSR project.

Acknowledging the need for more concrete guidance on how to
conduct studies in DSR projects, Offermann et al. [31] proposed a
design science process organized in three phases (problem identi-
fication, solution design, and evaluation) and, in each phase, the
authors propose the use of specific research methods. For instance,
for problem identification, they recommend researchers carry out a
literature review and expert interviews to build a solid foundation
for the remaining of the research process. Recently, this approach
has been regarded as well-aligned and fit for supporting research
in industry-academia collaboration in the Software Engineering
context [50]. Our work is in line with the proposal by Offermann
et al. [31], but we generalize from specific research methods that
can be adopted in each phase to the use of studies as LIs, i.e., em-
pirical studies that can use any research method the researcher
considers the best to iteratively and increasingly learn more about
the problem or the solution. Moreover, we make the LIs explicit in
the DSR cycles of Hevner [15].

2.2 Empirical Studies
Empirical studies enable researchers to produce new evidence as
well as capture relevant past evidence recorded in the literature
and other knowledge sources. The most basic source of empirical
evidence are primary studies, in which we make direct measure-
ments of the objects of interest [22]. In these studies, we can apply
research methods such as controlled experiments, case studies, sur-
veys, among others. A controlled experiment investigates a testable
research hypothesis through the manipulation of a set of inde-
pendent variables to measure their effects on a set of dependent
variables. A case study investigates a contemporary phenomenon
in its context, providing an in-depth understanding of how or why
it occurs. A survey aims at identifying the characteristics of a broad
population by generalizing from the data collected from a repre-
sentative sample of individuals [10]. The execution of an empirical
study using any of such methods involves performing a set of well-
defined activities, ending up with the reporting of results and the
packaging of study material and data [11], so that other researchers
and practitioners can obtain knowledge about relevant outcomes.

Another source of empirical evidence are secondary studies,
which are research efforts that do not generate data from direct
measurements [22] but aggregate increasingly relevant evidence
from primary studies [11]1. The most common types of secondary
studies are Systematic Literature Reviews (SLRs) and Systematic Lit-
erature Mappings (SLMs) [22]. The former aims at identifying and
synthesizing all relevant material regarding a given topic through
the use of objective, analytical, and repeatable procedures [22]. The
latter also relies on systematic procedures for data search, collec-
tion, and analysis. However, the aim is to provide an overview of
a research area, through classifications and categorizations, high-
lighting well-explored topics and gaps [33]. Primary and secondary
studies are complementary sources of evidence [24] that can be
used as part of DSR projects [31].

3 USING EMPIRICAL STUDIES AS LEARNING
ITERATIONS IN DSR

Over the last years, we have used empirical studies throughout
DSR projects by considering two main DSR foundations: the three
cycles defined by Hevner [15] (Relevance, Design and Rigor) and
the two parts of DSR considered by Wieringa [48] (Design and
Investigation). The three cycles [15] encompass the DSR activities
and make clear the relations among different components involved
in a DSR project. The two parts of DSR [48], in turn, refer to two
kinds of research problems. Design problems call for a change in
the real world and require an analysis of actual or hypothetical
stakeholder goals. A solution is a design, and there are usually
many different solutions. There may even be as not one single best
solution. Investigation problems, in turn, are based on knowledge
questions, which ask for knowledge about the world [48].

Like Wieringa [48], we also advocate the use of empirical studies
throughout DSR projects to answer knowledge questions. By expe-
riencing that in several DSR projects, we noticed that such studies
differ mainly in their purpose and target knowledge. The studies
came in for building knowledge—even related to the artifact design
or evaluation—thus, we adopted them as learning iterations, i.e.,
studies performed iteratively and, in each iteration, the researcher
could “learn something” (i.e., acquire knowledge) from the obtained
results, which were based on the knowledge questions that moti-
vated the study.

LIs can take place in any of theDSR cycles (Relevance, Design and
Rigor). The cycle where the study is performed directly influences
the study purpose and target knowledge. Considering that, we have
defined five categories and organized the studies as LIs that support
(i) problem investigation; (ii) artifact foundation; (iii) artifact design;
(iv) artifact evaluation; and (v) artifact evolution. Figure 1 adapts
Hevner’s proposal [15] and shows empirical studies as LIs that serve
as a basis for DSR, providing useful knowledge for developing the
aimed artifact. In the figure, the grey area represents the DSR project.
The yellow, green and pink rectangles refer to information related
to Hevner’s cycles (shown in blue). Empirical studies appear at the
bottom as LIs, serving as the basis of evidence to the research project.
They can be performed in the context of any cycle, according to
the aimed knowledge questions.

1Similarly, tertiary studies aggregate evidence from multiple secondary studies [22].

SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil Barcellos et al.

Figure 1: Learning Iterations in DSR

Each study is a LI in the sense that as the researcher performs
studies, he/she learns more about the research and the aimed arti-
fact. Figure 2 depicts a LI. The study purpose and the knowledge
questions help define the empirical study to be performed (e.g.,
a systematic literature review, a case study, a controlled experi-
ment) and its scope. After performing the study, the researcher
gets knowledge about the problem or to ground, develop or evolve
the artifact(s). New knowledge questions can also arise and lead
to another study in a new LI. A LI contains the LI plan, the em-
pirical study package, and the LI report. The plan establishes the
LI purpose and knowledge questions, identifies which empirical
study will be carried out and how it connects to the DSR project
as a whole. The execution of the LI involves activities related to
the referred empirical study, which include defining the research
protocol to be followed, running it to collect and analyze data, and
recording the study results. The LI is concluded with a report that
connects the study results with the DSR project as a whole.

Figure 2: Learning Iteration

Back to Figure 1, in the Relevance cycle, the researcher defines
the problem to be addressed in the DSR project, the goal to be
achieved, the requirements that the proposed artifact should meet
and the acceptance criteria that will be used to evaluate the artifact.
In this cycle, LIs are used to learn about the problem, the solution

requirements and the application domain (i.e., the environment
where the artifact will be applied). In this sense, knowledge ques-
tions to be answered in the studies aim to get to know the problem
(e.g., What is the problem? Why does it happen? When? Who/what
does it affect? Which are its effects/consequences?Was the problem
treated before? Which treatments have been applied? Where have
they succeeded? Where have they failed?), identify the research
requirements (e.g., What is necessary in the artifact, so that it will
be able to solve the problem? Which are the stakeholders’ needs?
Which are the technical constraints? Which are the acceptance
criteria?) and understand the environment (e.g., Which are the
stakeholders? What are the domain characteristics? What are the
main constraints and rules?).

In the Rigor cycle, the researcher selects knowledge available in
the knowledge base and that will help him/her conduct the research
project (e.g., by providing information about which techniques and
methods can be applied and how to apply them). Moreover, such
knowledge is also useful to ground the artifact to be developed.
In this sense, the researcher can perform studies to learn about
the artifact’s foundations and also to identify methods, techniques,
theories, tools, etc. that can be applied so that the artifact meets
the established requirements. Studies performed in this cycle aim
to answer knowledge questions such as Which existing methods,
theories, tools, etc. are suitable for supporting the research project
execution? How to apply them?

In the Design cycle, the researcher designs, builds, evaluates and
evolves the aimed artifact. This cycle coincides with the design
part of DSR referred by Wieringa [48]. Although the focus is on
design, we can also have knowledge questions related to it. Thus,
studies performed in this cycle seek to provide knowledge about
the artifact itself. In other words, in this cycle, the studies are LIs
that aim to grow knowledge about the artifact in order to produce

Organizing Empirical Studies as Learning Iterations in Design Science Research Projects SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil

a sound and suitable solution. First, the researcher designs the
artifact. In this context, he/she wants to learn about how to meet the
established requirements. Thus, he/she needs to answer knowledge
questions such as How to meet the requirements? How to address
the constraints? How to evaluate if the acceptance criteria are met?.
Once the artifact is built, the knowledge needs are related to its
use. Hence, the researcher performs studies to answer questions
like Does the artifact work in context? Does the artifact meet the
acceptance criteria?Which does andwhich does not work properly?
The artifact can, thus, evolve. Studies aiming at artifact evolution
aim to provide knowledge about improvement opportunities. In this
sense, the researcher needs to learn about what can be improved
in the artifact and how to make the improvements. This involves
knowledge questions such as Which improvements are needed?
How to improve the artifact? Can the artifact be adapted to a new
context? Which modifications should be made?

As argued by Hevner [15], the three cycles are closely related.
Therefore, some studies provide knowledge for more than one cycle.
For example, in the Rigor cycle, the researcher can perform a study
to identify findings to help meet the requirements established in the
Relevance cycle. The acquired knowledge is relevant for designing
the artifact, which occurs in the Design cycle.

By performing the studies as LIs, the researcher is guided by
knowledge needs and grows knowledge towards the development
of the artifact in context. Moreover, LIs help harmonize the use
of empirical studies in DSR projects by organizing and combining
several studies towards a common goal – the DSR project goal.
Table 1 summarizes the LIs categories, the cycle where they occur,
some of the general knowledge questions the studies are aimed
to answer and some examples of empirical studies that can help
answer the knowledge questions. In the next section, we present
two DSR projects that adopted empirical studies as LIs.

4 APPLYING THE PROPOSED APPROACH
In this section, we briefly share our experience of using LIs in two
DSR projects related to Software Quality. The first one regards
an artifact to aid organizations in IT service measurement and its
further extension to address service level agreement (SLA). The
second one proposes an artifact to support the defense of software
estimates when estimators face pressure over them, which can
result in unrealistic commitments and affect software quality. In
these works, empirical studies were performed iteratively, based
on knowledge needs and towards the aimed artifact.

4.1 SINIS - A Framework for Selecting
Indicators for IT Services

SINIS (Select Indicators for IT Services) was created to support IT
service organizations to define indicators in multiple levels and
aligned to the business goals [44]. It was conceived using DSR and
through nine LIs. The first iteration was performed in the Relevance
cycle and aimed Problem Investigation (i.e., it held to learn about
the problem). It comprised an exploratory case study on industry
to investigate the process of defining IT service indicators [40].
From this iteration, it was possible to learn that although indicators
were often defined aligned to the business goals, there was not a
formal process to identify the proper indicators to be used, neither

to cascade and keep track of the business goals into indicators at
different organizational levels. Moreover, data collection was often
executed by only one person (who had intrinsically owned the
process), indicators were not properly defined, many of those could
not be automatically measured, demanded manual observation, and
were susceptible to subjective interpretation. Hence, there was a
need to improve the process to define IT service indicators.

Once the problem was understood, a second LI was performed
to obtain knowledge to Artifact Foundation. The iteration consisted
of a mapping study that investigated IT service indicators recorded
in the literature [42]. From this iteration, the researchers learned
that there is a set of IT service indicators available in the litera-
ture but many of them have incomplete definitions. In this way,
although the study was performed in the Rigor cycle, its results also
provided useful knowledge to refine the problem in the Relevance
cycle. By knowing that many IT service indicators were not defined
in a complete and unambiguous way, the researchers added a new
requirement to be met by the aimed artifact (it should support defin-
ing IT service indicators clearly). Besides the acquired knowledge,
this iteration added a catalog of indicators to the knowledge base
(i.e., a new contribution, which other researchers can use).

The second LI rose a new knowledge question about the use of
the found IT service indicators, which was addressed in the third
LI. It comprised a new case study that investigated if the indicators
found in the literature would be helpful to IT service industry
[41]. In the study, managers were provided with the catalog of
indicators (resulting from the second iteration) to select the ones
they found useful. The researchers learned that the catalog was
helpful, but the managers still needed a detailed process to select
indicators. The study was performed in the Relevance cycle and
supported the researchers in Problem Investigation by consolidating
knowledge about the problem and helping delineate the research
goal, requirements and preliminary acceptance criteria.

Aiming at Artifact Design, three studies were carried out in the
industry in the Design cycle to apply, learn, and receive feedback
about design choices made to develop the artifact. In the fourth
iteration, we learned that business process modeling and process
mining could be used to support finding the sub-process that acted
as a bottleneck of incident resolution and impacted the business
goals, to then define indicators to control that specific sub-process
and strategies to improve them [46]. In the fifth iteration we learned
to apply GQM+Strategies [5] to support the definition of goals, indi-
cators and strategies at different organization levels, while keeping
track of the connection between the multi-level indicators [39].
In the sixth iteration, we evolved the idea from the fourth study
of investigating the root cause analysis. We learned how to use
the cause-and-effect diagram and the 5-why’s technique to help
cascade the problems being faced to achieve business goals into
actionable strategies (and respective indicators) that could help to
mitigate or solve those business problems achieved [45]. Each of
these three studies aimed to verify if the design choice made was
adequate and contributed to meeting the established requirements.
In this way, besides providing useful knowledge for developing the
artifact, the acquired knowledge also enabled us to review both
requirements and acceptance criteria and improve the artifact foun-
dation, since the design choices considered knowledge available in
the knowledge base (e.g., knowledge about cause-effect diagram).

SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil Barcellos et al.

Table 1: Summary of Learning Iterations

Category Cycle General Knowledge Questions Examples of Empirical Studies

Problem
Investigation Relevance

- What is the problem? Why does it happen?
When? Who/what does it affect? Which are its ef-
fects/consequences? Was the problem treated before?
Which treatments have been applied? Where have they
succeeded? Where have they failed?
- Which are the stakeholders? What are the domain char-
acteristics? What are the main constraints?
- What is necessary in the artifact, so that it will be able
to solve the problem? Which are the stakeholders needs?
Which are the technical constraints? Which are the ac-
ceptance criteria?

- A SLM to investigate a research topic and identify gaps that the
current solutions are not able to cover.
- A survey to identify problems in the application domain.
- A survey to identify stakeholders’ requirements.
- An exploratory study to get to know the application domain.
- An exploratory study to foster the understanding of how prac-
titioners perceive or deal with pitfalls and other findings from a
SLM.

Artifact
Foundation Rigor - Which methods, theories, tools, etc. are suitable for for

supporting the research execution? How to apply them?

- A SLM to investigate which methods, tools, techniques, theories,
etc. are already available in the literature and are suitable for sup-
porting the execution of the research project.
- A controlled experiment or an exploratory study to investigate if
a particular method, tool, technique, theory, etc. is suitable for the
research project.

Artifact
Design Design

- How to meet the requirements? How to address the
constraints? How to evaluate if the acceptance criteria
are met?
- How to package in an artifact the solutions to address
different stakeholders’ needs?

- A case study or a controlled experiment to verify if a particular
design decision meets some of the artifact requirements.
- An action research to define an approach to tackle the stakehold-
ers’ requirements while proposing the first version of the artifact.

Artifact
Evaluation Design

- Does the artifact work in context? Does the artifact meet
the acceptance criteria? Which does and which does not
work properly?

- A case study to evaluate the use of the artifact in the application
domain.

Artifact
Evolution Design

- Which improvements are needed? How to improve the
artifact? Can the artifact be adapted to a new context?
Which modifications should be made?

- A survey with the artifact users to identify improvement oppor-
tunities.
- A controlled experiment to prioritize improvement opportunities.

Taking the knowledge acquired over all the LIs into account, the
artifact (SINIS) was developed and a participative case study was
performed in the seventh LI [43] aiming at Artifact Evaluation. In
this iteration, SINIS was used in industry and evaluated in context,
bringing lessons learned as knowledge to improve the artifact.

After being applied in context, we noticed that SINIS could be
extended to satisfy new requirements. Thus, we performed two
studies in the eighth and ninth LIs for Artifact Evolution. In the
eighth LI, we applied SINIS and evaluated whether it was suitable
for supporting the definition of goals, indicators and strategies of
IT Information Security to the business goals. In the ninth iteration,
we used SINIS in another participative case study [7] to identify
and explain the relationship between business goals, indicators, and
strategies in a large public IT service organization while evaluating
how the framework could be extended to consider SLAs alignment
explicitly [12]. Both studies provided us valuable insights on how
the framework could be extended to new contexts besides confirm-
ing its capacity of supporting IT business alignment. The later study
led to the creation of a new version of SINIS [13], which comprised
other LIs as well. The seventh, eighth and ninth LIs were based on
participative case studies because the researchers were members
of the organizations, observed a particular group of organization’
subjects, and participated in the process being observed [7].

Figure 3 summarizes the LIs performed in this DSR project. For
simplification and better visualization, in the figure we represent
some studies in a single iteration.

4.2 SwEDeL - A Set of Defense Lenses for
Software Estimates

SwEDeL (Software Estimates’ Defense Lenses) comprises a guide
in the form of lenses to support the defense of software estimates

when estimators face pressure over them [29]. The artifact was built
through the use of five LIs [26]. At the beginning of the project,
the research overall interest was in the problem of distortions of
software estimates: changes (increases or decreases) of software
estimates that make them deviate from the most likely usage of
effort for a given task or project, given the available information
[25]. More specifically, we were interested in intentional distortions,
i. e., changes to estimates to fulfill objectives outside the estimation
context [25], such as to attain business goals when estimates collide
with them [9], leading to unrealistic commitments. Therefore, we
also started the project with an overall goal in mind: supporting
estimators in reaching realistic commitments. We performed the
first two LIs in parallel in the Relevance cycle with the main purpose
of Problem Investigation, to elaborate more on the problem and
understand more of our environment from the practitioners’ and
researchers’ perspectives.

The first LI aimed to investigate the problem from the prac-
titioners’ perspective. It consisted of a case study to answer the
knowledge question: how are software estimates used to estab-
lish software development commitments in the software industry?
We approached the problem indirectly, investigating how pressure
over software estimates can emerge in the process and its results
regarding changes to estimates [28]. This study contributed with
confirming evidence about the existence of changes to software
estimates. It also enlightened us that instead of defending their
estimates, software practitioners were padding some of their tasks
to compensate for the pressure over other tasks that resulted in
tight deadlines and decreases of software estimates (i.e., intentional
distortions) [28]—thus connecting with our overall problem.

The second LI was a SLM [27] guided by the knowledge question:
What are the factors affecting expert-judgment software estimates?

Organizing Empirical Studies as Learning Iterations in Design Science Research Projects SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil

Figure 3: Learning Iterations to build SINIS

This LI served two different purposes. First, it helped us in Prob-
lem Investigation by focusing on the literature. Second, it allowed
us to systematically grow the Artifact Foundation by identifying
other factors related to pressure and, possibly, approaches already
attempted by other researchers. The study resulted in a broad and
well-organized map that readers can use to navigate through the
factors affecting software estimates, along withmeasurement strate-
gies to understand the impact of such factors, the research strategies
used to investigate them, among other things [27]. Thus, we evolved
the research problem: estimators change their estimates and accept
unrealistic commitments to deal with human and social issues in
software estimation—e.g., resistance of other stakeholders to up-
date early estimates, pressure to decrease estimates, existence of
business goals, among others.

Together, these first two iterations enabled us to update the re-
search goal: empower software estimators in defending estimates
and support them to reach realistic commitments—instead of yield-
ing to pressure either by changing their estimates or padding other
tasks. Furthermore, inspired by the results of these iterations and
previous literature suggesting that negotiation could be used to
defend software estimates [30], we raised a new knowledge ques-
tion: what negotiation theories and methods are relevant and can
be adapted to the software estimation context?

Even before finishing the SLM, we started the third LI, which
took place in the Rigor cycle. We focused on gaining knowledge
for the Artifact Foundation, to help us devise a solution to aid soft-
ware practitioners to deal with pressure over their estimates. We
studied theories about negotiation styles and methods, as this was
a promising idea proposed earlier, although not explored to its full
extent —for instance, it was never empirically evaluated. Thus, we
enlarged our foundations with knowledge from disciplines other
than Software Engineering. We employed a snowballing strategy
to find relevant literature [26].

Based on the acquired knowledge, in the Design cycle we de-
veloped the first version of SwEDeL, a guide consisting of a set of
defense lenses to change the perspective of software practitioners
about how to react in face of pressure over software estimates:
defending them, instead of yielding to pressure [29]. Thus, we per-
formed the fourth LI, a judgment study [38] applying a focus group
with software practitioners [29]. The purpose was Artifact Evalua-
tion, with the knowledge question: What is the perceived usefulness
of the artifact? We were also interested in Artifact Evolution, so
we also asked: What are the improvement opportunities for the
artifact? The acquired knowledge allowed us to generate a second
version of SwEDeL. This iteration also highlighted an improvement

opportunity: the presentation of the lenses as part of a guide was
time-consuming and not attractive to some participants. This led
us to another relevant design decision: to build a complementary
artifact, in the form of a digital simulation, to help practitioners to
develop the negotiation skills embedded in the lenses in a more dy-
namic way. The digital simulation was implemented as interactive
videos that present each one of the defense lenses in the context
of pressure scenarios (identified from the knowledge acquired in
the first two LIs), thus making more concrete the application of the
negotiation principles in real-life situations.

Currently, we are executing the fifth LI: one more empirical
study for Artifact Evaluation. It is a controlled experiment with
industry practitioners to assess the impact of the digital simulation,
focusing on two knowledge questions: (i) What is the impact of
the artifact on practitioners’ intentions to defend their software
estimates? and (ii) What is the perceived usefulness of the artifact?
Additionally, we were again interested in Artifact Evolution, and
the knowledge question: What are the improvement opportunities?
As part of this iteration, we enlarged our foundations once more.
We included knowledge of the Theory of Planned Behavior [19],
which states that intentions are the immediate antecedent of a be-
havior of interest [2]—in our case, the behavior is the defense of the
software estimates. We intend to compare participants from one
experimental group—exposed to the digital simulation—to partici-
pants in a control group—exposed to questions to make them reflect
on the pressure scenarios they face over their estimates and how
they impact relevant outcomes, such as product quality, overtime
work, and others. Therefore, we expect to learn whether digital
simulation is a better alternative to the simpler solution of making
people reflect.

Figure 4 gives an overview of the DSR project, summarizing
information about the problem, research goal, requirements and
acceptance criteria, proposed artifact, main foundations and contri-
butions of the research, and the five performed LIs.

5 DISCUSSION
The Software Engineering research community has a history of
adapting research methods, methodologies, and paradigms from
other disciplines. This is also perceived in Software Quality research,
which has applied such approaches and also provided advances to
better adapt them to our field. For instance, on an analogy with
Evidence-Based Medicine, SLRs have been used in Software Engi-
neering as a method for the integration of evidence from multiple
primary studies [23]. However, the adoption took time and required

SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil Barcellos et al.

Figure 4: Overview of the DSR project and Learning Iterations to build SwEDeL

refinements. The main guidelines on SLRs were first written in 2004
[21] and were revised in the following years, such as in 2007 [20]
and 2015 [22]. It also required adaptations along the way. For in-
stance, the current research practice in our field led to the definition
of specific procedures for SLMs [33], which has been more used
than SLRs [1]. Researchers also are increasingly using gray litera-
ture in their reviews [18], given the importance of the practitioners’
voices in our field.

Likewise, we also need refinement and adaptation of DSR, as we
acknowledge it as a frame for Empirical Software Engineering [35]
and empirical studies as a valuable means to advance in software
quality issues. Runeson et al. [35] propose a few refinements, such
as the use of technological rules, i.e., statements that capture knowl-
edge about mappings between instances of problems and solutions,
helping articulate knowledge produced during a DSR project. We
argue that another relevant refinement is a better understanding of
how empirical studies can be used in a combined and harmonized
way throughout the DSR cycles [15], contributing to the researcher
continuously learn about the research problem and proposed solu-
tion. In this sense, our approach provides guidance and examples on
how to use empirical studies as LIs in DSR projects. We must clarify
that we do not mean to replace current DSR guidelines but enrich
them by guiding how to position empirical studies in DSR projects.
Like in [48] and [31], in our approach, empirical studies are part
of the DSR project, but now they are more explicit, categorized
and are defined according to the knowledge they intend to cap-
ture. Therefore, we make explicit knowledge about how to position

empirical studies throughout a DSR project. We have noticed that
such knowledge can be specially relevant for novice researchers,
who might find it difficult to understand how to integrate different
studies in the DSR framework. Based on our experience, many Ph.D.
students fail to understand how the Relevance, Rigor and Design
cycles should be conducted. The proposed structure of LIs, guided
by knowledge questions, helps novice researchers to plan their
research.

Moreover, the Software Quality community has sought to foster
academia and industry collaboration (e.g., by exploring the use of
Action Research) [4]. DSR is a solution-oriented research method-
ology [50] to add to the Software Quality researchers’ toolbox to
increase research relevance through collaboration with the software
industry. Research relevance should not be aimed at the expense
of research rigor. Hence, we argue that using LIs in DSR projects
aids researchers in keeping both relevance and rigor. This happens
because each LI acts as a unitary gear, gathering a minimal set of
elements necessary to make DSR projects’ cycles move forward in
a scientific manner: a set of knowledge questions, one empirical
study to answer them, and new knowledge acquired about either
the problem or the solution—also, potentially new knowledge ques-
tions to be answered in coming LIs. This unitary gear metaphor also
helps the researcher navigate the nested problem-solving hierarchy
present in DSR projects, where a higher level practical problem can
be decomposed in many other practical or knowledge problems
(also called knowledge questions) [47]. By planning and monitoring
the DSR project from the perspective of the needed LIs to solve the

Organizing Empirical Studies as Learning Iterations in Design Science Research Projects SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil

higher-level practice problem, the researcher can experience the
research process more smoothly, instead of getting entangled in the
nested structure. This happens because the LIs make the researcher
reflect on the necessary knowledge and connect his/her questions
to the aimed knowledge throughout the project.

6 FINAL CONSIDERATIONS
The concern with the need for more industry-academia collabora-
tion to improve the research relevance has increased. In fact, the
collaboration between industry and academia is by many viewed
as essential [36]. One challenge in such collaboration is identify-
ing a suitable research approach that provides credible evidence
[49]. Solution-oriented research methodologies can be useful in this
matter. DSR has stood out as a research approach conducted in the
context of practice to generate contributions to practice [50].

DSR stresses the research to be built on existing knowledge or
theory, and create/generate/synthesize design knowledge. This du-
ality is represented in Hevner’s cycles [15] and it is put forward by
Wieringa [48], who summarizes DSR as an ‘act of producing knowl-
edge by designing useful things’ [50]. DSR is a research method
strongly based on knowledge.

Although DSR has been used in many research projects in Soft-
ware Engineering as a whole and Software Quality in particular,
there is still a need for growing knowledge about how DSR can be
applied in this context. In this paper, we aimed to give a step in this
direction by sharing knowledge that we have obtained over the last
eight years by applying DSR in several projects. In our experience,
we have organized empirical studies as LIs based on knowledge
questions that guide the researcher toward the development of the
aimed artifact. For that, the researcher identifies his/her knowl-
edge needs and the purpose the knowledge is intended to fulfill.
Thus, he/she selects the empirical study he/she considers more
suitable for answering the knowledge questions, performs it and
uses the acquired knowledge to advance the research. In this way,
it is possible to harmonize several empirical studies and leverage
experimentation in DSR projects by using such studies not only to
evaluate the artifact but also to understand the problem, establish
the research goal, requirements and acceptance criteria, as well as
improve the artifact foundations. The researcher should follow the
approach until the aimed artifact is produced and the DSR project
goal is achieved. If there are resource or time constraints, the ar-
tifact produced in a DSR project can be further evolved in a new
DSR project.

Over the last eight years, we have conducted several projects
by organizing empirical studies as LIs in DSR projects focused on
increasing the quality of software products or processes. From this
experience, we can point out some benefits and challenges. As for
the benefits, we observed that by organizing empirical studies as
LIs in DSR projects we can experience a more fluid process because
the researcher reflects on the necessary knowledge and connects
his/her questions to the aimed knowledge throughout the project.
We also noticed that our approach encourages the researcher to
better understand the problem and better ground the artifact before
developing it. Moreover, the researcher is stimulated to evaluate the
design choices iteratively until the artifact is ready. This contributes
to evolving the artifact gradually, making decisions to ensure that it

is suitable for the purpose it intends to fulfill. Finally, the researcher
can improve the artifact based on lessons learned from its use in
context and can further evolve it into a new version, which increases
the capacities of the previous one.

As for the challenges, we noticed that it is necessary to reflect
on the number of LIs to be performed in the project because it
must fit the available time and resources. Moreover, DSR projects
involve a lot of tacit knowledge. The LI categories and suggested
knowledge questions help decide on which studies to carry out, but
there are other issues that need to be better supported (e.g., how
to instantiate the knowledge questions to a particular project, how
to establish the best order to perform the studies, how to prioritize
studies according to time and effort constraints, when performing
studies in parallel). In this sense, we believe that a set of detailed
guidelines on how to apply our approach can be useful for other
researchers.

Our purpose with this paper is to introduce and exemplify the
idea of using empirical studies as LIs in DSR projects. This is our first
step toward aiding other researchers in applying DSR in Software
Quality and Software Engineering research. There is a lot of tacit
knowledge that still needs to be addressed. Thus, in future work,
we intend to elaborate guidelines on how to organize and conduct
empirical studies as LIs in DSR projects, provide some templates,
and make them available for other researchers in a Wiki. We will
also conduct other projects using our approach to improve it, bring
more examples and enrich the guidelines.

Some limitations should be considered together with the experi-
ence shared in this paper. At least one of the authors has partici-
pated in the projects conducted using our approach. This may have
influenced the perceived results. Moreover, the research projects in-
volved researchers from only three different research groups, which
is a small sample. Thus, the results are based on our perceptions of
using the approach. To address this limitation, we intend to perform
qualitative evaluation, through interviews and observation with
different researchers using the approach.

ACKNOWLEDGMENTS
This work is supported by CAPES - Financing Code 001, FAPERJ
(210.231/2021, 211.437/2021), UNIRIO (PPQ-UNIRIO 02/2021), CNPq
(314174/2020-6), FAPEAM (062.00150/2020), and grant #2020/05191-
2 São Paulo Research Foundation (FAPESP). The present work also is
the result of the Research and Development (R&D) project 001/2020,
signed with Federal University of Amazonas and FAEPI, Brazil,
which has funding from Samsung, using resources from the Infor-
matics Law for the Western Amazon (Federal Law nº 8.387/1991),
and its disclosure is in accordance with article 39 of Decree No.
10.521/2020.

REFERENCES
[1] 2022. Short communication: Evolution of secondary studies in software engi-

neering. Inf Softw Technol 145 (2022), 106840.
[2] Icek Ajzen. 2020. The theory of planned behavior: Frequently asked questions. Hu-

man Behavior and Emerging Technologies 2, 4 (2020), 314–324. https://doi.org/10.1
002/hbe2.195 Preprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbe2.195.

[3] J.E. Aken, van. 2004. Management research based on the paradigm of the design
sciences: the quest for field-tested and grounded technological rules. J. Manag.
Stud. 41, 2 (2004), 219–246. https://doi.org/10.1111/j.1467-6486.2004.00430.x

[4] Aline Barbosa, Geraldo Galindo, Maria Lencastre, Roberta Fagundes, and Wyl-
liams Santos. 2020. Fostering Industry-Academia Collaboration in Software

https://doi.org/10.1002/hbe2.195
https://doi.org/10.1002/hbe2.195
https://doi.org/10.1111/j.1467-6486.2004.00430.x

SBQS ’22, Nov 7–10, 2022, Curitiba, Brazil Barcellos et al.

Engineering using Action Research: A Case Study. In Anais do XIX Simpósio
Brasileiro de Qualidade de Software (São Luiz do Maranhão). SBC, Porto Alegre,
RS, Brasil, 411–419. https://sol.sbc.org.br/index.php/sbqs/view/14239

[5] Victor Basili, Adam Trendowicz, Martin Kowalczyk, Jens Heidrich, Carolyn
Seaman, JürgenMünch, andDieter Rombach. 2014. GQM+ Strategies in a Nutshell.
In Aligning Organizations Through Measurement. Springer, 9–17.

[6] Richard Baskerville. 2008. What design science is not. European Journal of
Information Systems 17, 5 (2008), 441–443. https://doi.org/10.1057/ejis.2008.45

[7] Richard L Baskerville. 1997. Distinguishing action research from participative
case studies. Journal of systems and information technology (1997).

[8] Joelma Choma, Luciana A. M. Zaina, and Tiago Silva Da Silva. 2015. Towards an
Approach Matching CMD and DSR to Improve the Academia-Industry Software
Development Partnership: A Case of Agile and UX Integration. In Proceedings of
the 29th Brazilian Symposium on Software Engineering. IEEE Computer Society,
USA, 51–60. https://doi.org/10.1109/SBES.2015.18

[9] Aldo Dagnino. 2013. Estimating software-intensive projects in the absence of
historical data. In 2013 35th International Conference on Software Engineering
(ICSE). 941–950. https://doi.org/10.1109/ICSE.2013.6606643 ISSN: 1558-1225.

[10] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting Empirical Methods for Software Engineering Research. Springer
London, London, 285–311. https://doi.org/10.1007/978-1-84800-044-5_11

[11] Michael Felderer and GuilhermeHorta Travassos. 2020. The Evolution of Empirical
Methods in Software Engineering. Springer International Publishing, Cham, 1–24.
https://doi.org/10.1007/978-3-030-32489-6_1

[12] Eduardo Ferreira, Bianca Trinkenreich, Monalessa Perini Barcellos, and Gleison
Santos. 2018. Using SINIS and GQM+Strategies to Align Organizational Goals
and Service Level Agreement Indicators. In Proceedings of the 17th Brazilian
Symposium on Software Quality. ACM, New York, NY, USA, 324–333. https:
//doi.org/10.1145/3275245.3275274

[13] Eduardo Ferreira, Bianca Trinkenreich, Monalessa Perini Barcellos, and Gleison
Santos. 2021. SINIS-LA Method for IT Alignment Considering Service Level
Management. In XVII Brazilian Symposium on Information Systems (Uberlândia,
Brazil) (SBSI 2021). ACM, New York, NY, USA. https://doi.org/10.1145/3466933.
3466977

[14] Tony Gorschek and Krzysztof Wnuk. 2020. Third Generation Industrial Co-
production in Software Engineering. Springer Int. Publishing, Cham, 503–525.

[15] A. R. Hevner. 2007. A Three Cycle View of Design Science Research. Scandinavian
Journal of Information Systems (2007), 87–92.

[16] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design
Science in Information Systems Research. MIS Quarterly 28, 1 (mar 2004), 75–105.

[17] Pertti Järvinen. 2007. Action Research is Similar to Design Science. Quality &
Quantity 41 (2007), 37–54. Issue 1. https://doi.org/10.1007/s11135-005-5427-1

[18] Fernando Kamei, Igor Wiese, Gustavo Pinto, Márcio Ribeiro, and Sérgio Soares.
2020. On the Use of Grey Literature: A Survey with the Brazilian Software
Engineering Research Community. In Proc. of the 34th Brazilian Symposium on
Software Engineering (SBES ’20). ACM, New York, NY, USA, 183–192.

[19] Matthew P. H. Kan and Leandre R. Fabrigar. 2017. Theory of Planned Behavior.
In Encyclopedia of Personality and Individual Differences, Virgil Zeigler-Hill and
Todd K. Shackelford (Eds.). Springer International Publishing, Cham, 1–8. https:
//doi.org/10.1007/978-3-319-28099-8_1191-1

[20] Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews
in software engineering. Technical Report EBSE-2007-01. Keele University &
University of Durham.

[21] Barbara A. Kitchenham. 2004. Procedures for Performing Systematic Reviews. Joint
Technical Report TR/SE-0401. Keele University & National ICT Australia Ltd.,
Keele, UK.

[22] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. 2015. Evidence-
Based Software Engineering and Systematic Reviews (1 ed.). CRC Press.

[23] Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen. 2004. Evidence-Based
Software Engineering. In Proceedings of the 26th International Conference on
Software Engineering (ICSE ’04). IEEE Computer Society, USA, 273–281.

[24] Sômulo Nogueira Mafra, Rafael Ferreira Barcelos, and Guilherme Horta Travas-
sos. 2006. Aplicando uma metodologia baseada em evidência na definição de
novas tecnologias de software. In Proceedings of the 20th Brazilian Symposium on
Software Engineering (SBES 2006), Vol. 1. 239–254.

[25] AnaMagazinius, Sofia Börjesson, and Robert Feldt. 2012. Investigating Intentional
Distortions in Software Cost Estimation - An Exploratory Study. J Syst Softw 85,
8 (aug 2012), 1770–1781. https://doi.org/10.1016/j.jss.2012.03.026

[26] Patricia Matsubara. 2019. Dealing with Software Estimates Distortions from the
Perspective of Negotiation Theories. SIGSOFT Softw. Eng. Notes 44, 3 (nov 2019),
22. https://doi.org/10.1145/3356773.3356794

[27] Patricia Matsubara, Bruno Gadelha, Igor Steinmacher, and Tayana Conte. 2022.
SEXTAMT: A systematic map to navigate the wide seas of factors affecting
expert judgment software estimates. J Syst Softw 185 (2022), 111148. https:
//doi.org/10.1016/j.jss.2021.111148

[28] Patricia Matsubara, Igor Steinmacher, Bruno Gadelha, and Tayana Conte. 2021.
Buying time in software development: how estimates become commitments?. In
2021 IEEE/ACM 13th International Workshop on Cooperative and Human Aspects

of Software Engineering (CHASE). IEEE, Madrid, Spain, 61–70. https://doi.org/10
.1109/CHASE52884.2021.00015

[29] Patricia Matsubara, Igor Steinmacher, Bruno Gadelha, and Tayana Conte. 2022.
The best defense is a good defense: adapting negotiation methods for tackling
pressure over software project estimates. In Proceedings of the 44th International
Conference in Software Engineering — New Ideas and Emerging Results Track. IEEE,
Pittsburgh, Pennsylvania. https://doi.org/10.1145/3510455.3512775

[30] Steve McConnell. 2006. Politics, Negotiation, and Problem Solving. In Software
Estimation: Demystifying the Black Art. Microsoft Press, Redmond, 259–270.

[31] Philipp Offermann, Olga Levina, Marten Schönherr, and Udo Bub. 2009. Outline
of a Design Science Research Process. In Proceedings of the 4th International
Conference on Design Science Research in Information Systems and Technology
(Philadelphia, Pennsylvania) (DESRIST ’09). ACM, New York, NY, USA. https:
//doi.org/10.1145/1555619.1555629

[32] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee.
2007. A Design Science Research Methodology for Information Systems Research.
J Manag Inf Syst 24, 3 (2007), 45–77. https://doi.org/10.2753/MIS0742-1222240302

[33] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
Conducting Systematic Mapping Studies in Software Engineering. Inf. Softw.
Technol. 64, C (aug 2015), 1–18. https://doi.org/10.1016/j.infsof.2015.03.007

[34] Rodrigo Rebouças de Almeida, Christoph Treude, and Uirá Kulesza. 2019. Tracy:
A Business-Driven Technical Debt Prioritization Framework. In 2019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 181–185.

[35] Per Runeson, Emelie Engström, and Margaret-Anne Storey. 2020. The Design
Science Paradigm as a Frame for Empirical Software Engineering. Springer Interna-
tional Publishing, Cham, 127–147. https://doi.org/10.1007/978-3-030-32489-6_5

[36] Per Runeson, Sten Minör, and Johan Svenér. 2014. Get the Cogs in Synch: Time
Horizon Aspects of Industry–Academia Collaboration. In Proceedings of the
2014 International Workshop on Long-Term Industrial Collaboration on Software
Engineering (Vasteras, Sweden) (WISE ’14). ACM, New York, NY, USA, 25–28.
https://doi.org/10.1145/2647648.2647652

[37] Rafaela Sampaio, Cristina Teles Cerdeiral, and Gleison Santos. 2021. A Method
to Support Continuous Planning at the Team Level. ACM, New York, NY, USA.
https://doi.org/10.1145/3493244.3493257

[38] Klaas-Jan Stol and Brian Fitzgerald. 2020. Guidelines for Conducting Software
Engineering Research. Springer International Publishing, Cham, 27–62. https:
//doi.org/10.1007/978-3-030-32489-6_2

[39] Bianca Trinkenreich and Gleison Santos. 2015. Avaliação da Gerência de Inci-
dentes sob a Luz do MR-MPS-SV e Medição para Apoiar a Melhoria da Qualidade
do Serviço de TI. In Proceedings of the 14th Brazilian Symposium on Software
Quality. SBC, 220–227.

[40] Bianca Trinkenreich and Gleison Santos. 2015. Avaliação do Processo de Medição
para Serviços de TI em uma Empresa Global à Luz do MR-MPS-SV. iSys-Brazilian
Journal of Information Systems 8, 2 (2015), 58–77.

[41] Bianca Trinkenreich. and Gleison Santos. 2015. Metrics to Support It Service
MaturityModels - A Case Study. In Proceedings of the 17th International Conference
on Enterprise Information Systems - Volume 1: ICEIS,. INSTICC, SciTePress, 395–
403. https://doi.org/10.5220/0005398003950403

[42] Bianca Trinkenreich, Gleison Santos, and Monalessa Perini Barcellos. 2015. Met-
rics to Support IT Service Maturity Models. In Proc. 17th Int. Conf. Enterp. Inf.
Syst.(ICEIS 2015). 1–8.

[43] Bianca Trinkenreich, Gleison Santos, and Monalessa Perini Barcellos. 2015. SINIS:
a method to select indicators for IT services. In International Conference on
Product-Focused Software Process Improvement. Springer, 68–86.

[44] Bianca Trinkenreich, Gleison Santos, and Monalessa Perini Barcellos. 2018. SINIS:
A GQM+Strategies-based approach for identifying goals, strategies and indicators
for IT services. Inf Softw Technol 100 (2018), 147–164.

[45] Bianca Trinkenreich, Gleison Santos, Monalessa Perini Barcellos, and Tayana
Conte. 2017. Eliciting strategies for the GQM+ strategies approach in IT ser-
vice measurement initiatives. In Proceedings of the 11th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. 374–383.

[46] Bianca Trinkenreich, Gleison Santos, Valdemar TF Confort, and Flávia Maria
Santoro. 2015. Toward using Business Process Intelligence to Support Incident
Management Metrics Selection and Service Improvement. In SEKE. 522–527.

[47] Roel Wieringa. 2009. Design Science as Nested Problem Solving. In Proc. of the
4th Int. Conf. on Design Science Research in Information Systems and Technology
(Philadelphia, Pennsylvania) (DESRIST ’09). ACM, New York, NY, USA. https:
//doi.org/10.1145/1555619.1555630

[48] Roelf J. Wieringa. 2014. Design science methodology for information systems and
software engineering. Springer, Netherlands. https://doi.org/10.1007/978-3-662-
43839-8 10.1007/978-3-662-43839-8.

[49] Claes Wohlin and Austen Rainer. 2021. Challenges and recommendations to
publishing and using credible evidence in software engineering. Inf Softw Technol
134 (June 2021), 106555. https://doi.org/10.1016/j.infsof.2021.106555

[50] Claes Wohlin and Per Runeson. 2021. Guiding the selection of research method-
ology in industry–academia collaboration in software engineering. Inf Softw
Technol 140 (2021), 106678. https://doi.org/10.1016/j.infsof.2021.106678

https://sol.sbc.org.br/index.php/sbqs/view/14239
https://doi.org/10.1057/ejis.2008.45
https://doi.org/10.1109/SBES.2015.18
https://doi.org/10.1109/ICSE.2013.6606643
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-3-030-32489-6_1
https://doi.org/10.1145/3275245.3275274
https://doi.org/10.1145/3275245.3275274
https://doi.org/10.1145/3466933.3466977
https://doi.org/10.1145/3466933.3466977
https://doi.org/10.1007/s11135-005-5427-1
https://doi.org/10.1007/978-3-319-28099-8_1191-1
https://doi.org/10.1007/978-3-319-28099-8_1191-1
https://doi.org/10.1016/j.jss.2012.03.026
https://doi.org/10.1145/3356773.3356794
https://doi.org/10.1016/j.jss.2021.111148
https://doi.org/10.1016/j.jss.2021.111148
https://doi.org/10.1109/CHASE52884.2021.00015
https://doi.org/10.1109/CHASE52884.2021.00015
https://doi.org/10.1145/3510455.3512775
https://doi.org/10.1145/1555619.1555629
https://doi.org/10.1145/1555619.1555629
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.1145/2647648.2647652
https://doi.org/10.1145/3493244.3493257
https://doi.org/10.1007/978-3-030-32489-6_2
https://doi.org/10.1007/978-3-030-32489-6_2
https://doi.org/10.5220/0005398003950403
https://doi.org/10.1145/1555619.1555630
https://doi.org/10.1145/1555619.1555630
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1016/j.infsof.2021.106555
https://doi.org/10.1016/j.infsof.2021.106678

	Abstract
	1 Introduction
	2 background
	2.1 Design Science Research
	2.2 Empirical Studies

	3 Using Empirical Studies as Learning Iterations in DSR
	4 Applying the Proposed Approach
	4.1 SINIS - A Framework for Selecting Indicators for IT Services
	4.2 SwEDeL - A Set of Defense Lenses for Software Estimates

	5 Discussion
	6 Final Considerations
	Acknowledgments
	References

