
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221001016

Optimized dynamic semantic composition of services

Conference Paper · January 2008

DOI: 10.1145/1363686.1364230 · Source: DBLP

CITATIONS

8

READS

38

3 authors:

Some of the authors of this publication are also working on these related projects:

Ph.D. publications View project

Interoperabilidade Semântica de Informações em Segurança Pública View project

Sorin M. Iacob

Thales Group

27 PUBLICATIONS 196 CITATIONS

SEE PROFILE

João Paulo A. Almeida

Universidade Federal do Espírito Santo

148 PUBLICATIONS 1,549 CITATIONS

SEE PROFILE

Maria-Eugenia Iacob

University of Twente

114 PUBLICATIONS 1,276 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sorin M. Iacob on 23 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221001016_Optimized_dynamic_semantic_composition_of_services?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221001016_Optimized_dynamic_semantic_composition_of_services?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhD-publications-2?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interoperabilidade-Semantica-de-Informacoes-em-Seguranca-Publica?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sorin_Iacob?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sorin_Iacob?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Thales_Group?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sorin_Iacob?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Eugenia_Iacob?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Eugenia_Iacob?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Eugenia_Iacob?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sorin_Iacob?enrichId=rgreq-b8b441854c607613e02e45ef5690e1aa-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMTAxNjtBUzo5OTg2MjAyMDM2MjI0MUAxNDAwODIwMzY5MjEw&el=1_x_10&_esc=publicationCoverPdf

Optimized Dynamic Semantic Composition of Services
Sorin M. Iacob

Thales Research and
Technology, D-CIS Lab
PO Box 90, 2600 AB,
Delft, The Netherlands

sorin.iacob@icis.decis.nl

João Paulo A. Almeida

Departamento de Informática,
CT-VII, UFES Av. Fernando

Ferrari, s/n 29060-970 Vitória,
Espírito Santo, Brazil

jpalmeida@ieee.org

Maria E. Iacob
University of Twente

P.O. Box 217, 7500 AE

Enschede, The Netherlands

m.e.iacob@utwente.nl

ABSTRACT

This paper proposes a design for the optimized dynamic

(re)composition of services that supports various user requests

and accounts for changes in user‘s context. The composition

mechanism relies on semantic descriptions of services‘

functionality to compose services at runtime. The design-time

component of our solution is a domain ontology that is used by

the composition service for deriving different composition

possibilities and for finding the appropriate similarity relations

between different semantic constructs representing the user

request and service descriptions. The composition mechanism

combines a greedy optimization for the initial selection of

candidate constituent services and a global optimization for

reaching the final composition.

Keywords

Services, service composition, domain ontology, semantic

similarity, context-awareness.

1. INTRODUCTION
Service-oriented architectures improve design efficiency by

promoting the reuse of well-defined and coherent functionality

which is made available through services. In these architectures,

designers can achieve complex application behaviors by

appropriately combining the functionality of several services, in

what is called a service composition. End-user services often

consist of a more or less complex composition of services, each of

which may be defined by composing other services.

Since individual services may be heterogeneous in terms of

technology, performance, usage conditions, etc., the process of

discovering, connecting and coordinating individual services in a

service composition is potentially time-consuming and error-

prone. The challenges for service composition are aggravated in

the case of ubiquitous and context-aware services, for which

availability, performance and characteristics of the component

services are (highly) dynamic and sensitive to the context of

operation.

This paper proposes a design for an optimized runtime

composition mechanism for services. We address the problem of

finding the set of functions and their logical sequencing that is

required for achieving a composition, automatically, i.e., without

designer intervention.

Our approach consists of matching a semantic description of a

desired service with a set of semantic descriptions of available

(atomic) services. The matching entails the calculation of a so-

called semantic similarity measure for each of the available

services and the subsequent prioritization of these services

depending on their similarity with the search phrase. The design-

time component of our solution is a domain ontology that is used

by the composition service for deriving different composition

possibilities and for finding the appropriate similarity relations

between different semantic constructs representing the user

request and service descriptions.

The composition mechanisms presented is generic with respect to

the particular domain ontologies used as well as independent of

the services registered in the repository. Further, it is also

independent of the composition operators used to compose

services. To show that, we apply the approach to two different

scenarios with different kinds of services compositions: a scenario

which consists of the composition of multimedia streaming

services, and a scenario which consists of the composition of

(web) services for location-awareness.

The composition mechanism combines a greedy optimization for

the initial selection of candidate constituent services and a global

optimization for reaching the final composition. This optimization

takes into account non-functional properties of the constituent

services expressed in terms of a utility function. Our approach is

illustrated by means of two examples. First a multimedia service

scenario is used to motivate the necessity of optimization. Then a

simplified example of a distance service is used to prove the

feasibility of its implementation.

This paper is further structured as follows: section 2 presents

some background on dynamic services composition; section 3

presents the multimedia streaming scenario, which motivates a

runtime process that is capable of adapting a service configuration

to changes in the user‘s or systems‘ contexts. Section 4 presents

the architecture of the dynamic composition service and

introduces the composition process. Section 5 presents a

prototype to illustrate the application of our approach to a second

example with the composition of location-based services. Section

6 discusses some related work. Finally, section 7 presents some

conclusions and outlines topics for future work.

2. BACKGROUND
In design time service composition (e.g., [1]), the outcome is a

composition description (or composition graph) that together with

service descriptions (of the component services) can be executed

by a runtime environment. In this case, the runtime environment is

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

mailto:sorin.iacob@icis.decis.nl
mailto:jpalmeida@ieee.org
mailto:m.e.iacob@utwente.nl

primarily responsible for executing a (composite) service, routing

messages between component services, handling events, faults

and exceptions and monitoring overall service execution.

Given that some component services may not be available at all

times, the runtime environment should also be able to select

individual services in a dynamic manner [12]. Typically, services

are selected from a pool of candidate services, which is

determined at design time. The actual service to be invoked is

then obtained by evaluating a given query over a registry, or

obtained from a brokering service. The choice for a particular

service over similar ones is based on a set of (non-functional)

requirements and user preferences expressed in the composite

service description. Finally, a binding mechanism is used to

homogenize the (possibly heterogeneous) inter-faces of

component services.

When the service composition graph is known, the only runtime

process that remains to perform is service instance selection. The

criteria for choosing a particular instance of a given service are

therefore exclusively related to the non-functional properties of

the service, all of which can be combined in a ―cost‖ value. The

optimization process is reduced thus to the minimization of a real-

valued cost function. In case of dynamic service composition the

service selection also needs to take into account functional

properties. However, since the overall functionality of the

composite service is supposed to be the same regardless the

particular choice of elementary functionality, non-functional

properties will play the most important role here. Nevertheless,

the selection problem is much more complex than in the previous

case, since there may be different service graphs that achieve the

same functionality.

Dynamic service composition as presented in this paper attempts

to select and compose, at runtime, those services that, in the right

combination will provide the functionality that is required for

obtaining the desired behavior. In order to automate the

composition process, it is necessary to enrich the description of

services beyond the syntactical description of interfaces and

parameters. In this paper, we rely on the use of domain ontologies

[13, 15], which not only allow for powerful discovery techniques,

but also enable the design of mechanisms for dynamic

composition [8, 17].

3. SCENARIO: DYNAMIC COMPOSITION

OF MULTIMEDIA SERVICES
To highlight several aspects of service composition we present an

example of a multimedia streaming service that delivers the latest

edition of BBC World News, in the best possible quality (audio,

video, text) to mobile users. The composite streaming service

adapts dynamically in response to changes in the user‘s or

system‘s context, by adding and/or removing the video stream

from a multimedia transmission, or by including additional media

encoders or processors.

The main components of the service (see Figure 1) are the media

sources (M, e.g. audio, video, text), a set of processors (P, e.g.

sub-samplers, color space converters, text-to-speech converters,

A/V splitters, video key-frame extractors, etc), a set of encoders

(E, e.g. mp3, H264.1, etc.), a set of transport services (T, e.g. rtsp,

http, ftp), context sources (Xu – for the user context, Xn for the

network context, Xs for the service context), and the end-user

device (Ud). Note that the service graph may change dynamically

since the choice of services from each category is not exclusive. In

general, a composite service can be seen as a graph of media

sources, processors, encoders, and transport components as

illustrated in Figure 1.

In this example, a particular service configuration results as a

function of user‘s request and different context parameters. We

describe the different service configurations for different

situations based on the user‘s context:

M P E T

 Xn

Xu

Xs

Ud

P

P

E T

T E

M

M

Media servers

Processors

Encoders M

P

E

Xx Context

sources

While the user is driving on the highway (fact that is sensed by

Xu) the service delivers the BBC World News in audio-only

mode (for safety reasons). This means that from the audio-video

file the audio will be extracted with an a/v splitter. Since the

edition includes some text-only news, a text-to-speech converter

is also used. Xn senses that the UMTS connection used by Ud

allows for a maximum of 64 kbps, so the first audio sequence is

encoded mp3 at 64 kbps, and then fed to an RTSP server. Since

the computer generated audio requires a much lower bandwidth

(16kbps), this is put in a separate file and placed on an http server.

The links to the two audio files (rtsp and http) are sent through the

over-the-air (OTA) push protocol to the Ud, which then

automatically connects to the two servers and plays the audio files

(see Figure 2).

M P E T

Xn

Xu

Ud

Mp3 (64 kbps) A/V split Rtsp

M

text

A/V

P

Text-to-speech

E

Mp3 (16 kbps)

T

http

T

OTA

UMTS

driving

The user stops at his destination and alights from his car. This has

the effect of changing his activity to ―walking‖ (see Figure 3),

which is signaled by Xu. As a result, the service adjusts to also

deliver the video part of the transmission.

M

P
 E

 T

 X n

X u

Ud

H264.1
(256kbps)

A/V mixer

 Rtsp

M

text

A/V

P

Text-to-video

Wi - Fi

walking

The text-only news is now inserted as subtitles. Xn senses that Ud

connected to a publicly accessible wireless LAN, so a higher bit-

rate is now available for the real-time multimedia transmission.

Figure 1: Service configuration (user is walking)

Figure 2: Adaptive multimedia streaming service

Figure 3: Service configuration (user is driving)

Additional changes in the user, system, or network context can be

envisaged that would require completely different service

configurations. The only stable given in this dynamic

configuration (composition) scenario is the user request,

formulated as a semantic construct to represent the ―latest BBC

news at the best possible quality‖.

4. OPTIMIZED DYNAMIC SERVICE

COMPOSITION

4.1 Assumptions
For our solution we assume that user requests, context parameters,

and service descriptions are expressed as semantic constructs

within a given domain ontology O(C, R), where C is the set of

concepts (or vocabulary), and R the set of relations (or ontological

axioms). The actual design of such a domain ontology is beyond

the scope of the present work. According to this assumption, the

relation between service descriptions (or service requests for that

matter) and ontology concepts can be sketched graphically as in

Figure 4. In principle, a semantic construct for specifying a

(composite) service is an aggregation of concepts, according to

some arbitrary composition operators (denoted hereafter ).

The existing relations in the ontology should allow certain

transformations on these semantic constructs and the definition of

a semantic similarity measure between different constructs. Based

on this measure, equivalence relations between semantic

constructs can be defined, such as: (C1) = (C3  C2) or (C1) 

(C3  (C4  C5)) in Figure 4.

4.2 Architecture for discovery and

composition
The composition service is responsible for dynamically

constructing composite services based on client requests. It can

also be made responsible for recomposing the service to keep it

―matched‖ with what the client initially requested if, for example,

some of the service‘s constituent services suddenly become

unavailable. In this case, the composition service proposes

(re)compositions of a particular service to the requesting client.

The client can then decide which (if any) of the proposed

composite services it would like to bind to. Alternatively, the

client could also delegate binding decisions to the composition

service, which would require informing the composition service

of its ‗binding policy‘.

Services (including context sources) advertise their service

description to the discovery service when they wish to make

themselves available to potential clients. During discovery, a

client obtains information about the existence of services, their

operations, parameters, and their semantics. The discovery and

composition processes are inseparable in our architecture, such

that there is a continuous interaction between the Service

Composition Service (SCS), and the Service Discovery Service

(SDS), as shown in Figure 5. A request for some complex

functionality is generated, as explained earlier, by the end-user

application (Ud), in terms of the selected domain ontology. The

SCS processes this request in order to find possible equivalent

constructs in terms of the same vocabulary, and then generates a

set of requests for (atomic) services towards the SDS. The

services returned by SDS are then composed and presented to the

end-user.

Service Composition

Service

Xu Ud

Request for complex

functionality

Service Discovery

Service

Service Registry

S S
S S

S
S

S
S

Request for atomic

functionality
Descriptions of found

atomic services

Domain ontology

c
c

c

c

c
Composite

service

4.3 Composition mechanism
Given that the functionality of a (composite) service and the query

for that service are expressed in terms of the same ontology, it is

possible to estimate the ―gap‖ between the functionality of the

requested (composite) service and that offered by any of the

available (constituent) services [14]. Dynamic service

composition can then be defined, in an abstract way, as an

iterative process by which new functions are added, at runtime, to

an existing aggregation until a certain error threshold, measuring

the gap between the desired and available functionality, is

reached. After each iteration, the newly composed service is

evaluated, and a utility measure (u) is calculated as a function of

the semantic similarity between the required and achieved

functionality, and some non-functional constraints (e.g. response

time, or some generic costs). The context of the client can

influence the set of constituent services that the SCS selects for a

particular composition as well as the way in which they are

arranged in the composite service‘s service graph. Once a service

has been constructed, context changes might require the SCS to

select new constituent services and use them to recompose the

composite service.

To explain the composition mechanism, we begin with the

assumption that for any service request a set of (constituent)

services can be retrieved that match, to a certain degree, subsets of

the query, as explained further. The SCS first attempts to find a

composite service that matches the original query. If the utility

measure indicates a poor match, the SCS ―breaks‖ the original

query in smaller fragments by replacing individual terms with

equivalent (composite) constructs derived from the domain

ontology. The SDS then tries to find these simpler services, and

Figure 4: Service descriptions as semantic constructs in

terms of an ontology fragment.

Figure 5: Architecture for discovery and

composition

Class or instance (Ci)

 Relation (Rij)

Ontology fragment Example descriptions
of services or requests

(C1)
(C3  C2)

(C1) = (C3 C2)

(C1)  (C3  (C4  C5))

C1

C2 C3

C4
C5

 Composition operator

the SDS selects from the returned set those for which the utility

measure is maximized. This process (see Figure 6) is repeated

until the utility measure reaches a prescribed value.

Composition Service

Request
specification

Ud

Discovery
Service

{req} =  {reqi};

Query( {reqi}) =  {Query({reqi})

Utility
calculation

{reqi} =  {reqij}

{funci}

{req}

ui > u0i?

ui = f({reqi}, {funci})

y

Request
decomposition

 Xu

Add candidate
service Si

Compose

u > u0?

n

Execute

 S Xs

{reqi}

y

n

Prioritize

 Xs Xx

 S

Context sources

Constituent services

4.4 Optimization of the dynamic composition
The composition mechanism combines a greedy optimization for

the initial selection of candidate constituent services and a global

optimization for reaching the final composition.

In the greedy step, all discoverable constituent services that match

one or more search terms (―reqi‖ in Figure 6) are selected, and

then the semantic similarity is determined between each service

function description (―funci‖) and the request. The matching

descriptions are then prioritized according to their similarity (i.e.,

the number of matching terms). The search terms for which no

appropriate constituent service was found are further decomposed

into finer-granularity terms, according to the domain ontology

used. In the global optimization step a composition is attempted

from the highest-ranking constituent services with non-

overlapping descriptions, and then the utility measure is

computed. If the utility measure is above the required value, the

composition is considered valid and the composite service is

returned. If not, the candidate constituent services selected in the

greedy step are discarded, the original request is further refined,

and a new query is generated for finer-granularity services. The

algorithm can be summarized in the following steps:

1. Given the request req and the threshold similarity s0 find the

set M of all services having the semantic description func,

such that s(func, req)  s0;

2. If M   calculate the utility measure for all services funci, i

= 1,…, m in M. Go to step 5.

3. Else:

a. write req = req1  req2  …  reqn. For j = 1 to n

repeat steps 1 and 2 to obtain the sets Mj;

b. With all services funcij in Mj build the semantic

constructs funci = func1i  func2i  …  funcni

c. For all funci, i = 1,…, m calculate the utility measures

ui.

4. Select the service func0 for which is u0 = max {ui}.

The above heuristic combines the greedy selection in steps 1 and

3b with the global optimization in step 4. The highest complexity

is O(n2) in step 3b.

During execution, context parameters (including the context of the

client and that of candidate constituent services) are monitored,

and the utility measure is computed at regular intervals. The

composition service re-invokes the global optimization step when

the utility drops due to context changes (which may alter either

the service request or non-functional service parameters).

4.5 Semantic similarity and utility measures
In [14], the similarity between two semantic constructs is defined

as the angle of two vectors that characterize the hyponymy

relations between the concepts used in the two constructs under

comparison. In principle, such a similarity measure can be used in

the SCS as well, and other graph similarity measures proposed in

the literature (e.g., [6]) are also suitable. In general, the similarity

between semantic constructs of concepts in an ontology fragment

can be defined as a function that is proportional with the inverse

of the graph distance in a directed (acyclic) graph (see e.g. [5] for

more details regarding distance in directed graphs).

Let us consider a domain ontology O(C, R). For the purpose of

this work however, it suffices to assume that one such suitable

similarity measure between constructs Ki = (Ci1  Ci2  …  Cim)

and Kj = (Cj1  Cj2  …  Cjn) is defined as a real valued

function s: Cm  Cn  [0,1], with s(Ki, Kj) having the following

properties:

i) s(Ki, Ki) = 1;

ii) i  j, s(Ki, Kj)  (0, 1)   Rij  R.

Otherwise s(Ki, Kj) = 0;

iii) s(K, K1  K2  …  Kn) = 1s(K, K1) + 2s(K,

K2) +…+ ns(K, Kn),

where i  [0,1], i{1,…,n} are normalization

coefficients and 1 + 2 +…+ n = 1.

If we further assume that the non-functional parameters of

candidate services can be described through a scalar, the utility

function can then be defined as:

u: Cm  Cn  [0,1], u(Kreq, Kfunc) = nonfunc  s(Kreq, Kfunc), with

nonfunc [0,1].

The choice for a scalar representation of the non-functional

parameters is arbitrary, its only purpose being that of further

qualifying candidate services. In practice, the non-functional

parameters may be given more meaningful representations.

5. PROTOTYPE FOR COMPOSITION OF

LOCATION-BASED SERVICES
In order to show the feasibility of our approach we have

implemented a prototype of the composition service, which

considers an example ontology in the domain of the location of

users, as depicted in Figure 7 (represented here in UML). This

model includes the following entities: User, Home, Office. A User

is associated with his/her home and his/for office. The user‘s

location is modeled by GeoLocation (which includes GPS

coordinates), the user‘s current GSM cell is modeled by GSMCell

Figure 6: Process model for iterative service composition

and some additional calendar information is modeled by a

Schedule associated with a User.

The main elements of the implementation are the ontology

fragment, the service composition service, the service discovery

service (including a services repository) and an ontology browser

as depicted in Figure 8.

Xu

Q

CIPS

Composition

Service

CIPS

Discovery

Service

 {Qi}

CIPS

Repository

 {Si}

S

Ontology

Browser

Context

Ontology

Fragment

The following assumptions are made to restrict the possible

design choices of Context Information Provisioning Service

(CIPS) prototype:

 There are two composition laws for generating semantic

constructs, which are referred to as ―sequential‖ and

―parallel‖. Sequential composition laws can be regarded as

unary operations (assignments, mappings, etc.), while the

parallel compositions are n-ary operations.

 The semantic (de-)composition laws result from the definition

of the domain ontology, and constrain the service composition

graph as follows: sequential composition forces the

corresponding sequential service invocations and parallel

composition requires independent invocation of the

corresponding component service

 The similarity measure is defined as follows:

- Two different specializations ci, cj of a class c are equivalent,

i.e., have a similarity sij = 1, unless explicitly stated

otherwise

- For n different classes ci, i = 1,…,n, which have an

association relation (e.g. ―part of‖) with one and the same

class c, a similarity measure s(ci, cj) cannot be defined

directly. The following relation, however, holds:

 
i

ii ccsccs 1),(),(, and for practical purposes can

be considered that s(c, ci) = 1/n.

 The utility function results from the scalar multiplication of

the semantic similarity measure between a (sub­)query and a

(composed) service signature, and a weighting factor

calculated from the non-functional aspects of service

execution.

In this prototype, the services published in the repository offer a

single operation, the purpose of which is to supply information

based on certain input parameters (a query operation).

Both a query and a service are described by the tuple:

<output_param_list, [input_param_list]>

Input and output parameters refer to elements defined in the

ontology. We have registered the following services for

illustration purposes:

getUserLocation(user: User): GeoLocation;
getDistance(geoLocation1: GeoLocation,
 geoLocation2: GeoLocation): Distance;
getUserCell(user: User): GSMCell;
geoCode(cell: GSMCell): GeoLocation;
getLikelyLocationResource(user: User, currentTime: CurrentTime):
LocationResource;
getLocation(locationResource: LocationResource): GeoLocation;
getUserHome(user: User): Home;
getHomeLocation(home: Home): GeoLocation;
getUserOffice(user: User): Office;
getOfficeLocation(home: Office): GeoLocation;

5.1 Composition service
The Composer interface (shown here in Java) provides an

operation that, given a ServiceQuery, returns a list of

Compositions (Composition is a class generated from the

Composition metamodel depicted in Figure 9, according to the

model-driven implementation which is discussed in section 5.2):

public List<Composition>

compose(ServiceQuery s);

The compose operation is defined recursively, with two operators

applied to decompose a query: a parallel operator, and a

sequential operator:

compose (service query) : compositions
search repository
if (direct match found)
 return service in composition
else if (no services found)
 search the ontology for classes that are
 related to the output types in the
 service query

 if (no related classes found)
 return empty composition
 else
 // attempt parallel composition
 break the query into a subquery for

Figure 7 Ontology fragment used in prototype

Figure 8. CIPS system components

 each input type
 for each subquery
 call compose recursively
 if (found)
 return resulting compositions
 in parallel

 // attempt sequential composition
 break the query into a subquery from
 each related class
 for each subquery
 call compose recursively
 return resulting compositions in
 sequence

The parallel operator involves the independent invocation of

services in parallel, with the establishment of multiple output

parameters. The sequential operator consists of the concatenation

of invocations in time, with the assignment of the values of output

parameters to the input parameters of subsequent invocations.

5.2 Model-driven implementation
The service composition which is produced by the composition

service is represented by using an instance of the Ecore (EMF

2.2.0 [7]) metamodel defined in Figure 9. This metamodel is used

to generate an Eclipse (3.2) [7] plug-in which provides model

representation, serialization and visualization capabilities. A

services composition consists of a number of invocations.

Invocations can be classified into RecursiveInvocation (in which

case a composition of services is invoked), a ServiceInvocation

(in which case a specific ―atomic‖ service is invoked) and an

UnboundInvocation (which is used to represent invocations which

are not yet assigned to a specific service or service composition.)

5.3 Results of the composition process
Figures 10 and 11 show the results of the composition process as

visualized in our Eclipse plug-in. These compositions compute

the distance between two users in different ways, and are

generated automatically by the composer to satisfy the same query

(i.e., a query that requires a composite service with two input

parameters of type User and one output parameter of type

Distance).

The composition in Figure 10 uses both parallel and sequential

decomposition: parallel decomposition is used to invoke

getUserLocation for each of the two users. Then getDistance is

invoked with the location results obtained.

Figure 11 shows a composition that obtains the location of the

users indirectly, by first determining the users‘ GSM cells

(getUserCell) and, then, sequentially, using each cell identifier to

determine a user‘s location.

6. RELATED WORK
When two or more services need to work together in order to

achieve a complex processing, some additional information about

their properties is required besides the syntactic and semantic

descriptions of inputs, outputs, and transformation rules. This

information includes: the set of functions required for the complex

processing; the proper sequencing of operations; how to match the

outputs of one service with the inputs of a subsequent one; what

are the temporal relationships between the execution of the

Figure 9. Service composition metamodel

Figure 10 Automatically generated composition that provides

the distance between two users

Figure 11 GSM cell identifier is used in the composition for

deriving the user’s location

different services in a sequence of operations, etc. Depending on

the emphasis put on these problems, several approaches have been

proposed for solving the service composition problem, based on,

e.g. finite state automata [3], planning [17, 18], agents [4],

workflow analysis [9], etc. An extensive overview of the

fundamental assumptions and concepts underlying current work

on service composition, and of the key results in the area is

presented in [10]. Fujii and Suda [8] proposed a similar approach

to dynamic service composition based on the semantic similarity

between queries and service descriptions, but assumed a static

(and unique) graph representation of the query. In our approach,

the composition process ensures a minimal number of services

through the iterative decomposition of the input query, and

accounts for dynamic changes in the user‘s environment.

Another approach to dynamic service composition is that of Zeng

et al. [19], which selects particular service in a composite service

composition model, based on the optimization of some quality

measures derived from the nonfunctional properties of the

component services. Nevertheless they assume a static

composition graph, the optimization problem being thus less

complex. Consequently, our approach may be seen as

complementary to this one since we do not make explicit the

dependency on non-functional parameters, but instead optimize

the functionality of the composite service based on the semantic

matching of service descriptions.

For service discovery, context information has been used to

optimize the discovery process [2], for instance by only

considering those services that are in the client‘s proximity [16].

7. DISCUSSIONS AND CONCLUSIONS
The proposed solution provides an optimal (re-) composition of

services at runtime, based on various user requests, and taking

into account rapid changes in user‘s context. The composition

mechanism relies on the semantic description of services‘

functionality, and ignores the problems related to orchestration

and choreography. The design-time component of this mechanism

is the domain ontology that is used by the composition service to

find the appropriate similarity relations between different

semantic constructs representing the user request and service

descriptions. The implementation has been realized in a prototype

using model-driven development techniques. A complete

prototype description is available in [11].

We have assumed that all necessary information exchange

between services refers to a shared ontology fragment. We have

considered a simplified ontology fragment in the demonstrator.

Future work should investigate the scalability of the approach,

which requires the availability of large ontologies and service

repositories.

8. ACKNOWLEDGMENTS
This work is part of the Freeband A-MUSE project (http://a-

muse.freeband.nl), which is sponsored by the Dutch government

under contract BSIK 03025.

9. REFERENCES
[1] J.P.A. Almeida, M.E. Iacob, H. Jonkers, D. Quartel,

―Model-Driven Development of Context-Aware Services,‖,

Proc. of the 6th IFIP WG 6.1 Int‘l Conf. Distributed

Applications and Interoperable Systems (DAIS) 2006,

LNCS, Vol. 4025, 2006, pp. 213 – 227.

[2] K. Arabshian, H. Schulzrinne, D. Trossen, D. Pavel,

―GloServ: Global Service Discovery using the OWL Web

Ontology Language‖, IEEE Int‘l Workshop on Intelligent

Environments, Colchester, England, June 2005.

[3] S. Ben Mokhtar, J. Liu, N. Georgantas, V. Issarny, ―QoS-

aware Dynamic Service Composition in Ambient Intelligence

Environments‖, Proceedings of ASE‘05, 2005.

[4] M. Berger, M. Bouzid, et al., ―An Approach to Agent-Based

Service Composition and Its Application to Mobile Business

Processes‖, IEEE Trans. on Mobile Computing, July-

September, (Vol. 2, No. 3), pp. 197-206, 2003.

[5] F. Buckley, F. Harary, Distance in Graphs, Addison Wesley,

1990.

[6] G. Chartrand, G., Kubicki, and M. Schultz, ―Graph similarity

and distance in graphs‖, Aequationes Mathematicae, Vol. 55

(1-2), 1998, pp. 129—145.

[7] Eclipse Metamodeling Framework, www.eclipse.org/emf/

[8] K. Fujii, T. Suda, ―Dynamic Service Composition Using

Semantic Information‖, 2nd ACM Int‘l Conf. on Service

Oriented Computing (ICSOC '04), Nov. 2004.

[9] R. Hamadi, and B. Benatallah, ―A Petri net-based model for

web service composition‖, Proc. 14th Australasian Database

Conf. on Database Technologies 2003, Vol. 17, pp. 191-200.

[10] R. Hull, and J. Su, ―Tools for Composite Web Services: A

Short Overview‖, ACM SIGMOD Record, Vol 34, No 2,

2005.

[11] S.M. Iacob, J.P.A. Almeida, ―Automatic Composition of

Context Information Provisioning Services‖, A-MUSE

D3.14, Telematica Instituut, The Netherlands, 2006.

[12] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann,

A. Buchmann, ―Extending BPEL for Run Time

Adaptability‖, Proc. 9th IEEE Int‘l EDOC Enterprise

Computing Conf. (EDOC'05), 2005, pp. 15-26..

[13] Y. Kalfoglou, M. Schorlemmer, ―Information-Flow-based

Ontology Mapping‖, Proc. 1st Int. Conf. on Ontologies,

Databases and Application of Semantics , 2002.

[14] V. Oleshchuk, A. Pedersen, ―Ontology Based Semantic

Similarity Comparison of Documents‖, 14th Int‘l Workshop

Database and Expert Systems Applications, 2003.

[15] The OWL Services Coalition, OWL-S: Semantic Markup for

Web Services, 2003; www.daml.org/services/owl-s/

[16] O. Ratsimor, V. Korolev, A. Joshi, and T. Finin,

―Agents2Go: An Infrastructure for Location-Dependent

Service Discovery in the Mobile Electronic Commerce

Environment‖, ACM Mobile Commerce Workshop, 2001.

[17] B. Srivastava, ―Automatic web services composition using

planning‖, Proc. KBCS, 2002, pp. 467-477.

[18] M. Vukovic, and P. Robinson, ―Adaptive, planning-based,

Web service composition for context awareness‖, Int‗l

Conference on Pervasive Computing, Vienna, April 2004.

[19] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J.

Kalagnanam, H. Chang, Qos-Aware Middleware for Web

Service Composition, IEEE transaction on Software

Engineering, Vol. 30, No. 5, May 2004, p. 311-327.

View publication statsView publication stats

https://www.researchgate.net/publication/221001016

