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Abstract. Reuse has been pointed out as a promising approach for Ontology En-
gineering. Reuse in ontologies allows speeding up the development process and 
improves the quality of the resulting ontologies. The use of patterns as an ap-
proach to encourage reuse has been explored in Ontology Engineering. An On-
tology Pattern (OP) captures a solution for a recurring modeling problem. Very 
closely related OPs can be arranged in an Ontology Pattern Language (OPL). An 
OPL establishes relationships between the patterns and provides a process guid-
ing the selection and use of them for systematic problem solving. To make it 
easier using an OPL, the relationships between the patterns and the process for 
navigating them should be represented in a clear and unambiguous way. A visual 
notation can be used to provide a visual representation of an OPL, aiming at im-
proving communication. To facilitate understanding an OPL and strengthen its 
use, this visual notation must be cognitively rich. This paper presents OPL-ML, 
a visual modeling language for representing OPLs.   

Keywords: Ontology Pattern Language, Ontology, Visual Notation, Visual 
Modeling Language. 

1 Introduction 

Nowadays, ontology engineers are supported by a wide range of methods and tools. 
However, building ontologies is still a difficult task. In this context, an approach that 
has gained increasing attention in recent years is the systematic application of ontology 
patterns (OPs), which favors the reuse of encoded experiences and promotes the appli-
cation of quality solutions already applied to solve similar modeling problems [1, 2, 3, 
4]. An OP describes a recurring modeling problem that arises in specific ontology de-
velopment contexts, and presents a well-proven solution for this problem [2]. Experi-
ments, such as the ones presented in [5], show that ontology engineers perceive OPs as 
useful, and that the quality and usability of the resulting ontologies are improved. 

As pointed by Blomqvist et al. [3], although the ideas behind OPs are not completely 
realized in practice yet, the process is ongoing. As OPs become more mature and the 
community collects more and more experience using them, a situation that already oc-
curs in Software Engineering, where patterns have been studied and applied for a long 
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time, will emerge in Ontology Engineering. In a pattern-based approach to Ontology 
Engineering, several patterns can be combined to derive a new ontology. Such approach 
requires the existence of a set of suitable patterns that can be reused in the development 
of new ontologies, and a proper methodological support for selecting and applying 
these patterns [4]. In this context, we need to record how different patterns relate to 
each other in a more abstract level, and thus we need an ontology pattern representation 
language [3]. The first steps towards developing such a representation language have 
already been undertaken, giving rise to Ontology Pattern Languages (OPLs) [6, 7]. An 
OPL is a network of interconnected OPs that provides holistic support for solving on-
tology development problems. An OPL contains a set of interrelated OPs, plus a mod-
eling process guiding on how to use and combine them in a specific order [6].  

To facilitate ontology engineers understanding an OPL, the relationships between 
the patterns, as well as the process for navigating them, should be represented in a clear 
way. Ideally, such representation should be visual, since visual representations are ef-
fective, by tapping into the capabilities of the human visual system [8]. 

The use of OPLs is a recent initiative. There are still only few works defining OPLs, 
all of them from the same research group: the Ontology and Conceptual Modeling Re-
search Group (NEMO). This research group has developed the following OPLs [7]: 
Software Process OPL (SP-OPL), ISO-based Software Process OPL (ISP-OPL), Enter-
prise OPL (E-OPL), Measurement OPL (M-OPL), and Service OPL (S-OPL). Since 
these works were done by the same research group, they share commonalities. All of 
them use extensions of UML activity diagrams for representing the OPL modeling pro-
cesses [7]. However, there are still inconsistencies and problems in such representa-
tions, as we could perceive by applying two experimental studies. Trying to overcome 
these problems, we developed OPL-ML, an OPL Modeling Language. For developing 
OPL-ML, we rely on the results of a systematic mapping of the literature that investi-
gated visual notations for Software Pattern Languages. Moreover, OPL-ML was de-
signed according to the principles of the Physics of Notation (PoN) [8], and following 
the design process defined by PoN-S (PoN Systematized) [9]. 

This paper aims at presenting OPL-ML, and is organized as follows: Section 2 dis-
cusses patterns, OPs, pattern languages and OPLs; Section 3 discusses the Design Sci-
ence [10] methodological approach we followed to develop OPL-ML; Section 4 pre-
sents OPL-ML; Section 5 discusses a preliminary evaluation of OPL-ML; Section 6 
concerns related works, and Section 7 presents our final considerations. 

2 From (Ontology) Patterns to (Ontology) Pattern Languages 

Patterns are vehicles for encapsulating design knowledge, and have proven to be bene-
ficial in several areas. “Design knowledge” here is employed in a general sense, mean-
ing design in different areas, such as Architecture and Software Engineering (SE). In 
SE, for instance, patterns have been studied and applied for a long time, and there are 
several types of patterns, such as analysis patterns, design patterns and idioms. The 
main principle behind patterns is not having to reinvent the wheel. 
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Ontology Patterns (OPs) follow the same idea: capturing a well-proven solution for 
a recurring modeling problem that arises in ontology development contexts. There are 
also several types of OPs, such as [2]: content patterns (foundational and domain-re-
lated patterns), design patterns (logical and reasoning patterns), and idioms. 

Patterns, in general, can exist only to the extent that they are supported by other 
patterns. There is a need to describe the context of larger problems that can be solved 
by combining patterns, and to address issues that arise when patterns are used in com-
bination. This context can be provided by what in Software Engineering has been 
termed a Pattern Language (PL) [11].  According to Schmidt et al. [11], the trend in 
the SE patterns community is towards defining pattern languages, rather than stand-
alone patterns. We have advocated that this approach should also be followed in Ontol-
ogy Engineering, by defining Ontology Pattern Languages (OPLs). An OPL aims to 
put together a set of very closely related ontology patterns (OPs), in a system of patterns 
that provides, besides the OPs themselves, a process describing how to navigate, select 
and apply them in a consistent way. The term “pattern language” was borrowed from 
Software Engineering (SE). However, it is important to say that we are not talking about 
a language properly speaking. In “pattern language”, the term “language” is, in fact, a 
misnomer, given that a pattern language does not typically define per se a grammar 
with an explicit associated mapping to a semantic domain [6]. 

The use of OPLs is a recent initiative. At the best of our knowledge, all existing 
OPLs were developed by the same research group and use extensions of UML activity 
diagram for representing the OPL processes [7]. However, there are still inconsistencies 
and problems in such representations. Thus, to help developing new OPLs, it is essen-
tial to solve these problems and to provide a well-defined modeling language for rep-
resenting OPLs. The use of PLs in SE is not new. Thus, aiming to get knowledge about 
visual notations for PLs, we carried out a systematic mapping to investigate visual no-
tations used to represent software PLs. A systematic mapping provides an overview of 
a research area, and helps identify gaps that can be addressed in future research [12].  

In our systematic mapping, we searched seven digital libraries, namely: Scopus 
(www.scopus.com), Engineering Village (www.engineeringvillage.com), ACM 
(dl.acm.org), IEEE Xplore (ieeexplore.ieee.org), Springer (link.springer.com), Sci-
enceDirect (www.sciencedirect.com) and Web of Science (www.webofknowledge.com). 
We identified 54 software-related PLs represented by visual notations and we investi-
gated them. Next, we summarize some results and perceptions gotten from the study. 

Different elements are addressed in PLs. We identified 13 different elements, 
namely: pattern, pattern group, pattern subgroup, flow, mandatory flow, alternative 
flow, parallel outputs, parallel inputs, structural relation, optional relation, and variant 
patterns. Many different representations for the same element were found. For instance, 
we found seven different symbols for representing patterns and nine for pattern groups. 
Several PLs include only few elements (e.g., pattern and flow). We noticed that in most 
cases, PLs use less elements than necessary. Consequently, elements meaning is over-
loaded and their symbols tend to be cognitively poor. As a result, due to lack of clarity, 
it is often difficult to understand the PL. 

Patterns can relate to others in different ways. The most common relations in the 
investigated PLs are dependency, usage and specialization. Most of the investigated 
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PLs include dependency relations. Dependency can be understood as a broad relation 
and, if more specific relations are not defined, it can be not clear what dependency 
really means. For instance, if a pattern A depends on a pattern B, it is not clear if A 
depends on B because the solution given by A requires the solution given by B (thus, 
B must be applied before A), or because B is part of the solution given by A. In both 
cases, A depends on B, however, in the second case the dependency is, more specifi-
cally, a composition relation. The investigated PLs often do not explicitly define the 
different kinds of relations, making it difficult to understand relations among patterns 
and, consequently, to properly select and apply them.  

Defining groups is particularly important when defining large and complex PLs. 
Groups can be represented in a transparent way (i.e., the patterns in a group are visible) 
or as black boxes (i.e., a symbol represents a pattern group and it is not possible to see 
the patterns inside it). The use of black boxes allows representing a PL at different detail 
levels, contributing to its understanding. 54% of the investigated PLs use groups to 
organize patterns. Only one of them use black boxes to organize the PL. 

The investigated PLs use different types of models to represent their elements, 
providing different views to ease understanding and using the PL. Structural models 
present elements (e.g., pattern, patterns group) and their structural relations (e.g., de-
pendency, composition). Process (or behavioral) models, in turn, present the possible 
paths to be followed to apply the patterns. 92% of the investigated studies present only 
one of these models (46% structural model and 46% process model). Only 8% of the 
PLs consider both views, half of them using a single (hybrid) model to address struc-
tural and process aspects, making it difficult for users to differentiate them.   

Considering the panorama provided by the mapping study results, some gaps in the 
visual notations used to represent PLs can be pointed out: (i) lack of a standard visual 
notation; (ii) use of cognitively poor notations; (iii) lack of mechanisms to support pat-
terns selection; and (iv) lack of a complete view of the PL, addressing both structural 
and process aspects. 

3 Methodological Approach 

For developing this work, we followed a Design Science methodological approach [10]. 
The addressed problem is: How should we represent OPLs such that they become ef-
fective in guiding the use of related OPs to develop new ontologies? The artifact to be 
designed is a modeling language for representing OPLs. A first representation already 
existed, the one used to represent the first versions of SP-OPL, E-OPL, ISP-OPL and 
M-OPL. This representation was an informal extension of the UML activity diagram 
(informal in the sense that there was not even a meta-model of it). Moreover, its appli-
cation in each OPL was slightly different one from another. Thus, this work started by 
evaluating this representation to see whether it is effective in guiding the use of related 
OPs to develop new ontologies. A first experiment was accomplished using ISP-OPL 
[13] aiming at evaluating how the guidance provided by ISP-OPL affects the produc-
tivity of ontology engineers when developing domain ontologies for SE sub-domains, 
and the quality of the resulting ontologies. Besides, research questions regarding the 
visual notation used to represent ISP-OPL were also posed. The experiment took place 
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during the second semester of 2014, as part of the course “Ontologies for Software 
Engineering”, an advanced course for graduate students in the Graduate Program in 
Informatics at Federal University of Espírito Santo, in Brazil. 19 graduate students with 
at least basic knowledge in conceptual modeling participated in the study. Concerning 
aspects related to ISP-OPL visual notation, most participants considered that it was easy 
to understand the OPL, but they pointed out problems related to some of the used sym-
bols, and even more problematic, they had difficulties in following the paths in the OPL 
process, especially difficulties related to mandatory/optional paths. 

Based on the results of this first experiment, we worked on changing some of the 
symbols in the visual notation, and on establishing a clearer way to use them. Those 
changes in the visual notation were applied in some of the OPLs existing up to that 
moment (E-OPL, ISP-OPL and M-OPL). The versions of such OPLs presented in [7] 
use this updated notation. Moreover, the updated visual notation was used to engineer 
S-OPL [14], and to evaluate it, we accomplished another experiment. In this study, S-
OPL was used by 9 students to develop service ontologies for specific domains. The 
study took place as part of the course “Ontology Engineering”, an advanced course for 
graduate students in the Graduate Program in Informatics at Federal University of Es-
pírito Santo, in Brazil. After using S-OPL, the students were asked about benefits and 
difficulties of using it. As benefits they pointed out that the use of an OPL contributes 
to the to the quality of the resulting ontology and to the productivity of the development 
process. As main difficulties, they highlighted: (i) the lack of information about 
whether, or not, to follow the paths in the OPL process; (ii) difficulties to identify the 
OPL main flow; (iv) the lack of explicit flow final nodes, indicating where the process 
finishes; and (v) problems with variant patterns. In parallel with these studies, we de-
veloped the systematic mapping presented in Section 2. 

Based on the findings of both the two experiments and the mapping, we decided to 
develop a modeling language for representing OPLs, called OPL-ML. In such en-
deavor, we started developing a meta-model, as its abstract syntax. Next, we relied on 
the principles of the Physics of Notations (PoN) [8] for designing a cognitively effective 
visual notation, and we followed the design process established in the PoN-Systema-
tized (PoN-S) approach [9] to develop its concrete syntax. After developing OPL-ML, 
we used it to reengineer S-OPL and evaluated it through an experimental study. Aspects 
regarding the use of PoN-S to develop OPL-ML are discussed in [9], and are out of the 
scope of this paper. Here, our focus is on OPL-ML, which is presented next.  

4 OPL-ML: Ontology Pattern Language Modeling Language 

According to [15], a visual language consists of a set of graphical symbols (visual vo-
cabulary), a set of compositional rules for forming valid expressions (visual grammar), 
and semantic definitions for each symbol (visual semantics). The set of symbols and 
compositional rules together form the visual (concrete) syntax. Graphical symbols are 
used to represent semantic constructs, typically defined by a meta-model. An expres-
sion in a visual notation is a diagram. Diagrams are composed of instances of graphical 
symbols, arranged according to the rules of the visual grammar. In this paper, we focus 
on the visual syntax of OPL-ML, and the meta-model that defines its constructs, which 
is shown in Figure 1.  
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Fig. 1.  OPL-ML Meta-model. 

An OPL comprises both a structural model and a process. The OPL Structural Model 
focuses on patterns and pattern groups. It is composed of OPL Structural Elements, 
which can be of two types: Pattern and Pattern Group. A Pattern represents an OP, 
while a Pattern Group is a way of grouping related OPs and other pattern groups. Thus, 
a Pattern Group is composed of OPL Structural Elements. A special type of pattern 
group is the Variant Pattern Group, which is a set of patterns that solve the same prob-
lem, but each in a different way. Only one pattern from a Variant Pattern Group can 
be used at a time. Patterns that compose a Variant Pattern Group are variants of each 
other. Patterns can be composed of other patterns, and can specialize other patterns. 
Patterns may also depend on other patterns, i.e., for applying a pattern, another must be 
applied first. An OPL shall represent dependencies between patterns or between a Pat-
tern Group and a Pattern. The requires relationship captures this dependency. Finally, 
a Pattern may require the application of a pattern from a Variant Pattern Group. 

Table 1 shows the concrete syntax for representing the elements of the OPL struc-
tural model. It is important to say that meta-model elements shown in gray in Figure 1 
do not require a symbol, and thus are not in Table 1. Patterns are represented by rec-
tangles, which is the most common symbol used for representing patterns in SE pattern 
languages. Pattern Groups are represented by figures closed by blue straight solid lines 
(solid polygons). For representing Variant Pattern Groups, the same notion was ap-
plied, but now using red dashed lines. For allowing managing complexity in large dia-
grams, a black box representation is also provided for pattern groups. These alternative 
forms are represented by means of rectangles decorated by a rake-style icon ( ), 
indicating that this element is detailed in another diagram. This icon is used in UML to 
represent that an element represented by the decorated construct encapsulates further 
elements. Finally, regarding relationships, the dependency relations requires and re-
quires a pattern of, both are represented by an arrow from the dependant to the depen-
dee. For differentiating between them, arrows representing the requires association are 
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symbolized with solid lines, in contrast to the dashed lines for the requires a pattern of 
association. This decision is in line with the one of representing Pattern Groups using 
solid lines, and Variant Pattern Groups using dashed lines. Pattern composition and 
pattern specialization are represented by the same symbols used in UML for aggrega-
tion and specialization, respectively. 

Table 1. Symbols of the visual notation for OPL structural models. 
Element Symbol 

Pattern  

Pattern Group (expanded format) 
  

Pattern Group (black box format) 
 

Variant Pattern Group (expanded format) 
  

Variant Pattern Group (black box format)  
Relation “requires”  

Relation “requires a pattern of”  

Composition relation  
Specialization relation  

 
The OPL Process comprises a set of actions devoted to select and apply the patterns, 

and the control nodes that allow defining a workflow to navigate between the patterns. 
The part of OPL-ML meta-model describing the OPL Process is an extension of a sub-
set of the UML’s meta-model regarding activity diagrams [16], and its concrete syntax 
is based on the UML notation for activity diagrams. This benefits users who are familiar 
with this notation. In Figure 1, classes from the UML’s meta-model are shown in white. 

An OPL Process is a subtype of (UML::) Activity specifying a behavior regarding 
the application of OPs. This behavior is specified as a workflow connecting Pattern 
Application Actions by means of Control Flows to other Pattern Application Actions 
and Control Nodes. A Pattern Application Action is an (UML::) Action concerning a 
pattern application, i.e. this action node refers to the application of a specific OP. For 
allowing modeling the workflow of the OPL Process, the following Control Nodes can 
be used: Entry Point, End Point, Decision Node, Fork Node, and Join Node.  

An Entry Node is a control node that acts as a starting point for executing the OPL 
Process. It is a subtype of (UML::) Initial Node, and as such, shall not have any incom-
ing Control Flows. However, there is an important difference between Entry Point and 
(UML::) Initial Node: in a UML activity diagram, if an activity has more than one initial 
node, then invoking the activity starts multiple concurrent control flows, one for each 
initial node [OMG, 2015]; in an OPL, if its OPL Process has more than one Entry Point, 
this indicates that one and only one of the Entry Points should be selected as the starting 
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point. An End Point, like its super-type (UML::) Final Node, indicates a point at which 
the workflow stops. Thus, it shall not have outgoing Control Flows. 

A Decision Node is a control node that chooses one between the outgoing Control 
Flows. It is a subtype of (UML::) Decision Node, but it presents a slightly different 
semantics. OPL-ML’s Decision Node shall have at least one incoming Control Flow, 
and more than one outgoing Control Flow. Guard conditions shall be specified to help 
decide which Control Flow to follow. UML’s Decision Node, in turn, does not admit 
multiple incoming Control Flows. We decided to admit multiple incoming Control 
Flows in OPL-ML to not need to include UML’s Merge Node in OPL-ML meta-model. 
As a consequence, the diagrams built using OPL-ML tend to become simpler.  

Fork Node and Join Node are subtypes of their homonymous counterparts in UML’s 
meta-model, and preserve the same semantics. Fork Node is a control node that splits a 
flow into multiple concurrent flows. It shall have exactly one incoming Control Flow 
and multiple outgoing Control Flows, which must be followed. Join Node is a control 
node that synchronizes multiple flows. It shall have exactly one outgoing Control Flow 
but may have multiple incoming Control Flows. 

Like patterns, Patterns Application Actions can be grouped. A Pattern Application 
Action Group groups a set of Patterns Application Actions, plus the Control Flows and 
Control Nodes establishing the workflow inside the action group. Thus Pattern Appli-
cation Action Group is a subtype of (UML::) Activity Group, and as such, may be com-
posed by other Pattern Application Action Groups. A Pattern Application Action Group 
should refer to a Pattern Group in the OPL Structural Model. When a Pattern Applica-
tion Action Group refers to a Variant Pattern Group, then it is said a Variant Pattern 
Application Action Group. A Variant Pattern Application Action Group captures alter-
native Pattern Application Actions to be accomplished. Only one of them can be se-
lected. Thus, Variant Pattern Application Action Groups do not represent workflows, 
and they do not admit Control Flows and Control Nodes inside them. 

By developing the OPL Process meta-model as an extension of the UML’s meta-
model for activity diagrams, we could use the same concrete syntax for most of its 
elements, namely: Pattern Application Action (UML::Action), Control Flow (UML:: 
Control Flow), Entry Point (UML::Initial Node), End Point (UML::Final Node), Deci-
sion Node (UML::Decision Node), Fork Node (UML::Fork Node), and Join Node 
(UML::Join Node). See these notations in [OMG, 2015]. Only for groups we decided 
to make some extensions also in the concrete syntax.  

Like in the case of the Structural Model, we decided to provide two ways to represent 
groups: one as a black box, and the other in an expanded format. In the black box rep-
resentation, Pattern Application Action Groups are represented as UML::Call Behavior 
Actions with the adornment for calling activities, the rake-style symbol ( ) [16]. Be-
sides, we suggest setting blue to the border line as a redundant coding [8]. Variant Pat-
tern Application Action Groups are represented by the same symbol, but with red 
dashed lines. In the expanded format, Pattern Application Action Groups are repre-
sented by means of closed regions delimited by blue straight lines, with rounded cor-
ners; while Variant Pattern Application Action Groups are represented by means of 
closed regions delimited by red dashed lines, with rounded corners. Table 2 shows the 
concrete syntax for representing (Variant) Pattern Application Action Groups. 
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Table 2. Symbols of the visual notation for groups of pattern application actions. 
Element Symbol 

Pattern Application Action Group (black box 
format)  

Pattern Application Action Group (expanded 
format) 

   
Variant Pattern Application Action Group 

(black box format)  
Variant Application Action Group (expanded 

format) 
  

5 OPL-ML Evaluation 

To preliminary evaluate OPL-ML, we used it to reengineer the Service OPL (S-OPL) 
[14]. Next, we discuss the main changes made during the S-OPL reengineering and 
present some S-OPL fragments. The full specifications of the first and the current ver-
sion of S-OPL are available at https://nemo.inf.ufes.br/projects/opl/s-opl/.     

(i) Separation of structural and behavior aspects: as previously discussed, differ-
ent models should be used to address structural and behavioral aspects of an OPL. S-
OPL was represented only by a process model. Thus, we created a structural model for 
S-OPL. Figure 2 shows a fragment of the defined structural model. 

 
Fig. 2. Structural Model of the Service Negotiation and Agreement Group. 

(ii) Complexity management: for managing complexity, we added to S-OPL a 
general behavior model (Figure 3) in which patterns groups are presented in the black 
box format, providing a clearer view of the whole process. 

 
Fig. 3. – S-OPL Process Model (general view).  
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(iii) Creation of a main mandatory flow: in the S-OPL old version, the process 
flow was defined mainly by optional flows (only some flows were mandatory). Thus, 
when developing an ontology, the ontology engineer could stop following the process 
at any point (except when there were mandatory flows to follow). According to OPL-
ML, a process must be followed from an entry point to an end point. Considering that, 
we reengineered the S-OPL process creating a main flow to be followed according to 
the ontology engineer decisions until s/he reaches an end point.  

For creating the main flow, decision nodes were used to indicate optional flows. 
Decision nodes make it clear that a decision must be taken by the engineer and that one 
(and only one) of the output flows must be followed. Moreover, we changed the fork 
node semantics. In the S-OPL old version, outputs of fork nodes were optional flows. 
According to OPL-ML, outputs of fork nodes are mandatory flows, i.e., when following 
the input flow of a fork node, all its output flows must be followed. In order to not 
interrupt the process main flow, we used joint nodes to converge the output flows into 
a single one that take up the main flow. Finally, aiming to improve the process flow, 
we made some changes in patterns grouping. Figure 4 shows a fragment of the old 
version of the process model defined for the Service Negotiation and Agreement group. 
Figure 5 presents the corresponding reengineered model. 

 
Fig. 4.  Fragment of the old version of S-OPL process model.  

 
Fig. 5. Fragment of the reengineered S-OPL process model.    

After reengineering S-OPL, aiming to evaluate its new version, we performed a 
study involving 6 of the 9 students that participated in the previous study with S-OPL. 
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The study goal was to evaluate: (i) if an OPL represented by using OPL-ML is easier 
to understand, and (ii) if the S-OPL new version is better than the previous one. The 
study procedure consisted of two steps. In the first step, the participants received the 
new specification of S-OPL and analyzed it. The specification contained the process 
and structural models, their descriptions, and the documentation of each pattern (the 
same of the previous version). In the second step, they provided feedback about the 
new version of S-OPL by filling a questionnaire containing two parts. The first one 
included questions about the difficulty for understanding the OPL, especially the dif-
ferent models representing structural and process aspects, and each one of the OPL 
symbols. The possible answers used a Likert Scale: very hard, hard, neutral, easy, and 
very easy. The second part concerned comparing the S-OPL new version with the pre-
vious one, considering process clarity and ease of understanding, and support provided 
by the structural model. Another questionnaire was applied to capture the participants’ 
profile, analyzing their level of education, experience in conceptual modeling, experi-
ence in ontology development, and experience with OPLs. The group of participants 
has, mostly, medium experience (from one to three years) in conceptual modeling, me-
dium/low experience in ontologies development and low experience (less than one 
year) with OPLs.  

Concerning the OPL mechanism, one participant found it very easy, four found it 
easy, and one was neutral. As for the OPL symbols, except by one participant, who 
declared that it was difficult to understand variant patterns, all found easy or very easy 
to understand the symbols and reported that the notation is clear.    

Comparing the S-OPL new version with the previous one, five participants said that 
in the new version the process is much clearer and one participant said that it is clearer. 
The participants commented that the main flow defined in the process made it easier to 
understand the process and follow it. Moreover, all participants found the new version 
better than the previous one. They pointed out that the different abstraction levels con-
tribute to better understand the whole process, turning the process more intuitive and 
practical. Finally, five participants said that the structural model made it easier under-
stand and use S-OPL. One participant said that the structural model made it much easier 
understanding and using S-OPL. Participants declared that the model served as a map 
to guide users through patterns relations, minimizing the effort spent searching the OPL 
textual specification.    

The study results showed that an OPL modeled using OPL-ML is easier to under-
stand. Moreover, the understanding about the OPL improved when compared with its 
previous representation. It is worthy noticing that the participants were not much expe-
rienced with ontologies and OPLs. Even so, they found it easy to understand the OPL. 
These results can be seen as initial evidences that OPL-ML is suitable for modeling 
OPLs. However, there are some limitations that do not allow us to generalize the results. 
As main limitations, we can point out: (i) the small number of participants in the study; 
(ii) the study was performed in an academic environment; (iv) when evaluating the new 
version of S-OPL, the participants had already used the S-OPL previous version, thus, 
the acquired knowledge about S-OPL might have influenced the understanding about 
its new version.      
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6 Related Works 

As previously discussed, the use of OPLs is recent and the few works defining OPLs 
were done by the same research group, the Ontology and Conceptual Modeling Re-
search Group (NEMO). This research group has proposed five OPLs [7].  In these 
OPLs, extensions of UML activity diagrams are used to represent the OPL processes. 
When comparing OPL-ML with the visual notation described in [7], the main similarity 
is that both represent the OPL process by means of extensions to the UML’s activity 
diagram. As for differences, several advances are introduced by OPL-UML. 

First, the visual notation described in [7] is limited, being not able to cover all aspects 
for properly representing an OPL. OPL-ML clearly defines the language abstract and 
concrete syntaxes. The abstract syntax is defined by a meta-model and part of it extends 
the UML meta-model for activity diagrams, including constructs not considered in [7] 
(e.g., end point). As for the concrete syntax, it was defined by following a systematic 
process applying the PoN principles, resulting in a cognitively rich visual notation. 

Second, the OPLs presented in [7] are represented only by a process model. Struc-
tural aspects are not addressed, being difficult for users to identify relations between 
the patterns.  OPL-ML proposes the use of two different models for representing an 
OPL: the structural model, dealing with the OPL structural elements and the relation-
ships between them; and the process model, addressing the process to be followed for 
selecting and applying the patterns. Separating these views in two types of models con-
tributes to better understand the OPL and the relationships between its elements.   

Third, OPL-ML allows managing complexity by using models at different abstrac-
tion levels. A general model, using black box formats, can be created to represent a 
whole view of the OPL, while detailed models expand the black boxes and provide a 
detailed view of the OPL. By using this resource, large or complex OPLs can be easier 
understood. The visual notation described in [7] does not provide this facility. 

Finally, by using OPL-ML, a main flow is defined in the OPL process, making it 
clear the paths (from beginning to end) to be followed by the ontology engineer accord-
ing to his/her decisions. In the OPLs presented in [7], the process does not have a con-
tinuous flow and can be interrupted at any time. 

As discussed in Section 2, the use of pattern languages (PLs) in Software Engineer-
ing (SE) are much more mature than in Ontology Engineering. This fact motivated us 
to use insight from SE PLs to define OPL-ML. However, despite of the use of PLs is 
already consolidated in SE, there are still problems regarding their visual representa-
tion. For instance, considering the investigated software-related PLs, only two of them 
use different models to address structural and behavioral aspects. In [17], Guerra et al. 
propose a PL for organizing the internal structure of metadata-based frameworks, which 
is represented by structural and navigation models. In [18], in turn, Zdun proposes a PL 
for designing aspect languages and aspect composition frameworks. Patterns and rela-
tionships between them are addressed by a relationship model, while a feature model 
helps patterns selection according to the features to be considered when designing 
frameworks. Concerning the structural model, Guerra et al. [17] address only depend-
ency relationships, while in [18] the types of relationships vary and are not clear. As 
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for the process model, the navigation model described in [17] presents several se-
quences in which patterns can be applied. However, the visual notation is limited, being 
not possible, for example, to identify where the process starts or ends and which paths 
are mandatory. The feature model presented in [18], although can be helpful to patterns 
selection, does not provide a process to be followed. Thus, the sequence in which the 
patterns should be applied is not clear.  

 

7 Final Considerations 

As pointed by Blomqvist et al. [3], the works already done aiming to provide Ontology 
Pattern Languages (OPLs) are the first steps towards developing an ontology pattern 
representation language. In this paper, we take a step forward by providing a modeling 
language for representing OPLs: OPL-ML. Such language presents as striking features 
the following: (i) OPL-ML defines explicitly its abstract syntax by means of a meta-
model; (ii) OPL-ML concrete syntax is designed following Moody’s principles for de-
signing cognitively effective visual notations [8]; (iii) OPL-ML is designed considering 
the results of a systematic mapping on visual notations for representing Software Engi-
neering pattern languages, and from experimental studies involving the use of OPLs. 
We believe that the definition of a visual language for modeling OPLs amplifies the 
available resources for ontology engineers to develop OPLs, increasing productivity 
and contributing for advances in the area. 

OPL-ML was used to reengineer S-OPL, a service OPL proposed in [14]. With S-
OPL new version in hands, we performed a study to get perceptions from the OPL 
users. The findings indicate that OPL-ML use is viable and that it is capable of properly 
representing OPLs. However, the evaluation carried out by now is limited. Thus, new 
studies must be performed aiming to better evaluate OPL-ML. As future studies, we 
intend to reengineer the OPLs already developed at NEMO, develop new OPLs by us-
ing OPL-ML and evaluate the use of OPL-ML by other people, who can provide new 
feedback regarding OPL-ML use and effectiveness.  

Besides, we have been working on the development of a supporting tool to aid on-
tology engineers in creating OPLs and using them to build ontologies. 

Finally, although OPL-ML has been proposed to represent OPLs, we believe that it 
can be adapted and used to represent pattern languages in general. In this sense, we 
intend to investigate how to generalize OPL-ML, maybe including other elements typ-
ically used in other Software Engineering pattern languages.  
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