
Ontological Anti-Patterns:
Empirically Uncovered Error-Prone Structures in

Ontology-Driven Conceptual Models

Tiago Prince Sales, Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO),
Computer Science Department, Federal University of Espírito Santo (UFES), Vitória - ES, Brazil

tpsales@menthor.net, gguizzardi@inf.ufes.br

Abstract. The construction of large-scale reference conceptual models is a complex engineering activity. To
develop high-quality models, a modeler must have the support of expressive engineering tools such as
theoretically well-founded modeling languages and methodologies, patterns and anti-patterns and automated
supporting environments. This paper proposes a set of Ontological Anti-Patterns for Ontology-Driven
Conceptual Modeling. These anti-patterns capture error-prone modeling decisions that can result in the creation
of models that fail to exclude unintended model instances (representing unintended state of affairs) or forbid
intended ones (representing intended states of affairs). The anti-patterns presented here have been empirically
elicited through an approach of conceptual models validation via visual simulation. The paper also presents a
series of refactoring plans for rectifying the models in which these anti-patterns occur. In addition, we present
here a computational tool that is able to: automatically identify these anti-patterns in user’s models, guide users
in assessing their consequences, and generate corrections to these models by the automatic inclusion of OCL
constraints implementing the proposed refactoring plans. Finally, the paper also presents an empirical study for
assessing the harmfulness of each of the uncovered anti-patterns (i.e., the likelihood that its occurrence in a
model entails unintended consequences) as well as the effectiveness of the proposed refactoring plans.

Keywords: Ontology-Driven Conceptual Modeling, Ontological Anti-Patterns, OntoUML, UFO

1. Introduction

Information is the foundation of all rational decision-making. Without suitable Information Systems, individuals,
organizations, communities and governments can neither systematically take optimal decisions nor understand the
full effect of their actions. We use the term Information System here in a broader sense that includes also Socio-
technical Systems. Moreover, we subscribe here to the so-called Representation View of information systems [1].
Following this view, an information system is a representation of a certain conceptualization of reality. To be
more precise, an information system contains information structures that represent abstractions over certain
portions of reality, capturing aspects that are relevant for a class of problems at hand. In this view, the quality of an
information system directly depends on how truthful are its information structures to the aspects of reality it
purports to represent.

In his ACM Turing Award Lecture entitled “The Humble Programmer” [2], E. W. Dijkstra discusses the sheer
complexity one has to deal with when programming large computer systems. His article represented an open call
for an acknowledgement of the complexity at hand and for the need of more sophisticated techniques to master
this complexity. Dijkstra’s advice is timely and even more insightful in our current scenario, in which semantic
interoperability becomes a pervasive force driving and constraining the process of creating information systems in
increasingly complex combinations of domains. More and more, information systems are created either by
combining existing independently developed subsystem, or are created to eventually serve as components in
multiple larger yet-to-be-conceived systems. In this scenario, information systems engineering, in particular, and
rational governance, in general, cannot succeed without the support of a particular type of discipline. A discipline
devoted to establishing well-founded theories, principles, as well as methodological and computational tools for
supporting us in the tasks of understanding, elaborating and precisely representing the nature of conceptualizations
of reality, as well as in tasks of negotiating and safely establishing the correct relations between different
conceptualizations of reality. On one hand, this discipline should help us in producing representations of these
conceptualizations that are ontologically consistent, i.e., that represent a worldview that aggregates a number of
abstractions that are consistent with each other. On the other hand, it should help us to make explicit our
ontological commitments, i.e., to make explicit what exactly is the worldview to which we are committing. In

summary, this discipline should help to produce concrete representation artifacts (models) of conceptualizations of
reality that achieve the goals of intra-worldview consistency and inter-worldview interoperability.

The discipline to address the aforementioned challenges is the discipline of Conceptual Modeling. However, in
order to do that, conceptual modeling languages, methodologies and tools must be informed by another discipline,
namely, the discipline of Ontology, in philosophy. Formal Ontology has exactly the objective of developing
domain-independent theories and systems of categories and their ties that could then be used to articulate
conceptualizations in different domains in reality. More recently, the discipline of Applied Ontology has developed
systematic and repeatable techniques for applying these theories in solving problems in concrete domains [3].
Given this essential role played by Ontology in this view of the discipline of Conceptual Modeling, we term it
Ontology-Driven Conceptual Modeling.

The importance of Ontology as a foundation for Conceptual Modeling is not new in this discipline. There is an
established tradition and a growing interest in using ontological theories for analyzing conceptual modeling
languages as well as for proposing methodological guidelines for using these languages in the production of
ontologically consistent models [1,4-6]. Ontology has been used not only as an analysis tool but also in the
development of engineering tools such as conceptual modeling languages with explicitly defined and properly
axiomatized metamodels [7], as well as computational environments supporting automated model verification,
validation and transformation [8,9]. These are complexity management tools that are fundamental for addressing
the challenge highlighted by Dijkstra’s advice.

In the invited paper [10] companion to his keynote talk delivered at the 2014 edition of the International
Conference on Conceptual Modeling (ER), the second author of the present paper makes the case for a particular
set of complexity management tools needed for Ontology-Driven Conceptual Modeling, namely Ontological
Conceptual Patterns, Ontological Anti-Patterns, and Ontology Pattern Languages. In the present paper, we focus
on one of these conceptual tools, namely, Ontological Anti-Patterns.

An anti-pattern is a recurrent error-prone modeling decision [11]. In this paper, we are interested in one specific
sort of anti-patterns, namely, model structures that, albeit producing syntactically valid conceptual models, are
prone to result in unintended domain representations. In other words, we are interested in configurations that when
used in a model will typically cause the set of valid (possible) instances of that model to differ from the set of
instances representing intended state of affairs in that domain [12]. We name these configurations Ontological
Anti-Patterns.

In this paper, we focus on the study of Ontological Anti-Patterns in a particular conceptual modeling language
named OntoUML [7]. OntoUML is an example of a conceptual modeling language whose meta-model has been
designed to comply with the ontological distinctions and axiomatization of a theoretically well-grounded
foundational ontology named UFO (Unified Foundational Ontology) [13]. UFO is an axiomatic formal theory
based on theories from Formal Ontology in Philosophy, Philosophical Logics, Cognitive Pyschology and
Linguistics. OntoUML has been successfully employed in a number of industrial projects in several different
domains, such as petroleum and gas, digital journalism, complex digital media management, off-shore software
engineering, telecommunications, retail product recommendation, and government. Besides the modeling language
itself, the OntoUML approach also offers a model-based environment for model construction, verbalization, code
generation, formal verification and validation [8,9]. In particular, the validation strategy employed there makes use
of an approach based on visual model simulation [9]. In this paper, we make use of this approach for eliciting
Ontological Anti-Patterns in OntoUML.

This paper can also be seen as an extension of another publication presented at the same edition of the ER
conference in which [10] was presented, namely [14]. In comparison to [10], this paper is much narrower in scope
but much deeper in its investigation regarding ontological anti-patterns; in comparison to [14], we have expanded
the paper in the following manner. Firstly, we have used an enlarged model repository with two added conceptual
models. We here also present a much more detailed characterization of the repository and a more detailed analysis
of an empirical study for uncovering the Ontological Anti-Patterns. Secondly, we present here a very detailed
definition for the set of Anti-Patterns uncovered by this study, precisely defining their characteristics and
structures and providing examples of their occurrences in the models in the repository. More importantly, we
define here formal refactoring plans that have been implemented in a computational tool for automatically
rectifying the potential modeling mistakes correlated with the presence of these anti-patterns. In this paper, we also
present a novel industrial empirical study, which analyzes in depth the largest conceptual modeling in our
repository with the goal of establishing: (i) the likelihood that an anti-pattern entails unintended consequences in
the model; (ii) the effectiveness of our proposed refactoring plans. The paper also presents a newer implementation
of the tool (in comparison to the one presented in [10] and [14]) that incorporates a model wizard for helping the
modelers in applying the proposed refactoring plans.

The contributions of this paper are three-fold. Firstly, we contribute to the identification of Ontological Anti-
Patterns in Conceptual Modeling. We do that by carrying out an empirical qualitative approach over a model

benchmark of 54 OntoUML models. In particular, we employ the visual simulation capabilities embedded in
OntoUML editor [8]. Secondly, after precisely characterizing these anti-patterns, we propose a set of refactoring
plans that can be applied to the models in order to eliminate the possible unintended consequences induced by the
presence of each of these anti-patterns. Finally, we present an extension to the OntoUML editor with a number of
features for: (a) automatically detecting anti-patterns in user models; (b) supporting the user in exploring the
consequences of the presence of an anti-pattern in the model and, hence, deciding whether that anti-pattern indeed
characterizes a modeling error, either because it allows unintended model instances or because it forbids intended
ones; (c) automatically executing refactoring plans to exclude these unintended model instances, which can take
the form of OCL constraints or direct interventions in the model.

The remainder of this paper is organized as follows: in Section 2, we briefly elaborate on the modeling
language OntoUML and some of its underlying ontological categories, as well on the approach for model
validation via visual simulation embedded in the OntoUML editor; Section 3 characterizes the model benchmark
used in this research; Section 4 presents the elicited Ontological Anti-Patterns with their unintended consequences
as well possible solutions for rectification in terms of model refactoring plans; section 5 elaborates on the
extensions implemented in the OntoUML editor taking into account these anti-patterns. Section 6 presents an
additional industrial empirical study aimed at investigating the accuracy of our anti-pattern catalog as well as the
efficacy of the proposed refactoring plans. Finally, section 7 presents some final considerations including a brief
discussion on related work.

2. Model Validation via Visual Simulation in OntoUML

The OntoUML language meta-model contains: (C1) elements that represent ontological distinctions prescribed by
the underlying foundational ontology UFO; (C2) constraints that govern the possible relations that can be
established between these elements reflecting the axiomatization of this underlying foundational ontology UFO.
These two characteristics are illustrated below using some ontological distinctions among the categories of object
types (e.g., Kind, Subkind, Roles and RoleMixins), trope types (e.g., Relator, Mode) and relations (formal
relations, material relations and parthood relations). For an in depth presentation, formal characterization and
empirical evidence for a number of the ontological categories underlying OntoUML, the reader is referred to [7].

In UFO’s theory of types, we have a fundamental distinction between what are named Sortal and Non-Sortal
types. A sortal is a type whose instances obey a uniform principle of identity. A principle of identity, in turn, is a
principle with which we can judge if two individuals are the same or, as a special case, what changes an individual
can undergo and still be the same. A stereotypical example is the type Person. Contrast it with the type Insurable
Item. Whilst in the former case all instance of that type obey the same principle of identity, in the latter case, the
type classifies instances of different kinds (e.g., cars, boats, people, houses, body parts, works of art) and that obey
different principles of identity. A Kind is a sortal that is rigid and that supplies a uniform principle of identity for
all its instances. As formally demonstrated in [7], every object in a conceptual model must obey a unique principle
of identity and, hence, must be an instance of a unique kind. Subkinds are rigid specializations of a Kind and
inherit that principle of identity supplied by that unique subsuming Kind. Rigidity can be characterized as follows:
a type T is rigid iff all instances of that type are necessarily (in the modal sense) instances of that type, i.e., the
instances of T cannot cease to be an instance of T without ceasing to exist.

In contrast with rigidity, we have the notion of anti-rigidity: a type T’ is anti-rigid iff every instance of that type
can cease to be an instance of that type (again, in the modal sense), i.e., instances of T’ can move in an out of the
extension1 of T’ in different possible worlds while maintaining their identity. Among the anti-rigid sortal types, we
have the subcategory of Roles. Besides being anti-rigid, the Role category possesses another meta-property named
Relational Dependence [7]. According to this meta-property, instances of roles move in and out of the extension of
that type due to a change in one of its relational properties, i.e., due to the establishment or termination of a
relation. For instance, a student is a role that a person plays when related to an education institution, and it is the
establishment (or termination) of this relation that alters the instantiation relation between an instance of person
and the type Student. Analogously, a husband is a role played by a person when married to a (person playing the
role of) wife.

Distinctions generated by the variation of these ontological meta-properties (e.g., rigidity, relational
dependence) can also be found among non-sortals. One example is the notion of a RoleMixin. A RoleMixin is a
non-sortal, which is also anti-rigid and relationally dependent. In other words, the RoleMixin category is similar to
and, hence, is subject to many of the same constraints of the Role category. However, unlike a role, a RoleMixin
classify entities that instantiate different kinds (and that obey different principles of identity). A classical example
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1The extension of a type t in a world w, logically represented by the expression 𝑒𝑥𝑡! 𝑡 , stands for the set of all individuals
that instantiate the type t in the world w.

of a RoleMixin is the type Customer that can be instantiated by instances of the kinds Person and Organization [7].
In this example, Customer is anti-rigid (i.e., no Customer is necessarily a Customer), relationally dependent (i.e.,
in order to be a Customer someone has to purchase something from a Supplier) and entities of different kinds can
be Customers, namely, persons and organizations.

In UFO, there is also fundamental distinction between the so-called formal and material relations. A formal
relation is a relation that holds directly between its relata and that is reducible to intrinsic properties of these relata.
Take, for instance, the relation of being-taller-than between people. If John is taller than Paul then this relation is
established by the mere existence of John and Paul. Moreover, in this case, there is no real connection between
John and Paul, but the relation is reducible to intrinsic properties of these two individuals, namely, John is taller
than Paul iff John’s height is bigger than Paul’s height. Now, take the case of relations such as being-married-to,
being-enrolled-at, being-employed-by, being-a-customer-of, etc. These relations are not reducible to intrinsic
properties of their relata. In contrast, in order for these relations to hold, something else needs to exist connecting
their relata, namely, particular instances of marriages, enrollments, employments and purchases. These mediating
entities can be thought as aggregations of relational properties and are termed relators [7]. Relations that are
founded on these relators are termed material relations.

Relators are examples of existentially dependent entities. In fact, they are entities that are existentially
dependent on a multitude of individuals. For instance, marriages, contracts, employments and covalent bonds
require the existence of multiple entities in order to exist. UFO also countenances the existence of entities that are
existentially dependent on single individuals. Suppose, for instance, that John has a case of Dengue Fever. This
entity (John’s Dengue Fever) is a complex entity can have its own properties and that can change in time
maintaining its identity. However, it is an ontologically dependent entity: it existentially depends on John. In UFO,
these entities are named modes. Modes are connected to the their bearers (i.e., the entities they dependent on) by a
formal relation named characterization (a type of existential dependence relation) in an analogous manner in
which relators are connected to their bearers by a formal relation named mediation [7].

Finally, regarding parthood relations, UFO has a rich system of parthood relations [7]. Firstly, this system
differentiates parthood relations in terms of the type of relata they accept. These include relations between: (i)
quantities (e.g., portions of wine, water, sand), namely, the so-called subQuantityOf relation; (ii) relations
involving collectives (e.g., a collection of books, a pile of bricks, a forest) namely, the memberOf relation and the
subCollectiveOf relation; (iii) as well as parthood relations in which parts of different types contribute in different
ways to the functional behavior of the whole, termed componentOf relation. The lattice of parthood theories in
UFO also offers a formal characterization for these constructs in terms of their basic meta-properties (e.g., whether
they are transitive or not and in which context) as well as in terms of their modal meta-properties (e.g., whether
they entail existential dependence from the whole to the part - termed essential parts, whether they entail
existential properties from the part to the whole - termed inseparable parts, or both [7]).

In summary, with respect to characteristic (C1) in the beginning of this section, OntoUML incorporates
modeling constructs that represent all the aforementioned ontological categories (among many others) as modeling
primitives of the language. Regarding (C2), the meta-model embeds constraints that govern the possible relations
to be established between these categories. These constraints are derived from the very axiomatization of these
categories in the foundational ontology UFO. Examples include (among many others) [7]: a sortal is either a Kind
or it must be a subtype of exactly one ultimate Kind; an anti-rigid type cannot be a supertype of a rigid type; a
sortal type cannot be a supertype of a non-sortal type, among many others. In fact, as demonstrated in [10], given
their associated formal constraints, the OntoUML constructs representing ontological distinctions can only appear
in a model forming particular predefined configurations. These configurations are termed in [10] Ontological
Design Patterns. An example of such a pattern is the Relator-Material Relation Design Pattern briefly explained
as follows.

In OntoUML, a material relation appears in a model connected to a relator from which it is derived forming the
pattern depicted in Figure 1. In this pattern, the dashed relation is termed derivation and connects a material
relation with the relator from which it is derived; the mediation relation is a relation of existential dependence
connecting an instance of a relator with multiple entities of which a relator depends (e.g., the marriage between
Paul and Mary existentially depends on Paul and Mary; the employment between John and the UN likewise can
only exist whilst John and the UN exist). Moreover, the cardinality constraints of the derived material relation and
of the derivation relation are constrained by the cardinality constraints of these (otherwise implicit) mediation
relations (some of these constraints are illustrated in Figure 1) [7]. As discussed in [7], the explicit representation
of relators solves a number of conceptual modeling problems, including the classical problem of the collapse of
cardinality constraints. Furthermore, as demonstrated in [16], relators also play a decisive role in providing
precise methodological guidelines for systematically choosing between the constructs of association
specialization, subsetting and redefinition.

Because of the constraints embedded in the OntoUML metamodel, as discussed in [7], the only grammatically
correct models in that language are ontologically consistent models. In other words, by incorporating ontological
constraints in its meta-model, OntoUML proscribes the representation of ontologically non-admissible states of
affairs in conceptual models represented in that language. However, as discussed in [14], the language cannot
guarantee that, in a particular model, only model instances representing intended state of affairs are admitted. This
is because the admissibility of domain-specific states of affairs is a matter of factual knowledge, not a matter of
consistent possibility [10]. In other words, a domain independent language system of representation cannot rule
out unintended model instances that are unintended not due to ontological constraints but to domain-specific rules.

Figure 1. The Relator-Material Relations Pattern (from [7]).

To illustrate the latter point, we will use for the remainder of the paper the running example presented in Figure 2.
This model describes people’s roles and relevant properties in the context of a Criminal Investigation. Some of
roles may be the Detectives that investigate the crime, other the Suspects of committing the crime, but also
Witnesses that are interrogated by the Detectives about the crime. Each Investigation has a Detective who is
responsible for it (referred to as Lead Detective). Detectives are ranked as Junior or Senior Detectives, according
to their experience in the job. Since other relational properties are relevant in investigations, the model also
represents friendship (“person isFriendOf person”). This model also contains an example of a parthood relation
between a Criminal Investigation, the whole, and an Interrogation, the part. Finally, it contains an instance of a
variation of the pattern of Figure 1 involving the Criminal Investigation (relator) and the roles of Detective, Lead
Detective, Witness and Suspect as types of relata. The material relations generated from the relators Interrogation
and Criminal Investigation and their corresponding mediation relations are omitted here.

Figure 2. Partial OntoUML model of the domain of criminal investigation.

The model of Figure 2 does not violate any ontological rules in capturing aspects of the investigation domain. It
would have done so, for example, had we placed Suspect as a supertype of Person, or had we represented the
possibility of a Suspect or Witness without being related to Criminal Investigation (we assume here a Suspect is a
suspect in the context of an Investigation and so is a Witness) [7]. These cases can be easily detected and
proscribed by an editor such as the one proposed in [8]. Nonetheless, this model admits many grammatically valid
instances that do not represent intended state of affairs. One example is one in which the Lead Detective of an
investigation is also a Suspect on that investigation. Another example is one in which a Detective interrogates

 CLASSIFIERS AND PROPERTIES 331

Still on figure 8.10, from the cardinality constraints of the two
´mediationª relations we can derive the maximum cardinality of the
derivation relation (on the material relation end) and the cardinality
constrains on both association ends of the material relation itself. For

instance, the upper constraint δ on the end connected to G in the H

relation is the result of (d × h); the upper constraint β in the end connected

to F is the result of (f × b). The upper constraint φ in the end H of the

derivation relation is the result of (b × h). Likewise, we can calculate the

derived minimum cardinality constraints in the following manner: γ = c ×

g; α = e × a, and ε = a × g.

F G

´mediationª´mediationª ´relatorª
R

´materialª

/H

c..d

a..b

e..f

g..h

Two alternative versions of a concrete example of this situation are depicted
in figures 8.11.a and 8.11.b below. However, due to the lack of expressivity
of the traditional UML association notation, these two models seem to
convey the same information (from the perspective of the material relation
supervised-by), although they describe completely different
conceptualizations. As discussed in section 6.3.3, the benefits of explicitly
representing relator universals instead of merely representing material
relations, becomes even more evident in n-ary relations with n > 2.

´roleª
GraduateStudent

´kindª
Supervisor

´mediationª´mediationª ´relatorª
Assignment

´materialª

/supervised-by

1..*

1

1..*

1

1..*

1

´roleª
GraduateStudent

´roleª
Supervisor

´mediationª´mediationª ´relatorª
Assignment

1..* 1..*

´materialª

1..*

1..*

1..*

1..*

/supervised-by

(a) (b)

Once more we should highlight that the relator individual is the actual
instantiation of the corresponding relational property (the objectified
relation). Material relations stand merely for the facts derived from the
relator individual and its mediating entities. Therefore, we claim that the
representation of the relators of material relations must have primacy over
the representation of the material relations themselves. In other words, the
representation of ´materialª relations can be omitted but whenever a

Figure 8-10 Material
Relations and their
founding relators (the
cardinality constraints of
the derived relation and
the derivation relation
itself can be calculated
from the corresponding
mediation relations
involving the founding
relators)

Figure 8-11
Examplification of how
relators can
disambiguate two
conceptualizations that
in the standard UML
notation would have the
same interpretation

ε..φ

α..β γ..δ

1..*

1..*

f x b d x h

b x ha x g

η..λ

himself. A third one is one in which a detective conducts an interrogation in an investigation in which this
Detective does not participate. This simple and relatively small model fragment actually contains 9 cases of what
we term Ontological Anti-Patterns, i.e., model fragments that when used, typically create a deviation between the
set of possible (valid) and the set of intended state of affairs [12]. We will return to this point in Sections 4 and 5.

Guaranteeing the exclusion of unintended states of affairs without a computational support is a practically
impossible task for any relevant domain [9,10]. In particular, given that many fundamental ontological distinctions
are modal in nature, in order to validate a model, one would have to take into consideration the possible valid
instances of that model in all possible worlds.

In [9], the authors propose an automated approach for OntoUML that offers a contribution to this problem by
supporting conceptual model validation via visual simulation. In the proposed tool, the models are translated into
Alloy [15], a logic language based on set theory, which is supported by an analyzer that, given a finite context,
exhaustively generates possible instances for a given specification and also allows automatic checking of
assertions’ consistency. The generated instances of a given conceptual model are organized in a branching-time
temporal structure, thus, serving as a visual simulator for the possible dynamics of entity creation, classification,
association and termination. In [9], the modeler is then confronted with a visual representation of the snapshots in
this world structure. These snapshots represent model instances that are deemed admissible by the ontology’s
current axiomatization. This enables modelers to detect unintended model instances (i.e., model instances that do
not represent intended state of affairs) so that they can take the proper measures to rectify the model. In order to
illustrate this point, in figure 3 below we show a model instance for the OntoUML conceptual model of Figure 2.

Figure 3. Possible instantiation of the Criminal Investigation model depicted in Figure 2.

The comparison between possible (valid) model instances, generated by the Alloy Analyzer, and the intended
ones, obtained from domain experts or the conceptual model documentation, highlights possibly erroneous
modeling decisions. The recording and categorization of these decisions for a set of OntoUML conceptual models
served as a basis for identifying the ontological anti-patterns discussed in this paper. The process for empirically
uncovering these anti-patterns is explained in the following, throughout Section 3.

3. Empirically Uncovering Ontological Anti-Patterns

The approach used in this work for the identification of the proposed set of anti-patterns was an empirical
qualitative analysis. The idea was to simulate existing OntoUML conceptual models by employing the approach
described in Section 2. In a preliminary analysis reported in [17], we studied the recurrence of these anti-patterns
across: (i) different domains; (ii) different levels of modeling expertise in Ontology-Driven Conceptual Modeling;
(iii) models of different sizes, maturity and complexity.

In our preliminary study, we selected nine models: (1) a conceptual model about the Brazilian health
organization system; (2) a conceptual model of the organizational structure of Brazilian federal universities; (3) a
conceptual model that describes a domain of online mentoring activities; (4) a domain ontology representing the
domain of transport optical network architectures [18]; (5) an ontology in the biodiversity domain [19]; (6) a heart
electrophysiology reference ontology [20]; (7) an ontology in the domain of normative acts; (8) an ontology of
public tenders; and (9) an ontology in the domain of Brazilian federal organizational structures [21]. Although all
models were designed in OntoUML, we distinguish of them between domain ontologies and conceptual models, to
distinguish between representations that are actually meant to capture a shared domain conceptualizations, and
formalizations of the perception of a particular individual.

Our initial study also took into account the modeler’s expertise in using OntoUML and its foundations. We
classified them as “beginners” if they had less than one year of experience, and as “experienced” if they had more.
Notice, however, that for all the selected models, the individuals involved in their creation had significant
experience in traditional conceptual modeling approaches (e.g., UML and ER). In our first sampling of models, we
had 4 models created by beginners (models 1-3, 9) and 5 models created by experienced modelers (4-8).

We also classified the investigated models regarding the context of their creation. Three of them were graduate
final assignments (models 1-3), two of which were produced by modelers with vast experience in the respective
domains (1-2). Model 4 was produced by experienced modelers in an industrial project, who had access to domain
experts as well as a supporting international standard of the domain (ITU-T G.805). In fact, the resulting ontology
was published in a relevant scientific forum in the area of Telecommunications [18]. Model 5 was developed in
the Brazilian National Center for Amazon Research in collaboration with domain experts to support
interoperability of biodiversity data [19]. Model 6 was published in a renowned international journal in the area of
Bioinformatics in a special issue of Biomedical ontologies [20]. Models 7 and 8 were produced in a large-scale
industrial project for the Brazilian Regulatory Agency for Land Transportation (ANTT) [22], in which the
modelers had constant access to normative documentation and to domain experts. Lastly, model 9 was produced
by a group of modelers in the Brazilian Ministry of Planning (MPOG) [21] that was formed by experts in the
domain who had a professional-level experience in traditional conceptual modeling.

Lastly, we registered the size of the models in our initial set. The modelers classified as beginners (models 1-3
and 9) produced models varying from 15-31 classes and 7-30 associations, whilst the experienced modelers
designed models containing 46-194 classes and 29-122 associations.

In what follows, we describe our strategy for identifying anti-patterns across our initial sample. For each model,
we started by simulating it using the approach described in the previous section. This process resulted in a number
of possible instances for that model, automatically generated by the Alloy Analyzer. We then contrasted the set of
possible instances with the set of intended instances of the model, i.e., the set of model instances that represented
intended state of affairs according the creators of the models. Whenever we detected a mismatch between these
two sets (either the existence of a possible instance that was not intended or the absence of an intended instance),
we registered an error in the model. For each registered error, we analyzed the model in order to identify which
constructs (or combination thereof) were responsible for causing the error at hand. After simulating all nine
models and verifying all errors, we identified and catalogued as anti-patterns those model structures that
recurrently produced such mismatches, i.e., modeling patterns that would repeatedly produce model instances that
were not intended (i.e., underconstrained models) or would exclude instances that were intended (i.e.,
overconstrained models). To be more precise, we considered as anti-patterns those error-prone modeling decisions
that occurred in at least one third of the validated models. We carried out this simulation-based validation process
with a constant interaction with the model creators (when available) and/or by inspecting the textual
documentation accompanying the models.

In this first empirical study, we manage to identify six initial ontological anti-patterns. Two of them were
identified in three models. Another three were identified in six, seven and eight models respectively, and one anti-
pattern that appeared in all the analyzed models. For more details, please refer to the preliminary report [17]. This
initial study gave us confidence that the adopted method could be used as a means for detecting these ontological
anti-patterns. In the follow-up study reported here (which extends our initial report in [14]), we manage to
assemble a much larger benchmark of 54 OntoUML models. Table 1 provides a general description of all
conceptual models in the repository, following the same classification adopted in the preliminary study2.

Regarding the development context, most models in this extended sample are graduate course assignments, a
total of 32 or 59% of the repository to be more precise. These models were produced as final assignments in a 60-
hours OntoUML graduate course. Moreover, 11 models (20%) were developed in academic research without
industry collaboration. An example is the Configuration Management Task Ontology (CMTO) [23]. Seven models
had a participation of private companies and/or governmental organizations. Amongst them, there is the MGIC
Ontology [22], the most significant model in our repository. It was developed in the context of a research project
with the Brazilian Agency for Ground Transportation (ANTT), which is responsible for regulating ground
transportation in Brazil. For the remainder models, we had no knowledge of the model development context.

Concerning the purpose for which the models were created, the repository contains 10 models (16%) intended
to serve as reference models of their respective domains. An example is the Core Ontology of Services, named
UFO-S [24]. Another 10 models (16%) were developed in order to perform ontological analysis on existing
domain formalizations, databases or modeling languages. An example is the refactoring of the Conceptual Schema
of Human Genome [25]. Moreover, we had 8 models (13%) designed for the development of knowledge-based

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2The conceptual models in this table are publicly available at: http://www.menthor.net/model-repository.html. The few
exceptions of missing models are due to non-disclosure agreements that prohibited their publication.

applications, 6 models (10%) whose main intention was to support semantic interoperability between systems
and/or organizations, and 2 models (3%) intended for enterprise modeling. For the remainder 26 models (42%),
we could not retrieve their motivation either from the accompanying text or from their authors.

Concerning the modeler’s overall expertise on OntoUML and Ontology-driven Conceptual Modeling, we
identify 22 models (41%) developed by beginners (from which 18 are also graduate course assignments) and 32
(59%) developed by experienced modelers. Finally, we look into the number of modelers involved in the ontology
design. A single person participated in the development of most of the cases (35 models, roughly 65%). Moreover,
15 models are the product of collaboration efforts between 2-4 people, whilst 4 models involved 7-10 modelers.
Of the 35 models developed by a single modeler, 31 were graduate course assignments.

Table 1. Summary description of all models in the repository (subtitle: “Exp.” stands for Level of Expertise,
whose values are adv = advanced and beg = beginner; “#Md” stands for number of modelers that
participated in the development of the model).
Model Domain Context Purpose Exp. #Md

The MGIC Ontology [22] Brazilian Ground Transportation
Regulation

Government
Project

interoperability;
enterprise model. adv 10

The G.805 Ontology [18] ITU-T G.805 Recommendation Industry
Project

ontol. analysis;
reference model adv 4

The G.805 Ontology 2.0 ITU-T G.805 Recommendation Industry
Project

reference model;
kb application adv 3

The G.800 Ontology ITU-T G.800 Recommendation Industry
Project

reference model;
kb application adv 3

OntoEmerge [26, 27] Emergency Plans MSc Dissertation kb application adv 8
OntoUML Org Ontology (O3)
[28, 29] Enterprise architecure MSc Dissertation ontol. analysis;

enterprise model adv 2

The ECG Ontology [20] Eletrocardiogram MSc Dissertation interoperability;
kb application adv 3

Gi2MO Ontology Refactored Generic idea and innovation
management

Graduate Course
Assignment ontol. analysis adv 1

Internal Affairs Ontology
Refactored Brazilian police internal affairs dept. Graduate Course

Assignment ontol. analysis adv 3

Open proVenance Ontology [30] Provenance of scientific experiments PhD Thesis reference model adv 3

The Library Model Library archive and services Graduate Course
Assignment unspecified beg 1

OntoBio [19] Amazonian biodiversity Government
Project

interoperability;
kb application adv 3

The Public Tenders Model Brazilian public tenders Graduate Course
Assignment unspecified adv 1

UFO-S [24] Commitment-based Service PhD Thesis reference model adv 7
The TM Forum Model Network management Other unspecified beg 1

The Social Contract Model Brazilian social contract theory Graduate Course
Assignment unspecified beg 1

The Clergy Model Catholic clergy Graduate Course
Assignment unspecified beg 1

The FIFA Football Model Football (based on FIFA's offical
rules)

Graduate Course
Assignment unspecified adv 1

The PAS 77:2006 Ontology [31] Service continuity MSc
Dissertation

ontol. analysis;
reference adv 4

IDAF Model Institute of Agriculture Protection of
Espírito Santo

Graduate Course
Assignment unspecified adv 1

The Cloud Vunerability Ontology
[32]

IaaS perspective on public cloud
vulnerability

MSc
Dissertation reference model adv 4

The University Model Brazilian federal universities Graduate Course
Assignment unspecified beg 1

Configuration Management Task
Ontology (CMTO) [23]

Configuration management of
software products

MSc
Dissertation interoperability adv 2

GRU MPS.BR Model Reuse management process of
MPS.BR

Graduate Course
Assignment unspecified beg 1

The Experiment
Model Scientific experiment Graduate Course

Assignment unspecified beg 1

CSHG Refactored [25] Human genome PhD Thesis ontol. analysis adv 3

The Normative Acts Ontology [33] Brazilian normative acts composition Government
Project reference adv 3

The Parking Lot
System

World view of a parking lot
management system

Graduate Course
Assignment unspecified adv 1

The School Transportation Model World view of a system to support
student transportation Other application beg 1

The Quality Assurance Ontology Quality assurance based on CMMI,
MPS.BR and ISO 9001

Graduate Course
Assignment unspecified adv 1

The OpenFlow
Ontology [34] OpenFlow communication protocol BSc Monograph kb application beg 2

The Music Ontology Refactored3 Music-related data Graduate Course
Assignment ontol. analysis adv 1

The Internship Model Legal brazilian intership Graduate Course
Assignment unspecified adv 1

The G.809 Model ITU-T G.809 Recommendation Graduate Course
Assignment unspecified beg 1

The ERP System Model World view of an enterprise resource
planner system Other interoperability adv 1

The Online Mentoring Model World view of a system to support
online mentoring

Graduate Course
Assignment unspecified adv 1

The Help Desk System Model A model that describes a potential
help desk system

Graduate Course
Assignment unspecified beg 1

The IT Infrastructure Model Information technology architecture Graduate Course
Assignment unspecified beg 1

The Requirements Ontology [35] Software requirements MSc Dissertation kb application adv 2

The Photography Model Photography collection Graduate Course
Assignment unspecified beg 1

FIRA Ontology Refactored Robot soccer matches Graduate Course
Assignment onto analysis adv 1

The Banking Model Financial operations Graduate Course
Assignment unspecified adv 1

The Chartered Service Model Railway chartered service Graduate Course
Assignment unspecified adv 1

The Health Organization Model Brazilian health organization Graduate Course
Assignment unspecified beg 1

The Bank Model 2 Financial operations Graduate Course
Assignment unspecified adv 1

The PROV Ontology Refactored4 Provenance information Graduate Course
Assignment ontol. analysis beg 1

Web Service Modeling Ontology
Refactored5 eGovernment services Graduate Course

Assignment ontol. analysis beg 1

The Recommendation Model Recommendations and norms Graduate Course
Assignment kb application beg 1

The Inventory System World view of an inventory
management system Other interoperability adv 1

MPOG Ontology Draft [21] Brazilian federal organizational
structures

Government
Project reference model beg 7

The Project Management Model Project management Graduate Course
Assignment unspecified beg 1

The Construction Model Construction Graduate Course
Assignment unspecified beg 1

The Stock Model Stoke brokers Graduate Course
Assignment unspecified beg 1

The Real State Model Real state Graduate Course
Assignment unspecified beg 1

Table 2 provides a structural overview of the repository. The reader can observe that there are in the repository
conceptual models of variable sizes, from large ones (e.g. The MGIC Ontology, with 3800 classes and 1918
associations), to medium (e.g. OntoUML Org Ontology, containing 78 classes and 78 associations), to very small
ones (e.g. The Chartered Services Model, comprising 11 classes and 14 associations). Furthermore, it provides
information of the number of each of the basic (Onto)UML constructs used in the models, including datatypes
(complex datatypes, enumerations and primitive types), generalizations, generalization sets (Gen.Set) and
attributes in each of the model.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3OWL ontology used to create the OntoUML version available at: http://musicontology.com/
4 OWL ontology used to create the OntoUML version available at: http://www.w3.org/TR/prov-o/
5 OWL ontology used to create the OntoUML version available at: http://www.wsmo.org/

Table 2. Structural description of all models in the repository.

Model Class Datatype Association Generalization Gen. Set Attribute
The MGIC Ontology 3800 61 1918 3616 698 865
The G.805 Ontology 135 4 113 127 36 0
The G.805 Ontology 2.0 358 1 255 475 62 7
The G.800 Ontology 477 1 345 601 78 7
OntoEmerge 189 4 138 111 16 5
OntoUML Org Ontology (O3) 78 0 78 57 8 0
The ECG Ontology 49 0 65 31 0 0
Gi2MO Ontology Refactored 65 5 63 42 7 2
Internal Affairs Ontology Refactored 62 0 54 36 9 0
Open proVenance Ontology 49 0 50 26 4 0
The Library Model 43 0 45 14 0 0
OntoBio 187 5 50 160 22 14
The Public Tenders Model 84 0 43 48 6 18
UFO-S 22 0 42 4 0 0
The TM Forum Model 34 0 41 20 4 0
The Social Contract Model 20 0 15 16 0 2
The Clergy Model 29 0 34 16 0 0
The FIFA Football Model 68 1 32 69 4 2
The PAS 77:2006 Ontology 66 0 32 55 11 0
IDAF Model 46 0 32 38 0 0
The Cloud Vunerability Ontology 33 0 29 21 2 0
The University Model 27 4 29 16 0 0
CMTO 41 0 28 28 0 0
GRU MPS.BR Model 19 7 28 15 3 18
The Experiment Model 20 2 26 0 0 0
CSHG Refactored 19 0 22 10 1 0
The Normative Acts Ontology 63 1 21 55 17 24
The Parking Lot System 49 0 21 37 9 17
The School Transportation Model 33 0 36 9 0 0
The Quality Assurance Ontology 41 0 20 24 7 2
The OpenFlow Ontology 20 0 19 9 1 4
The Music Ontology Refactored 43 0 18 36 6 5
The Internship Model 26 6 18 19 4 2
The G.809 Model 24 0 18 12 4 0
The ERP System Model 38 0 16 25 1 43
The Online Mentoring Model 29 0 16 18 6 0
The Help Desk System Model 20 0 16 8 4 0
The IT Infrastructure Model 31 0 15 17 6 0
The Requirements Ontology 35 1 21 30 10 19
The Photography Model 19 0 15 8 0 0
FIRA Ontology Refactored 41 0 14 36 7 0
The Bank Model 18 0 12 14 4 2
The Chartered Service Model 11 0 14 0 0 0
The Health Organization Model 24 0 13 14 3 0
The Bank Model 2 24 1 14 16 3 3
The PROV Ontology Refactored 16 0 12 5 0 0

WSMO Refactored 12 0 12 2 0 0
The Rec. Model 16 0 10 11 3 6
The Inventory System 20 0 7 14 0 24
MPOG Ontology Draft 15 0 7 15 4 0
The Project Management Model 14 0 7 8 3 0
The Construction Model 13 0 7 7 0 0
The Stock Model 14 0 6 11 7 0
The Real State Model 15 0 5 13 0 0

In order to analyze this new benchmark, we have implemented a set of computational strategies to automatically
detect occurrences of these anti-patterns in OntoUML models (see discussion in Section 5). By running these
algorithms for our initial set of anti-patterns under this benchmark, we managed to refine and extend the initial set
elicited in [17] to a refined set of anti-patterns. Table 3 reports on the results of this second study, which allowed
us to refine our anti-pattern catalogue. The anti-pattern named Binary Relation Between Overlapping Types
(BinOver) is a refinement and combination of the previous Self-Type Relationship and Relation Between
Overlapping Subtypes anti-patterns identified in the first study. Moreover, we elicited two additional anti-patterns
in this second study, namely Repeatable Relator Instances (RepRel)6 and Relator Mediating Overlapping
Types (RelOver)7. Furthermore, the Association Cycle (AssCyC) is the anti-pattern previously called Generic
Cycle. Finally, we have excluded the Pseudo-AntiRigid (PAR) anti-pattern, identified in our original catalog, from
the analysis conducted in this study. We did it because it would not be possible to specify an algorithm to identify
its occurrences automatically.

Table 3 summarizes the results of our second study. It shows the total number of occurrences of each of these
anti-patterns in the entire repository of 54 models. Moreover, it also shows what we term here the qualified
percentage of models with an anti-pattern occurrence. In order to understand this metric, we first call attention to
the fact that each anti-pattern requires the presence of certain modeling constructs in order for it to be manifested.
For instance, the RelOver pattern requires the presence of Relators in order to be manifested. Therefore, the
qualified occurrence of RelOver in the repository is the percentage of models in which this anti-pattern occurs
within the populations of models in the repository that contain the presence of the relevant model construct
Relator. In other words, it is the percentage of models in which the anti-pattern occurs given the population of
models in which it could possibly occur. Finally, Table 3 shows what we term the element/anti-pattern rate. This
rate provides an estimation of the number of elements required for a modeler to produce an anti-pattern. For
example, for every 3.77 occurrences of a relator, we expect an occurrence of the RepRel anti-pattern. We can also
see that half of these anti-patterns require less than five uses of their respective relevant element type for the anti-
pattern to be manifested.

Table 3. Anti-Pattern frequency on models with required elements.

Anti-Patterns (AP) AP Occurrences Relevant Model Construct
(RMC) RMC /AP Ratio % of Qualified Models

with AP Occurrence
RelSpec 817 Association 4.92 48.15%
ImpAbs 758 Association 5.30 72.22%
AssCyc 1809 Association 2.22 92.59%
RelOver 149 Relator 8.08 25%
RepRel 319 Relator 3.77 64.58%
BinOver 224 Association 17.93 48.15%

It is important to highlight that given the size of this new set of models, unlike in our first study, we were not able
to check for each occurrence of these anti-patterns (4076 occurrences!) whether they were always cases of model
fragments that entailed unintended consequences. For this reason, in the analysis reported in Table 3, it is not the
case that each occurrence of an anti-pattern in the model necessarily means an unintended occurrence of the
corresponding model fragment. However, in our previous empirical study, we could observe a very strong
correlation between the high occurrence of these anti-patterns as model fragments and cases in which they were
identified as unintended. In fact, that is exactly why they were identified as anti-patterns (as opposed to purely
syntactic constraints) in the first place. In Section 6, we report a third empirical study intended to measure the
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

6 In [10], the Repeatable Relator Instances (RepRel) anti-pattern was entitled Twin Relator Instances (TRI)
7 In [10], the Relator Mediating Overlapping Types (RelOver) anti-pattern was entitled Relator With Overlapping Roles (RWOR)

probability that an occurrence of an anti-pattern actually entails unintended consequences. Moreover, in the study
reported there, we measure how often the refactoring plans provided in Section 4 are selected by the designers of
that model to solve an occurrence an anti-pattern that in fact characterizes a mistake.

4. A Catalog of Ontological Anti-Patterns

In this section, we present our catalog of anti-patterns for ontology-driven conceptual modeling. In order to
facilitate learning, usage and comparison of the anti-patterns, we describe them following a consistent format.
Initially, we discuss each anti-pattern in natural language, presenting the structure that characterizes the anti-
pattern and the reasons why it may cause modeling problems. In the sequence, we present a table that summarizes
the most important information discussed. The template we use to describe these anti-pattern tables contains the
following items:

• Name: uniquely identifies the anti-pattern and intends to convey a brief idea of its content.
• Acronym: a short name to facilitate the documentation and communication about the anti-pattern.
• Description: a natural language description of the generic structure that characterizes the anti-pattern. It

also presents required constraints to characterize the anti-pattern occurrence, when necessary.
• Justification: a brief discussion of why modelers should scrutinize the model structure identified by the

anti-pattern.
• Type: identifies the types of the anti-pattern, which indicates the type of problem the structure suggests.

We here consider two types of anti-patterns: (i) Logical Anti-Patterns: related to cases of model
overconstraining or model underconstraining; (ii) Scope: related to cases of models with missing or
unnecessary constructs in the model.

• Feature: indicates the element of the OntoUML’s meta-model that is in the relevant modeling construct for
that anti-pattern (e.g., relator).

• Structure: formal description that characterizes an occurrence of the anti-pattern. These descriptions
consist of pattern roles, constraints and a diagrammatic generic example. Note that some anti-patterns
have one or more structures, which we call variations8. The reader should note that:

o Pattern Roles describe the elements that participate in the anti-pattern, their possible stereotypes
and cardinalities. We give each pattern role a proper name;

o Constraints refer to logical expressions that must always be true to characterize an occurrence of
the anti-pattern. Constraints can be general, involving multiple roles, or role-specific;

o Generic Example graphically exemplifies the generic structure of the anti-pattern. When the anti-
pattern has structural variations, we present multiple examples.

• Refactoring Plan: Every anti-pattern must define a set of refactoring plans. These plans define a sequence
of actions that modify the model in order to fix the domain misrepresentation issue. Some plans may be
mutually exclusive, if they cannot be performed in the context of a single occurrence, or complementary, if
they can. Note that some plans are only applicable to certain variations of the anti-pattern (identified by the
tag [conditional]). The refactoring plans are composed mainly by the following types of actions:

o Create Constraint (OCL): indicate the definition of addition of OCL invariants or derivation
rules (e.g. making explicit how a relation is derived or forbidding instances to relate in certain
conditions);

o Modify Element (Mod): indicate a change in a model element. The most frequent ones are
stereotype changes (e.g. from Formal to Material or from Collective to Kind) and meta-property
changes (e.g., change the isReadOnly meta-property from an association end from false to true);

o New Element (New): indicate the creation of model elements;
o Delete Element (Del): indicate the elimination of model elements.

It is important to emphasize that, for accessibility reasons, we chose to express our OCL constraints patterns in our
refactoring plans in terms of the corresponding illustrative generic structure presented for that anti-pattern. The
constraint patterns can be easily generalizable to generic structures of arbitrary sizes, provided that they preserve
the distinguished characteristic of the anti-pattern at hand.

Finally, after detailing the aforementioned anti-patterns properties, we present anti-patterns examples
encountered in concrete models from the model repository we discussed in Section 3. In order to show how to

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

8Some anti-patterns contain multiple structures because they generate the same type of problem and we can fix them using very
similar actions.

analyze and refactor models using the anti-patterns, we discuss the presented examples and select an appropriate
solution. Note that these examples are not included in the anti-pattern summary table.

4.1 Association Cycle (AssCyc)

The AssCyc anti-pattern occurs when an arbitrary number of classes are connected through the same number of
relations in a way that composes a cycle (in the traditional graph theoretical sense). In other words, one can start
navigating relations from any class in the cycle and arrive back to the starting point without going through the
same relation and visiting the same class more than once (except for the first/last node). Notice that we
intentionally use the term “relation” in a general sense, because we mean both associations (material relations,
formal relations and parthood relations, etc.) and generalization relations.

We argue in favor of analyzing the structure identified by the AssCyc anti-pattern because it allows for two
very characteristic instantiations: one in which there are cycles at the instance level, and another one in which
there are not. Our empirical studies strongly indicated that usually, in a given model, only one of these
instantiations patterns should be allowed.

Not all cycles, though, are occurrences of this anti-pattern. The first requirement is that two or more
associations must compose the cycle. Cycles exclusively composed of generalizations are excluded, because they
are either a syntactical mistake that should be eliminated (e.g., when all generalizations are in the same direction),
or just regular hierarchies. Cycles with only one association are most likely a characterization of another anti-
pattern, named BinOver (Section 4.2), while cycles with two associations could characterize occurrences of the
RelSpec (Section 4.4) or RelOver (Section 4.5) anti-patterns. The second constraint that must hold is that an
occurrence cannot be exactly a characterization of the Relator-Material Relations Design Pattern (see Section 2),
i.e., it cannot be a case where one of the types is a relator that connects two other types by mediation relations,
which are connected between themselves by a material relation. This is the case for a very simple reason: the
derivation from the relator to the material relation imposes closed cycles at the instance level. For the same reason,
Derivation relations are not considered as valid component members of the AssCyc cycle. Derivations are always
used in the same way, i.e., connecting a relator class to a material relation, and thus, always forming cycles. The
last constraint that must hold for a proper characterization of the AssCyc anti-pattern is that every association in
the cycle must be intentional. This requirement is justified to eliminate cases in which the semantic variability
(open or closed instance-level cycles) has already been addressed by the derivation rule(s) created by the modeler.

We propose three refactoring plans for AssCyc: first, to enforce the open cycle instantiation scenario at instance
level through the specification of an OCL invariant; second, is an analogous solution to forbid instance level
cycles; third, we set one of the associations as derived and its corresponding derivation OCL rule is specified.

The aforementioned properties of AssCyc are summarized in Table 4.

Table 4. Characterization of the AssCyc anti-pattern.

Name (Acronym) Description

Association Cycle
(AssCyc)

This anti-pattern occurs when n types are connected through n relations forming a cycle, i.e.
one can start navigating relations from a type and arrive back without using the same relation
more than once and without visiting the same type more than once (except for the first/last).

Type Feature Justification

Logical Association The analysis of two characteristic instantiation scenarios: one in which there are cycles at the
instance level, and another one where there is not.

Pattern Roles

Mult. Name Possible Types

3..* Rel-n Association (all but «derivation ») or Generalization

3..* Type-n Class

	
 	

Constraints

1. The relations must form a cycle, i.e., starting from every Typen, one can navigate the relations and arrive back to the
same type using every relation exactly once.

2. The number of associations in the cycle must be greater than 2.

3. Every association must be primitive (isDerived=false)

4. The cycle cannot characterize a Relator Design Pattern.

Generic Example

Refactoring Plans

1. [OCL] Enforce cycles: create OCL invariant to enforce instance level cycles according to following template (any
type in the cycle can be used as context):	

context Type-1
inv: self.type2.oclAsType(Type-3).type4.asSet()->includes(self)

2. [OCL] Forbid cycles: create OCL invariant to forbid instance level cycles according to the following template (any
type in the cycle can be used as context):

context Type-1
inv: self.type2.oclAsType(Type-3).type4.asSet()->excludes(self)

3. [Mod/OCL] Derive association: set the selected association as derived and create an OCL derivation rule.
Suggested template bellow:	

context Type-1::type1:Set(Type-4)
derive: self.type2.oclAsType(Type-3).type4->asSet()

To exemplify the AssCyc anti-pattern, consider the following fragment of the O3 ontology [28] depicted in Figure
4. The ontology describes a subset of the organizational domain. The most relevant concepts are: Formal
Organization, such as a company or a university; Organizational Unit, which can be understood as departments of
an organization; Employee Type, which captures the notion of what is commonly referred to as position, the
official work post, like professor or manager; Business Role is a class that formalizes the idea of particular
functions or roles, played by members of an organization. Examples are PhD supervisor and tutor. The relations
state that an organization has two or more units; a unit defines roles that an employee can play; an organization
defines positions to which people can be hired into; and that positions implied the possibility of playing certain
business roles.

Figure 4. Fragment of the O3 ontology that contains an occurrence of the AssCyc anti-pattern.

As previously mentioned, the structure identified in Figure 4 allows the instantiations of open and closed cycles
at the instance-level. Figure 5 presents a model instance automatically generated by the OLED’s simulation

Type-1 Type-2

Type-3

Type-4

-type4

Assoc-2 -type3

+type4

Assoc-3

+type1 -type2

Assoc-1

-type1

«Kind»
Organizational

Unit

«Kind»
Formal

Organization

«hou»
Business Role

«hou»
Employee Type

+org

1«ComponentOf»

+unit

2..*

+type

1..*

covers

«Formal»

+role

1..*

+org

1..*

defines
«Formal»

+type

1..*

+unit

0..*

defines
«Formal»

+role

1..*

component that exemplifies an open cycle. Notice that the organization defines an employee type (position) that
covers business roles defined by organization units that are part of another organization. Alternatively, Figure 6
presents an instantiation that characterizes a closed cycle. Note that, in this case, if a unit defines a business role,
the organization it composes must define an employee type that covers such position.

Figure 5. A possible instantiation of the O3 ontology, exemplifying an open instance cycle.

Figure 6. A possible instantiation of the O3 ontology, exemplifying a closed instance cycle.

When confronted with both situations, the authors of O3 decided that they only wanted their ontology to allow
instances like the one in Figure 6. Since they also concluded that no association in the identified cycle was derived
from the others, we proposed to rectify the model by adding the OCL invariant in Listing 1.

Listing 1. OCL invariant generated to enforce closed cycles in the O3 fragment.

4.2 Binary Relation Between Overlapping Types (BinOver)

To describe this anti-pattern we first recall here the notions of an overlapping and disjoint types. Two types t and
t’ are said to overlap iff there is at least one possible instantiation of the model in which at least one individual
simultaneously instantiate both types. For example, the set containing the Employee and Male is overlapping,
since one can easily picture many examples of male workers in the world. We formally state this definition as
follows:

Definition 1 (Overlapping Types): Let W be a non-empty set of possible worlds, w ∈ W be a specific world, t
and t’ be particular types, 𝑒𝑥𝑡! 𝑡 the extension of t in world w and 𝑒𝑥𝑖𝑠𝑡𝑠 𝑤 the function that maps a world w
to all individuals that exists in it. Two types t and t’ overlap iff:

 ∃𝒙,𝒘 ∈ 𝑊 (𝒙 ∈ 𝒆𝒙𝒊𝒔𝒕𝒔 𝒘 ∧ 𝒙 ∈ 𝒆𝒙𝒕𝒘 𝒕 ∧ 𝒙 ∈ 𝒆𝒙𝒕𝒘 𝒕′)

In contrast, two types t and t’ are disjoint iff there is no possible instantiation in which an individual instantiate
both types. As an example, consider the types Adult and Child. No individual, at any point of time, can instantiate
all these types simultaneously.

Definition 2 (Disjoint Types): Making the same conventions as in the previous definition, two types t and t’ are
disjoint iff they do not overlap.

The Binary Relation Between Overlapping Types (BinOver) anti-pattern occurs when an association of any given
meta-type (i.e., decorated with any OntoUML stereotype) connects two types that constitute an overlapping set. If
this is the case, it means that the same individual may eventually instantiate both ends of the relationship. A given
relation <R> between types <Source> and <Target> characterize a BinOver occurrence when:

1. <Source> equals <Target>
2. <Source> is a direct or indirect subtype of <Target>;
3. <Target> is a direct or indirect subtype of <Source>;
4. <Source> and <Target> are sortals (e.g., Subkind or Role) that share a common identity provider (e.g., Kind)

and there is no generalization set which makes them explicitly disjoint;
5. <Source> and <Target> are relators that share a common supertype and there is no generalization set which

makes them explicitly disjoint;
6. <Source> and <Target> are modes that share a common super-type and there is no generalization set which

makes them explicitly disjoint;
7. <Source> and <Target> are mixins (e.g., RoleMixin) that directly or indirectly generalize at least one

common sortal (e.g., Kind or Role);
8. <Source> and <Target> are mixins (e.g., RoleMixin) that share a common mixin super-type and none of their

subtypes are sortals;

In a preliminary study, we reported structures (1) and (4) as being two different anti-patterns, named Self-Type
Relationship (STR) and Binary Relation Between Overlapping Subtypes (BinOver), respectively [17]. After
conducting further analysis, we realized that these structures should be merged and expanded into the anti-pattern
presented in this section. The rationale is that, although they are different in structure, both anti-patterns convey
the same conceptual problems and are amenable to the same set of solutions. It is important to precisely identify
the structures (1-8), since it is not always intuitive that the related types overlap. When they do, we learned that is
useful to specify binary relation meta-properties, like reflexivity or transitivity, in order to prevent
misrepresentations of the domain. From our empirical studies, we learned that the most useful binary properties for
conceptual modeling are reflexivity, symmetry, transitivity and cyclicity. We formally define each property in
Table 5. For a detailed listing and description of more complex binary properties, please refer to [36].

The association’s stereotype heavily influences the possible refactoring alternatives the modeler can apply to it.
For some types of relations, such as characterizations, mediations and the different types of part-whole relations,
the language already embeds binary properties, whilst on others, such as material and formal relations these
constraints should be defined by the modeler when applicable. Table 6 presents the embedded binary meta-

properties values for the stereotypes of associations in OntoUML. In addition to the basic binary meta-properties,
we identify in the last column, for each relation stereotype whether the language allows modelers to define type-
reflexive associations of that given type.

Table 5. Relevant binary properties for conceptual modeling.

Binary Property Definition Example

Reflexive ∀𝑥 ∈ 𝑋 → 𝑅(𝑥, 𝑥) is equal to
Antireflexive ∀𝑥 ∈ 𝑋 → ¬𝑅(𝑥, 𝑥) is father of
Symmetric ∀𝑥, 𝑦 ∈ 𝑋,𝑅 𝑥, 𝑦 → 𝑅 𝑦, 𝑥 is brother of, is married to
Antisymmetric ∀𝑥, 𝑦 ∈ 𝑋,𝑅 𝑥, 𝑦 ∧ 𝑅 𝑦, 𝑥 → 𝑥 = 𝑦 greater or equal to (≥)
Transitive ∀𝑥, 𝑦, 𝑧 ∈ 𝑋,𝑅 𝑥, 𝑦 ∧ 𝑅 𝑦, 𝑧 → 𝑅 𝑥, 𝑧 is ancestor of

Acyclic ∀𝑥!, 𝑥!,… , 𝑥! ∈ 𝑋,𝑅 𝑥!, 𝑥! ∧ 𝑅 𝑥!, 𝑥! ∧ …
∧ 𝑅 𝑥!!!, 𝑥! → ¬𝑅 𝑥!, 𝑥! is ancestor of

Table 6. Binary property values embedded in OntoUML's associations.

Stereotype Reflexivity Symmetry Transitivity Cyclicity Type-Reflexive
Formal Undefined Undefined Undefined Undefined Allowed
Material Undefined Undefined Undefined Undefined Allowed
Mediation n.a. n.a. n.a. n.a. Forbidden
Characterization Irreflexive Asymmetric n.a. Acyclic Forbidden
ComponentOf Irreflexive Asymmetric Transitive Acyclic Allowed
MemberOf Irreflexive Asymmetric Intransitive Acyclic Forbidden
SubCollectionOf Irreflexive Asymmetric Transitive Acyclic Allowed
SubQuantityOf Irreflexive Asymmetric Transitive Acyclic Forbidden

We propose three refactoring alternatives for a BinOver occurrence: change the association’s stereotype, create
OCL invariants to enforce a desired binary meta-property, or “force” the related types to be disjoint. Note that,
formally speaking, if a modeler enforces the related types to be disjoint, she will not be able to set any binary
meta-property, since the relation will no longer have the same individuals in the domain and range. Table 7
summarizes the description of the BinOver anti-pattern.

In order to exemplify an occurrence of this anti-pattern, we extracted and adapted the small model fragment
depicted in Figure 7 from the MGIC Ontology [22]. This fragment depicts Railway Systems, i.e., collections of
railways that the Brazilian government outsources to private organizations. These systems are connected to each
other, which in the model is represented by the “isConnectedTo” formal association. This example fits the first
structural configuration characterizing the BinOver anti-pattern, i.e., an association that connects a type to itself.

Figure 7. Fragment of the MGIC that exemplifies BinOver.

Figure 8 depicts two possible worlds (again, model instances automatically generated by the OntoUML tool). On
the left, built using white boxes, is a representation of a possible world in which the relation of being connected is
transitive and acyclic. On the right, composed by grey boxes, is a possible world in which the relation is both
symmetric, reflexive, transitive and cyclic. In this case, the modelers have chosen to create a rule for making the
relation symmetric and reflexive.

«Collective»
Railway System

«Kind»
Railway0..*

«Formal»
isConnectedTo

0..*

1

«MemberOf»

2..*

Figure 8. On the left, in white, a possible world in which the “isConnectedTo” relation is transitive and acyclic; on the right, in
grey, a world where “isConnectedTo” is reflexive, symmetric and cyclic.

Table 7. Characterization of the BinOver anti-pattern.

Name (Acronym) Description

Binary Relation between Overlapping
Types (BinOver)

A binary relation whose end types are overlapping characterizes this anti-pattern.

Type Feature Justification

Logical Association Modelers often do not perceive by themselves that two or more types overlap. This
anti-pattern makes them aware of that and confronts modelers with the possibility to
specify binary relation meta-properties (e.g. reflexivity, transitivity and symmetry.

Pattern Roles

Mult. Name Possible Types

1 binaryRelation Association (all but «derivation »)
1 Source, Target Class

Generic Example*

	

Refactoring Plans

1. [Mod] Fix stereotype: change the stereotype of the relation to fit a desired binary meta-property	

2. [OCL] Enforce binary property: create OCL invariant to enforce a desired binary meta-property (as long as it is
compatible with the embedded constraints of the stereotype)

3. [New] Enforce disjointness: make the related types disjoint by the specification of a disjoint generalization set.

Source / Target

Source

Target

SuperType

Source Target

{overlapping }

Variation	
 1 :	
 Source	
 equals	
 Target

Variation	
 3 :	
 Target	
 subsets	
 Source

Variation	
 2 :	
 Overlapping 	
 Subtypes

Source Target

Sortal-1 Sortal-2

Variation	
 4 :	
 Overlapping 	
 Mixins	
 (Common	
 Sortals)

+domain

a..b binaryRelation

+range

c..d

GS
+domain

a..b binaryRelation

+range

c..d

GS

+domain

a..b

binaryRelation

+range

c..d

+domain a..b

binaryRelation

+range c..d

4.3 Imprecise Abstraction (ImpAbs)

An association R characterizes the logical anti-pattern named Imprecise Abstraction (ImpAbs) if at least one of
the following holds:

• R’s source end upper bound multiplicity is equal or greater than 2 and the Class connected to it has 2 or more

subtypes;
• R’s target end upper bound multiplicity is equal or greater than 2 and the Class connected to it has 2 or more

subtypes

Suppose we have an association R connecting two types T1 and T2. The source of the inconsistency in this case
comes from the representation of a single, more abstract association between T1 and T2, instead of more concrete
associations between the subtypes specializing T1 and T2. In such a situation, our empirical studies show that
there can be hidden domain-specific constraints refering to, for instance, which subtypes of T2 an instance of T1
may be related. Moreover, the instances of T1 might be subject to different cardinality constraints on R for each of
the different subtypes specializing T2. Finally, the implicit concrete specializations of R that should be defined
between the subtypes of T1 and T2 can be subject to different values for meta-attributes such as isDerived,
isReadOnly, isEssential and isInseparable [7].

This anti-pattern allows for three refactoring alternatives: (a) set cardinality constraints through the
specification of an OCL invariant; (b) set cardinality constraints through the specification of a new association that
subsets the original one; and (c) the specification of particular association meta-property values, also through the
creation of an association.

Options (a) and (b) are equivalent in term of logical implications and, thus, are mutually exclusive for the same
pair of classes. In constrast, alternative (c) can be combined with the first two, although if one is already going to
create a new association, it is more reasonable to use it also to set the cardinality constraints. One should notice,
nonetheless, that the constraints defined for relations between subtypes of the originally related classes cannot
contradict the ones for the original relation. Minimum cardinalities must be lower or equal to the general relation’s
minimum and maximum cardinality constraints. Maximum cardinalities must be greater than the general relation’s
minimum cardinality and lower or equal to the general relation’s maximum carinality. Modelers can only
customize other Boolean meta-properties, like isEssential, isInseparable, isImmutableWhole, isImmutablePart,
isShareable [7,9] or isReadOnly if the value set for the generic relation has value false. Table 8 summarizes the
characterization of the ImpAbs anti-pattern.

Table 8. Characterization summary of the ImpAbs anti-pattern.

Name (Acronym) Description

Imprecise Abstraction (ImpAbs) A given association R characterizes an ImpAbs occurrence if at least
one of the following holds: (i) R’s source end upper bound multiplicity
is equal or greater than 2 and the Class connected to it has 2 or more
subtypes; (ii) R’s target end upper bound multiplicity is equal or greater
than 2 and the Class connected to it has 2 or more subtypes

Type Feature Justification

Logical;
Scope

Association Representing merely a general relation between types T1 and T2 can
causes the model to be too permissive given that there can be hidden
domain-specific constraints referring to, for instance, which subtypes of
T2 an instance of T1 may be related. Moreover, the instances of T1
might be subject to different cardinality constraints on R for each of the
different subtypes specializing T2. Finally, the implicit concrete
specializations of R that should be defined between the subtypes of T1
and T2 can be subject to different values for meta-attributes such as
isDerived, isReadOnly, isEssential and isInseparable.

Pattern Roles

Mult. Name Possible Types

1 Assoc All association stereotypes

1 Source, Target All class stereotypes

0..* Source Subtype-n, Target Subtype-n All class stereotypes

Additional Constraints

1. Let allSubtypes(c) be the function that return all direct and indirect subtypes of a class c, sourceEnd(a) and
targetEnd(a) the functions that return the source and target ends of an association a, and upper(p) be the function
that return the upper bound cardinality of a property p, then:

𝑢𝑝𝑝𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒𝐸𝑛𝑑 𝐴𝑠𝑠𝑜𝑐 ≥ 2 ∧ #𝑎𝑙𝑙𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠 𝑆𝑜𝑢𝑟𝑐𝑒 ≥ 2 ∨ 𝑢𝑝𝑝𝑒𝑟 𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑛𝑑 𝐴𝑠𝑠𝑜𝑐 ≥ 2 ∧ #𝑎𝑙𝑙𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠 𝑇𝑎𝑟𝑔𝑒𝑡 ≥ 2

Generic Example

Refactoring Plans

1. [OCL] Add multiplicity constraint: choose this option if there is a domain restriction that requires an instance
of Source, or of one of its subtypes, to be connected to a minimum, maximum or precise number of instances of
Target, or one of its subtypes. The following OCL invariant enforces the desired constraint:
context Source
inv: let sub1Size =
self.target->select(x |x.oclIsTypeOf(_'Target Subtype-1'))->size()
 in sub1Size >= min1 and sub1Size <= max1

2. [New] Add custom meta-property (subsetting association): choose this option if the relation between Source
and Target have particular meta-properties (like isReadOnly and isEssential) when an instance of Source, or of
one of its subtypes, to be connected to a minimum, maximum or precise number of instances of Target, or one of
its subtypes

3. [New] Add multiplicity constraint (subsetting association): this option has the same logical result of the first
one. However, the results are achieved through the specification of a new association (using the same stereotype
of Assoc) that subsets Assoc and whose cardinalities enforce the cardinality constraints.

As a concrete example of this anti-pattern, consider the occurrence identified in the Electrocardiogram (ECG)
ontology [20] and depicted in Figure 9. The fragment states that a Heart contains atriums, ventricles and cells. The
componentOf relation between Heart and Heart Cell induces a case of an ImpAbs occurrence. According to this
model, it is possible for a Heart to exist containing only Non-Pacemaker Cells. However, this is an obvious
unintended consequence since pacemaker cells are the ones responsible for the heart’s contraction, i.e. a heart
without them would not beat. To solve this problem, we need to create additional sub-relations, one for each type
of required cell.

Source Target

Target Subtype-2Target Subtype-1Source Subtype-2Source Subtype-1

-target

w..z

Assoc

x..y

Source Target

Target Subtype-2Target Subtype-1

-target

1..b

Assoc

1..a
1..a

newAssoc-2
min2 .. max2

1..a

newAssoc-1

min1 .. max1

Figure 9. ImpAbs occurrence identified in the ECG Ontology.

As a last remark, we highlight that the empirical study discussed in Section 6 indicated that ImpAbs is more likely
to be a problem when the association that characterizes the occurrence is a part-whole relation (with exception of
the memberOf relation), like in the case of Figure 9. This reinforces the importance of modeling language that
makes explicit the distinction between part-whole relations as well as the distinction between parthood and non-
parthood relations.

4.4 Relation Specialization (RelSpec)

The Relation Specialization Anti-Pattern (RelSpec) consists of two relations A and B that connect types
ASource and ATarget, and BSource and BTarget, respectively, such that one of the following conditions holds:

• ASource is equal to or a subtype of BSource, and ATarget is equal to or a subtype of BTarget;
• ASource is equal to or a subtype of BTarget, and ATarget is equal to or a subtype of BSource

Our empirical studies showed the structures identified by this anti-pattern are likely to require additional
constraints to specify a sort of dependency between the instantiation of associations A and B. We identified that
often modelers needed to include one of the following four restrictions: association subsetting, association
redefinition, association disjointness and association specialization. We go through each of these constraints
individually in the following paragraphs.

We start with association subsetting. It is true that association B subsets association A if, and only if, being
related through B implies being related through A but not the other way around. As an example, consider the
relations of being a father and of being an ancestor, both which hold between people. It is true that “father of”
subsets “ancestor of” because every father is an ancestor, but not every ancestor is a father. In other words,
subsetting here means proper subsetting, If the RelSpec occurrence requires a subsetting constraint, the modeler
should add one of the A’s association ends, the subsetted association, to the subsetted properties list of the
respective association end of B. The formal semantics of a subsetted property is described in [16] as well as in
lines 1 and 2 of Listing 2.

Listing 2. Formal semantics of subsetting, redefinition and disjointness constraint written in OCL.

The second type of constraint is association redefinition. Association B redefines association A if, and only if,
whenever an individual instantiates BSource, the individuals it is related through B are the same individuals it is
related through A. Note that, like subsetting, in redefinitions, being related through B also implies being related
through A. The difference is that there cannot be individuals related through the “parent” association but not

«Kind»
Heart

«Kind»
Left Ventricle

«Kind»
Right Ventricle

«Kind»
Left Atrium

«Kind»
Right Atrium

«SubKind»
SA Node Cell

«SubKind»
AV Node Cell

«SubKind»
Pacemaker Cell

«SubKind»
Non Pacemaker

Cell

«Kind»
Heart Cell

1

«ComponentOf»

1

{disjoint, complete}

{disjoint, complete}

1

«ComponentOf»

1..*

1

«ComponentOf»

1

1

«ComponentOf»

1

1

«ComponentOf»

1

through the “child” association. Analogous to subsetting, OntoUML’s meta-model specifies a list of redefined
properties for each association end. The formal semantics of a redefined property is also defined in [16], as
specified on lines 4-5 of Listing 2. We make an exception for adopting the redefinition constraint when A and B
relate the same types. In these cases, the extension of the associations will always be same and they will turn out to
be redundant relations, increasing the model’s complexity without providing new knowledge. In that case, the
modeler can take two alternative paths: delete one of the associations and forget about the redefinition constraint;
or specialize at least one of B’s end and keep the redefinition constraint.

The third type of constraint usually needed when analyzing a RelSpec occurrence is association disjointness. In
this case, B is disjoint from A if, and only if, being related through B implies not being related through A. To
exemplify, consider a queue and the relations of predecessor and successor, which hold between individuals in the
queue. If an individual is the predecessor of another, it implies that it is not its successor. The OntoUML meta-
model does not consider the possibility of disjoint relations. For that reason, to enforce a constraint of such nature,
one should include the OCL invariant presented in lines 7-8 of Listing 4.

The last refactoring plan for the RelSpec anti-pattern is to make B a specialization of A. As showed in [16],
specializing and subsetting have the same formal semantics, the inclusion constraint of B in A. However,
specialization represents an intentional relation between types, i.e., all properties of the general relation are
inherited by the specializing relation. Furthermore, the event that establishes both relations is also the same. To
specify this constraint, one just needs to create a generalization between the relations (from B to A). We
consolidate the description, generic structure, the refactoring plans and other details of the RelSpec anti-pattern in
Table 9.

Table 9. Characterization summary of the RelSpec anti-pattern.

Name (Acronym) Description

Relation Specialization (RelSpec) Two associations A, connecting ASource to ATarget, and B, connecting BSource to
BTarget, such that: (i) ASource is equal or a subtype of BSource and ATarget is equal
or a subtype of BTarget; or (ii) ASource is equal or a subtype of BTarget and ATarget
is equal or a subtype of BSource

Type Feature Justification

Logical Association The identified structure suggests the existence of a specialization between the
relations or the need for including a subsetting, redefinition or disjoint constraint.

Pattern Roles

Mult. Name Possible Types

1 A, B All association stereotypes

1 ASource, ATarget, BSource, BTarget All class stereotypes

Additional Constraints

1. A and B are different associations

2. One of the following sentences must evaluate to true:
𝐴𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐵𝑆𝑜𝑢𝑟𝑐𝑒 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓 𝐴𝑆𝑜𝑢𝑟𝑐𝑒,𝐵𝑆𝑜𝑢𝑟𝑐𝑒 ∧ 𝐴𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐵𝑇𝑎𝑟𝑔𝑒𝑡 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓 𝐴𝑇𝑎𝑟𝑔𝑒𝑡,𝐵𝑇𝑎𝑟𝑔𝑒𝑡

 𝐴𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐵𝑇𝑎𝑟𝑔𝑒𝑡 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓 𝐴𝑆𝑜𝑢𝑟𝑐𝑒,𝐵𝑇𝑎𝑟𝑔𝑒𝑡 ∧ 𝐴𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐵𝑆𝑜𝑢𝑟𝑐𝑒 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓 𝐴𝑇𝑎𝑟𝑔𝑒𝑡,𝐵𝑆𝑜𝑢𝑟𝑐𝑒

	
 	

Generic Example*

*Note: the presented variations are illustrative and do not intend to cover all possibilities

Refactoring Plans

1. [Mod] Subset: take this solution if being connected through relation B implies being connected through relation A
but not the other way around. To apply this solution, include in the meta-attribute subsettedProperty (a list) of one of
B’s association end the respective A end. Alternatively, the following OCL can be included in the model*:
context BSource
inv B_subsets_A : self.bTarget->asSet()->includesAll(self.oclAsType(ASource).aTarget-
>asSet())

2. [Mod] Redefine: this action should be taken if being related through B implies being related through A and also
requiring that all related elements through A are related through B. To apply this solution, include in the meta-
attribute redefinedProperty (a list) of one of B’s association end the respective A end. Alternatively, the following
OCL can be included in the model**:
context BSource
inv B_redefines_A : self.bTarget->asSet()=self.oclAsType(ASource).aTarget->asSet()

3. [Mod/New] Disjoint: this action should be taken if being related through B implies not being related through A.
context BSource
inv B_disjointWith_A :
self.bTarget->asSet()->excludesAll(self.oclAsType(ASource).aTarget->asSet())

4. [New] Specialize: the logical implication of this solution is the same as reinforcing subsetting. Nonetheless, it should
only be selected if association B is truly a particular subtype of A (in the sense discussed in [16]) as opposed to the
situation where a mere logical constraint is required between the extension of the two types.

** This solution is strongly discouraged if associations A and B relate the same types.

Figure 10 depicts a RelSpec occurrence identified in the OntoBio ontology [19]. The diagram presents the
different relations between the concepts “Environment” and “Spatial Location”. An “Environment” provides the
biological characteristics (e.g., like vegetation, soil composition and climate) for a region delimited by
geographical coordinates (defined by latitude, longitude and altitude). If a single coordinate defines a location, the
authors named it a “Geographic Point”. Furthermore, a “Micro Environment” characterizes it. Analogously,
multiple coordinates (a region) define a “Geographic Space” that a “Macro Environment” characterizes.

ASource ATarget

BSource BTarget

ASource / BSource ATarget

BTarget

ASource / BSource ATarget / BTarget ASource / ATarget /
BSource / BTarget

Variation 1 Variation 2

Variation 3 Variation 4

ASource / ATarget

Variation 5

BTargetBSource

ASource ATarget

BSource / BTarget

Variation 6

A

B

B

B

A

B

A

B

B

A

A

A

ASource ATarget

BSource BTarget

ASource / BSource ATarget

BTarget

ASource / BSource ATarget / BTarget ASource / ATarget /
BSource / BTarget

Variation 1 Variation 2

Variation 3 Variation 4

ASource / ATarget

Variation 5

BTargetBSource

ASource ATarget

BSource / BTarget

Variation 6

A

B

B

B

A

B

A

B

B

A

A

A

Figure 10. RelSpec occurrence identified in the OntoBio ontology.

In this diagram, we find two RelSpec occurrences: one composed of the characterizations A and B1 and another by
characterizations A and B2. Now, we present possible instantiation allowed by models restricted using each of the
constraints. For simplicity reasons, we only demonstrate scenarios using characterizations A and B2. The possible
instantiation depicted in Figure 11 exemplifies the implications of the subsetting constraint. As intended, the
inclusion constraint of B2 in A is present: for all macro environments that the individual named “Object” is
connected through B2, it is connected through A. However, “Object” is connected to “Property0” only though A,
since the inclusion constraint at hand does apply both ways.

Figure 11. Characterization of the subsetting constraint.

Figure 12 presents a valid world in case B2 redefines A. Note that, “Object1”, which is an instance of
“Geographic Space”, relates to the same individuals through relations B2 and A. “Object0”, in contrast, is not an
instance of “Geographic Space”, only of “Spatial Location”, and thus the same restriction does not apply to it.

Figure 12. Characterization of the redefinition constraint.

«Mode»
Env ironment

«Mode»
Macro

Env ironment

«Mode»
Micro Env ironment

«Category»
Spatial Location

«Category»
Geographic Space

«Category»
Geographic Point

1 B1

«Characterization»

1

{disjoint, complete} {disjoint, complete}

*

A

«Characterization» 1

* B2

«Characterization»

1

Finally, we present an exemplification of enforcing the disjoint constraint in Figure 13. Differently from the other
scenarios, whenever a “Geographic Space” is connected to a “Macro Environment” through B2 it is not connected
through A. “Object1”, for example, is characterized by the environments “Property0” and “Property1” through A
and by “Property2” through B2.

Figure 13. Characterization of the disjointness constraint.

The adopted solution for this RelSpec occurrence in the OntoBio ontology was to enforce the redefinition
constraint on both relations B1 and B2.

4.5 Relator Mediating Overlapping Types (RelOver)

The Relator Mediating Overlapping Types (RelOver) is another logical anti-pattern. A relator connected to one
or more sets of overlapping types9 mediation associations characterizes an occurrence of this anti-pattern. In
addition, the sum of the mediations’ upper bound cardinalities on the mediated end (opposite to the end connected
to the relator) must be greater or equal to 2. This is required to reduce the number of “false positives” since,
according to OntoUML’s syntactic constraints, every relator instance must mediate at least two distinct individuals
[7]. This modeling structure is prone to be overly permissive, since there is no restriction for an instance to act as
instances of multiples types for the same relator. The possible commonly identified intended interpretations are
that:

• the mediated types are actually disjoint, i.e., regardless of the relator, there is no individual that can even
instantiate more than one of the mediated types;

• all mediated types are exclusive, i.e. objects can simultaneously instantiate more than one mediated type,
but what they cannot do is play more than one role in the context of the same relator instance; and

• partially exclusive mediated types, a weaker version of the previous alternative, in which some roles can
be simultaneously played, whilst others cannot.

Table 10 summarizes the characterization of the RelOver anti-pattern.

Table 10. Characterization summary of the RelOver anti-pattern.

Name (Acronym) Description

Relator Mediating Overlapping
Types (RelOver)

A relator connected, through mediations, to two or more types whose extension possibly
overlap. The sum of the mediations’ upper bound cardinalities of the mediated end must
be greater than 2.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

9The notion of overlapping types adopted here is the same as previously defined for the BinOver anti-pattern.

Type Feature Justification

Logical Relator This structure is usually too permissive. It is often the case that some of the mediated
types should be disjoint or exclusive in the context of a single relator instance.

Pattern Roles

Mult. Name Possible Types

1 Relator «relator»

2..* med-n «mediation»

2..* Over-n All object types (e.g., «kind», «collective», «subkind», «role», «roleMixin»)

Additional Constraints

1. Let M be the set of identified mediations, mediatedEnd(m) the function that returns the association end opposed to
relator of a mediation m, and upper(p) the function that return the upper bound cardinality of a property p, then:

𝑢𝑝𝑝𝑒𝑟 𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑𝐸𝑛𝑑 𝑚!
!∈!

> 2

2. Let O be the set of types mediated by a Relator, then there are at least two distinct types in O that overlap (see
definition 2)

Generic Example*

*Note: the presented variations are illustrative and do not intend to cover all possibilities

Refactoring Plans

1. [OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple roles w.r.t the same relator
instance. Create an OCL invariant according to the following template:
context Relator
inv exclusiveTypes:self.over1->asSet()->excludesAll(self.over2->asSet()) and
 self.over1->asSet()->excludesAll(self.over3->asSet()) and
 self.over2->asSet()->excludesAll(self.over3->asSet())

2. [OCL] Partially exclusiveness: choose this option to forbid a subset of mediated types as exclusive.

3. [Mod/New] Disjoint mediated: Enforce types to be disjoint through the creation or alteration of a disjoint
generalization set.

*Note: to make all types exclusive for n types, every binary combination should be pairwise explicitly ruled out

Figure 14 depicts a fragment of UFO-S, a commitment-based core reference ontology of services [24]. The
fragment provides a partial description of the concepts of “Service Offering” and “Service Agreement”. A provider
makes an offering, which describes the terms in which she will provide the service. The agreement formalizes that
a customer and a provider already negotiated the terms for hiring a service. The authors exemplify UFO-S using
the car rental domain. A car rental company acts as a “Service Provider”, when offering to rent cars. Their “Target
Customer Community” contains, as members, all adults. When “Luke”, for example, decides to rent a car from a
particular company and signs the rental agreement, he acts as the “Service Customer” and the company as the

«Relator»
Relator

Over-1 Over-3Over-2

Supertype «Relator»
Relator

Over-1 Over-3

Over-2

Subtype

Variation	
 1 Variation	
 2

Med-3
«Mediation»

Med-1
«Mediation»

Med-2
«Mediation»Med-1

«Mediation»

Med-3

«Mediation»

Med-2
«Mediation»

“Hired Service Provider”. The rental agreement is the “Service Agreement”, which specifies the conditions in
which the service has been hired (price, duration, insurance and so on). The relator “Service Agreement”
characterizes the RelOver occurrence, because it is the truth-maker of a material relation involving the overlapping
types “Hired Service Provider” and “Service Customer. Note that, although the upper multiplicity on the provider
side is equal to one, the upper bound multiplicity on the customer side is equal to many (*).

Figure 14. RelOver occurrence encountered in the UFO-S ontology.

The analysis of any RelOver occurrence starts by verifying whether the modeler intends the mediated types to be
declared as disjoint. In our example, the inquiry is whether it is possible for a provider to also be a customer (e.g.,
a car rental company hiring the services of an accounting company). We assume here that the answer is yes, i.e. no
disjointness constraint is required.

Figure 15. Overlapping mediated types without exclusiveness constraint.

Keeping the mediated types as overlapping allows situations like the one depicted in Figure 15, i.e., a world in
which one individual is both the provider and the customer in the context of the same agreement. If the authors
decide to forbid such instantiations, they should enrich their ontology with the OCL invariant in Listing 3.

Listing 3. OCL invariant to enforce exclusive mediated types.

To complete our example, Figure 16 shows a possible model instantiation still allowed after adding the
exclusiveness constraint. “Object1” and “Object2” play both the provider and the customer roles, but now in the
context of different agreements. “Object0”, conversely, is just a customer in both agreements.

«Category»
Agent

«RoleMixin»
Serv ice Prov ider

«RoleMixin»
Target Customer

«Relator»
Serv ice Agreement

«RoleMixin»
Hired Serv ice

Prov ider

«RoleMixin»
Serv ice Customer

«Relator»
Serv ice Offering

«Collective»
Target Customer

Community

1..*

offeredTo

«Mediation»

1

1..*

achieves

«Mediation» 1..1..*

achieves

«Mediation»1

1..*

«MemberOf»

1..*

1..*

providedBy

«Mediation»

1

Figure 16. Simultaneous role instantiation with exclusive relators

4.6 Repeatable Relator Instances (RepRel)

The default semantics of an association is that of a set of tuples (as opposed to a bag of tuples). For example, if
applied to the binary predicate “owns” in a model defined between the types Person and Car, it would forbid a
person to own the same car more than once. Extensions for the “owns” predicate like {(John, Car1), (Joseph,
Car2), (Luke, Car3)} would be accepted, but {(John, Car1), (Joseph, Car2), (John, Car1)} would not. In OntoUML
models, relational properties are typically represented via the explicit reification of relator types and, in these
models, in the absence of further constraints, the number of relator instances that mediate the very same set of
relata could remain unconstrained. As our empirical studies show, the presence of relators in a model without these
constraints constitutes a case of an anti-pattern that we termed the Repeatable Relator Instances Anti-pattern
(RepRel).

Moreover, we have noticed that, in using the language, modelers employ the following finer grained distinction
required for specifying the limit of coexisting relator instances that mediate the exact same set of relata, namely,
the distinction between current and historical semantics for relators. On one hand, a current relator is one whose
instantiation corresponds to the presence of the individual in a given world, i.e., if a relator is instantiated in a
world it is because it is present (causally active) in that world. On the other hand, historical relators are the ones
that are intended to capture a record of the existence of a relator. This distinction is analogous to the distinction
between Living and Deceased People in the model: the instances of both classes in a world w exist in that world.
However, the instances of Living People are also present in that world. Typically, in an OntoUML model, people
model this historical view on relators by defining phases such as “active” and “inactive” for relator types or by
explicitly representing the lifetime of the relator (e.g., by defining temporal qualities for their moments of creation
and termination). To exemplify the distinction between historical and current relators, consider the relator
marriage (for simplicity, let us assume monogamous marriages in this example) connecting the roles husband and
wife. In our considered normative system, it is only possible for a man to be married to exactly one wife at a time
and vice-versa. Nonetheless, throughout one’s life, one can marry again, if properly divorced. If this domain is
modelled using current semantics for the relator, the cardinality would be exactly one on the relator end (and that
would still allow many marriages throughout time). Conversely, if the modeler assumes a historical view, the
multiplicity would be one or more on the relator end. To analyze an occurrence of the RepRel anti-pattern, a
modeler must decide which of the aforementioned semantics she intends for the relator. If the semantics of current
relators is adopted, adding the following OCL invariant in Listing 4 will restrict the number of repeated instances.

Listing 4. OCL version of the Uniqueness Constraint for “current” relators.

We should call attention for the fact that the internal uniqueness constraints can be directly expressed by the
Relator-Material Relation pattern depicted in Fig. 1. By setting the variables η and λ in the association end
connected to the relator type in the derivation relation, the modeler can precisely define how many relator
instances can be associated with an n-uple of the material relations. However, we have also observed that,
modelers frequently chose not to represent the material relation at hand, leaving the model only with the relator
type and the corresponding mediation relations connecting it to the relata type (see an example in figure 17). This
is specially the case, when the material relation at hand has an arity higher than 2 (i.e., ternary relations, quaternary

relations, etc.). For this reason, we chose to include the constraint described in Listing 4 as an alternative to the
full specification of the Relator-Material Relation Pattern.

Enforcing uniqueness constraints on historical relators is more complex. We investigate here the case in which
the modeler choses to explicitly represent the temporal interval over which a relator is supposed to exist via time
stamped attributes such as “start”, to identify the creation time of the relator, and “end”, to identify its termination
time. Since OntoUML does not specify a built-in datatype library, one would need to create her own Time
datatype. In this situation, in order to eliminate a possibly unintended case of the RepRel anti-pattern, the modeler
should add the OCL code provided in Listing 5.

Listing 5. Enforcing Uniqueness Constraint for “historical” relators using OCL.

We provide a complete summary of the RepRel anti-pattern in Table 11.

Table 11. Characterization summary of the RepRel anti-pattern.

Name (Acronym) Description

Repeatable Relator Instances
(RepRel)

A «relator» connected to two or more «mediation» associations, whose upper bound
cardinalities at the relator end are greater than one.

Type Feature Justification

Logical Relator This anti-pattern aids the modeler in specifying the number of different relators
instances that can mediate the exact same set of individuals.

Pattern Roles

Mult. Name Possible Types

1 Relator «relator»

2..* med-n «mediation»

2..* Type-n «kind», «quantity», «collective», «subkind», «role», «phase», «roleMixin», «mixin» and «category»

Additional Constraints

1. Let M be the set of the mediations that characterize RepRel, relatorEnd(m) the function that return the association
end whose type is the relator of a mediation m, and upper(p) the function that return the upper bound cardinality of a
property p, then:

∀𝑚 ∈ 𝑀,𝑢𝑝𝑝𝑒𝑟(𝑟𝑒𝑙𝑎𝑡𝑜𝑟𝐸𝑛𝑑 𝑚) > 1

2. Let M be the set of the mediations that characterize RepRel, relator (m) the function that returns the relator connected
to a mediation m, and Relator the types stereotyped as «relator» in the RepRel anti-pattern, then:

∀𝑚 ∈ 𝑀, (𝑟𝑒𝑙𝑎𝑡𝑜𝑟 𝑚 = 𝑅𝑒𝑙𝑎𝑡𝑜𝑟) ∨ (𝑖𝑠𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑟𝑒𝑙𝑎𝑡𝑜𝑟 𝑚 ,𝑅𝑒𝑙𝑎𝑡𝑜𝑟))

∃𝑚 ∈ 𝑀, 𝑟𝑒𝑙𝑎𝑡𝑜𝑟 𝑚 = 𝑅𝑒𝑙𝑎𝑡𝑜𝑟

Generic Example

	
 	

«Relator»
Relator

Type-2Type-1

x> 0	
 and	
 y> 1 w> 0	
 and	
 z> 1

x..y

med-1
«Mediation» w..z

med-2
«Mediation»

Refactoring Plans

1. [Mod] Fix Multiplicites: Set the lower and upper bound multiplicities for the relator end of a mediation relation to
the appropriate values. Apply this solution at most once for each mediation relation connected to the possibly
repeatable relator. Note that this plan will completely solve the issue highlighted by RepRel, only if at most one
upper bound on the relator end of all mediations is greater than one.

Note: a and b are the new values assigned to the relator end of med-1.

2. [OCL] Current Relator: add uniqueness constraint for a pair of types (Derivation): Properly apply the Relator-
Material Relations pattern [7] to limit the number of concurrent relator instances that mediate the very same set of
individuals. First, if the model does not explicitly specify a material between the two types, create one, alongside a
derivation relation connecting the new material association to the relator (type) at hand. Then use the lower and upper
bound of the cardinality constraints at the relator end of the derivation relation to specify the minimum and maximum
number of possible concurrent relator instances. This solution can be applied for each occurrence of the Relator-
Material Relation Pattern. If the material relation at hand and, hence, the corresponding derivation relation have not
been represented in the model, an alternative to this solution is alternative 3 below.

Note: <n> and <m> define the minimum and maximum number of relators instances mediating the same individuals.

3. [OCL] Current Relator: add uniqueness constraint (Invariant): Include an OCL invariant in the model to limit
the number of concurrent relator instances that mediate the very same set of individuals, following the example
below. Apply this solution as many times as needed for a given RepRel occurrence, but not more than once to the
same set of types. Running this plan for two types has the same logical consequence as plan 2.
context Relator
inv: Relator.allInstances()->select(r | r<>self and r.type1=self.type1 and
r.type2=self.type2 and r.type3=self.type3)->size()=<n-1>

Note: the invariant exemplifies a uniqueness constraint between three types connected to the repeatable relator.

4. [OCL] Historical Relator: add uniqueness constraint (Invariant): This plan adopts a historical perspective on the
existence of the relator to create an OCL invariant. First, create a Time datatype (if you do not have one in your
model) and specify two properties for the repeatable relator – “start” and “end” – which you will use to define the
time interval in which the relator instances are supposed to exist. Then add an operation named “concurrent” to the
repeatable relator using the OCL expression below. Lastly, specify the uniqueness constraint using an OCL invariant,
as also specified below. It is not recommended to apply this plan in combination with 2 and 3.

context Relator
inv: Relator.allInstances()->select(r | r<>self and r.type1=self.type1 and
r.type2=self.type2 and concurrent(self,r))->size()=<n-1>

context Relator::concurrent(r:Relator):Boolean
body: self.start=r.start or
 (self.start<r.start and r.start<self.end) or r.start<self.start and self.start<r.end)

«Relator»
Relator

Type-2Type-1
a..b

med-1
«Mediation» w..z

med-2
«Mediation»

«Relator»
Relator

Type-2Type-1

n..mx> 0	
 and	
 y> 1 w> 0	
 and	
 z> 1

«Material»

w..z med-2
«Mediation»

x..ymed-1

«Mediation»

«Relator»
Relator

Type-2Type-1

«dataType»
Time

w..z

med-2
«Mediation»x..y

med-1
«Mediation»

+end1
*

+start 1
*

Figure 17 depicts a RepRel occurrence identified in the Configuration Management Ontology (CMTO) [23]. The
fragment focuses on the relator “Change Request”, which captures a registry of the action made by a “Requester”,
when soliciting changes in one or more versions of a configuration item.

Figure 17. RepRel occurrence identified in the CMTO ontology.

The authors explicit use the word “register” when describing the relator class “Change Request”. Furthermore,
they make an observation that there should be a quality attribute in the model to identify the request’s time of
creation, even though they did not explicitly represented it. Considering these two issues along with the purpose of
the ontology (i.e., provide support for the integration of configuration management system), we reasonably
conclude that the authors intend a historical semantics for the relator “Change Request”. Continuing the analysis
of this fragment, we use the simulation to generate examples and encounter the possibility depicted in Figure 18.
As it can be noted, the ontology allows the same requester to make more than one request regarding the same
change and the same version. If that is not desirable, one only needs to enrich the model with the OCL invariant
described in Listing 6.

Figure 18. Possible world generated for the diagram in Figure 17 without adding the uniqueness constraint regarding the
relator Change Request.

Listing 6. OCL constraint to limit repeated relators in the CMTO ontology

5. Anti-Pattern Occurrence Detection, Analysis and Elimination

In order to support the use of the anti-pattern catalog presented in the previous section, we developed a plug-in for
the OntoUML Lightweight Editor (OLED) (Figure 19) [8]. The goal was to provide accessible alternatives for
modelers to validate their ontologies without any additional training in special methods, tools or techniques. With
that in mind, we adopted a simple strategy for managing anti-patterns that consists of three basic steps: automatic
detection, guided analysis and automatic refactoring.

In order to relieve modelers from learning all anti-pattern structures and manually inspecting occurrences in
their models, we implemented a component that does that automatically. Users can request an anti-pattern
inspection on a particular diagram or on an arbitrary selection of elements. Moreover, as shown in Figure 19.2,

«Relator»
Change Request

«Kind»
Change

«Role»
Version to Change

«Role»
Requester

«Kind»
Person

«Mode»
Version

1..*

madeBy

«Mediation»1 1..*

hasSubmission
«Mediation» 1..*

1..*

proposes«Mediation»

1..*

users might instruct the tool to detect only a subset of the defined anti-patterns. In the sequence, an additional
dialog lists all occurrences identified for the selected anti-patterns, as depicted in Figure 19.3. The tools lists the
results using three columns: (i) “Name”, which corresponds to a short description of the most relevant elements
that characterize the anti-pattern; (ii) “Type”, that provides the acronym for the anti-pattern type; and (iii) “Status”,
a binary property that can be set as “Opened”, if the respective occurrence still has not been analyzed; and as
“Fixed”, if the occurrence has been successfully analyzed.

The “Analyze” button gives rise to the second step of our strategy: the guided analysis. As we previously
discussed, anti-patterns, in the sense that we use them, do not necessarily imply domain misrepresentations. In
order to decide whether a particular occurrence entails unintended consequences, a modeler must reason about its
consequences. To support this process, we implemented a wizard for each anti-pattern, which details the elements
that participate in the anti-pattern occurrence, provides theoretical notions when necessary, and makes a series of
questions, which lead to the appropriate solutions. It also provides a direct set of solutions for those users who are
already familiar with the anti-pattern details, as shown in Figure 19.4.

Figure 19. Anti-Pattern detection and analysis capabilities incorporated in the OntoUML editor.

An anti-pattern analysis using the aforementioned wizard always ends up in one of the following conclusions
ways: the occurrence characterizes a modeling problem fixable by a pre-defined refactoring plans or the identified
structure is correct (thus the occurrence is a “false positive”). The tool presents the analysis results of the wizard
and then the last step of our anti-pattern management strategy comes into play: the automatic elimination. In
Figure 19.5, the tool is informing the user that it will include the following OCL invariant in the model to
eliminate the undesired consequences of the anti-pattern occurrence.

In fact, Figure 19 features the results of feeding the domain model of Criminal Investigation depicted in Figure
2. In this particular case, the detection algorithms identified nine occurrences of our ontological anti-patterns
(Figure 19.2): two AssCyc, one BinOver, two ImpAbs, one RelOver, one RelSpec and two RepRel. In the
following, we illustrate an example of AssCyc and on an example of RelOver in this model.

One identified AssCyc is a cycle composed by Criminal Investigation, Detective, Interrogation, Witness and,
again, Detective (with the respective associations). This possible occurrence is shown in the dialog depicted in
Figure 19.3, as the first item of the list. Using the OLED’s simulation component (discussed in Section 2), we

obtain a visual representation of an instance of this model, as depicted in Figure 20 . In this instance,
investigation Property2 has as witness Object0, who is questioned in interrogation Property1 by detective Object2,
who is member of investigation Property3, not investigation Property2. In other words, the model allows for a
representation of a state of affairs in which an interrogation that is part of a criminal investigation is conducted by
a detective that is not part of that investigation. Let us suppose that the creators of that model do not intend such a
state of affairs. The modelers can then request the editor for an OCL solution that would proscribe instances with
this detected unintended characteristic (Figure 19.4). In this case, the OCL constraint to be incorporated in the
model (Listing 7) is the following:

Figure 20. Possible interpretation of the AssCyc identified in the Criminal Investigation model.

Listing 7. Auto-generated solution to forbid cycles at the instance level.

An example of an identified RelOver occurrence involves Criminal Investigation as a relator that mediates the
Roles Detective, Lead Detective, Suspect and Witness. As explained in Section 4, there are three types of possibly
unintended cases that can be allowed by an occurrence of this anti-pattern. First, all roles are exclusive in the scope
of a particular relator, which means in this example that in each particular Criminal Investigation, the roles of
Suspect, Witness, Detective and Lead Detective are necessarily all instantiated by different people. Second, it may
be the case that only some of these roles are exclusive in the scope of a particular relator, for example, the
Detective and the Suspect are exclusive, but not Detective and Witness, or Suspect and Witness. Finally, it may
also be the case that some of the roles are disjoint (across different relators). For example, suppose the constraint
that Detectives who participate in an ongoing Investigation cannot be considered a Suspect in another
Investigation. Let us suppose that, as a first action to rectify the model, the modeler chooses to declare all roles as
exclusive w.r.t. a given Investigation. The set of instances of the resulting model, hence, includes the one depicted
in Figure 21. By inspecting such possible instance, the user can then realize that she perhaps overconstrained the
model since, as a result of declaring all roles as exclusive, we have that the responsible for a given Investigation
(i.e., the Lead Detectives) cannot be considered as a participant of that Investigation (i.e., one of its Detectives).
The modeler can then once more rectify the model by choosing among a set of solutions offered by OLED. She
might choose to declare the roles of Witness and Suspect disjoint w.r.t. a given Investigation (Listing 8), but also to
declare that the roles of detective and suspect should be disjoint across different investigations, which the tool
enforces by the creation of a generalization set.

Figure 21. Exclusive view of the roles in a criminal investigation.

Listing 8. Automatically generated OCL solutions to excluded unintended instances of RelOver.

6. Evaluating the Anti-Pattern Catalog
As previously discussed, in the second empirical study reported in section 2, given the sheer number of
occurrences of anti-patterns across our repository, we were not able to check for each of them whether they were
indeed a case of model fragments that entailed unintended consequences. In this section, we report a third
empirical study in which we select one particular ontology in the repository to investigate a correlation between
anti-pattern occurrence and whether they configured a case of an unintended model fragment. The goal of third
study is to measure two things: the likelihood that an anti-pattern occurrence characterizes a domain
misrepresentation; how often users select the refactoring plans (proposed in section 4 and made available in the
tool presented in section 5) to solve an occurrence that in fact characterizes a mistake. Through the analysis of
these two variables, we assess the usefulness of an anti-pattern characterization.

A case for this third empirical study, we have selected the MGIC reference model. The rationale for this
decision includes the following observations:

• The ontology is the biggest in the repository;
• It contains occurrences of all anti-pattern types;
• Ten modelers participated in its development, throughout three years;
• It is the product of an industrial project with the Brazilian government; and
• Most importantly, the modelers accepted to participate in the analysis because it was of their own interest

as they needed to validate their reference model.

6.1 Methods and Tools

Eight modelers participated in this empirical study. We assigned sub-ontologies to each of them, taking into
account their knowledge of the domain. To guarantee that the modelers would have enough knowledge to analyze
the anti-pattern occurrences, we aimed at assigning to a modeler those models in which development they had
participated. We also encouraged modelers to interact with each other during the case study to share experiences.
Modelers conducted the anti-pattern detection exclusively through the OntoUML tool. They also analyzed the
occurrences exclusively using the model wizards that we have implemented (see Section 5).

We intentionally did not provide participants with any anti-pattern training, not regarding their structure,
justification or predicted solutions. We also did not specify any order in which the participants should analyze the
anti-patterns. We made these decisions because our goal, since the beginning of this research, was to develop a
tool that did not require formal training. In fact, that is one of the reasons that we implemented a wizard to guide
modelers throughout the analysis of each anti-pattern.

We highlight that, throughout this empirical study, the anti-pattern management tool was improved. We
established an interactive process: the participants used the tool and whenever they identified bugs or

improvements opportunities, they contacted us so we could discuss and improve the wizard or the refactoring
options. We were available to answer all sorts of question to the participants, either regarding anti-pattern
definition, refactoring plans or even ontological notions required to understand the anti-patterns.

We asked each participants to manually analyze each anti-pattern occurrence identified within his assigned
subdomain and to register his conclusion according to the following template:

• Anti-Pattern Type: an acronym to identify the type of anti-pattern
• Description: a textual description automatically generated by the anti-pattern tool. It identifies the classes

and associations relevant for understanding the anti-pattern. Moreover, it is useful to reproduce each
occurrence.

• Decision: a binary field that captures the ultimate decision regarding an anti-pattern occurrence. The field
can be set as “Error” or “Correct”. Participants used the former if the occurrence analysis lead to some
modifications in the model, predicted by our anti-patterns or not. We intentionally did not provide a
“Don’t Know / Don’t Understand” option because, in those cases, we instructed the modelers to interact
with us, if the doubt regarded anti-pattern definition, or to interact with each other, to arrive at a decision
question.

• Action: describes the action participants adopted to refactor the model – we instructed participants to
input information in this field only if they identified an error.

• Predicted: three values can be assigned to this field: “Yes”, “No” and “Partially”. It refers to whether
anti-pattern was completely able, partially able or unable to predict the refactoring actions.

• Comment: a field that participants could freely fill (e.g. doubts, intuitions, observations, and so on).

6.2 The MGIC Ontology

Before we present the study results, we briefly describe the MGIC ontology, providing an overview of its
development context, the domain it formalizes and its structural information (number of classes, relations,
stereotypes, etc.).

The project entitled Model for Information and Knowledge Management (MGIC) is a product of a
partnership between the Brazilian Ground Transportation Regulatory Agency (ANTT) and the Brazilian federal
universities of Espírito Santo, Fluminense and Rio de Janeiro (UFES, UFF and UFRJ respectively). The project
was conceived to improve decision making within the Agency, by means of an information and knowledge
management model [22]. The adopted methodology proposed the creation of five types of models: information
flow, business requirements and assets, knowledge and competence, and an ontology-based reference conceptual
models. The main role of the ontology-based models was to provide structure and semantics to the information
handled by the agency, to serve as a reference model to allow semantic interoperability between the systems
controlled by the agency [22]. The MGIC ontology also intended to serve as a guide to the agency’s databases
triplication and publication. Information transparency and publication is a law-imposed obligation for all Brazilian
governmental organizations since the sanction of the bill entitled Free and Open Access to Information Act [38].
The design of the MGIC ontology was carried out over a period of 3 years. Throughout that time, 10 modelers
were involved, who collaborated with nearly 40 domain experts in order to define the scope and capture the
conceptualization shared within the agency. A team of ontologists visited the 11 main departments of the agency.
In each department, they interviewed experts appointed by the departments’ management. The model describes the
subdomains relevant for ground transportation regulation including the following:

• Cargo transportation: concepts related to cargo transportation by truck, train, pipelines or multimodal (a

combination of different transportation means). It describes the differences between interstate and
international cargo transportations, and transportation of hazardous products.

• Passenger transportation: describes concepts related to interstate and international regular and eventual
passenger transportation on both highways and railroads.

• Infrastructure concession: describes the process of concession and controlling of highway and railroads
infrastructure to private companies.

• Legislation: includes concepts regarding the legal process for regulating the transportation sector.

From a structural perspective, the MGIC Ontology is massive, particularly if compared to other conceptual
models. It contains 3800 classes, 1918 associations, 3616 generalizations, 698 generalization sets, 71 data types,
865 attributes and 149 constraints, all distributed over 291 packages. The ontology also has occurrences of every
single language construct defined in OntoUML: all eleven class’ stereotypes and all nine association’s stereotypes.

In particular, the Role construct is the most frequently used class stereotype: 1066 occurrences or 28.1% of all
classes, whilst the most used association type was mediation: 1103 out of 1918 (or 57.5%).

6.3 Results

The modelers managed to analyze all 879 anti-pattern occurrences identified in the MGIC ontology. We
summarize the results in Table 12. The column identified as “#Occ.”, stands for the number of analyzed
occurrences of a given anti-pattern type, whilst the one labeled as “#Error”, refers to the number of occurrences
considered as modeling errors by the participants. The columns “#Refac.”, “#Partial” and “#Custom” stand for the
sum of occurrences the participants fixed using: exclusively refactoring plans, some refactoring plans and some
custom solutions and exclusively custom solutions, respectively. We measure the probability of an anti-pattern
occurrence to characterize a mistake (entitled anti-pattern problem rate) by dividing the number of times it
characterizes a mistake (#Error) by the number of times it occurs (#Occ.). We measured the capability of an anti-
pattern to anticipate the solution for an erroneous occurrence (entitled anti-pattern predictability) by dividing the
number of erroneous occurrence in which only refactoring plans were used (#Refac.) by the number of erroneous
occurrences.

Table 12. Summary of the Anti-Patterns accuracy results.

Anti-
Pattern #Occ. #Error #Error /

#Occ. #Refac. #Refac.
/#Error #Partial #Partial /

#Error #Custom #Custom /
#Error

RelSpec 315 279 88.6% 271 97.1% 1 0.4% 7 2.5%

RepRel 221 57 25.8% 48 84.2% 4 7.0% 5 8.8%

RelOver 124 70 56.5% 54 77.1% 1 1.4% 15 21.4%

BinOver 74 31 41.9% 23 74.2% 0 0.0% 8 25.8%

AssCyc 20 14 70.0% 10 71.4% 0 0.0% 4 28.6%

ImpAbs 125 11 8.8% 3 27.3% 0 0.0% 8 72.7%

Total 879 462 52.56% 409 88.53% 6 1.46% 47 10.17%

As one can observe, we found some variability regarding anti-pattern problem rate. For instance, while for
RelSpec, 88.6% of their occurrences actually configured a case of an unintended model fragment, this percentage
was only of 8.8% for the case of ImpAbs. In general, 4 out of 6 of our anti-patterns configured cases of unintended
consequences in more than 50% of the cases (bringing the total problem rate to 52.56%). These numbers are a
strong indication that the structures identified by the anti-patterns are indeed error-prone.

Anti-pattern predictability refers to the capacity of predicting appropriate refactoring solutions. We measure
that by dividing the number of occurrences in which modelers exclusively adopted standard solutions by the
number of occurrences that they considered as mistakes. In this study, the modelers exclusively adopted pre-
defined solutions 409 times in the 462 occurrences considered as errors. This represents a percentage of 88.53% of
the time, in comparison to 1.46% of partial solutions and 10.17% of exclusively custom ones. We observed a
much lower variability on the effectiveness of the proposed solutions for each of the patterns: for 5 out of 6
patterns, the solutions were adopted as proposed by the tool in more than 70%. In the case of RelSpec, the
solutions were accepted as proposed in 97.1% of the cases.

If we inspect individual anti-patterns, we can also observe certain variability regarding the adopted solutions.
For instance, the BinOver anti-pattern (characterized by an association between overlapping types) occurred 74
times. From those, 31 were actual mistakes (41.9%). Considering only the erroneous cases, the modelers adopted
one of our suggested solutions 23 times (74.2%). The option to enforce one or more binary properties was selected
16 times (70%), while the alternative to enforce disjointness between the related types was selected seven times
(30%). In this study, the modelers did not opted to change the stereotype of the relation for any occurrence. If we
inspect the types of enforced binary properties, we see that anti-reflexivity and anti-symmetry were the most
common ones, being selected 15 and 14 times respectively. The acyclic constraint comes next being selected 9
times. The need to specify transitive, reflexive or symmetric relations was only encountered one, two and one time
respectively. This is an indication that the need for explicitly specifying binary meta-properties exists and that we
should try to pro-actively incentive modelers to specify such constraints. We also managed to identify the reasons
that lead the modelers not to consider a BinOver occurrence to be a mistake. From the 43 correct cases, in 19 times
(44.2%) they considered the relation under analysis as derived and, as such, the binary meta-properties were
consequence of the embedded derivation rules. In another 11 times (25.6%), the desired binary meta-properties
were determined by the relation stereotype choice. Furthermore, in seven cases (16.3%), the participants fixed the

problem unintentionally, through the adoption of a solution to another anti-pattern. Lastly, for the remainder 6
cases, participants did not provide further justification.

To provide a conclusion on anti-pattern evaluation, we cross frequency (measured in Table 3), problem-rate
and predictability information on Table 13. For the frequency column, we consider the percentage of models an
anti-pattern was encountered given the models in which they could occur (i.e., models with at least one instance of
the anti-pattern’s main element type). For the problem rate and predictability columns, we considered the results of
the MGIC case study. In the former, we considered the rate between occurrences that characterized errors per total
number of occurrences, and in the latter, the percentage of erroneous occurrences that one could fix using
exclusively pre-defined solutions. Furthermore, instead of the actual percentages, we adopted a discrete scale with
values specified as follows: Very High (80-100%), High (60-80%), Medium (40-60%), Low (20-40%) and Very
Low (0-20%).

The higher all these three values are for an anti-pattern, the more useful it is for validation. Anti-patterns that
always occur, with a high possibility of characterizing a mistake and being able to predict most of the refactoring
necessities are more likely to be useful during conceptual model validation. Examples of such anti-patterns that fit
the profile are AssCyc and RelSpec. Less useful anti-patterns, on the other hand, are not the scarcely identified
ones, but the ones that we frequently find but rarely are the source of domain misrepresentations. In fact, they
require a lot of effort to analyze and little gain in ontology quality. ImpAbs is an example of anti-pattern that needs
refinement. Our analysis of the phenomenon is that ImpAbs’ generic structure, which encompasses all association
and class stereotypes, dramatically increases the frequency. This overly generic structure is also the cause of the
lower predictability, since it broadens the types of problem.

Table 13. Summary of the evaluation results from both studies.

Anti-Pattern Frequency Problem Rate Predictability

AssCyc Very High High High

BinOver Medium Medium High

ImpAbs High Very Low Low

RelOver Low Medium High

RelSpec Medium Very High Very High

RepRel High Low Very High

Overall, the combination of this third empirical study, presented in this section, combined with the frequency
evaluation performed in the second study (presented in Section 3) significantly improved our confidence that anti-
patterns are a very useful tool in conceptual model validation and that our catalog and tool support are evidences
of that.

7. Final Considerations

This paper makes a contribution to the theory and practice of ontology-driven conceptual modeling by: (i)
presenting a number of empirically elicited Ontological Anti-patterns that were identified as recurrent in a
benchmark of conceptual models; (ii) precisely characterizing these anti-patterns as well as proposing a number of
model refactoring plans that can be used to remove from the models the unintended consequences cause by the
occurrence of each of these anti-patterns; (iii) a computational environment that automates the process of
supporting detection of occurrences of these anti-patterns, exploration of their consequence in individual models,
formal rectification via the inclusion of pre-defined formal constraints (implementing the aforementioned
refactoring plans). This computational environment is available in https://code.google.com/p/ontouml-lightweight-
editor/; (iv) an empirical study that elucidates both the harmfulness of each of these anti-patterns (i.e., how likely
is that they in fact introduce unintended consequences) as well as the effectiveness of the proposed systematic and
automated solutions to rectify their harmful occurrences.

During our empirical studies, we have noticed a change in the modelers’ behavior that is worth reporting here.
We noticed that by using the tool, the modelers get so familiar with the anti-patterns that they start pro-actively
identifying their occurrences while developing new models. In other words, by being aware of the possible
solutions that can used to avoid these anti-patters, the modelers seem to develop modeling skills that
systematically prevent these anti-pattern’s occurrences. We would like to systematically explore this observation
in a future empirical study.

The next step that we envisage for this research is to develop more advanced pro-active ways to prevent the
occurrence of anti-patterns in conceptual models. One way to do that is to propose the inclusion of new modeling
configurations for OntoUML constructs. For instance, as explained in [10], OntoUML is a pattern language and, as
such, its modeling constructs are clusters of constructs amounting to an Ontological Design Pattern. An example
is the Relator-Material Relation (RMR) Pattern briefly discussed in section 2. By understanding the causes behind
the occurrences of anti-patterns such as RelOver or RepRel, we can provide new configuration options for RMR.
For instance, we can include a modeling option for defining the possible constraints between the types mediated
by a relator (e.g., declaring them mutually exclusive) or a meta-attribute for specifying the number of times the
same elements can be connected by different instances of the same relator type.

Of course, as always, one must analyze the trade-off between language expressivity and complexity. In fact, this
trade off should also be analyzed when developing educational material for ontology-driven conceptual modeling.
Regarding this, we believe that empirical studies such as the one reported in section 6 can be of paramount value.
On one hand, it inform us which anti-patterns tend to frequently occur and which ones tend to frequently introduce
unintended consequences in the models. Moreover, from a research perspective, it also gives evidence to which
anti-patterns we have already developed effective solutions.

Since Koenig’s original proposal [11], the concept of anti-pattern has been applied in a variety of fields other
than the original field of software design. To the extent of our knowledge, however, there is no other application of
anti-patterns in ontology-driven conceptual modeling. Nonetheless, our approach is in line with authors both in the
conceptual modeling and ontology engineering/semantic web literature. Representative examples of works in the
latter area are [39] and [40], which discuss methods of detecting anti-patterns in OWL specifications via SPARQL
queries. Although sharing the same general objective, our approach differs from these works in a number of
important ways. Firstly, our approach is based on a much richer modeling language from the ontological point of
view. As a consequence, the anti-patterns addressed by our approach are able to address more subtle ontological
conditions such as, for example, the ones involving modality, identity principles as well as a richer ontology of
material relations. Secondly, different from these approaches, our method does not aim at detecting general cases
involving typical logical misunderstandings. In contrast, it focuses exactly on those cases that cannot be casted as
modeling (grammatical) errors by the process of formal verification, and aims at identifying recurrent potential
deviations between the sets of valid and intended model instances. Thirdly, for instance in [40], the identified anti-
patterns are cases believed to be caused by the lack of modeling experience [40]. Here, as shown by our empirical
studies, these anti-patterns are recurrent even in models produced by experience researchers. In fact, in pace with
[10], we believe that the repeated occurrence of these anti-patterns is an intrinsic feature of the disparity between
the increasing complexity of our reference conceptual models and our limited cognitive capacities for dealing with
that. Finally, in contrast with these approaches, besides automatic anti-pattern detection, our approach presents a
computational environment for model analysis (via visual simulation) and systematic conceptual model
rectification.
Acknowledgements. This research was partially supported by the Lucretius ERC Advanced Grant # 267856. The authors
would like to thank the ANTT employees and members of the MGIC project that collaborated with this research.

References

1. Weber, R., Ontological Foundations of Information Systems, Coopers & Lybrand, Melbourne, 1997.
2. Dijkstra, E.W., The Humble Programmer, Communications of the ACM, 15:10, Oct. 1972.
3. Guarino, N., Musen, M., Applied Ontology: Focusing on Content, Applied Ontology, Vol. 1, pp. 1-5, IOS Press, 2005.
4. Guizzardi, G., Herre, H., Wagner G., On the General Ontological Foundations of Conceptual Modeling, 21st International

Conf. on Conceptual Modeling (ER 2002), Tampere, 2002.
5. Wand, Y., Weber, R., An Ontological Model of an Information System. IEEE Trans. Software Eng. 16(11): 1282-1292,

1990.
6. Recker, J., Rosemann, M., Green, P., Indulska, M., Do Ontological Deficiencies in Modeling Grammars Matter?, MISQ

Quaterly, Vol. 35, n. 1, 2011.
7. Guizzardi, G.: Ontological foundations for structural conceptual models. Centre for Telematics and Information

Technology, University of Twente, The Netherlands, (2005).
8. Benevides, A.B., Guizzardi, G.: A Model-Based Tool for Conceptual Modeling and Domain Ontology Engineering in

OntoUML, 11th International Conf. on Enterprise Information Systems (ICEIS), Milan, 2009.
9. Benevides, A.B. et al.: Validating Modal Aspects of OntoUML Conceptual Models Using Automatically Generated Visual

World Structures. Journal of Universal Computer Science. 16, 2904–2933, 2010.
10. Guizzardi, G., Ontological Patterns, Anti-Patterns and Pattern Languages for Next-Generation Conceptual Modeling,

invited companion paper to the Keynote Speech delivered at the 33rd International Conference on Conceptual Modeling
(ER 2014), Atlanta, USA.

11. Koenig, A.: Patterns and Anti-Patterns. J. of Object-Oriented Programming. 8 (1995).

12. Guizzardi, G., On Ontology, ontologies, Conceptualizations, Modeling Languages, and (Meta)Models, Frontiers in
Artificial Intelligence and Applications, Databases and Information Systems IV, IOS Press, Amsterdam, 2007.

13. Guizzardi, G., Wagner, G. Using the Unified Foundational Ontology (UFO) as a Foundation for General Conceptual
Modeling Languages In: Theory and Application of Ontologies ed.Berlim: Springer-Verlag, 2010.

14. Guizzardi, G., Sales, T.P., Detection, Simulation and Elimination of Semantic Anti-Patterns in Ontology-Driven
Conceptual Models. Proc. of 33rd International Conf. on Conceptual Modeling (ER 2014), Atlanta.

15. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Massachusetts (2012).
16. Costal, D., Goméz, C., Guizzardi, G., Formal Semantics and Ontological Analysis for Understanding Subsetting,

Specialization and Redefinition of Associations in UML, 30th International Conference on Conceptual Modeling (ER
2011), Brussels, Belgium, 2011.

17. Sales, T.P., Barcelos, P.P.F., Guizzardi, G.: Identification of Semantic Anti-Patterns in Ontology-Driven Conceptual
Modeling via Visual Simulation. 4th International Workshop on Ontology-Driven Information Systems (ODISE), Graz,
Austria (2012).

18. Barcelos, P.P.F.; Guizzardi, G.; Garcia, A.S., Monteiro, M.E., Ontological Evaluation of the ITU-T Recommendation
G.805, 18th International Conference on Telecommunications (ICT 2011), IEEE Press, Cyprus

19. Albuquerque, A., Developing a Domain Ontology for Biodiversity (in Portuguese), Master Dissertation, Federal University
of Amazonas, Manaus, Brazil 2011.

20. Gonçalves, B.N.; Guizzardi, G.; Pereira Filho, J.G., Using an ECG reference ontology for semantic interoperability of ECG
data, Journal of Biomedical Informatics, Special Issue on Ontologies for Clinical and Translational Research,Editors: Barry
Smith, Werner Ceusters and Richard H. Scheuermann, Elsevier, 2011.

21. Brazilian Ministry of Planning and Management, A Preliminary Conceptual Model for ther Brazilian Governmental
Organizational Structures, available at the Persistent Ontology Repository of the National Program on Government
Interoperability (E-PING), online: http://vocab.e.gov.br/.

22. Bastos, C.A.M., Rezende, L., Caldas, M., Garcia, A.S., Mecena Filho, S., Sanchez, M.L., Castro Junior, J.L.P., Building up
a Model for Management Information and Knowledge  : The Case-Study for a Brazilian Regulatory Agency, in
International Workshop on Software Knowledge (SKY), 2011.

23. Calhau, R., Falbo, R., A Configuration Management Task Ontology for Semantic Integration, in ACM Symposium on
Applied Computing (SAC), 2012, pp. 348–353.

24. Nardi, J.C., Falbo, R.A., Almeida, J.P., Guizzardi, G., Pires, L.F., van Sinderen, M., Guarino, N., Towards a Commitment-
Based Reference Ontology for Services, in IEEE Enterprise Distributed Object Computing Conference (EDOC), 2013, pp.
175–184.

25. Ferrandis, A.M.M., Lopez, O.P., Guizzardi, G., Applying the Principles of an Ontology-Based Approach to a Conceptual
Schema of Human Genome, in International Conference on Conceptual Modeling (ER 2013), pp. 471–478.

26. Ferreira, M.I.G.B., Cordeiro, K.F., Oliveira, J., Campos, M.L.M., OntoEmerge: The Construction of a Core Ontology for
the Emergency Domain based on a Foundational Ontology (in Portuguese) in 4th Brazilian Seminar on Ontological
Research (ONTOBRAS 2010), Gramado, Brazil.

27. Ferreira, M.I.G.B., An Emergency Ontology supporting the Generation of Vairability Solutions (in Portuguese), Master
Dissertation, Federal University of Rio de Janeiro, Brazil, 2013.

28. Pereira, D.C., Almeida, J.P., Representing Organizational Structures in an Enterprise Architecture Language, in Workshop
on Formal Ontologies meet Industry (FOMI), 2014, pp. 7–15.

29. Pereira, D.C., Representing Organizational Structures in Enterprise Architecture: an Ontology-based Approach, Ontology
and Conceptual Modeling Research Group (NEMO), Federal University of Espírito Santo, Vitória, Brazil, 2015.

30. Cruz, S.M.S, Campos, M.L.M., Mattoso, M., A Foundational Ontology to Support Scientific Experiments, in 6th Brazilian
Seminar on Ontological Research (ONTOBRAS), 2010, 2012, pp. 144–155.

31. Silva, H.C., Castro, R.C.C., Gomes, M.J.N., Garcia, A.S., Well-Founded IT Architecture Ontology: An Approach from a
Service Continuity Perspective, in 4th International Conference on Networked Digital Technologies (NDT’12), 2012, vol.
294, pp. 136–150.

32. Castro, R.C.C., Silva, H.C., Garcia, A.S., Gomes, M.J.N., Mapping of vulnerabilities in the public cloud with the use of
foundational ontology: A perspective for service IaaS, in 7th International Conference on Digital Information Management
(ICDIM’12), 2012, pp. 245–252.

33. Barcelos, P.P.F., Guizzardi, R.S.S., Garcia, A.S., An Ontology Reference Model for Normative Acts, in 7th Brazilian
Seminar on Ontological Research (ONTOBRAS) 2013, pp. 35–46.

34. Santos, V.A., Reginato, C.C., Komati, K.S., Monteiro, M.E., Conceptual Mapping Between the OpenFlow Protocal and the
ITU-T G.805 Recommendation (in portuguese), in Computer on the Beach, 2013, pp. 340–342.

35. Machado, B.N., Semantic Documentation in Requirements Engineering, Federal University of Espírito Santo, Technical
Report, Vitória, Brazil, 2012.

36. Schimidt, G.; Strohlein, T. Relations and Graphs: Discrete Mathematics for Computer Scientists. 1st. ed. Berlin, Germany:
Springer, 1993. p. 301

37. Brazilian Free and Open Information Acess Act (in portuguese: Lei de Acesso à Informação). Law no 12.527, November
18th, 2011.

38. Vrandečić, D.: Ontology Validation, PhD Thesis, University of Karlsruhe (2010).
39. Roussey, C. et al.: SPARQL-DL queries for Antipattern Detection. Workshop on Ontology Patterns. CEUR-WS.org,

Boston, USA (2012).

	

