

On the Notion of Abstract Platform in MDA Development

João Paulo Almeida, Remco Dijkman, Marten van Sinderen, Luís Ferreira Pires
Centre for Telematics and Information Technology, University of Twente

PO Box 217, 7500 AE Enschede, The Netherlands
{almeida, dijkman, sinderen, pires }@cs.utwente.nl

Abstract

Although platform-independence is a central
property in MDA models, the study of platform-
independence has been largely overlooked in MDA. As a
consequence, there is a lack of guidelines to select
abstraction criteria and modelling concepts for platform-
independent design. In addition, there is little
methodological support to distinguish between platform-
independent and platform-specific concerns, which could
be detrimental to the beneficial exploitation of the PIM-
PSM separation-of-concerns adopted by MDA. This paper
is an attempt towards clarifying the notion of platform-
independent modelling in MDA development. We argue
that each level of platform-independence must be
accompanied by the identification of an abstract platform.
An abstract platform is determined by the platform
characteristics that are relevant for applications at a
certain level of platform-independence, and must be
established by balancing various design goals. We
present some methodological principles for abstract
platform design, which forms a basis for defining
requirements for design languages intended to support
platform-independent design. Since our methodological
framework is based on the notion of abstract platform, we
pay particular attention to the definition of abstract
platforms and the language requirements to specify
abstract platforms. We discuss how the concept of
abstract platform relates to UML.

Keywords: Model-Driven Architecture (MDA), platform-
independence, abstract platform, distributed application
design

1. Introduction

A current trend in the development of distributed
applications is to separate their platform-independent and
platform-specific aspects, by describing them in separate
models. Platform-independence is a quality of a model
that relates to the extent to which the model abstracts
from the characteristics of particular technology
platforms.

A prominent development in this trend is the Model-
Driven Architecture (MDA) [18, 21] development. A
common pattern of MDA development is to define a

platform-independent model (PIM), and to apply
(parameterised) transformations to this PIM to obtain one
or more platform-specific models (PSMs). The main
benefit of this approach stems from the possibility to
derive different PSMs from the same PIM, and to partially
automate the model transformation process and the
realization of the distributed application on specific target
platforms. This may reduce development costs and
improve software quality, but also forms the basis for
facilitating integration, evolution and migration of
software solutions, hence contributing to the limitation of
maintenance costs for distributed applications.

In the context of MDA, much effort has been invested
in meta-modelling (MOF [22, 23]), language definition
and extension mechanisms (UML and UML profiles [26,
28]), model transformation specification (MOF
Query/View/Transformation RFP [24]), and tool support.
These developments constitute enabling technologies to
model-driven development.

Nevertheless, the study of platform-independence has
been particularly overlooked. As a consequence, there is a
lack of guidelines to select abstraction criteria and
modelling concepts for platform-independent design.
Moreover, there is little methodological support to
distinguish between platform-independent and platform-
specific concerns, which could be detrimental to the
beneficial exploitation of the PIM-PSM separation-of-
concerns adopted by MDA.

The concept of platform-independence plays a central
role in MDA development. We believe that platform-
independence can only be defined once general
capabilities of potential target platforms can be
established. This leads to the observation that there can be
PIMs at different abstraction levels, depending on
whether one wants to consider different sets of target
platforms. Another observation is that different
application characteristics or different sets of target
platforms generally lead to different types of
(intermediate) models, design structures or patterns, and
model transformations. These observations have
motivated our investigations into what types of models
can be useful in the MDA development process, how
these models are related, and which criteria should be
used for their application. Some of the results of these
investigations have been presented earlier in [2], where
we have proposed an MDA design approach that

accommodates designs at different levels of platform-
independence.

An important architectural concept of this approach is
that of abstract platform. An abstract platform defines an
acceptable or, to some extent, ideal platform from an
application developer’s point of view; it is an abstraction
of infrastructure characteristics assumed for models of an
application at some point of (the platform-independent
phase of) the design process. Alternatively, an abstract
platform defines characteristics that must have proper
mappings onto the set of concrete target platforms that are
considered for an MDA design process, thereby defining
the level of platform-independence for this particular
process. Defining an abstract platform forces a designer to
address two conflicting goals: (i) to achieve platform-
independence, and (ii) to reduce the size of the design
space explored for platform-specific realization.

Any design approach that is intended to be
successfully applied in practice should be supported by
suitable design concepts in suitable design languages. In
this paper, we present some methodological guidelines for
platform-independent design and define requirements for
design languages intended to support platform-
independent design. Since our methodological framework
is based on the notion of abstract platform, we pay
particular attention to the definition of abstract platforms
and the language requirements to specify abstract
platforms. We discuss how the architectural concept of
abstract platform can be supported in UML 2.0 [26].

This paper is further structured as follows: Section 2
provides some background and introduces the concept of
abstract platform; Section 3 provides some criteria for
abstract platform definition and for the distinction
between platform-independent and platform-specific
concerns; Section 4 discusses how abstract platforms
relate to design languages; Section 5 discusses how
abstract platforms can be represented in UML; Section 6
positions our work with respect to related work. Finally,
Section 7 presents our conclusions and outlines future
work.

2. Platform-independent design based on
the notion of abstract platforms

Platform-independence is a quality of a model that
relates to the extent to which the model abstracts from the
characteristics of particular technology platforms. In order
to refer to platform-independent or platform-specific
models, one must define what a platform is. For the
purpose of this paper, we assume that distributed
applications are ultimately realized in some specific
object-middleware or component-middleware technology
that supports operation invocation and asynchronous
message exchange, such as CORBA/CCM [19], .NET
[16], and Web Services [32, 31]. Hence, a platform

corresponds ultimately to some specific middleware
technology.

2.1. Levels of platform-independence

When pursuing platform-independence, one could
strive for PIMs that are absolutely neutral with respect to
all different classes of middleware platforms. This is
possible for models in which the characteristics of
supporting infrastructure are irrelevant, such as, e.g.,
conceptual domain models [5] and RM-ODP Enterprise
Viewpoint models [11] (which can be considered
Computation Independent Models [21]). However, when
system architecture is captured, some platform
characteristics become relevant, and different sets of
platform-independent modelling concepts may be used,
each of which is adequate only with respect to specific
classes of target middleware platforms. This leads to the
observation that platform-independence is not a binary
quality of models; instead, a distributed application can be
described at several levels of platform-independence. At a
certain level of platform-independence, a model is said to
be portable to a number of target middleware platforms.
The level of platform-independence of a model must be
carefully identified. We propose this identification be
made an explicit step in MDA development. The notion
of abstract platform, as we have proposed initially in [2],
supports a designer in this step.

Figure 1 illustrates a possible hierarchy of models at
different levels of platform-independence. In this figure, a
highly abstract and neutral PIM is depicted at the highest
level of platform-independence. Platform-independent
models at a lower level of platform-independence are
depicted that facilitate the transformation to two particular
classes of middleware platforms, namely RPC object-
based and message-oriented platforms, respectively.
These latter models rely on different abstract platforms.

platform
selection

.

.

.

.

.

.
platform-

independent
models

platform-
specific
models

RPC object-based

message-oriented

MQSeries-based

JMS-based

CORBA-
based

JavaRMI-
based

models design alternatives

Figure 1 Models at different related levels of
platform-independence

2.2. Abstract platforms

An abstract platform defines an acceptable or, to some
extent, ideal platform from an application developer’s
point of view; it represents the support, as comprehensive
and direct as possible, that is assumed by platform-
independent models of a distributed application.
Alternatively, an abstract platform defines characteristics
that must be mappable onto the set of concrete platforms
that are considered as potential targets in a development
project.

An abstract platform is determined by the platform
characteristics that are relevant for applications at a
certain platform-independent level. For example, if a
platform-independent design contains application parts
that interact through operation invocations, then operation
invocation is a characteristic of the abstract platform.
Capabilities of a concrete platform are used during
platform-specific realization to support this characteristic
of the abstract platform. For example, if CORBA is
selected as a target platform, this characteristic can be
mapped onto CORBA operation invocations.

The use of the abstract platform concept may be
reflected in an abstract platform model, as depicted in the
in Figure 2. The PIM of a distributed application depends
on an abstract platform model, in the same way as the
PSM depends on a (concrete) platform model.

Application
(PIM)

Abstract
Platform

Model

Figure 2 PIM depends on abstract platform

model

2.3. Platform-specific realization

The PIM-PSM transformation is straightforward when
the selected concrete platform corresponds (directly) to
the abstract platform. When this is not the case, more
effort has to be invested in platform-specific realization.
In general, we distinguish two contrasting extreme
approaches to proceeding with platform-specific
realization:

1. Adjust the concrete platform, so that it corresponds
directly to the abstract platform.

2. Adjust the platform-specific model of the application,
while preserving the requirements specified at
platform-independent level, so that the application
model can be composed with the target platform
model.

In approach 1, the boundary between abstract platform
and platform-independent distributed application model is
preserved during platform-specific realization. This
implies the introduction of some platform-specific
abstract platform logic to be composed with the concrete
target platform. The nature of this composition depends
on the particular requirements for the abstract platform. It
may be possible to implement abstract platform logic on
top of the concrete platform. Nevertheless, this
composition may also imply the introduction of platform-
specific (e.g., QoS) mechanisms, possibly defined in
terms of internal components of the concrete platform.
Extension of this platform in a non-intrusive manner is
often the preferred way to adjust the concrete platform.
Techniques that can be used for non-intrusive extension
include interceptors [19], aspect-oriented programming
and composition filters [6].

Approach 2 may imply the introduction of (e.g., QoS)
mechanisms in the platform-specific design of the
application. This approach may be suitable in case it is
impossible to adjust the concrete target platform, e.g., due
to the lack of extension mechanisms and/or the cost
implications of these adjustments.

Figure 3 illustrates these approaches to platform-
specific realization.

(1) (2) Abstract –
Platform

Model

Application

(PIM)

Application
(PSM)

Concrete
Platform

Model

Application
(PSM)

trivial

Abstract-Plat.
Logic (PSM)

Concrete
Platform

Model

Figure 3 Alternative approaches to platform-

specific realization

Both approaches allow us to target different concrete
platforms from the same platform-independent model. An
argument against approach 1 is that it may be harder to
satisfy time-performance requirements than with direct
transformation (approach 2). Approach 1 may also
sacrifice intuitiveness for developers that are accustomed
to a particular concrete target platform. Nevertheless, this
approach provides clear traceability between platform-
independent and platform-specific models. Furthermore,
abstract platform logic can be directly reused in the
realization of other platform-independent models that rely
on the same abstract platform. Approach 1 is explicitly

enabled by the identification and definition of an abstract
platform, and allows us to obtain application software
components that can be reused on top of different
platforms [2].

Approach 1 can be generalized as a recursive
application of service definition (external perspective) and
the service’s internal design, resulting in a hierarchy of
abstract platforms and a concrete target platform. At each
step of the recursion, both approaches to realization can
be chosen.

3. Abstract platform definition

The definition of an abstract platform is supported by
two observations:
1. platform characteristics may play a role in early

(platform-independent) designs, and;
2. platform-independence must be balanced against

platform-specific realization
The first observation leads us to the conclusion that

platform characteristics that play a role in platform-
independent designs should be reflected in the abstract
platform.

The second observation recognizes that achieving
platform-independence is a requirement that must be
considered in a larger context, where other relevant design
goals play an important role. An MDA design process
should lead efficiently to a (platform-specific) application
running on a concrete platform.

The next subsections examine these observations and
their implications, leading to guidelines for abstract
platform design.

3.1. Role of platform characteristics

Defining an abstract platform requires the ability to
identify what abstract platform characteristics are relevant
at a platform-independent level. Some platform
characteristics become relevant when identifying

application parts and their interactions. This is the case for
the characteristics of the support for interactions between
system parts. Some other platform characteristics play a
more subtle, but not necessarily negligible, role. Platform
characteristics that may have impact in early stages of the
definition of a distributed application’s architecture are
likely to qualify as abstract platform characteristics.

This is best illustrated by an example, in which the
design of a groupware service is considered. This service
facilitates the interaction of users residing in different
hosts. Initially, the service designer describes the
groupware service solely from its external perspective,
possibly stating quality-of-service requirements on the
service, e.g., that the service should have high availability.
At subsequent stages of development, the designer is
confronted with design decisions. In this example, we
consider the following alternatives: (i) a centralized
(server-based) design, and (ii) a distributed (peer-to-peer)
design.

Figure 4 depicts these two solutions. In solution (i), a
server facilitates the interaction between users. In solution
(ii), symmetric components facilitate the interaction
without the support of a centralized application-level
component.

In order to improve the reusability of platform-
independent models, stable aspects of a system’s
architecture should be captured in platform-independent
models. Therefore, it would be desirable to select between
alternative models (i) and (ii) during platform-
independent modelling. Nevertheless, some platform-
specific aspects play an important role in the selection of
an adequate architecture. For example, solution (i) would
introduce a single point of failure in the architecture,
unless the platform provides support for replication
transparency (as defined in the Reference Model for Open
Distributed Processing (RM-ODP) standards [9, 10]).

Apparently, this places the designer in a dilemma,
since platform selection would affect platform-
independent design. In order to solve this, a designer

(i) centralised server-
based solution

(ii) distributed peer-to-
peer solution

Server

User

Client
Comp1

interactions application partsdesired groupware service

User

User

Client
Comp2

Client
Comp3

User

Client
Comp1

User

User

Client
Comp2

Client
Comp3

Figure 4 Alternative designs for the groupware service

should be able to express, at a platform-independent level,
requirements on platform-specific realizations that would
allow all design decisions that are relevant for platform-
independent modelling to be captured. In our groupware
service example, this would mean that requirements on
the reliability of individual components should be stated
at the platform-independent level, justifying the selection
of a centralized or a distributed design (possibly through
application of aspect-oriented modelling [8]).

Requirements expressed at a platform-independent
level should justify design decisions for the design at that
level and provide input for platform-specific realization.
If these requirements invalidate portability requirements
for platform-independent designs, then it is impossible to
consider the design at the current level of platform-
independence. In this case, we envision two different
contrasting solutions:

(a) to consider the design at a higher level of abstraction,
at which the platform characteristics are no longer
relevant for design decisions taken at that level; or,

(b) to relax portability requirements, lowering the degree
of platform-independence for the design. This
solution reflects on the characteristics of the abstract
platform being defined.

For our groupware service example, possible
applications of these solutions would be:

(a) to describe the groupware service solely from its
external perspective. At this level of abstraction, the
reliability characteristics of the supporting
infrastructure are irrelevant. Details on the service’s
internal design are only addressed at platform-
specific modelling, and hence cannot be re-used for
different target platforms; and,

(b) to restrict the set of potential target platforms, e.g., to
include only platforms that provide support for highly
available components. In this case, it is possible to
describe the groupware service’s internal design at
the newly defined level of platform-independence,
while still guaranteeing the satisfaction of the service
requirements. The abstract platform considered
provides support for highly available components.

In [3], we have presented thoroughly an example of
solution (b), where an abstract platform that supports
dynamic reconfiguration of components is used at some
point of the design process in order to satisfy availability
requirements.

3.2. Platform-independence must be balanced
with platform-specific realization

Defining an abstract platform brings attention to
balancing between two conflicting goals: (i) platform-
independent modelling, and (ii) platform-specific

realization. On the one hand, an abstract platform
indicates directly the support available for designers
during platform-independent modelling, and therefore,
reflects the needs of application designers, including the
needs to handle complexity in application design and
portability requirements. On the other hand, an abstract
platform is established by considering the set of potential
target platforms and their (common and diverging)
characteristics; this bottom-up knowledge is useful to
reduce the design space to be explored for platform-
specific realization. Large design spaces are less
amenable to automatic exploration, and require more
intervention of designer, e.g., through extensive
parameterization of transformations. Reducing the design
space contributes to increasing the efficiency of the
design process.

Poorly defined abstract platforms may lead to:
applications that do not satisfy functional and non-
functional requirements; platform-independent models
that cannot be mapped into relevant target platforms or
that that cannot resist platform evolution; platform-
independent models that are too abstract, becoming less-
valuable from the perspective of reuse; or complex, less
reusable transformations.

The following factors should be observed when
defining an abstract platform [2]:

1. Portability requirements for the platform-
independent design. The abstract platform should be
generic enough to allow a mapping to different target
platforms. The actual set of middleware platforms is
mostly determined by business and strategic
arguments;

2. The needs of application designers. The abstract
platform should provide facilities that ease platform-
independent service design; and,

3. The extent to which abstract platform and target
concrete platforms are different. It should be possible
to obtain platform-specific realizations of acceptable
quality from platform-independent designs. The gap
between abstract platform and concrete platforms has
direct consequences for the complexity or even
feasibility of mappings between platform-
independent and platform-specific model.

These factors often depend on application domains and
on specific application requirements, possibly resulting in
different abstract platforms. A comprehensive MDA
design approach should, therefore, allow a designer to
select or define suitable abstract platforms for their
platform-independent designs.

4. Abstract Platform and Design Languages

 Designs must be supported by suitable design
concepts and represented using suitable design languages.
In an MDA development project, several design
languages may be used, e.g., to produce models at
different levels of abstraction. Alternatively, a single
“broad spectrum” design language [7] may be used. The
design language adopted for a design has an important
role in defining characteristics of an abstract platform
assumed for the design.

In the implicit abstract platform definition approach,
the characteristics of an abstract platform are implied by
the set of design concepts used for describing the
platform-independent model of a distributed application.
These concepts are often inherited from the adopted
modelling language. For example, the exchange of
“signals” between “agents” in SDL [12] may be
considered to define an abstract platform that supports
reliable asynchronous message exchange. The restricted
use of particular constructs in a design language or the use
of certain modelling styles or patterns can serve as a
means to select subsets of a language’s design concepts.
This approach is illustrated schematically in Figure 5,
where concepts are represented as geometric forms.

 set of design
concepts +
constraints

distributed
application

design

implicit
abstract
platform
definition

instantiation of design concepts

Figure 5 Abstract platform defined implicitly,
by choice of design concepts

Other examples of sets of design concepts that can be
used for platform-independent modelling, and that may
imply the characteristics of an abstract platform, are the
concepts that constitute the RM-ODP computational
viewpoint such as “object”, “interfaces”, “operations”,
“streams” and “distribution transparencies” [10]. The role
of computational viewpoint concepts in our MDA design
approach has been discussed in [4].

Instead of implying an abstract platform definition
from the adopted set of design concepts for platform-
independent modelling, it may be useful or even
necessary to define the characteristics of an abstract

platform explicitly, resulting in one or more separate and
reusable design artefacts. We call this approach explicit
abstract platform definition. During platform-independent
modelling, parts of a pre-defined abstract platform model
may be composed with the model of the distributed
application. For example, while UML 2.0 does not
support group communication as a primitive design
concept, it is possible to specify the behaviour of a group
communication sub-system in UML. This sub-system is
then re-used in the design of the distributed application.
Other examples of pre-defined artefacts that may be
included in abstract platforms are the ODP trader [10] and
the OMG pervasive services (yet to be defined [21]). The
set of design concepts of a design language is still
relevant in this approach, since the distributed application
and the abstract platform model are described in the
language. This approach is illustrated schematically in
Figure 6.

set of design
concepts +
constraints

… set of
pre-defined

design artefacts

pre-defined
artefacts from

abstract platform

distributed
application

design

instantiation of design concepts incorporation of pre-defined design

abstract
platform
definition

Figure 6 Abstract platform defined by

incorporation of pre-defined design artefacts

In both the implicit and explicit abstract platform
definition approaches, there is some overlap between
language characteristics and abstract platform
characteristics. This leads to the formulation of an
important requirement for a design language to support
platform-independent design: the language’s design
concepts should be defined precisely, so that the
characteristics of the abstract platform can be derived
unambiguously. This is important for at least two reasons:
(1) designers need to know the characteristics of the
abstract platform when defining platform-independent
models of an application; and (2) abstract platforms are a
starting point for platform-specific realization.

Furthermore, a comprehensive MDA design approach
should allow designers to select or define suitable abstract
platforms for their platform-independent designs. This
leads to the formulation of a second requirement for
design languages suitable for MDA: a design language
should allow for appropriate levels of platform-
independence to be defined.

5. Abstract Platform Definition with MDA
standards

In this section, we pay particular attention to the
definition of abstract platforms using MDA standards,
namely UML 2.0 [26] and MOF 2.0 [28]. We discuss how
to satisfy the design language requirements presented in
Section 4, with the implicit and explicit abstract platform
definition approaches.

5.1. Implicit Abstract Platform Definition

The concepts that plain UML prescribes for specifying
communication between application parts (objects or
components) imply an abstract platform that is based on
request-response invocations and on point-to-point
message passing. Figure 7 illustrates this. Although the
state-machines that describe the behaviour of the client
and the server can be arbitrarily complex, the basic
mechanisms for communication between the state
machines are always request-response and message
passing. UML assumes the existence of an implicit
abstract platform between the state-machines that
supports this communication mechanism. Therefore, for
plain UML, the usefulness of the implicit abstract
platform definition approach is restricted to abstract
platforms based on request-response invocations and on
point-to-point message passing.

S1

S2

/add

/sub

Idle

Client Server

Implicit
abstract
platform

Client

Server

calculateIface

add, sub

add(int a, int b): int;
sub(int a, int b): int;

CalculateIface
<<interface>>

calculateIface

Figure 7 Abstract platform implied by UML

UML has been developed as a general purpose
language that is expected to be customized for a wide

variety of domains, platforms and methods [28]. A high
degree of customization may be obtained in UML through
semantic variation points and profiles. This choice in the
definition of UML has two implications for implicit
abstract platform definition: the UML specification
(“plain” UML) is not conclusive with respect to the
abstract platform implied, and, the customization
mechanisms have to be explored to define specific
abstract platforms.

Semantic variation points provide an intentional degree
of freedom for the interpretation of the UML’s metamodel
semantics. Some semantic variation points defined in the
UML specification should be resolved for plain UML to
be conclusive with respect to the abstract platform
implied by the language. An example of such a semantic
variation point is described in the UML 2.0 specification
(page 381) [26]: “The means by which requests are
transported to their target depend on the type of
requesting action, the target, the properties of the
communication medium, and numerous other factors. In
some cases, this is instantaneous and completely reliable
while in others it may involve transmission delays of
variable duration, loss of requests, reordering, or
duplication.” Without resolving this semantic variation
point, a designer would be forced to assume worst-case
interpretations, e.g., that the implied abstract platform
provides an unreliable request/response mechanism. If
this is undesirable, e.g., because the abstract platform
should provide a reliable request/response mechanism, a
designer should resolve the semantic variation point
(defining that requests and response signals are
transported reliably). Semantic variation points may be
partially resolved, i.e., only for the relevant aspects. For
example, a designer may consider the reliability
characteristics of requests relevant, but may consider the
timing characteristics irrelevant. In this case, any
interpretation of the timing characteristics of requests
would be acceptable. Possibly, semantic variation points
should be resolved by relating the UML metamodel with a
formal semantics, or a basic set of design concepts with a
formal semantics. Examples of efforts towards a formal
semantics for UML are [13] and [30].

The specialization of UML for defining abstract
platform characteristics can be made more manageable
and clearly defined through the use of UML profiles.
Profiles are language extensions consisting of metamodel
elements that specialise elements of a reference
metamodel. The specialized elements can be given
specific semantics, in this way resolving semantic
variation points. Furthermore, constraints (e.g., in OCL
[25]) can be added to profiles to restrict the use of specific
concepts or combinations of concepts. This use of
profiling for implicit abstract platform definition is
restricted to constraining or specialising the abstract
platform defined implicitly by plain UML. In this
approach, the referenced metamodel (UML 2.0’s

metamodel) in combination with the UML profile
assumes the role of abstract platform model.

In case relevant abstract platform characteristics
cannot be represented by the capabilities offered by
profiles (and semantic variation points), new languages
should be defined in terms of MOF metamodels. The
design concepts of these languages are not constrained by
UML, and can be defined arbitrarily through mappings
from the metamodel elements to any suitable semantic
domain. In this approach, the MOF metamodel assumes
the role of abstract platform model.

5.2. Explicit Abstract Platform Definition

As an alternative to changing the design concepts of
plain UML by means of profiling and thereby changing
the implicit abstract platform, we can define the abstract
platform explicitly. The abstract platform is then included
as a part of the design. This can be accommodated in
UML 2.0 by using model library packages [26] (packages
stereotyped as <<modelLibrary>>) as abstract platform
model.

 As an example, we can consider an event-based
abstract platform. This abstract platform accepts signals

from any object in the design and subsequently forwards
these signals to objects that are willing to accept them.
We can design the abstract platform by introducing an
abstract platform model, which consists of an abstract
platform object between communicating objects. This
object must be associated with a behaviour that prescribes
how objects communicate. We can specify the behaviour
of the abstract platform with a state machine. In Figure 8,
we use state machines to represent the behaviour of the
abstract platform. Since the behaviour of the abstract
platform is also described in UML in this approach, some
of the remarks that were made for the implicit abstract
platform definition are also valid here, particularly with
respect to resolving semantic variation points.

An abstract platform can have an arbitrarily complex
behaviour and structure, varying from a simple one-way
message passing mechanism to a communication system
that maintains transactional integrity and time order of
messages. To make the design of complex abstract
platforms manageable, we can use UML 2.0’s composite
structures to break up a complex design into smaller
pieces.

We can also use composite structures to bridge the gap

Awaiting
event

Processing
event

[!i.hasNext()]

publish(event)/i=objectsSubscribedTo(event.kindOf())

[i.hasNext()]/i.next().notify(event)

Awaiting
subscription

subscribe(object, eventKind)/addObjectSubscriptionTo(object, eventKind),
unsubscribe(object, eventKind)/removeObjectSubscriptionTo(object, eventKind)

AbstractPlatformStateMachine

publish(Event event);
subscribe(Object object, EventKind eventKind);
unsubscribe(Object object, EventKind eventKind);

ClientInterface
<<interface>>

AbstractPlatform

ClientInterface

notify(Event event);

ClientCallbackInterface
<<interface>>

ClientCallbackInterface

Figure 8 An explicit abstract platform definition in UML

AbstractPlatformLogicStateMachine

BrokerStateMachine

Awaiting
message

receive(origin, type, message)
Processing
message

Forwarding
event

type == PUBLISH/i=objectsSubscribedTo(message.event.kindOf())

[!i.hasNext()] [i.hasNext()]/object = i.next();
object.locationOf().send(this, NOTIFY,

new Message(object, message.event);

type == SUBSCRIBE/addObjectAtLocationSubscriptionTo(message.object, origin, message.eventKind),
type == UNSUBSCRIBE/removeObjectSubscriptionTo(message.object, message.eventKind)

Awaiting
request

subscribe(object, eventKind)/broker.send(this, SUBSCRIBE, new Message(object, eventKind),
unsubscribe(object, eventKind)/broker.send(this, UNSUBSCRIBE, new Message(object, eventKind),
publish(event)/broker.send(this, PUBLISH, new Message(event))

Awaiting
message receive(origin, type, message)/message.object.notify(message.event)

Abstract
Platform

:AbstractPlatformLogic[*]

:ConcretePlatform[1]

:Broker[1]

ClientInterface ClientCallbackInterface

Figure 9 Decomposition of the abstract platform in UML

between abstract and concrete platform, using the first
realization approach described in section 2.3. For
example, Figure 9 shows the composite structure that
bridges the gap between the abstract platform from Figure
8 and a concrete platform that only supports point-to-
point message passing. The figure shows a decomposition
of the abstract platform into abstract platform logic
components, a broker that distributes published messages
to the subscribers, and a concrete platform model. The
behaviour of the concrete platform has been omitted in
Figure 9 for the sake of conciseness. If an object
subscribes or unsubscribes to a type of message, the
abstract platform logic sends the information about the
subscription to the broker, which stores this information.
If an object publishes an event, the application logic sends
the event to the broker. The broker then forwards the
event to the abstract platform logic of each object that
subscribed to the type of the event. The application logic
forwards the event to the appropriate object.

The abstract platform we have presented in [3] and
depicted schematically in Figure 10 is another example of
this approach. This abstract platform introduces dynamic
reconfiguration concepts in a platform-independent
design, by specialising the notion of a component, and
distinguishing between reconfigurable and non-
reconfigurable components. Reconfigurable components
can be migrateable, replaceable or both migrateable and
replaceable. This allows a designer to establish these
distinctions at a platform-independent level, specifying
which components may be manipulated by operations in
reconfiguration steps.

ReconfigurationManager
«component»

ReconfigurationManager
«component»

Client
«component»

«reconfigurablecomponent»
Server BackEndServer

«reconfigurablecomponent»

UML profile extending
UML meta-model

<<stereotype>>
Reconfigurablecomponent

isReplaceable : boolean
isMigrateable : boolean

<<metaclass>>
Component

(from Basic Components)

<<metaclass>>
Class

(from Structured Classes) <<interface>>
ReconfigurationManager

create_reconfiguration_step
commit_reconfiguration_stepabstract

platform
definition

pre-defined artefacts

specific
application

using
abstract
platform

Figure 10 Support for dynamic

reconfiguration in an abstract platform

In Figure 10, we represent the reconfigurable
specialization of the component concept in UML 2.0 by
introducing the stereotype «reconfigurablecomponent»,
which is applied to a UML component. This stereotype
has Boolean properties isReplaceable and isMigrateable.
UML statecharts can be used to specify the behaviour of
(reconfigurable) components. A reconfiguration manager
component represents the capabilities of the abstract
platform for handling reconfiguration steps.

6. Related Work

The MDA Guide [21] provides some examples of
“generic platform types” and mentions briefly the need
for a “generic platform model”, which “can amount to a
specification of a particular architectural style.”
Nevertheless, the introduction of these concepts is
superficial: for example, the term “generic platform” is
not even defined explicitly. In our interpretation of that
documentation, we position our notion of abstract
platform as subsuming that of generic platform. Abstract
platforms can have other relevant characteristics in
addition to defining a “particular architectural style”, as
we have shown in section 3. Furthermore, we have
focussed here on providing guidelines for a designer to
define and represent these abstract platforms. The MDA
Guide also states that a PIM “exhibits a specified degree
of platform independence so as to be suitable for use with
a number of different platforms of similar type.” Our
concept of abstract platform defines the degrees of
platform independence for a PIM.

We have compared our notion of abstract platform to
that of infrastructure as defined in the computational
viewpoint of the RM-ODP [10]. This has led to a
framework that allows a recursive application of the
computational viewpoint at different levels of platform-
independence [4].

The UML profile for EDOC Component Collaboration
Architecture (CCA) [27] defines implicitly an abstract
platform in which application part interactions are always
decomposed into asynchronous messages that are
exchanged through “Flow Ports”. This profile also
introduces the notion of recursive component
collaboration (not present in UML 1.5 [29]) which can be
explored to define abstract platforms explicitly, similarly
to what we have obtained by using UML 2.0’s composite
structures.

Explicit abstract platform definition is comparable to
the definition of (the behaviour of) connectors in
Architecture Description Languages (ADLs), such as
Rapide [14, 15] and Wright [1], when considering
exclusively the characteristics of interaction support.
While the role of middleware platform characteristics in
ADLs have been recognized in [17], mechanisms to
systematically separate and relate platform-independent

and platform-specific descriptions have not been proposed
in the scope of the work on Software Architecture.

7. Concluding Remarks

In this paper, we have argued that the concept of
abstract platform should have a prominent role in MDA
development. An abstract platform defines platform
characteristics that are considered at the particular level of
platform-independence, and may also serve as starting
point for platform-specific realization.

There is no obvious distinction between platform-
independent and platform-specific concerns. Therefore, a
comprehensive MDA design approach should allow
designers to select or define suitable abstract platforms for
platform-independent designs. Explicitly identifying an
abstract platform brings attention to balancing between
two conflicting goals: (i) platform-independent modelling,
and (ii) platform-specific realization.

Often, some platform characteristics are assumed
implicitly in platform-independent designs. This may lead
to PIMs that cannot be reused for different platforms or it
may lead to PIMs that cannot be directly compared and
integrated. It may also lead to transformations that cannot
be reused. Platform characteristics assumed in platform-
independent designs are better understood and controlled
by designers if abstract platform definitions are produced.

Design language concepts and characteristics of
abstract platforms are interrelated. Therefore, careful
selection of a design language is indispensable for the
beneficial exploitation of the PIM/PSM separation and the
definition of abstract platforms.

We have discussed how to support the concept of
abstract platform in UML, through both the implicit and
the explicit abstract platform definition approaches. In the
implicit definition approach, the semantic variation points
of UML should either be resolved or should be considered
irrelevant for deriving intended abstract platform
characteristics. UML Profiles can be useful in this
approach to specialise design concepts, and manage and
package abstract platforms. In the explicit definition
approach, UML 2.0’s composite structures are useful both
for defining abstract platforms from an external and from
an internal perspective.

In our future research, we will investigate
modularisation criteria for abstract platform definitions. A
designer should then be able to compose an abstract
platform from abstract platform definition modules. This
modularisation would ideally be preserved in
transformation specifications and ultimately at platform-
specific level.

The notions of platform-independence and abstract
platform should be used judiciously. The costs of
maintaining different levels of platform-independence
must not outweigh the benefits of the reuse of platform-
independent models. Evaluating these costs in early stages

of development is not straightforward, since the benefits
of the separation PIM/PSM must be considered on the
long run. This evaluation remains an open issue.

Acknowledgements

This work is partly supported by the European
Commission in context of the MODA-TEL IST project
(http://www.modatel.org) and by the Dutch Freeband
programme in the context of the A-MUSE project
(http://www.freeband.nl/communication).

References

[1] R. J. Allen, and D. Garlan, “A Formal Basis for
Architectural Connection”, ACM Transactions on Software
Engineering and Methodology, vol. 6, no. 3, ACM Press,
July 1997, pp. 213-219.

[2] J. P. A. Almeida, M. van Sinderen, L. Ferreira Pires and D.
Quartel, “A systematic approach to platform-independent
design based on the service concept”, Proceedings 7th
IEEE Intl. Enterprise Distributed Object Computing
Conference (EDOC 2003), IEEE Computer Society Press,,
Sept. 2003, pp. 112-123.

[3] J. P. A. Almeida, M. van Sinderen, L. Ferreira Pires and M.
Wegdam, “Platform-independent Dynamic Reconfiguration
of Distributed Applications”, Proceedings IEEE 10th
International Workshop on Future Trends in Distributed
Computing Systems (FTDCS 2004), IEEE Computer
Society Press, May 2004, pp. 286-291.

[4] J. P. A. Almeida, M. van Sinderen, and L. Ferreira Pires,
“The role of the RM-ODP Computational Viewpoint
Concepts in the MDA approach”, Proceedings of the 1st
European Workshop on Model-Driven Architecture with
Emphasis on Industrial Applications (MDA-IA 2004), CTIT
Technical Report TR-CTIT-04-12, University of Twente,
ISSN 1381-3625, The Netherlands, March 2004, pp. 43-51.

[5] G. Arango, “Domain Analysis: from Art Form to
Engineering Discipline”, ACM SIGSOFT Software
Engineering Notes, vol. 14, no. 3, ACM Press, May 1989,
pp. 152-159.

[6] T. Elrad, R. E. Filman, and A. Bader (eds.),
Communications of the ACM, Special Section on Aspect-
Oriented Programming, vol. 44, no.10, ACM Press, Oct.
2001, pp. 29-97.

[7] L. Ferreira Pires, Architectural Notes: a framework for
distributed systems development, Ph.D. Thesis, University
of Twente, Enschede, The Netherlands, 1994, available at
http://www.cs.utwente.nl/~pires/thesis/

[8] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale,
and B. Natarajan, “An Approach for Supporting Aspect-
Oriented Domain Modeling”, in Proceedings Generative

Programming and Component Engineering (GPCE 2003),
Lecture Notes in Computer Science, vol. 2830, Springer-
Verlag, Sept. 2003, pp. 151-168.

[9] ITU-T / ISO, Open Distributed Processing - Reference
Model - Part 2: Foundations, ITU-T X.902 | ISO/IEC
10746-2, Nov. 1995.

[10] ITU-T / ISO, Open Distributed Processing - Reference
Model - Part 3: Architecture, ITU-T X.903 | ISO/IEC
10746-3, Nov. 1995.

[11] ITU-T / ISO, Open Distributed Processing - Reference
Model - Enterprise Language, ITU-T X.901 | ISO/IEC
15414:2002, Oct. 2001.

[12] ITU-T, Recommendation Z.100 – CCITT Specification and
Description Language, International Telecommunications
Union (ITU), 2002.

[13] J. Jürjens, A UML statecharts semantics with message-
passing, in Proceedings of the 2002 ACM Symposium on
Applied Computing, ACM Press, 2002, pp. 1009 – 1013.

[14] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and Analysis of System
Architecture Using Rapide”, IEEE Transactions on
Software Engineering, vol. 21, no. 4, IEEE Computer
Society Press, Apr. 1995, pp. 336-355.

[15] D. Luckham and J. Vera, “An Event-Based Architecture
Definition Language”, IEEE Transactions on Software
Engineering, vol. 21, no. 9, IEEE Computer Society Press,
Sept. 1995, pp. 717-734.

[16] Microsoft Corporation, Microsoft .NET Remoting: A
Technical Overview, July 2001, available at
http://msdn.microsoft.com/library/en-
us/dndotnet/html/hawkremoting.asp

[17] E. Di Nitto and D. Rosenblum, “Exploiting ADLs to
Specify Architectural Styles Induced by Middleware
Infrastructures”, in Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), IEEE
Computer Society Press, May 1999, pp. 13-22.

[18] Object Management Group, Model driven architecture
(MDA), ormsc/01-07-01, July 2001.

[19] Object Management Group, Common Object Request
Broker Architecture: Core Specification, Version 3.0,
formal/02-12-06, Dec. 2002.

[20] Object Management Group, CORBA Component Model,
v3.0, formal/02-06-65, July 2002.

[21] Object Management Group, MDA-Guide, V1.0.1, omg/03-
06-01, June 2003.

[22] Object Management Group, Meta Object Facility (MOF)
2.0 Core Specification, ptc/03-10-04, Oct. 2003.

[23] Object Management Group, Meta Object Facility (MOF)
Specification Version 1.4, formal/02-04-03, April 2002.

[24] Object Management Group, MOF 2.0 Query / Views /
Transformations RFP, ad/2002-04-10, April 2002.

[25] Object Management Group, Unified Modelling Language:
Object Constraint Language version 2.0, Draft Adopted
Specification, ptc/03-08-08, Aug. 2003.

[26] Object Management Group, UML 2.0 Superstructure,
ptc/03-08-02, Aug. 2003.

[27] Object Management Group, UML Profile for Enterprise
Distributed Object Computing Specification, ptc/02-02-05,
Feb. 2002.

[28] Object Management Group, Unified Modelling Language
(UML) Specification: Infrastructure, Version 2.0, ptc/03-
09-15, Sept. 2003.

[29] Object Management Group, Unified Modelling Language
(UML) Specification, Version 1.5, formal/03-03-01, March
2001.

[30] D. Varró, A Formal Semantics of UML Statecharts by
Model Transition Systems, in Proceedings ICGT 2002:
International Conference on Graph Transformation,
Lecture Notes in Computer Science, vol. 2505, Springer-
Verlag, 2002, pp. 378-392.

[31] World Wide Web Consortium, SOAP Version 1.2 Part 1:
Messaging Framework, W3C Proposed Recommendation,
May 2003, available at http://www.w3.org/TR/soap12-
part1

[32] World Wide Web Consortium, Web Services Description
Language (WSDL) 1.1, W3C Note, March 2001, available
at http://www.w3.org/TR/wsdl

