
OntoUML Lightweight Editor
A model-based environment to build, evaluate and implement reference ontologies

John Guerson, Tiago Prince Sales, Giancarlo Guizzardi, João Paulo A. Almeida
Computer Science Department, Federal University of Espírito Santo,

Ontology & Conceptual Modeling Research Group (NEMO), Vitória, ES Brazil
{jguerson, tpsales, gguizzardi, jpalmeida}@inf.ufes.br

Abstract - Enterprise information systems are increasingly
being conceived as a combination of existing systems and to work
as a part of an ecosystem of software products. This change
demands methods and tools to deal with the challenging semantic
interoperability issues. OntoUML is a well-founded modeling
language that allows modelers to formalize world-views in a
technologically neutral way, aiding in the solution of such
interoperability challenges. In this paper, we present an overview
of the OntoUML Lightweight Editor (OLED), our model-based
environment to build, evaluate and implement OntoUML models,
alongside with its main features and application scenarios.

Keywords – Ontology-driven Conceptual Modeling, OntoUML;

I. INTRODUCTION
High quality information is the key for a rational decision

making process within an organization. Without the support of
adequate Enterprise Information Systems (EIS), the individuals
that participate in these processes in organizations cannot
systematically take optimal decisions nor understand the full
effect of their actions. An EIS contains structures that represent
abstractions over certain portions of reality, capturing aspects
that are relevant for a class of problems at hand. Therefore, the
quality of an EIS directly depends on how truthful its
information structures are to the aspects of reality it is designed
to represent. In our current scenario, semantic interoperability
has become a pervasive force, driving and constraining the
process of creating EIS, which is becoming an increasingly
complex combination of domains. More and more, information
systems either are created by combining existing independently
developed subsystems, or are created to eventually serve as
components in multiple larger yet-to-be-conceived systems. To
deal with such complexity, we need methods and tools to
support us in the tasks of understanding, elaborating and
precisely representing the nature of conceptualizations of
reality, as well as in tasks of negotiating and safely establishing
the correct relations between different ones. Conceptual models
produced with this aim are called reference ontologies [8].

In [8], Guizzardi defends that reference ontologies should
be produced by incorporating the distinctions of a theoretically
well-grounded foundation ontology. The Unified Foundational
Ontology (UFO) is a foundational ontology that provides a
sound ontological basis to evaluate and give real-world
semantics to conceptual modeling language’s constructs such
as UML. OntoUML is a result of such evaluation. The class
diagram fragment of UML 2.0 was re-designed and evaluated
according to the structural layer of UFO. The result is a well-

founded version of UML for ontology-driven conceptual
modeling. OntoUML’s meta-model has been designed to
comply with the ontological distinctions and axiomatization of
UFO. It is a highly expressive language, with precise formal
semantics and neutrality with respect to implementation
technologies, all of which allows modelers to accurately
represent how a community (or an organization) understands a
particular domain of interest, without being biased by
implementation concerns. OntoUML has been successfully
employed in a number of industrial projects in several different
domains, such as petroleum and gas, digital journalism,
telecommunications, and government. Besides the modeling
language itself, the OntoUML approach consists in a set of
software solutions to enable model construction, formal
verification and validation, code generation and verbalization.
In this paper, we present the OntoUML Lightweight Editor1
(OLED), a model-based environment to support Ontology
Engineering in OntoUML, in particular the task of
formalization, verification, validation and implementation.
OLED was designed to aggregate all the aforementioned
technologies developed for OntoUML in the long-term
research project conducted by the Ontology and Conceptual
Modeling Research Group (NEMO).

In the remainder of this paper, we provide a brief overview
of the most innovative features in OLED in Section II,
followed by some reported uses of the tool in Section III and a
brief discussion of the direction OLED is evolving to in
Section IV.

II. OVERVIEW
We depict in Fig 1 the main features of OLED w.r.t each

phase of the ontology development approach using OntoUML.
The environment supports modeling, verification, validation,
and implementation of OntoUML models (depicted in grey
boxes). Currently, there is no support for requirements
elicitation.

 Modelers specify their domain ontologies in OntoUML [8],
constraining them using the Object Constraint Language
(OCL) [13]. The tool provides a set of built-in design patterns
to speed up the modeling activity through re-use. To improve
the quality of the models built using OLED, it provides an
automatic syntax verification alongside two complementary
validation features, visual simulation [5] and anti-patterns [15].
To apply the knowledge formalized in the OntoUML in

1 Available at: https://code.google.com/p/ontouml-lightweight-editor/

semantic web applications, OLED features a number of pre-
defined automatic transformations to the Web Ontology
Language (OWL) (possibly enhanced with SWRL rules) [1]
[3] [17].

 In the sequel, we present a brief description of each of these
features.

Fig 1. OLED’s support for the Ontology Development Process

A. Modeling Features
OntoUML [8] is an ontologically well-founded profile of

the class diagram fragment of UML 2.0. OntoUML’s
categories are put forth by the Unified Foundational Ontology
(UFO). UFO’s ontological distinctions are reflected as UML
stereotypes specializing classes and associations according to
the ontological notions of rigidity and dependence. In Fig 2,
we depict an OntoUML class diagram representing a road
traffic accident ontology. In this domain, travelers are people
taking part of a travel in a vehicle, possibly becoming
involved in traffic accidents; traffic accidents involve victims,
crashed vehicles and a roadway; and, accidents may involve a
set of fatal victims. A particular sort of accident called rear-
end collisions is identified (accidents wherein a vehicle
crashes into the vehicle in front of it).

Fig 2. OntoUML Diagram Editor

In order to cover domain constraints that cannot be
represented using OntoUML’s diagrammatic notation, OLED
supports the specification of OCL constraints [13]. OCL
express UML class invariants and derivation rules for UML
association end-points and attributes. In Fig 3, we depict
OLED’s OCL editor, which provides syntax highlight, code-
completion and syntax verification (parsing) to textual
constraints. Fig 3 describes two textual constraints in OCL
about the ontology of traffic accidents. First, a derivation rule

stating that the number of fatal victims of an accident is
derived from the number of deceased people involved as
victims in that accident. Secondly, a class invariant stating that
a rear-end collision must always involve two crashed vehicles.
OLED’s support for OCL is developed using the Eclipse
framework. In addition to it, OLED supports a temporal
version of OCL suitable for modeling with OntoUML [7].

Fig 3. OCL Constraint Editor

B. Verification Features

To verify a model means to asses if the model was built
correctly i.e., if it is syntactically valid. OLED uses an
OntoUML metamodel [6] defined in ECore, which
incorporates a set of syntactical rules to reflect UFO’s formal
axiomatization. OLED has the capability to check
automatically if any given model is in pace with these formal
constraints, pointing exactly which model constructs break
them. In Fig 4, we exemplify an execution of the syntax
verification, showing the errors generated when modeling a
class stereotyped as «kind» as a super-type of another,
stereotyped as a «role». For more details why this construction
is not allowed, please refer to [8].

Fig 4. OntoUML Syntactic Checker

Besides checking the OntoUML syntax, OLED allows
modelers to verify if the OCL rules restricting the model are
specified properly.

C. Validation Features

To validate an ontology means to evaluate whether a
particular model is the right model for a domain. The task
consists in analyzing if the model precisely formalizes the
shared conceptualization of the domain at hand. To achieve
that, one must check multiple aspects, which include the
suitability of meta-categories to classify a given domain
concept and the relation between intended and allowed
instantiations of the ontology. To aid modelers in the validation
process, OLED provides visual simulation and ontological anti-
pattern management.

1) Visual Simulation

Visual simulation is obtained by performing a
transformation of the OntoUML model (and OCL constraints)
to an Alloy [10] specification. The Alloy Analyzer is capable
of automatically generating instances of the model as a means
to simulate its set of desired/undesired properties confronting
the modeler with its decisions. In

Fig 5, we depict a fragment of a possible instantiation of the
traffic accident ontology enriched with constraints. It shows a
current world (a point in time) wherein a rear-end collision
between two crashed vehicles resulted in the death of both
travelers of the vehicles. All specified constraints are respected.
Differently from an unconstrained model, the number of fatal
victims is correct and the rear end collision involves two
vehicles.

Fig 5. A Fragment of an Automatically Generated Simulation

2) Ontological Anti-Patterns

Ontological anti-patterns are model structures that, albeit
producing syntactically valid conceptual models, are prone to
result in unintended domain representations. They are
configurations that when used in a model will typically cause
the set of valid (possible) instances of that model to differ from
the set of instances representing intended state of affairs in that
domain [9]. In a previous study [14], a library of ontological
anti-patterns is presented.

OLED features an anti-pattern management component that
consists of three steps: automatic detection, guided analysis and
automatic refactoring. The first step, the automatic detection, is
meant to relieve modelers from learning all anti-pattern
structures and manually inspecting occurrences in their models.
Users can request an anti-pattern inspection on a particular
diagram or on an arbitrary selection of elements. The second
step, the guided analysis, is performed for each identified anti-
pattern occurrence. In order to decide whether a particular
occurrence entails unintended consequences, a modeler must
reason about its consequences. To support this process, OLED
provides a wizard for each anti-pattern, which details the
elements that participate in the anti-pattern occurrence,
provides theoretical background information when necessary,
and makes a series of questions, which lead to the appropriate
solutions. The third and last step consists in appropriately
refactoring the model. Based on the interaction with the anti-
pattern wizard, the tool will suggest a plan to rectify the model.
To exemplify, consider a tiny fraction of the road traffic model
depicted in Fig 2. It states that a traveler travels in a vehicle

and that a traveler might be involved in a car accident, which
also involves vehicles. This fraction characterizes an anti-
pattern deemed Association Cycle (AssCyc) [14] for it allows
passengers in a vehicle that has not participated in an accident
to be victims in that very same accident.

D. Code Generation Features
A reference ontology can produce application ontologies

according to a set of specific computational purposes and
requirements. Application ontologies have been usually
represented in computationally tractable subsets of first-order
logic such as OWL or F-Logic. OWL is an extension of RDF
based on Description Logics to represent content in the context
of Semantic Web. It has been used to implement reference
ontologies to discover knowledge, annotate semantically its
content and to publish it on the web. SWRL is the language
used to express logic rules over OWL specifications.

OLED provides three code generations to OWL. Each one
takes different design choices in account. The first named
Simple [1] maps basically OntoUML classes, associations and
attributes to OWL classes, object properties and data
properties, respectively. It considers generalization sets and its
disjointness properties plus model cardinalities. The second
named Temporal [17] represents temporally changing
information in OWL and encompasses four approaches named
Reification, and Worm Views A0, A1 and A2. Reification reifies
the contingent and mutable information of an individual into
moments (e.g., anti-rigid objects reified as qua-individuals)
where an individual’s existence is represented as a temporal
extent. In Worm Views, entities are considered spatiotemporal
worms where individuals are composed by (i) a concept
representing that individual (IC) and (ii) its temporal parts as
worm temporal slices (TSs). Finally, the third is named
OOTOS [3] and it considers OCL constraints as SWRL rules. It
also considers structured datatypes, cardinalities, transitivity of
material and parthood relations (as SWRL rules) and
disjointness between substance sortals.

E. Model Verbalization Features
Model verbalization stands for the activity of generating a

documentation of the ontology in (controlled) natural language.
This process is very useful, for example, to allow domain
experts that are not well-versed in the modeling language (the
most common situation), to access the knowledge embedded in
a conceptual model.

Fig 6. Verbalization of an OntoUML model in SBVR using OLED

OLED provides two types of model verbalization: (i) the
generation of a document in Semantic Business Vocabulary

Rules (SBVR), an OMG standard for representing a vocabulary
of a business in a structured natural language representation [6]
as depicted in Fig 6; (ii) the generation of a technical glossary
of the conceptual model in natural language (currently, only in
Portuguese-BR). For each concept in the ontology, the glossary
generator uses the concept’s meta-category, alongside its
relationships and properties to assemble a definition.

F. Integration Features
It is safe to assume that every organization that does

conceptual modeling already adopts a particular tool. Usually,
there is an investment in acquiring commercial CASE tools
and, thus, there is always resistance when introducing a new
tool in the organization. We did not design OLED to be a
competitor of these tools. Conversely, we designed it to work
with them. Since OntoUML borrows the class diagram syntax
from UML, it is possible to build OntoUML models using
virtually any UML tool that supports stereotyping. Enterprise
Architect2 (EA) is one of them. We developed an OntoUML
plug-in for EA that allows modelers to draw their models in
EA, but still use the validation, code generation and
verbalization features available in OLED.

III. APPLICATIONS
From its very conception, we designed and evolved OLED

in the context of industrial and academic projects. In the
context of our research group, (i) an initiative to produce a
reference ontology for the legal domain [4] with the purposes
of interoperability and automation of the management of the
Brazilian norms; (ii) the development of a core reference
ontology for services called UFO-S [12] and a (iii) core
reference ontology for organizations called O3 with the
purpose of organizational structure description and
communication [16]. In all three cases, OLED was used for
semantic validation (O3 solely with semantic anti-patterns
management). In the case of (i), it was additionally used for
OWL generation. Examples of application cases of OLED
without the involvement of our research group include: (i) an
approach to use reference ontologies for the multidimensional
design in Business Intelligence for a domain of electrical
systems. In this case, our EA plugin was used in tandem with
OLED for verification and validation [11]; and (ii) an approach
to pre-process, organize and query high quality meteorological
data in the context of silico experiments in which OLED was
used to generate an application ontology in OWL [2].

IV. FINAL CONSIDERATIONS
OLED is a constantly evolving environment that aims to

aggregate the technological results of a long-term research
project of the NEMO research group. In this paper, we
provided a “whirlwind tour” of its main innovative
functionalities. As future endeavors, we aim to add new code
generation features to provide a greater flexibility for users to
implement their ontologies using different technologies. We
also aim to expand the validation features, since the feedback
from the user community evinced a great interest in them.
Lastly, we plan to include a support for refactoring models in

2 http://www.sparxsystems.com.au/

languages like UML and OWL, for semantic interoperability is
one of the main application of OntoUML models. OLED is
developed as an academic open source project. Currently, a
startup company called Menthor3 is being created which will
further explore the commercial development of the tool.

ACKNOWLEDGMENT
This research is funded by the Brazilian Research Funding
Agencies CNPq (grants 311313/2014-0 and 485368/2013-7)
and CAPES/CNPq (402991/2012-5). We would also like to
thank all NEMO members who have participated in OLED’s
development. In particular, we thank Antognoni Albuquerque,
Cásssio Reginato, Diorbert Correa, Freddy Brasileiro, Victor
Amorim, Roberto Carraretto and Vinicius Sobral.

REFERENCES
[1] Albuquerque, A., “Ontological Foudations for Conceptual Modeling

Datatypes”, MSc Thesis, Federal University of Espírito Santo, 2013.
[2] Barbosa, T.S., Santos, E.O., Lyra, G. B., and da Cruz, S. M. S., “Using

Well-Founded Provenance Ontologies to Query Meteorological Data”,
In IPAW, pp. 267-270, 2014.

[3] Barcelos, P.P.F., Santos, V. A. dos, Silva, F.B., Monteiro M.E., Garcia
A.S., “An Automated Transformation from OntoUML to OWL and
SWRL”, Ontobras, pp. 130-141, 2013.

[4] Barcelos, P.P.F., Guizzardi R.S.S., and Garcia A.S., "An Ontology
Reference Model for Normative Acts", Ontobras, pp. 35-46, 2013.

[5] Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.,
“Validating modal aspects of OntoUML conceptual models using
automatically generated visual world structures”, J. Univers. Comput.
Sci., vol. 16, pp. 2904–2933, 2011.

[6] Carraretto, R., “A Modeling InfraStructure for OntoUML”, BSc Thesis,
Federal University of Espírito Santo, 2010.

[7] Guerson, J., Almeida, J. P. A., “Representing Dynamic Invariants in
Ontologically Well-Founded Conceptual Models”, In 20th International
Conference, EMMSAD, 2015.

[8] Guizzardi, G., “Ontological Foundations for Structural Conceptual
Models”, Telematica Instituut, The Netherlands, 2005.

[9] Guizzardi, G., “On ontology, ontologies, conceptualizations, modeling
languages, and (meta) models”, In Frontiers in artificial intelligence and
applications, Databases and Information Systems IV, 2007.

[10] Jackson, D., “Software Abstractions-Logic, Language, and Analysis,
Revised Edition”, The MIT Press, 2012.

[11] Moreira, J., Cordeiro, K., Campos, M. L., and Borges, M.,
“OntoWarehousing–Multidimensional Design Supported by a
Foundational Ontology: A Temporal Perspective”, In Data Warehousing
and Knowledge Discovery, pp. 35-44, 2014.

[12] Nardi, J.C., et al. "Towards a commitment-based reference ontology for
services" Enterprise Distributed Object Computing Conference (EDOC),
2013 17th IEEE International. IEEE, 2013.

[13] OMG, OCL Specification v2.4, 2014.
Available: http://www.omg.org/spec/OCL/2.4/

[14] Sales T.P., “Ontology Validation for Managers”, MSc Thesis, Federal
University of Espírito Santo, 2014.

[15] Sales T.P., Guizzardi G., “Detection, Simulation and Elimination of
Semantic Anti-Patterns in Ontology-Driven Conceptual Models” In
Conceptual Modeling (ER), pp. 363-376, 2014.

[16] Pereira, D.C., Almeida, J.P.A., “Representing Organizational Structures
in an Enterprise Architecture Language”. FOMI’2014 Formal
Ontologies meet Industry, p. 7-16, 2014.

[17] Zamborlini, V., and Guizzardi G., "An Ontologically-Founded
Reification Approach for Representing Temporally Changing
Information in OWL", In 11th International Symposium on Logical
Formalizations of Commonsense Reasoning, 2013.

3 http://www.menthor.net/

