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ABSTRACT 

This paper proposes a design for the optimized dynamic 

(re)composition of services that supports various user requests 

and accounts for changes in user‘s context. The composition 

mechanism relies on semantic descriptions of services‘ 

functionality to compose services at runtime. The design-time 

component of our solution is a domain ontology that is used by 

the composition service for deriving different composition 

possibilities and for finding the appropriate similarity relations 

between different semantic constructs representing the user 

request and service descriptions. The composition mechanism 

combines a greedy optimization for the initial selection of 

candidate constituent services and a global optimization for 

reaching the final composition.  

Keywords 

Services, service composition, domain ontology, semantic 

similarity, context-awareness. 

1. INTRODUCTION 
Service-oriented architectures improve design efficiency by 

promoting the reuse of well-defined and coherent functionality 

which is made available through services. In these architectures, 

designers can achieve complex application behaviors by 

appropriately combining the functionality of several services, in 

what is called a service composition. End-user services often 

consist of a more or less complex composition of services, each of 

which may be defined by composing other services. 

Since individual services may be heterogeneous in terms of 

technology, performance, usage conditions, etc., the process of 

discovering, connecting and coordinating individual services in a 

service composition is potentially time-consuming and error-

prone. The challenges for service composition are aggravated in 

the case of ubiquitous and context-aware services, for which 

availability, performance and characteristics of the component 

services are (highly) dynamic and sensitive to the context of 

operation.  

This paper proposes a design for an optimized runtime 

composition mechanism for services. We address the problem of 

finding the set of functions and their logical sequencing that is 

required for achieving a composition, automatically, i.e., without 

designer intervention.  

Our approach consists of matching a semantic description of a 

desired service with a set of semantic descriptions of available 

(atomic) services. The matching entails the calculation of a so-

called semantic similarity measure for each of the available 

services and the subsequent prioritization of these services 

depending on their similarity with the search phrase. The design-

time component of our solution is a domain ontology that is used 

by the composition service for deriving different composition 

possibilities and for finding the appropriate similarity relations 

between different semantic constructs representing the user 

request and service descriptions.  

The composition mechanisms presented is generic with respect to 

the particular domain ontologies used as well as independent of 

the services registered in the repository. Further, it is also 

independent of the composition operators used to compose 

services. To show that, we apply the approach to two different 

scenarios with different kinds of services compositions: a scenario 

which consists of the composition of multimedia streaming 

services, and a scenario which consists of the composition of 

(web) services for location-awareness. 

The composition mechanism combines a greedy optimization for 

the initial selection of candidate constituent services and a global 

optimization for reaching the final composition. This optimization 

takes into account non-functional properties of the constituent 

services expressed in terms of a utility function. Our approach is 

illustrated by means of two examples. First a multimedia service 

scenario is used to motivate the necessity of optimization. Then a 

simplified example of a distance service is used to prove the 

feasibility of its implementation. 

This paper is further structured as follows: section 2 presents 

some background on dynamic services composition; section 3 

presents the multimedia streaming scenario, which motivates a 

runtime process that is capable of adapting a service configuration 

to changes in the user‘s or systems‘ contexts. Section 4 presents 

the architecture of the dynamic composition service and 

introduces the composition process. Section 5 presents a 

prototype to illustrate the application of our approach to a second 

example with the composition of location-based services. Section 

6 discusses some related work. Finally, section 7 presents some 

conclusions and outlines topics for future work. 

2. BACKGROUND 
In design time service composition (e.g., [1]), the outcome is a 

composition description (or composition graph) that together with 

service descriptions (of the component services) can be executed 

by a runtime environment. In this case, the runtime environment is 
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primarily responsible for executing a (composite) service, routing 

messages between component services, handling events, faults 

and exceptions and monitoring overall service execution.  

Given that some component services may not be available at all 

times, the runtime environment should also be able to select 

individual services in a dynamic manner [12]. Typically, services 

are selected from a pool of candidate services, which is 

determined at design time. The actual service to be invoked is 

then obtained by evaluating a given query over a registry, or 

obtained from a brokering service. The choice for a particular 

service over similar ones is based on a set of (non-functional) 

requirements and user preferences expressed in the composite 

service description. Finally, a binding mechanism is used to 

homogenize the (possibly heterogeneous) inter-faces of 

component services. 

When the service composition graph is known, the only runtime 

process that remains to perform is service instance selection. The 

criteria for choosing a particular instance of a given service are 

therefore exclusively related to the non-functional properties of 

the service, all of which can be combined in a ―cost‖ value. The 

optimization process is reduced thus to the minimization of a real-

valued cost function. In case of dynamic service composition the 

service selection also needs to take into account functional 

properties. However, since the overall functionality of the 

composite service is supposed to be the same regardless the 

particular choice of elementary functionality, non-functional 

properties will play the most important role here. Nevertheless, 

the selection problem is much more complex than in the previous 

case, since there may be different service graphs that achieve the 

same functionality. 

Dynamic service composition as presented in this paper attempts 

to select and compose, at runtime, those services that, in the right 

combination will provide the functionality that is required for 

obtaining the desired behavior. In order to automate the 

composition process, it is necessary to enrich the description of 

services beyond the syntactical description of interfaces and 

parameters. In this paper, we rely on the use of domain ontologies 

[13, 15], which not only allow for powerful discovery techniques, 

but also enable the design of mechanisms for dynamic 

composition [8, 17].  

3.  SCENARIO: DYNAMIC COMPOSITION 

OF MULTIMEDIA SERVICES 
To highlight several aspects of service composition we present an 

example of a multimedia streaming service that delivers the latest 

edition of BBC World News, in the best possible quality (audio, 

video, text) to mobile users. The composite streaming service 

adapts dynamically in response to changes in the user‘s or 

system‘s context, by adding and/or removing the video stream 

from a multimedia transmission, or by including additional media 

encoders or processors. 

The main components of the service (see Figure 1) are the media 

sources (M, e.g. audio, video, text), a set of processors (P, e.g. 

sub-samplers, color space converters, text-to-speech converters, 

A/V splitters, video key-frame extractors, etc), a set of encoders 

(E, e.g. mp3, H264.1, etc.), a set of transport services (T, e.g. rtsp, 

http, ftp), context sources (Xu – for the user context, Xn for the 

network context, Xs for the service context), and the end-user 

device (Ud). Note that the service graph may change dynamically 

since the choice of services from each category is not exclusive. In 

general, a composite service can be seen as a graph of media 

sources, processors, encoders, and transport components as 

illustrated in Figure 1. 

In this example, a particular service configuration results as a 

function of user‘s request and different context parameters. We 

describe the different service configurations for different 

situations based on the user‘s context: 
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While the user is driving on the highway (fact that is sensed by 

Xu) the service delivers the BBC World News in audio-only 

mode (for safety reasons). This means that from the audio-video 

file the audio will be extracted with an a/v splitter. Since the 

edition includes some text-only news, a text-to-speech converter 

is also used. Xn senses that the UMTS connection used by Ud 

allows for a maximum of 64 kbps, so the first audio sequence is 

encoded mp3 at 64 kbps, and then fed to an RTSP server. Since 

the computer generated audio requires a much lower bandwidth 

(16kbps), this is put in a separate file and placed on an http server. 

The links to the two audio files (rtsp and http) are sent through the 

over-the-air (OTA) push protocol to the Ud, which then 

automatically connects to the two servers and plays the audio files 

(see Figure 2). 
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The user stops at his destination and alights from his car. This has 

the effect of changing his activity to ―walking‖ (see Figure 3), 

which is signaled by Xu. As a result, the service adjusts to also 

deliver the video part of the transmission.  
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The text-only news is now inserted as subtitles. Xn senses that Ud 

connected to a publicly accessible wireless LAN, so a higher bit-

rate is now available for the real-time multimedia transmission. 

Figure 1: Service configuration (user is walking) 

Figure 2: Adaptive multimedia streaming service 

Figure 3: Service configuration (user is driving) 



Additional changes in the user, system, or network context can be 

envisaged that would require completely different service 

configurations. The only stable given in this dynamic 

configuration (composition) scenario is the user request, 

formulated as a semantic construct to represent the ―latest BBC 

news at the best possible quality‖. 

4. OPTIMIZED DYNAMIC SERVICE 

COMPOSITION 

4.1 Assumptions 
For our solution we assume that user requests, context parameters, 

and service descriptions are expressed as semantic constructs 

within a given domain ontology O(C, R), where C is the set of 

concepts (or vocabulary), and R the set of relations (or ontological 

axioms). The actual design of such a domain ontology is beyond 

the scope of the present work. According to this assumption, the 

relation between service descriptions (or service requests for that 

matter) and ontology concepts can be sketched graphically as in 

Figure 4. In principle, a semantic construct for specifying a 

(composite) service is an aggregation of concepts, according to 

some arbitrary composition operators (denoted hereafter ).  

 

The existing relations in the ontology should allow certain 

transformations on these semantic constructs and the definition of 

a semantic similarity measure between different constructs. Based 

on this measure, equivalence relations between semantic 

constructs can be defined, such as: (C1) = (C3  C2) or   (C1)  

(C3  (C4  C5)) in Figure 4. 

4.2 Architecture for discovery and 

composition 
The composition service is responsible for dynamically 

constructing composite services based on client requests. It can 

also be made responsible for recomposing the service to keep it 

―matched‖ with what the client initially requested if, for example, 

some of the service‘s constituent services suddenly become 

unavailable. In this case, the composition service proposes 

(re)compositions of a particular service to the requesting client. 

The client can then decide which (if any) of the proposed 

composite services it would like to bind to. Alternatively, the 

client could also delegate binding decisions to the composition 

service, which would require informing the composition service 

of its ‗binding policy‘. 

Services (including context sources) advertise their service 

description to the discovery service when they wish to make 

themselves available to potential clients. During discovery, a 

client obtains information about the existence of services, their 

operations, parameters, and their semantics. The discovery and 

composition processes are inseparable in our architecture, such 

that there is a continuous interaction between the Service 

Composition Service (SCS), and the Service Discovery Service 

(SDS), as shown in Figure 5. A request for some complex 

functionality is generated, as explained earlier, by the end-user 

application (Ud), in terms of the selected domain ontology. The 

SCS processes this request in order to find possible equivalent 

constructs in terms of the same vocabulary, and then generates a 

set of requests for (atomic) services towards the SDS. The 

services returned by SDS are then composed and presented to the 

end-user. 
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4.3 Composition mechanism 
Given that the functionality of a (composite) service and the query 

for that service are expressed in terms of the same ontology, it is 

possible to estimate the ―gap‖ between the functionality of the 

requested (composite) service and that offered by any of the 

available (constituent) services [14]. Dynamic service 

composition can then be defined, in an abstract way, as an 

iterative process by which new functions are added, at runtime, to 

an existing aggregation until a certain error threshold, measuring 

the gap between the desired and available functionality, is 

reached. After each iteration, the newly composed service is 

evaluated, and a utility measure (u) is calculated as a function of 

the semantic similarity between the required and achieved 

functionality, and some non-functional constraints (e.g. response 

time, or some generic costs). The context of the client can 

influence the set of constituent services that the SCS selects for a 

particular composition as well as the way in which they are 

arranged in the composite service‘s service graph. Once a service 

has been constructed, context changes might require the SCS to 

select new constituent services and use them to recompose the 

composite service. 

To explain the composition mechanism, we begin with the 

assumption that for any service request a set of (constituent) 

services can be retrieved that match, to a certain degree, subsets of 

the query, as explained further. The SCS first attempts to find a 

composite service that matches the original query. If the utility 

measure indicates a poor match, the SCS ―breaks‖ the original 

query in smaller fragments by replacing individual terms with 

equivalent (composite) constructs derived from the domain 

ontology. The SDS then tries to find these simpler services, and 

Figure 4: Service descriptions as semantic constructs in 

terms of an ontology fragment. 

Figure 5: Architecture for discovery and  

composition 

  

Class or instance (Ci) 

  Relation (Rij) 

Ontology fragment   Example descriptions  
of services or requests   

(C1)   
(C3  C2) 

  

  
  

(C1) = (C3 C2)   
  

(C1)  (C3  (C4  C5)) 

 

 

 

 

 

   
  

C1   

C2   C3   

C4   
C5   

  Composition operator   



the SDS selects from the returned set those for which the utility 

measure is maximized. This process (see Figure 6) is repeated 

until the utility measure reaches a prescribed value. 
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4.4 Optimization of the dynamic composition 
The composition mechanism combines a greedy optimization for 

the initial selection of candidate constituent services and a global 

optimization for reaching the final composition. 

In the greedy step, all discoverable constituent services that match 

one or more search terms (―reqi‖ in Figure 6) are selected, and 

then the semantic similarity is determined between each service 

function description (―funci‖) and the request. The matching 

descriptions are then prioritized according to their similarity (i.e., 

the number of matching terms). The search terms for which no 

appropriate constituent service was found are further decomposed 

into finer-granularity terms, according to the domain ontology 

used. In the global optimization step a composition is attempted 

from the highest-ranking constituent services with non-

overlapping descriptions, and then the utility measure is 

computed. If the utility measure is above the required value, the 

composition is considered valid and the composite service is 

returned. If not, the candidate constituent services selected in the 

greedy step are discarded, the original request is further refined, 

and a new query is generated for finer-granularity services. The 

algorithm can be summarized in the following steps: 

1. Given the request req and the threshold similarity s0 find the 

set M of all services having the semantic description func, 

such that s(func, req)  s0; 

2. If M   calculate the utility measure for all services funci, i 

= 1,…, m in M. Go to step 5. 

3. Else:  

a. write req = req1  req2  …  reqn. For j = 1 to n 

repeat steps 1 and 2 to obtain the sets Mj; 

b. With all services funcij in Mj build the semantic 

constructs funci = func1i  func2i  …  funcni 

c. For all funci, i = 1,…, m calculate the utility measures 

ui. 

4. Select the service func0 for which is u0 = max {ui}. 

The above heuristic combines the greedy selection in steps 1 and 

3b with the global optimization in step 4. The highest complexity 

is O(n2) in step 3b. 

During execution, context parameters (including the context of the 

client and that of candidate constituent services) are monitored, 

and the utility measure is computed at regular intervals. The 

composition service re-invokes the global optimization step when 

the utility drops due to context changes (which may alter either 

the service request or non-functional service parameters). 

4.5 Semantic similarity and utility measures 
In [14], the similarity between two semantic constructs is defined 

as the angle of two vectors that characterize the hyponymy 

relations between the concepts used in the two constructs under 

comparison. In principle, such a similarity measure can be used in 

the SCS as well, and other graph similarity measures proposed in 

the literature (e.g., [6]) are also suitable. In general, the similarity 

between semantic constructs of concepts in an ontology fragment 

can be defined as a function that is proportional with the inverse 

of the graph distance in a directed (acyclic) graph (see e.g. [5] for 

more details regarding distance in directed graphs). 

Let us consider a domain ontology O(C, R). For the purpose of 

this work however, it suffices to assume that one such suitable 

similarity measure between constructs Ki = (Ci1  Ci2  …  Cim) 

and Kj = (Cj1  Cj2  …  Cjn) is defined as a real valued 

function s: Cm  Cn  [0,1], with s(Ki, Kj) having the following 

properties: 

i) s(Ki, Ki) = 1; 

ii) i  j, s(Ki, Kj)  (0, 1)   Rij  R.  

Otherwise s(Ki, Kj) = 0; 

iii) s(K, K1  K2  …  Kn) = 1s(K, K1) + 2s(K, 

K2) +…+ ns(K, Kn),  

where i  [0,1], i{1,…,n} are normalization 

coefficients and 1 + 2 +…+ n = 1. 

If we further assume that the non-functional parameters of 

candidate services can be described through a scalar, the utility 

function can then be defined as:  

u: Cm  Cn  [0,1], u(Kreq, Kfunc) = nonfunc  s(Kreq, Kfunc), with 

nonfunc [0,1]. 

The choice for a scalar representation of the non-functional 

parameters is arbitrary, its only purpose being that of further 

qualifying candidate services. In practice, the non-functional 

parameters may be given more meaningful representations. 

5. PROTOTYPE FOR COMPOSITION OF 

LOCATION-BASED SERVICES 
In order to show the feasibility of our approach we have 

implemented a prototype of the composition service, which 

considers an example ontology in the domain of the location of 

users, as depicted in Figure 7 (represented here in UML). This 

model includes the following entities: User, Home, Office. A User 

is associated with his/her home and his/for office. The user‘s 

location is modeled by GeoLocation (which includes GPS 

coordinates), the user‘s current GSM cell is modeled by GSMCell 

Figure 6: Process model for iterative service composition 



and some additional calendar information is modeled by a 

Schedule associated with a User.  

 

The main elements of the implementation are the ontology 

fragment, the service composition service, the service discovery 

service (including a services repository) and an ontology browser 

as depicted in Figure 8.  
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The following assumptions are made to restrict the possible 

design choices of Context Information Provisioning Service 

(CIPS) prototype: 

 There are two composition laws for generating semantic 

constructs, which are referred to as ―sequential‖ and 

―parallel‖. Sequential composition laws can be regarded as 

unary operations (assignments, mappings, etc.), while the 

parallel compositions are n-ary operations.  

 The semantic (de-)composition laws result from the definition 

of the domain ontology, and constrain the service composition 

graph as follows: sequential composition forces the 

corresponding sequential service invocations and parallel 

composition requires independent invocation of the 

corresponding component service 

 The similarity measure is defined as follows: 

- Two different specializations ci, cj of a class c are equivalent, 

i.e., have a similarity sij = 1, unless explicitly stated 

otherwise 

- For n different classes ci, i = 1,…,n,  which have an 

association relation (e.g. ―part of‖) with one and the same 

class c, a similarity measure s(ci, cj) cannot be defined 

directly. The following relation, however, holds: 

 
i

ii ccsccs 1),(),( , and for practical purposes can 

be considered that s(c, ci) = 1/n. 

 The utility function results from the scalar multiplication of 

the semantic similarity measure between a (sub­)query and a 

(composed) service signature, and a weighting factor 

calculated from the non-functional aspects of service 

execution.  

In this prototype, the services published in the repository offer a 

single operation, the purpose of which is to supply information 

based on certain input parameters (a query operation).  

Both a query and a service are described by the tuple:  

<output_param_list, [input_param_list]> 

Input and output parameters refer to elements defined in the 

ontology. We have registered the following services for 

illustration purposes: 

getUserLocation(user: User): GeoLocation; 
getDistance(geoLocation1: GeoLocation,  
    geoLocation2: GeoLocation): Distance; 
getUserCell(user: User): GSMCell; 
geoCode(cell: GSMCell): GeoLocation; 
getLikelyLocationResource(user: User, currentTime: CurrentTime): 
LocationResource; 
getLocation(locationResource: LocationResource): GeoLocation; 
getUserHome(user: User): Home; 
getHomeLocation(home: Home): GeoLocation; 
getUserOffice(user: User): Office; 
getOfficeLocation(home: Office): GeoLocation; 

5.1 Composition service 
The Composer interface (shown here in Java) provides an 

operation that, given a ServiceQuery, returns a list of 

Compositions (Composition is a class generated from the 

Composition metamodel depicted in Figure 9, according to the 

model-driven implementation which is discussed in section 5.2): 

public List<Composition>  

compose(ServiceQuery s); 

The compose operation is defined recursively, with two operators 

applied to decompose a query: a parallel operator, and a 

sequential operator: 

compose ( service query ) : compositions 
search repository 
if (direct match found) 
 return service in composition 
else if (no services found) 
 search the ontology for classes that are 
 related to the output types in the  
 service query 
  
 if (no related classes found) 
  return empty composition 
 else  
  // attempt parallel composition 
  break the query into a subquery for  

Figure 7 Ontology fragment used in prototype 

Figure 8. CIPS system components 



  each input type 
  for each subquery  
   call compose recursively 
  if (found)  
   return resulting compositions  
   in parallel 
   
  // attempt sequential composition 
  break the query into a subquery from 
  each related class  
  for each subquery 
   call compose recursively 
  return resulting compositions in  
  sequence 

The parallel operator involves the independent invocation of 

services in parallel, with the establishment of multiple output 

parameters. The sequential operator consists of the concatenation 

of invocations in time, with the assignment of the values of output 

parameters to the input parameters of subsequent invocations. 

5.2 Model-driven implementation 
The service composition which is produced by the composition 

service is represented by using an instance of the Ecore (EMF 

2.2.0 [7]) metamodel defined in Figure 9. This metamodel is used 

to generate an Eclipse (3.2) [7] plug-in which provides model 

representation, serialization and visualization capabilities. A 

services composition consists of a number of invocations. 

Invocations can be classified into RecursiveInvocation (in which 

case a composition of services is invoked), a ServiceInvocation 

(in which case a specific ―atomic‖ service is invoked) and an 

UnboundInvocation (which is used to represent invocations which 

are not yet assigned to a specific service or service composition.) 

 

5.3 Results of the composition process 
Figures 10 and 11 show the results of the composition process as 

visualized in our Eclipse plug-in. These compositions compute 

the distance between two users in different ways, and are 

generated automatically by the composer to satisfy the same query 

(i.e., a query that requires a composite service with two input 

parameters of type User and one output parameter of type 

Distance). 

The composition in Figure 10 uses both parallel and sequential 

decomposition: parallel decomposition is used to invoke 

getUserLocation for each of the two users. Then getDistance is 

invoked with the location results obtained. 

 

Figure 11 shows a composition that obtains the location of the 

users indirectly, by first determining the users‘ GSM cells 

(getUserCell) and, then, sequentially, using each cell identifier to 

determine a user‘s location. 

 

6. RELATED WORK 
When two or more services need to work together in order to 

achieve a complex processing, some additional information about 

their properties is required besides the syntactic and semantic 

descriptions of inputs, outputs, and transformation rules. This 

information includes: the set of functions required for the complex 

processing; the proper sequencing of operations; how to match the 

outputs of one service with the inputs of a subsequent one; what 

are the temporal relationships between the execution of the 

Figure 9. Service composition metamodel 

Figure 10 Automatically generated composition that provides 

the distance between two users  

Figure 11 GSM cell identifier is used in the composition for 

deriving the user’s location 



different services in a sequence of operations, etc. Depending on 

the emphasis put on these problems, several approaches have been 

proposed for solving the service composition problem, based on, 

e.g. finite state automata [3], planning [17, 18], agents [4], 

workflow analysis [9], etc. An extensive overview of the 

fundamental assumptions and concepts underlying current work 

on service composition, and of the key results in the area is 

presented in [10]. Fujii and Suda [8] proposed a similar approach 

to dynamic service composition based on the semantic similarity 

between queries and service descriptions, but assumed a static 

(and unique) graph representation of the query. In our approach, 

the composition process ensures a minimal number of services 

through the iterative decomposition of the input query, and 

accounts for dynamic changes in the user‘s environment.  

Another approach to dynamic service composition is that of Zeng 

et al. [19], which selects particular service in a composite service 

composition model, based on the optimization of some quality 

measures derived from the nonfunctional properties of the 

component services. Nevertheless they assume a static 

composition graph, the optimization problem being thus less 

complex. Consequently, our approach may be seen as 

complementary to this one since we do not make explicit the 

dependency on non-functional parameters, but instead optimize 

the functionality of the composite service based on the semantic 

matching of service descriptions.  

For service discovery, context information has been used to 

optimize the discovery process [2], for instance by only 

considering those services that are in the client‘s proximity [16]. 

7. DISCUSSIONS AND CONCLUSIONS 
The proposed solution provides an optimal (re-) composition of 

services at runtime, based on various user requests, and taking 

into account rapid changes in user‘s context. The composition 

mechanism relies on the semantic description of services‘ 

functionality, and ignores the problems related to orchestration 

and choreography. The design-time component of this mechanism 

is the domain ontology that is used by the composition service to 

find the appropriate similarity relations between different 

semantic constructs representing the user request and service 

descriptions. The implementation has been realized in a prototype 

using model-driven development techniques. A complete 

prototype description is available in [11]. 

We have assumed that all necessary information exchange 

between services refers to a shared ontology fragment. We have 

considered a simplified ontology fragment in the demonstrator. 

Future work should investigate the scalability of the approach, 

which requires the availability of large ontologies and service 

repositories. 
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