
Non-functional Requirements as Qualities, with a

Spice of Ontology

 Feng-Lin Li, Jennifer Horkoff, John Mylopoulos

University of Trento

Trento, Italy

{fenglin.li@, {horkoff, jm}@disi.}unitn.it

Renata S. S. Guizzardi, Giancarlo Guizzardi

Federal University of Espírito Santo (UFES)

Vitória, Brazil

{rguizzardi, gguizzardi}@inf.ufes.br

Alexander Borgida

Rutgers University

New Brunswick, USA

borgida@cs.rutgers.edu

Lin Liu

Tsinghua University

Beijing, China

linliu@tsinghua.edu.cn

Abstract—We propose a modeling language for non-functional

requirements (NFRs) that views NFRs as requirements over qual-

ities, mapping a software-related domain to a quality space. The

language is compositional in that it allows (recursively) complex

NFRs to be constructed in several ways. Importantly, the lan-

guage allows the definition of requirements about the quality of

fulfillment of other requirements, thus capturing, among others,

the essence of probabilistic and fuzzy goals as proposed in the

literature. We also offer a methodology for systematically refining

informal NFRs elicited from stakeholders, resulting in unambig-

uous, de-idealized, and measurable requirements. The proposal is

evaluated with a requirements dataset that includes 370 NFRs

crossing 15 projects. The results suggest that our framework can

adequately handle and clarify NFRs generated in practice.

Index Terms—Non-functional requirements, goal models, soft-

ware qualities, ontologies

I. INTRODUCTION

Non-functional requirements (NFRs) — such as usability,

maintainability, security and performance — have been diffi-

cult to deal with since the very beginning of Requirements En-

gineering (RE) back in the ‘70s. NFRs are known to have a

make-or-break status in software development projects, but are

difficult to treat formally.

In RE research and practice, NFRs have been treated in one

of two ways: (a) they included all requirements that were not

functional (hence their name); (b) they were requirements on

quality of the system-to-be, such as usability, maintainability

and the like. The former approach bundles together very differ-

ent kinds of requirements and makes it hard to come up with

any kind of formal treatment. The latter approach has led to

standards like ISO/IEC 25010 [1]. However, these standards do

not say much about the exact nature of the qualities nor how to

exploit them in dealing with NFRs.

One of the proposals that attempted to deal with NFRs in

depth was the NFR framework (NFRF), first proposed in 1992

[2] and extended into a monograph [3]. In this proposal, NFRs

were modeled as “softgoals” — goals with no clear-cut criteri-

on for success. The NFRF offered a simple representation that

allowed basic reasoning, such as: if I make design decisions A,

B and C, how am I doing with respect to softgoal SG? Howev-

er, goals lacking a clear criterion of satisfaction (i.e., softgoals)

turn out to be not always NFRs — most early requirements, as

elicited from stakeholders are also “soft”. For instance, when a

stakeholder says “Upon request, the system shall schedule a

meeting”, this is also vague and needs to be made more firm:

Do we allow requests for any time (e.g., weekends)? Should the

system notify participants about the scheduled meeting? Should

it account for contingencies (e.g., power outage)? etc. Our con-

clusion is that softgoals constitute a useful abstraction for early

requirements, both functional and non-functional, rather than

just non-functional ones.

But this conclusion begs the next question: what then are

NFRs, how do we model them and how do we use these models

in the RE process? We begin with treating them as “qualities”,

and look to foundational ontologies to tell us precisely what

qualities are [4]. Foundational ontologies have been defined in

the research area known as Applied Ontology (AO) and they

include the most general concepts needed for any domain, such

as object, event and quality. Prominent foundational ontologies

include DOLCE [5] and UFO [6]. In these ontologies, a quality

is defined as an individual (instance) with the power to connect

the entity it qualifies (its subject) with a value in a geometric

quality space.

NFRs are often specified in idealized and/or vague terms,

making it hard to assess their fulfillment. Take, for example,

NFRs from the PROMISE dataset [7]:

 NFR-1: “The product shall return (file) search results

in an acceptable time.”

 NFR-2: “Administrator shall be able to activate a pre-

paid card via the Administration section within 5 sec.”

 NFR-3: “The website shall be available for use 24

hours per day, 365 days per year.”

 NFR-4: “The interface shall be appealing to callers

and supervisors.”

These NFRs are problematic for a number of reasons:

 NFR-1 is vague, and therefore not measurable.

 It is unclear whether NFR-2 is strict or gradable (can be

relaxed). E.g., would “5.7 sec.” do? If gradable, what

are the constraints on the possible values?

 NFR-3 is idealized and unsatisfiable as such, given all

the contingencies that could render it unfulfilled (e.g.,

power failures, strikes, government shutdowns, etc.)

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

293

 For NFR-4, some users may report that the interface is

appealing while others do not agree. This is due to the

fact that some qualities (e.g., look, appearance) can be

subjective, resting “in the eye of the beholder”.

The aim of this work is to propose a language for modeling

NFRs, addressing the challenges listed above. Our proposal

makes the following contributions:

 Adopts an ontological interpretation of NFRs based on

qualities in foundational ontologies.

 Offers a compositional modeling language for captur-

ing NFRs, where the subjects of involved qualities can

be identified using (arbitrarily nested) notation, resem-

bling feature structures in linguistics [8].

 Identifies three (combinative) meta-qualities for talking

about the fulfillment of a requirement: universality of a

proposed solution, gradability of the fulfillment of the

requirement, and agreement among stakeholders that

indeed the given requirement is satisfied.

 Proposes a goal-oriented requirements methodology for

refining ambiguous, (practically or logically) unsat-

isfiable, or vague NFRs to unambiguous, de-idealized

and measurable ones.

The remainder of the paper is structured as follows. Section

II introduces the research baseline for this work, section III and

IV present a language for capturing NFRs treated as qualities.

Section V proposes a goal-oriented methodology for refining

NFRs, while section VI evaluates the proposal using a publicly

available dataset of requirements. Section VII reviews and cor-

relates related work, and section VIII concludes and offers sug-

gestions for future work.

II. RESEARCH BASELINE

Requirements as goals. Goal-Oriented Requirements En-

gineering (GORE) is founded on the premise that requirements

are goals that stakeholders want to fulfill. Key GORE proposals

include seminal work on the KAOS project [9], i* [10], and

Techne [11], as well as the above mentioned NFRF [3].

In GORE, goals can be refined to other goals through AND/

OR refinement. In this paper, we distinguish between (i) func-

tional goals that need to be achieved by functions performed by

the system or an external actor, and (ii) quality goals that cap-

ture qualities of the system. Functional goals are operational-

ized by tasks/functions, while quality goals are operationalized

by quality constraints, as in Techne [11]. For example, “collect

traffic info” is a functional goal FG#1 that might be operation-

alized by tasks “use fixed sensors” or “use mobile phone with

GPS”, while “collected traffic info in real-time” is a quality

goal related to FG#1. As the name suggests, operationalization

makes requirements operational [12], either by providing a task

that fulfills a functional goal, or by offering a formally speci-

fied Boolean constraint that measures whether a quality goal is

fulfilled.

Qualities as mappings. Ontologically speaking, a quality is

defined as a basic perceivable or measurable characteristic that

inheres in and existentially depends on its subject [5][6]. The

subject can be an object, process, action/task, goal, as well as

collectives of objects, processes, and so on. In proposals such

as DOLCE [5] and UFO [6], quality is a particular (i.e., in-

stance), e.g. cost#1 represents the cost of a specific trip. Each

quality has a quality type QT (e.g., Cost), which is associated

with a quality space QS (e.g., EuroValues). These approaches

also differentiate a quality, e.g. cost#1, from its value, e.g.,

1000€, which is a point or region in the corresponding QS (Eu-

roValues).

Our notion of quality space is based on the notion of Con-

ceptual Space put forth by Gardenfors [13]. In this theory, qual-

ity spaces should be understood literally, given that these struc-

tures are endowed with geometrical and topological properties.

For instance, associated with the quality type Cost we can have

a EuroValues space, a one-dimensional structure isomorphic to

the positive half-line of 2-place decimal numbers; other quality

types such as Color, Security and Usability are associated with

multi-dimensional spaces, with proper constraints on the consti-

tuting dimensions (reflecting the geometry of the space at hand).

This theory can be adapted or extended to address a number of

relevant conceptual phenomena, from context-dependent, non-

monotonic and analogical reasoning [13] to graded membership

in vague regions [14].

In this work, we simplify the rich quality theory by treating

a quality Q (be ontologically correct, Q is a quality type) as a

mapping (mathematical function) that takes an individual sub-

ject subj of type SubjT, to a quality value (point or region) in

Q’s codomain (quality space). For example, as a mapping, the

quality “usability” takes its subject, say a software system “the

E-movie manager”, to a region “good” in its quality space. In

RE, qualities are also often applied to entire subject types. E.g.

the quality “processing time” in NFR-1 applies to all possible

runs of the system. For a fuller account of our ontological

treatment of NFRs, interested readers can refer to [14].

III. NON-FUNCTIONAL REQUIREMENTS AS REQUIREMENTS

OVER QUALITIES

NFRs as qualities. Adopting a qualities-as-mappings per-

spective, we model an NFR as a quality goal (QG) that con-

strains a quality mapping Q to take values in a desired region

QRG of its quality space for its subject type SubjT, and capture

a QG using the notation in Eq. 1, which is an abbreviation of

∀x. instanceOf (x, SubjT) → subregionOf (Q(x), QRG), mean-

ing that for each individual subject x of type SubjT, the value

of Q(x) should be a sub-region of (including a point in) QRG.

Q(SubjT) : QRG
1
 

 In addition, we use ‘:=’ to assign names to expressions, for
later reference. E.g., NFR-1 can be modeled as QG1 in Exam-
ple 1, below. Quality constraints (QC) that operationalize QGs
use the same syntax, but must involve measurable regions.
E.g., a corresponding quality constraint for QG1 is shown in
the same example, as QC1.

Example 1 (NFR-1).
QG1:= processing time (file search): acceptable.
QC1:= processing time (file search): ≤ 8 sec.
QC1 is-operationalization-of QG1

1 If Q is an aggregate quality like universality and average, the argument of Q
will be a set, whose type is a power-set, denoted as (). In this case the
syntax will be (()) .

294

NFRs can be defined over both subject types and individu-

al subjects. In Example 1, the subject “file search” is a type,

not an individual (in object-oriented terms, a class, not an in-

stance); here we refer to a set of its instantiations, i.e., a set of

file searches. The expression of QG1 (QC1) implies a set of

QGs (QCs), each of which requires a specific run “file search

#” to take a processing time value in the acceptable (≤ 8 sec.)

region. Hence QG1 (QC1) is interpreted as “for each file
search, its processing time shall be acceptable (≤ 8 sec.)”.

Consider another NFR: “The interface shall be intuitive”.

In this case, the subject of the requirement is an individual

subject, a singleton: “understandability ({the interface}): intui-

tive”, where “understandability” is a quality, “intuitive” is the

desired quality region in the corresponding quality space

where the ease of understanding is relatively intuitive.

Quality domains and codomains. The concept of quality

in DOLCE [5] and UFO [6] refers to a broad category of

instrinsic properties of entities that can be projected on a

quality space (roughly, the basis of a measurement structure

that becomes the codomain of the associated quality mapping

[15]). Examples can be found in every domain, including col-

or, shape, length, atomic number, electric charge, etc.

For our purposes, we adopt the quality model proposed by

the ISO/IEC 25010 standard [1] as our reference. This stand-

ard distinguishes two categories of qualities: qualities in use

and product qualities, with five and eight qualities, respective-

ly. Fig. 1 shows the eight product qualities and their refine-

ments. For example, “usability” is refined into “learnability”,

“operability”, “accessibility”, etc.

Fig. 1. The eight product qualities in ISO/IEC 25010 (with refinements)

Domains and codomains of qualities are key components

in the specification of an NFR. For a specific quality, the set of

subject types that it can be applied to constitutes its domain,

and the union of all the possible values will form its codomain

(quality space).

The domain of a software quality can be any aspect of a

software system, including its constituents (code, architecture,

requirements, etc.), the software processes that created it, its

runtime environment, and the like.

Standards such as ISO/IEC 9126-1 [16] and 25010 [1] are

helpful, up to a point, in defining a codomain for qualities. For

example, “availability” is defined as “degree to which a sys-

tem, product or component is operational and accessible when

required for use”. Hence it will be associated with a codomain

that is a scale ranging from 0% to 100%. We show in Table I

possible domains and codomains of 10 frequently used quali-

ties in our evaluation experiment (more details can be found in

Section VI).

TABLE I. THE DOMAIN & CODOMAIN OF 10 FREUENTLY USED QUALITIES

Quality Domain Codomain

Operability {a system}
{time to operate};

{ease of operating: easy, hard…}

Availability {a system} {0% ~ 100%}

Processing /

Response time
{functions/tasks}

{time interval};

{slow, … fast, …}

Scalability {a system} {simultaneous transactions}

Learnability {a system}
{time to learn};

{ease of learning}

Frequency {functions/tasks} {numbers per time unit}

Understandability {a system} {ease of understanding}

Modifiability {a system} {time to modify}

Look and feel {a system} {degree of preferences}

The structure of the codomains of some qualities may be

complex, and can differ depending on their subjects. For ex-

ample, according to ISO/IEC 25010, the codomain of usability

is a six-dimensional space, with each of its sub-qualities being

one dimension. Of course, stakeholders may only be con-

cerned with some of these sub-qualities, in which case a usa-

bility QG should be refined accordingly. For example, if only

learnability, operability, and accessibility are of concern, then

the codomain of usability becomes three-dimensional.

By differentiating a quality (type) from the quality spaces it

can be projected on, we can account for the possibility of hav-

ing multiple quality spaces (with measurement structures de-

rived from them) for the same quality (type) [15]. Thus such a

quality (type) could map an individual subject to different

quality values in their respective quality spaces. For example,

as shown in Table I, “learnability” can map “a system” to ei-

ther “easy/good” or “x minutes of training” in different quality

spaces.

It is important to highlight that our qualities cannot be

equated with attributes in the tradition of conceptual modeling

[6]. In general, attributes are conventional ascriptions of prop-

erty values to individuals. Qualities, in contrast, inhere in their

bearers, i.e., there is something intrinsic (in the bearers) that

makes true a certain property ascription to these bearers. That

is, attributes are properties assigned to objects while qualities

are properties intrinsic to them [17] (ones we have to design

for a system). E.g., “release date” and “serial number” are

merely conventional attributions of certain values to a software

system. In contrast, when we state that a system has 50K

LOCs or high reliability, there is something in the system that

makes these statements true.

IV. REPRESENTING COMPLEX NFRS

The preliminary syntax introduced so far, along with a cat-

alogue of qualities allows us to express simple NFRs such as

NFR-1, but is not sufficient to capture the following aspects of

an NFR: (1) a subject restricted by qualifiers, acting as relative

clauses, e.g., going from “activate a pre-paid card within 5

Functional
Suitability

Functional completeness
Functional correctness

Functional appropriateness

Reliability
Availability
Recoverability
Fault tolerance

Maturity

Usability

Learnability
Operability
User error protection

Appropriateness recognizability

User interface aesthetics
Accessibility

Security
Integrity
Non-repudiation
Accountability

Confidentiality

Authenticity

Compatibility
Interoperability

Co-existence

Maintainability
Reusability

Modularity

Analysability
Modifiability

Testability

Performance
efficiency

Resource utilization
Time behaviour

Capacity

PortabilityInstallability
Adaptability

Replaceability
ISO/IEC
25010

(Product
Quality)

295

sec.” to “activate a prepaid card <by Administrator> <via the

Administration section> within 5 sec.” (NFR-2); (2) NFRs that

are unsatisfiable because of blanket use of universal quantifi-

ers (NFR-3, but also NFR-2); (3) hard constrained NFRs that

leave no room for flexibility (e.g., NFR-2); and (4) subjective

NFRs whose satisfaction depends on the eye of the beholder

(e.g., “appealing look” in NFR-4). To address these issues, we

need to enrich our language with new constructs.

A. Qualified Subjects

We extend the basic syntax introduced earlier by allowing

its subject type SubjT to be restricted by qualifiers that consist

of <attribute: filler> pairs referring to SubjT (or fillers, when

nested)
2
. By using this language, we are able to define particu-

lar sets of individual subjects, over which we can talk about

concerned qualities. For example, the subject of NFR-2, “acti-

vate pre-paid card”, is a software function and can be quali-

fied by the attributes “actor” and “means”, as in Example 2. It

represents the set of activations performed by administrators

through the admin section (past or future).

Example 2 (NFR-2).
activate p-card' :=
activate pre-paid card <actor: Administrator>

<means: via the Administration section >.
QG2 := processing time (activate p-card'): within 5 sec.

B. Qualities of Fulfillment

Many requirements can be represented as logical assertions

of the form ∀x P(x), as in “For every request (∀x) a meeting

shall be scheduled (P(x))” (FR) and “Every file search (∀x)

will be completed within 5 sec (P(x))” (NFR). Inspired by

knowledge representation techniques for uncertainty [18], we

propose three meta-qualities on the fulfillment of a require-

ment: (1) universality: the degree to which the set of all x satis-

fies P; (2) gradability: the degree to which P holds for each x;

(3) agreement: the degree to which observers agree P holds for

each x. We accordingly define three meta-quality functions, U

for universality, G for gradability, A for agreement, that can be

applied to requirements, functional or non-functional, to define

quality goals.

Universality. The U operator aims at limiting universality

for its requirement subjects, in that a requirement need not be

fulfilled in all cases, but rather in a percentage thereof. E.g.,

NFR-3 can be relaxed as “the website shall be available 99.5%

of the time per year”, expressed as

theWebsite' := theWebsite
<at: time units <in-period: a year>>

 QG3 := availability(theWebsite'): 100% //the entire unit
 QG3-1 := U (QG3): 99.5% //99.5% of the units in a year

U takes as argument a set of requirement subject instances,

which is of type power-set(SubjT) (i.e., ()), and re-

turns a percentage of the instances for which the requirement

is to-be-fulfilled in the linear space 0% ~ 100%. In this case,

the subject “theWebsite'” has N instances representing the sys-

tem during each unit in a one-year period, and QG3 according-

2 Our proposed language currently does not provide a built-in set of attributes,
which requires an ontology of software systems and of the application domain.

ly has N QG instances, with each of them requiring the website

to be 100% available for its corresponding time unit. Original-

ly, all QG3’s instances are required to hold. It is now relaxed

to QG3-1, saying only 99.5% of them need to be satisfied.

NFR-2 can be relaxed in a similar way, saying k% of the acti-

vations shall be within 5 seconds.

The U operator regulates/modifies the fulfillment of a re-

quirement, either non-functional or functional, from a univer-

sal or statistical perspective. For instance, the requirement “all

users shall be authenticated” can be represented as a function-

al goal FG that calls for a function authenticateUser. If stake-

holders can tolerate some failures for this requirement, say 1%,

this can be captured by the universality requirement “U (au-

thenticateUser): 99%”. During elicitation, it is useful to ask a

stakeholder who calls for a universal requirement in the form

of “∀x P(x)”, whether he/she really means it for all x: “Could

you live with less, and if so, how much less?”. It is also helpful

to remind the stakeholder that universal requirements are at the

very least harder and more expensive to fulfill, and at worst

simply unsatisfiable.

Gradability. The G operator allows for partial satisfaction

of a requirement. Specifically, G maps a requirement to its

desired degree of fulfillment on a linear scale 0% ~ 100%.

When evaluating the satisfaction of an NFR that specifies

either crisp quality regions such as “≤ 5 sec.”, “2 ~ 3 m” and

“100 ~ 200 €”, or vague regions like “fast”, “high” and “low”,

the measured or perceived quality value may approach but not

be exactly located in the desired region. To accommodate de-

grees of satisfaction, we use G to relax NFRs. For example,

NFR-2 (captured as QG2) can be relaxed as QG2-1, requiring

the processing time value to be nearly within the region (0 sec.,

5 sec.], or QG2-2, requiring the processing time to be 90% in

the region. By using G, the membership of a time value in the

interval (0 sec., 5 sec.] is made gradable (“fuzzy” in the sense

of Fuzzy Logic [19]), and we only require a partial member-

ship (e.g., nearly, 90%) in that interval for fulfillment. The

relaxed membership can be clear or vague; if vague (e.g.,

nearly), it shall eventually be made clear (e.g., 90%) through

operationalization. For details on calculating graded member-

ship based on the theory of quality space, we refer to our com-

panion paper [14].

QG2:= processing time (activate p-card'): within 5 sec.

QG2-1 := G (QG2): nearly

QG2-2 := G (QG2): 90%

G can also be applied to relax NFRs with vague quality re-

gions besides those with crisp regions like (0 sec., 5 sec.]. For

instance, NFR-1 can be relaxed as follows, requiring the pro-

cessing time value to be moderately in the acceptable region.

QG1:= processing time (file search): acceptable.

QG1-1:= G (QG1): moderately.

The G operator also captures the degree of fulfillment of

functional requirements (FRs). A functional requirement, es-

pecially one that calls for multiple/batch tasks, can also be

only partially fulfilled. For example, if room equipments have

not been returned after a meeting, the scheduling requirement

can be seen as almost but not totally fulfilled.

296

Agreement. Agreement (A) is intended to address the sub-

jectivity of qualities. The satisfaction of some NFRs, especial-

ly those concerning qualities that depend on human individu-

als, such as look, attractiveness and satisfaction, is subjective

and will vary with the observer who is beholding.

We can make such NFRs objective by operationalization

(e.g., “the interface shall be intuitive” can be operationalized

as “80% of the new users can operate the system without train-

ing” with the use of U), or by using A to capture the agreement

among observers that a requirement is indeed satisfied. E.g.,

NFR-4 in our list can be rephrased as QG4-1, requiring 80% of

the callers and supervisors to agree that QG4 holds.

QG4:= look (the interface): appealing

QG4-1:= A (QG4): 80% of the callers and supervisors

A relates to the notion of precision widely used in Science

and Engineering. Precision for a measuring system is defined

as the degree of repeatability, i.e., the extent to which multiple

measurements lead to the same result. In our case, the measur-

ing system is an observer and a measurement consists of the

observer determining whether a requirement is satisfied or not.

In this sense, the domain and codomain of A consist of a set of

requirements, and ratios of observers from a given pool who

agree each requirement is satisfied, respectively.

Composition. In practice, a requirement may be specified

using multiple applications of the three operators. For example,

to make NFR-2 practical, we can relax it by using U, G, or

both. As shown below, we first use G to relax QG2 as nearly

being in the region (0 sec., 5 sec.], then use U to relax the set

of all executions of “activate p-card'”, requiring 95% of the

activation processes to be nearly in that interval.

QG2:= processing time (activate p-card'): within 5 sec.
QG2-1:= G (QG2): nearly
QG2-3:= U (QG2-1): 95%

These three operators can be combined in many different

ways: U over G (firstly apply G and then U, as in the above

example), A over G (e.g., 80% of the users report the website

is kind of hard to understand), G over U/A (e.g., nearly 90% of

the activation takes 5 sec., nearly 80% of the users report the

interface is simple), or even G over U/A over G (e.g., nearly

90% of the activation takes nearly 5 sec.). The full syntax and

semantics of proper operator nesting will be part of our future

work.

V. A FRAMEWORK FOR GOAL MODELS WITH QUALITIES

We introduce next a goal modeling framework enriched

with qualities and a methodology for refining early and infor-

mal NFRs to unambiguous, satisfiable and measureable ones.

The framework and methodology is evaluated through the case

study on the PROMISE requirements dataset [7] in Section VI.

A. Goal Models with Qualities

Our conceptual model for goal models is shown in Fig. 2

and includes the concepts introduced earlier. In general, we

represent a requirement as a Goal, which is further specialized

into Functional and Quality Goal. Functional goals are opera-

tionalized by functions (i.e., tasks), while quality goals are

operationalized by quality constraints. Any goal can be opera-

tionalized by a domain assumption. E.g., the functional goal

“Find room for meeting” may be operationalized by a domain

assumption like “There are enough rooms available for all

requested meetings”. Also, by function constraint, a function

can be constrained to situations that must hold before/after/

during its execution, analogously to pre/post-conditions and

invariants. E.g., “only managers are allowed to activate users”

is a constraint over the function “activate users”. The three

kinds of refinements, namely disambiguation, relaxation and

focus, will be introduced in detail in the next section.

Fig. 2. The conceptual model for the revisited goal modeling framework

B. Building Goal Models during Requirements Analysis

In general, goals elicited from stakeholders are vague, am-

biguous, idealized, etc. The aim of requirements analysis is to

iteratively refine them into a specification that includes con-

crete and/or measurable functions, quality constraints and do-

main assumptions.

Our corresponding methodology is based on iteratively an-

swering the following questions: (1) Is a requirement/goal un-

ambiguous? (2) Is it (practically) satisfiable? (3) How do we

make it measurable? In response to these questions, we per-

form disambiguation, relaxation, and focus refinement, in ad-

dition to the usual logical (AND/OR) refinements and opera-

tionalization of goal models.

Disambiguation. This is the first phase for capturing and

analyzing requirements. On discovering the ambiguity of a

given requirement/goal [20], we can keep asking the following

questions: (1) What is the subject of the goal? (2) What quality

does it refer to (if any)? These questions help identify not only

the subject (and the quality) of a goal, but also potential ambi-

guities. E.g., by focusing on the subject in “the interface shall

have standard menu buttons for navigation”, we find that there

are four possible interpretations: (1) there should be buttons all

of which should be standard; (2) there should be buttons some

of which should be standard; (3) if there are buttons then all of

them should be standard; (4) if there are buttons then at least

some should be standard. The customer may choose (1), in

which case we should refine the goal to “the user interface

shall have menu buttons, and all of them shall be standard”.

Ambiguity may also arise from word polysemy and multiplici-

ty of structural analyses, interested readers can refer to [20].

Relaxation. After disambiguation, we need to analyze

whether a goal is satisfiable or not in practice. As discussed

earlier, a requirement may be hard to satisfy because of: (1)

the use of universal quantifiers; (2) the specification of cate-

gorical quality regions (e.g., “≤ 5 sec.”); (3) subjectivity. In

Goal QualityGoal

Function

DomainAssumption

QualityConstraintFunctionConstraintFunctionalGoal

Operationalize

1 *

Focus

1 1..*

Disambiguate

1

1

Focus

1

1..*

Operationalize

1

1..*

Focus
1..*

1

Relax

1

1

Contribute* *

Contribute

*

*
Operationalize

1

*

Constrain *

1..*
Refine

1

1..*

297

such cases, we use the three operators, U, G, and A, or a com-

bination thereof to relax the requirement to a satisfiable (and

acceptable to stakeholders) degree.

Focus. Using focus refinement, we can focus a goal inter-

twining functionalities with qualities to functional goals and/or

quality goals (e.g., “collect real-time traffic info” can be stated

as a goal, and focused to “collect traffic info” and “timeliness

(collected traffic info): real-time”), or focus quality goals by

concentrating on sub-qualities or parts/elements of the system

that are of concern. For quality goals, focusing may move

along two dimensions: (1) the quality/sub-quality hierarchy,

and (2) the hierarchy of their subjects, generalization or aggre-

gation for some subjects, goal hierarchy for goal subjects. The

quality hierarchy we use is defined in the quality standard

adopted, such as ISO/IEC 25010 [1].

For example, the quality usability has sub-qualities learna-

bility, operability, accessibility, etc., according to ISO/IEC

25010. As shown in Fig. 3 (the meeting scheduler case study,

MS), the quality goal concerning “good usability” (MS-QG3)

may be focused into MS-QG4 and MS-QG5 that require re-

spectively the system to be easy to learn and operate. Similarly,

since a meeting scheduler has different functions, we can fur-

ther apply learnability and operability to functionalities such

as “set up a meeting” and “reserve a conference room”, ob-

taining MS-QG6 and MS-QG7 respectively.

When applying these two focusing refinements, we should

pay attention to the applicability of a quality to a subject. It is

not always meaningful to apply a quality to all the parts of its

subject, or all the sub-qualities of a quality to its subject. For

instance, user friendliness for a system may be focused into

user friendliness for its interface, but likely not for its timeslot

scheduling component. That is, quality functions are inherently

partial w.r.t. a software-related domain.

Note that the two steps, relaxation and focus, may be inter-

leaved in practice. For instance, the goal G := “monitor events”

may first be focused into G':= “monitor suspicious events”,

and then relaxed into U(G'): 98%”.

Operationalization. Once quality and subject have been

refined to a suitable granularity, we are left with the problem

of operationalizing vague quality values, i.e., making them

measurable. E.g., if we have a quality goal such as MS-QG7 in

Fig 3, how do we measure whether it is easy to learn?

To answer this question, we need to choose one or more

quality dimensions (called metrics in ISO/IEC standards) to

measure learnability. The ISO/IEC 9126-2 standard [21] can

help in this respect, e.g., learning time, help frequency, etc.

This means that operationalization may use several dimensions

of the quality space of learnability.

Let us assume that learnability is measured by learning

time. To get a reference value for easy, a typical way is to de-

termine a comparison class, a set of similar meeting scheduler

systems, and apply the quality learning time to the set of sub-

jects to get a set of typical quality values. We can then get a

reference value from these values, say, the average.

When determining typical time values, we need to focus to

the exact subject that the quality being considered inheres in,

because typicality may be manifested differently as the subject

varies, resulting in values in different regions of a quality

space [22]. E.g., typical values for the easy learnability region

concerning the function scheduleTimeslot may be different

from those for the function informParticipants.

Contribution. In our proposed framework, goals can be

focused to functional goals leading to functions, or to quality

goals resulting in quality constraints. However, our models do

not allow refining a functional goal into a quality goal and vice

versa. To address situations where functional elements con-

tribute to the satisfaction of quality goals, we use contribution

relationships (help, hurt, make, and break) of functions or con-

straints over functions on relevant quality goals. For instance,

the function “authenticateUsers” would help the authenticity

of a system. Contribution links constitute an important element

of tradeoff analysis during RE processes [23] and will be ex-

plored in future work.

VI. EVALUATION

The PROMISE (PRedictOr Models in Software Engineer-

ing) dataset consists of 625 requirements collected from 15

software development projects [7]. Among them, 255 items are

marked as functional requirements (FRs) and the remaining 370

non-functional requirements items are classified into 11 catego-

ries, such as Security, Performance and Usability. Classifica-

tion counts are shown in the second column of Table II.

In this section, we describe a comprehensive case study on

the 370 PROMISE NFRs. Our aim is twofold: a) to evaluate

the need for our framework by examining the nature of NFRs

in practice; and b) to evaluate the expressiveness of our frame-

work by applying it to the set of NFRs of meeting scheduler,

one of the fifteen projects in the PROMISE dataset. To evaluate

a), we observe the occurrence of elements in our conceptual

model, and evaluate the implicit use of and need for our pro-

posed meta-qualities. To evaluate b), we rewrite the set of

NFRs of meeting scheduler by using our proposed syntax, ap-

plying our methodology as described in Section V.

A. The Necesity of our Framework: PROMISE NFRs

We first classified the 370 NFRs according to our ontolog-

ical classification of requirements. Our classification includes

three basic categories of requirements, “functional requirement

(FR)”, “quality requirement (QR)”, and “constraints over func-

tion (CF)”. These would be modeled by functional goals, qual-

ity goals and function constraints in our conceptual model (see

Fig. 2), respectively.

Our classification is shown in Table II. Among the 370

items, we identified 187 QRs, 52 FRs, 50 CFs, 61 requirement

items that constitute a combination of FRs/CFs and QRs (FR/

CF+QR), 12 FRs with constraints over functions (FR+CF),

and 8 domain assumptions (DA). Statistically, QRs by them-

selves account for 51% of the NFRs, and quality-related re-

quirements (QR, FR/CF+QR) account for 67%. Moreover,

there are 21 FRs and 36 CFs which we judge to contribute to

QRs (e.g., security-related CFs contribute to security), bring-

ing up the total of QR-related requirements to 82% in the sam-

ple dataset. These statistics support the claim that most NFRs

are indeed quality-related [24], and support the need for an

explicit classification of function constraints (CFs).

298

TABLE II. STATISTICS OF THE CLASSIFICATION OF THE 370 NFRS

NFR Category Org. QR
FR/CF

+ QR
FR CF

FR

+CF
DA

Usability 67 47 13+1 5(3) 1(1) 0 0

Security 66 2 11+3 14(11) 32(32) 4 0

Operational 62 11 10+2 14 12(3) 6 7

Performance 54 44 4+1 3(2) 1 1 0

Look and Feel 38 20 7+2 9(1) 0 0 0

Availability 21 21 0 0 0 0 0

Scalability 21 19 0 1 0 1 0

Maintainability 17 8 5 0 4 0 0

Legal 13 11 0 2(2) 0 0 0

Fault tolerance 10 4 2 4(2) 0 0 0

Portability 1 0 0 0 0 0 1

Total 370 187 61 52(21) 50(36) 12 8

Org.: original categorization; QR: quality requirements; FR: functional requirements; CF:

constraints over functions; FR + CF: the combination of FR and CF; FR/CF+QR: the

combination of FR and QR, or CF and QR; DA: domain assumptions. Interested readers

can find the original data of our evaluation at http://goo.gl/8ALJDq.

Examining the data more closely, we find that 151 of the

187 QRs (81%) are classified under usability, performance,

availability, look and feel, and scalability; 28 out of 52 FRs

(54%) are classified under security and operational require-

ments; and 32 out of the 50 CFs (64%) are security-related.

Moreover, our analysis indicates that the majority of security

requirements are, in fact, functional or constraints over func-

tions. E.g., “The website shall prevent the input of malicious

data”, originally labeled as a security NFR, should actually be

a functional requirement. Our dataset includes many require-

ments of the form “only users with <role> are allowed to per-

form <action> or access <asset>”. In our classification, these

were treated as constraints over functions (CFs), not NFRs,

since the system-to-be is required to check whether an actor is

authorized to act on an asset.

We analyzed the 248 quality-related NFRs (187 QRs and

61 FR/CF+QRs), and identified 67 unique qualities with 327

occurrences (i.e., 327 QGs). The most frequent ones are oper-

ability, availability, processing/response time, and scalability.

TABLE III. THE STATISTICS OF SATISFACTION TYPES AND IMPLICIT

PRESENCE OF THE OPERATORS ON THE PROMISE NFRS

Satisfaction Type NFRs# Operator Stats. NFRs#

Ambiguous 5 Universality (U) 50

Unsatisfiable 86 Gradability (G) 10

Vague 143 Agreement (A) 16

Measurable 333

Our analysis of the 370 NFRs resulted in 481 requirements

statements using our framework. These were further classified,

as shown in the first two columns of Table III. Note that a

statement can be tagged with more than one type, e.g., “all

users shall be authenticated” is practically unsatisfiable, but

also measurable, thus the sum of this classification is greater

than 481 (in fact, 567). This classification found 15% (86/567)

of the statements to be practically unsatisfiable, 25% (143/

567) vague and only 59% (333/567) measurable.

We analyzed the implicit application our three operators U,

G, and A to the 481 requirements statements. E.g., “80% of the

users report the user interface is simple” captures agreement.

We show these counts in the last two columns of Table III: 50

U (i.e., stating percentages), 10 G, and 16 A. Our analysis

shows that few of the statements have (implicitly) used U and

A. Particularly, G is rarely used. Meanwhile, we found that

many NFRs, which need to be relaxed to become satisfiable

and measurable, have not been adequately dealt with.

Among the 481 statements, 86 of them implicitly or explic-

itly use universal quantifiers, e.g., all, any and each, (counted

as unsatisfiable in Table III) and likely need to be relaxed us-

ing U to be properly treated. Also, 36 subjective statements are

identified, e.g., look, readability, usefulness, etc., indicating

that at least another 20 requirements should be relaxed using

A. Lastly, G could be applied to unsatisfiable (e.g., almost all),

vague or measurable requirements (see the discussion of G in

Section IV.B), thus all the 476 items (except the 5 ambiguous

ones) are candidates for the G operator, but only 10 actually

(implicitly) used it (e.g., fast enough). E.g., “the interface shall

be appealing”, as found in the dataset, is clearly gradable.

B. Using our Proposed Methodology: Meeting Scheduling

We use meeting scheduler, one of fifteen projects in the

PROMISE requirements dataset, to evaluate the expressive-

ness of our framework and illustrate how our goal modeling

language and methodology can be applied to a realistic case

study. Functionally, the meeting scheduler is required to create

meetings, send invitations, book conference rooms, book room

equipment and so on. This example includes 47 NFRs, cover-

ing different aspects of the system, such as interoperability,

usability, security, user friendliness, etc.

We analyzed the 47 NFRs, and identified 21 QRs, 9 FRs,

14 FR+QR, 2 CF+QR, and 1 DA. We captured the 37 items

(excluding the 1 DA and 9 FRs) using our framework, result-

ing in 58 quality goals (an NFR may refer to more than one

quality), concerning 27 unique qualities. Frequently used qual-

ities include interoperability, operability, scalability (concur-

rent capacity), etc. We managed to rewrite all the 58 QGs us-

ing our syntax, validating the expressiveness of our framework.

In this project, we did not find ambiguous NFRs.

Fig. 3. The NFR model of meeting scheduler (partial)

For space reasons, we only show part of the goal model

with a subset of the goal modeling elements in Fig. 3 (note that

focus is a sub-type of refine, and we do not distinguish be-

tween them in the model). The full model can be found online:

QG3 := Usability
(the system) : good

QG4 := Learnability
(the system) : easy

to learn

QG5 := Operability
(the system) :

easy to use

R R

R

QG8 := Operability
(register <actor:

users <type: new>>)
: easy

QC3 := U (operating time
(register <actor: users
<type: new>>) : [10 ~
12minutes]) : ≥ 90%

R

O

QG10 := U (QG8)
: ≥ 90%

QG6 := Learnability
(set up a meeting

<actor: users <type:
new>>) : easy

R
R

R

QG7 := Learnability
(reserve a conference
room <actor: users

<type: new>>) : easy

Rlx

Refine

Relax

O Operationalization

Functional
Goal

Quality
Goal

Quality
Constraint

Task

Rlx

QC2 := U (learning time
(reserve a conference room

<actor: users <type:
new>>) : [5 ~ 7 minutes of

product use]) : ≥ 90%

QG9 := U (QG7)
: ≥ 90%

O

R
R …...

…...

R

Rlx

AND-Refine

G1 := Shall communicate
with the DBMS <location:
on the same computer or

the same network>

R
R

R

QC1 := U
(G1) : ≥ 99%

Rlx

QG1 (success
rate) := U (G1) :

100%

QG2 := U (G1)
: ≥ 99%

O

Connect
DBMS &
interact

O

Goal

G0 := The product shall successfully
communicate with the DBMS on the

same computer or network on 100% of
the transactions

299

http://goo.gl/AxNjPf (it has more than 58 QGs because it also

includes their refinements). In our model, quality goals are

formally captured using our framework rather than informal

descriptions stated in natural language. Moreover, these were

systematically refined and operationalized into quality con-

straints by following our methodology, making the informal

quality goals satisfiable, and measurable.

C. Summary

We have evaluated the need for our framework using real

data. The statistical analysis tells us that quality plays a key

role among NFRs in RE practice, and that many requirements

identified as NFRs are actually constraints over FRs. These

results help to justify our classifications of requirements (Fig.

2). Moreover, many NFRs are ambiguous, (practically) unsat-

isfiable, vague, and subjective, demonstrating the need for the

meta-qualities as introduced in our language. Lastly, we have

tested the expressiveness of our framework by capturing the

NFRs of meeting scheduler using our syntax, and illustrated

our methodology by performing an in-depth case study. Our

extensive results show that the framework is adequate for cov-

ering NFRs in practice, and, in fact, could improve RE practice

by prompting for the elicitation of unambiguous, satisfiable

and measurable NFRs.

VII. RELATED WORK

A. Definitions of NFRs

On the key topic of what are NFRs and how to deal with

them, there have been many efforts. Notably, there have been

two recent reviews by Martin Glinz [25] and Chung et al. [26].

Glinz [25] surveys thirteen NFR definitions and suggests

his own, based on attributes and constraints. However, his defi-

nition focuses on only system NFRs, and does not take into

consideration project and process requirements (e.g., develop-

ment, deployment, maintenance, etc.). In our framework, such

processes will serve as subjects, allowing us to specify different

kinds of desired qualities of them. Moreover, his proposal does

not offer methodological guidance for designing language and/

or method for capturing NFRs.

 After analyzing a list of NFR definitions, Chung et al. [26]

define functional requirements as mathematical functions of the

form f: I → O (I and O represent the input and output of f), and

NFRs are anything that concern characteristics of f, I, O or rela-

tionships between I and O. This definition, accordingly, will

treat constraints over functions (CFs) as NFRs, e.g., “updates of

the database can only be performed by managers” is a function

constraint in our framework (it requires the system to check

who is updating, and is not about the quality of updating), but

an NFR according to Chung et al. [26]’s definition.

B. The Treatment of NFRs

General approaches. In general, NFRs are classified into

sub-categories and represented by plain or structured sentences.

E.g., the IEEE standard 830 [27] classifies NFRs into interface

requirements, performance requirements, attributes and design

constraints, and document them in a separate section from FRs

using plain English. The Volere template [28] presents a struc-

ture for requirements sentences, including ID, type, description,

rationale, dependencies, etc., all of which are informal and tex-

tual information. Moreover, such approaches classify require-

ments strictly as function/non-functional, and do not support

capturing requirements which combine functional and quality

aspects. Our evaluation, as well as the work of Svensson et al.

[29], has found many such examples in practice. These ap-

proaches also do not reflect the cross-cutting concern of NFRs

(i.e., a quality can have multiple parts of a system as its subject).

NFRs have been also used along with structural require-

ments representation languages like UML use case and class

diagram, which are widely used to capture FRs in industry [30]

[31]. These approaches closely relate NFRs with FRs, associat-

ing NFRs with use cases or mapping the operationalizations of

NFRs to operations/attributes of UML classes. By relying on

the NFR framework [3] to refine and operationalize NFRs, they

are able to capture the gradability, but do not take into consid-

eration the universality and agreement of NFRs.

Goal-oriented approaches. Goal-oriented approaches are

the first to treat NFRs in depth among many approaches [26].

The NFR framework [2][3] was the first to use vague softgoals

to capture NFRs. In line with this position, many efforts have

been devoted to goal models, resulting in many frameworks,

such as i* [10], Tropos [32], and Techne [11].

The NFR framework [3] has used type and topic, which are

similar to quality and subject, to represent softgoals (e.g. “ac-

curacy [account]”, wherein “accuracy” is a type and “account”

is a topic). However, it did not further explore qualities (types),

subjects (topics) and quality values or spaces, which could give

rise to the universality, gradability and agreement of NFRs.

Similarly, Jureta et al. [33] have used DOLCE quality to distin-

guish between NFRs and FRs, and define softgoal and quality

constraint, but they did not focus on the ontological meaning of

quality, i.e., what kind of subjects a quality can inhere in within

a software system, what is the structure of its value space, what

kind of quality value it has (vague vs. crisp), etc.

Earlier work by Jureta et al. [34] has identified similar is-

sues in treating NFRs as softgoals (e.g., subjectivity, impreci-

sion, idealism). They deal with these issues by precisely defin-

ing softgoals using templates, emphasizing quantification and

eventual formalization of refinements. Softgoals in their ap-

proach are de-idealized by finding specific targets derived from

benchmarks, while our framework offers a richer set of opera-

tors for relaxing quality goals. Unlike our work, their proposal

has not yet been validated through application to real data.

 Note that we are not the first to use the concept “quality

goal”. Lamsweerde [35] has already proposed this term, but

simply treated it as a softgoal.

Quality-oriented approaches. Quality is the most popular

term adopted to specify NFRs. Many efforts have been made

towards classifying and quantifying qualities, resulting in fruit-

ful quality models and techniques. The famous models include

Boehm et al. [36], ISO/IEC 9126-1 [16], ISO/IEC 25010 [1],

etc., in which qualities and their interdependencies are usually

organized in a hierarchical structure.

One issue with these quality models is that they, even the

well-known ones, are neither terminologically nor categorically

300

consistent with each other [26]. E.g., “understandability” is a

sub-quality of “usability” in ISO/IEC 9126-1 [16], but is a sub-

class of “maintainability” in Boehm et al. [36]. In our proposal,

the categorization of qualities (or NFRs) will be transformed

into two open questions: what kind of subjects needs to exist?

(e.g., artifacts, functions or processes) and what kind of quali-

ties will inhere in them? Our answer to them is to develop on-

tologies containing a number of upper-level categories showing

what the qualities and subjects can be and let stakeholders to

decide depending on the system domain.

Quality quantification is another important aspect on deal-

ing with quality requirements. It is similar to our focus refine-

ment and operationalization: a quality is often decomposed to

several sub-qualities and then quantified using metrics [21][38].

One can refer to the example of “learnability” adopted from

ISO/ IEC 9126-2 [21] and discussed in section V.B.

The planning language (i.e., Planguage), proposed by Tom

Glib [38] and widely used in industry, is a typical example

along this line: it uses a set of keywords such as scale, meter

must and plan, and a syntax that captures fuzzy concepts, quan-

tifiers and collections to express and quantify quality require-

ments. However, Planguage is informal and textual, and does

not allow compositional notions for specifying the subjects of

concerned qualities as well as the degree of fulfillment of other

requirements. Moreover, it does not offer a methodology for

refining informal stakeholder goals to unambiguous, satisfiable

and measurable requirements, only providing a language to

capture the results of such a process.

Uncertainty and vagueness. These two characteristics of

requirements have been actively discussed in RE [19][39][40].

Statistical uncertainty has been extensively studied in goal

models, e.g., KAOS [39] and Tropos [41]. These approaches

use probability theory to propagate the satisfaction of goals in

an AND/OR refined hierarchy. Fuzzy logic has been applied to

capture the vagueness of requirements for trade-off analysis at

early stage [42]. Recently, the vagueness of NFRs has been

explored for adaptation [19][40].

Although probability theory and fuzzy logic have been

adopted to handle uncertainty and vagueness, they are often

not well distinguished: probabilistic, which indicates the prob-

ability that a requirement can be true or false, is usually con-

fused with fuzzy, which implies the degree to which a require-

ment can be satisfied.

Our proposal captures these two features by using the U

and G operators. Moreover, our framework allows the combi-

nation of these features, which is very practical: either fuzzy

probability (e.g., nearly 90% of the time) or probability over

fuzzy (e.g., nearly 5 sec. 90% of the time).

Summary. We summarize the related work with regard to

the three key features of NFRs, U, G, and A, in Table IV,

wherein ‘√’ and ‘×’ means supported and unsupported, respec-

tively. One should distinguish between vague and gradable:

vague requirements are requirements with indeterminate satis-

faction conditions (e.g., high availability, low cost, and fast

response) while gradable means the degree of fulfillment of a

requirement can be graded, resembling the fuzzy membership

in Fuzzy Logic. Please also note that although agreement has

been recognized as an important aspect in RE [43] since the

early ‘90s, few of the surveyed approaches have captured it.

TABLE IV. AN OVEWVIEW ON COMPARING RELATED APPRAOCHES

App. Source Technique T U G A C

General

IEEE 830 [27] English N √ √ √ √

Robertson et al.[28] Volere N* √ √ √ √

Supakkul et al.[30] Use case S × × × ×

Cysneiros et al.[31] Class diag. S × × × ×

Whittle et al. [40] Fuzzy logic F × √ × ×

Yen et al. [42] Fuzzy logic F × √ × ×

Goal
Oriented

(GORE)

NFR framework[3] Goal model S × √ × ×

KAOS [9][39] Probability F √ × × ×

i* [10] i* S × √ × ×

Tropos [32][41]
Probability;

Fuzzy logic
F √ √ × ×

Techne [11][33] Techne S × √ × ×

Jureta et al. [34] Goal model S × √ × ×

Quality
Oriented

Tom Glib [38] Planguage N* √ √ × ×

GORE+

Quality
Our Work Ontology F √ √ √ √

App.: approach; T: type; N: informal (plain English); N*: informal (structured English); S:

semi-formal; F: formal; U: universality; G: gradability; A: agreement; C: compositional

There have been some discussions about universality (U).

Berry et al. [44] argues that the use of “all” in requirements

specification documents expressed in natural language is

“dangerous” and practically unfulfillable when used to define

domain assumptions, but a “laudable goal” when used to de-

scribe requirements. We are arguing the opposite in our work.

Use of universals in a requirement is dangerous, meaning, ful-

fillment of the requirement is unrealizable or at least expensive.

Use of universals in a domain assumption is fine because it

simply states that the design will work only if the assumption

holds. That is, such use of universals simply (and usefully)

delimits the scope of the solution represented by the design.

VIII. CONCLUSION

In this paper, we treat NFRs as requirements over qualities,

proposing a compositional language and a goal-oriented meth-

odology to capture them. We start with quality mappings, and

then discuss the domain and codomain of qualities: a collective

subject can lead to universality, a subjective one likely needs

agreement, and quality values versus desired quality regions

will give rise to the gradability of NFRs [14]. We propose a

goal-oriented methodology to refine early and informal NFRs

to make them unambiguous, satisfiable and measurable. Our

proposal serves to: (1) better understand what NFRs are; (2)

better distinguish between NFRs and FRs; (3) write better NFR

specifications.

Several issues remain open. One is the integration of contri-

bution links with our formalism. As we have discussed, contri-

bution links are indispensable because they capture the influ-

ences of functions or function constraints on quality goals.

However, integration with our quality-based formalism has not

yet been fully explored.

Another important issue is how to perform reasoning on our

revisited goal models. In our framework, the satisfaction of a

quality goal will depend on the membership between the meas-

ured quality value and the expected quality region. Moreover,

301

when a quality is refined to several sub-qualities, its co-domain

will be a multi-dimensional space with each of its sub-quality

as a dimension. As such, the reasoning over quality goal satis-

faction in our framework will differ from classical goal model

reasoning (e.g., [45]), and needs to be further investigated.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for helpful
suggestions that enabled us to much improve this paper in con-
tent and presentation. This research has been funded by the
ERC advanced grant 267856 “Lucretius: Foundations for Soft-
ware Evolution”, unfolding during the period of April 2011 -
March 2016. It is also financially supported by the National
Natural Science Foundation of China (No. 61033006).

REFERENCES

[1] ISO/IEC 25010, “Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and

software quality models,” 2011.

[2] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using

nonfunctional requirements: A process-oriented approach,” Software
Engineering, IEEE Transactions on, vol. 18, no. 6, pp. 483–497, 1992.

[3] L. Chung, B. A. Nixon, and E. Yu, Non-Functional Requirements in

Software Engineering, vol. 5. Kluwer Academic Pub, 2000.

[4] F.-L. Li, J. Horkoff, J. Mylopoulos, L. Liu, and A. Borgida, “Non-
Functional Requirements Revisited,” iStar, 2013, pp. 109–114.

[5] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari,

“Ontology Library,” WonderWeb Deliverable D18, 2003.

[6] G. Guizzardi, Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology, 2005.

[7] T. Menzies, B. Caglayan, H. Zhimin, K. Ekrem, K. Joe, P. Fayola, and T.

Burak, “The PROMISE Repository of empirical software engineering
data,” Jun-2012. [Online].Available: http://promisedata.googlecode.com.

[8] “Feature structure,” Wikipedia, the free encyclopedia. 16-Jan-2014.

[9] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed

requirements acquisition,” Science of computer programming, vol. 20,
no. 1–2, pp. 3–50, 1993.

[10] E. S.-K. Yu, “MODELLING STRATEGIC RELATIONSHIPS FOR

PROCESS REENGINEERING,” University of Toronto, 1995.

[11] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne:
Towards a new generation of requirements modeling languages with

goals, preferences, and inconsistency handling,” RE, 2010, pp. 115–124.

[12] F. Dalpiaz, V. Silva Souza, and J. Mylopoulos, “The Many Faces of
Operationalization in Goal-Oriented Requirements Engineering,”

APCCM, 2014.

[13] P. Gärdenfors, Conceptual spaces: The geometry of thought. MIT press,

2004.

[14] R. S. S. Guizzardi, F.-L. Li, A. Borgida, G. Guizzardi, J. Horkoff, and J.

Mylopoulos, “An Ontological Interpretation of Non-Functional

Requirements,” FOIS, 2014.

[15] A. Albuquerque and G. Guizzardi, “An ontological foundation for
conceptual modeling datatypes based on semantic reference spaces,”

RCIS, 2013, pp. 1–12.

[16] ISO/IEC 9126-1, “Software Engineering - Product Quality - Part 1:
Quality Model,” 2001.

[17] ISO/IEC 25030:2007, “Software engineering - Software product Quality

Requirements and Evaluation (SQuaRE) - Quality requirements.”

[18] R. J. Brachman and H. J. Levesque, Knowledge representation and
reasoning. Morgan Kaufmann, 2004.

[19] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-

driven adaptation,” RE, 2010, pp. 125–134.

[20] I. J. Jureta, S. Faulkner, and P.-Y. Schobbens, “Clear justification of
modeling decisions for goal-oriented requirements engineering,”

Requirements Engineering, vol. 13, no. 2, pp. 87–115, 2008.

[21] ISO/IEC 9126-2, “Software engineering - Product quality - Part 2:
External metrics,” International Organization for Standardization,

Geneva, Switzerland, 2003.

[22] P. Gärdenfors, Meanings as conceptual structures. Lund University,

1995.

[23] G. Elahi and E. Yu, “Modeling and analysis of security trade-offs–A

goal oriented approach,” Data & Knowledge Engineering, vol. 68, no. 7,

pp. 579–598, 2009.

[24] B. Paech and D. Kerkow, “Non-functional requirements engineering-
quality is essential,” REFSQ, 2004.

[25] M. Glinz, “On non-functional requirements,” RE, 2007, pp. 21–26.

[26] L. Chung and J. do Prado Leite, “On non-functional requirements in

software engineering,” in Conceptual Modeling: Foundations and
Applications, 2009, pp. 363–379.

[27] I. C. S. S. E. S. Committee, I. Electronics Engineers, and I.-S. S. Board,

IEEE recommended practice for software requirements specifications:
approved 25 June 1998, vol. 830. IEEE, 1998.

[28] J. Robertson and S. Robertson, “Volere: Requirements specification

template,” Technical Report Edition 6.1, Atlantic Systems Guild, 2000.

[29] R. Berntsson Svensson, T. Olsson, and B. Regnell, “An investigation of
how quality requirements are specified in industrial practice,”

Information and Software Technology, vol. 55, no. 7, pp. 1224–1236,

2013.

[30] S. Supakkul and L. Chung, “Integrating FRs and NFRs: A use case and

goal driven approach,” framework, vol. 6, p. 7, 2005.

[31] L. M. Cysneiros and J. C. S. do Prado Leite, “Using UML to reflect non-

functional requirements,” CASCON, 2001.

[32] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,

“Tropos: An agent-oriented software development methodology,”

Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–
236, 2004.

[33] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the core

ontology and problem in requirements engineering,” RE, 2008, pp. 71–

80.

[34] I. Jureta, S. Faulkner, and P. Y. Schobbens, “A more expressive softgoal

conceptualization for quality requirements analysis,” ER, 2006, pp. 281–

295.

[35] A. van Lamsweerde, “Goal-oriented requirements enginering: a
roundtrip from research to practice [enginering read engineering],” RE,

2004, pp. 4–7.

[36] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod, and
M. J. Merrit, Characteristics of software quality, vol. 1. North-Holland

Publishing Company, 1978.

[37] R. B. Svensson, M. Host, and B. Regnell, “Managing quality
requirements: A systematic review,” SEAA, 2010, pp. 261–268.

[38] T. Gilb, Competitive engineering: a handbook for systems engineering,

requirements engineering, and software engineering using Planguage.

Butterworth-Heinemann, 2005.

[39] A. Cailliau and A. van Lamsweerde, “A probabilistic framework for

goal-oriented risk analysis,” RE, 2012, pp. 201–210.

[40] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,

“Relax: Incorporating uncertainty into the specification of self-adaptive
systems,” RE, 2009, pp. 79–88.

[41] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani,

“Reasoning with goal models,” ER, 2002, pp. 167–181, 2003.

[42] J. Yen and W. A. Tiao, “A systematic tradeoff analysis for conflicting
imprecise requirements,” RE, 1997, pp. 87–96.

[43] K. Pohl, “The three dimensions of requirements engineering,” CAiSE,

1993, pp. 275–292.

[44] D. M. Berry and E. Kamsties, “The dangerous ‘all’ in specifications,”
IWSSD, 2000, pp. 191–193.

[45] J. Horkoff and E. Yu, “Comparison and evaluation of goal-oriented

satisfaction analysis techniques,” Requirements Engineering, pp. 1–24,
2012.

302

