
Multi-Level Conceptual Modeling:
From a Formal Theory to a Well-Founded Language

Claudenir M. Fonseca1, João Paulo A. Almeida2,
Giancarlo Guizzardi1,2 and Victorio A. Carvalho3

1Free University of Bozen-Bolzano, Bolzano, Italy
2Federal University of Espírito Santo (UFES), Vitória, ES, Brazil

3Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil
cmoraisfonseca@unibz.it; jpalmeida@ieee.org;

giancarlo.guizzardi@unibz.it; victorio@ifes.edu.br;

Abstract. Subject domains are often conceptualized with entities stratified into a
rigid two-level structure: a level of classes and a level of individuals which in-
stantiate these classes. Multi-level modeling extends the conventional two-level
classification scheme by admitting classes that are also instances of other classes,
a feature which is key in a number of subject domains. Despite the advances in
multi-level modeling in the last decade, a number of requirements arising from
representation needs in subject domains have not yet been addressed in current
modeling approaches. In this paper, we tackle this issue by proposing an expres-
sive multi-level conceptual modeling language (dubbed ML2). We follow a prin-
cipled approach in the design of ML2, constructing its abstract syntax as to reflect
a formal theory for multi-level modeling (termed MLT*). We show that ML2
enables the expression of a number of multi-level modeling scenarios that cannot
be currently expressed in the existing multi-level modeling languages. A textual
syntax for ML2 is provided with an implementation in Xtext.

Keywords: Multi-level modeling; conceptual modeling; modeling language.

1 Introduction

A class (or type) is a ubiquitous notion in modern conceptual modeling approaches and
is used in a conceptual model to establish invariant features of the entities in a domain
of interest. Often, subject domains are conceptualized with entities stratified into a rigid
two levels structure: a level of classes and a level of individuals, which instantiate these
classes. In many subject domains, however, classes themselves may also be subject to
categorization, resulting in classes of classes (or metaclasses). For instance, consider
the domain of biological taxonomies [5, 8, 20]. In this domain, a given organism is
classified into taxa (such as, e.g., Animal, Mammal, Carnivoran, Lion), each of which
is classified by a biological taxonomic rank (e.g., Kingdom, Class, Order, Species).
Thus, to represent the knowledge underlying this domain, one needs to represent enti-
ties at different (but nonetheless related) classification levels. For example, Cecil (the
lion killed in the Hwange National Park in Zimbabwe in 2015) is an instance of Lion,

2

which is an instance of Species. A species, in its turn, is an instance of Taxonomic
Rank. Other examples of multiple classification levels come from domains such as soft-
ware development [13] and product types [22].

In the last decade, the importance of phenomena involving multiple levels of classi-
fication and the limitations of the fixed two-level scheme have motivated the develop-
ment of a number of modeling approaches under the banner of “multi-level modeling”
(e.g., [2, 18, 19, 22]). These approaches embody conceptual notions that are key to the
representation of multi-level models, such as the existence of entities that are simulta-
neously types and instances (classes and objects), the iterated application of instantia-
tion across an arbitrary number of (meta)levels, the possibility of defining and assigning
values to attributes at the various type levels, etc.

Despite these advances, a number of requirements arising from representation needs
in subject domains have not yet been addressed in current modeling approaches. For
example, many approaches do not support relations between elements of different clas-
sification levels. Some others impose rigid constraints on the organization of elements
into strictly stratified levels, effectively obstructing the representation of genuine do-
main models.

In this paper, we tackle these issues by proposing an expressive multi-level concep-
tual modeling language, called ML2 – Multi-Level Modeling Language. The language
is aimed at multi-level (domain) conceptual modeling and is designed to cover a com-
prehensive set of multi-level domains. We follow a principled approach in the design
of ML2, defining its abstract syntax to reflect a formal theory for multi-level modeling
which we developed previously (MLT*, reported in [1]). We propose a textual syntax
for ML2, which is supported by a featured Xtext-based editor in Eclipse. We show that
ML2 enables the expression of a number of multi-level modeling scenarios that cannot
be currently expressed in the existing multi-level modeling languages. Further, we
show how ML2 incorporates rules to prevent the construction of unsound multi-level
models (reflecting formal rules from MLT*).

This paper is further structured as follows: Section 2 briefly presents MLT*, which
is the semantic foundation of ML2. Section 3 presents ML2’s abstract and concrete
syntax. Section 4 presents the related work, comparing ML2 to current multi-level tech-
niques. Finally, Section 5 presents our final considerations.

2 MLT*: The Multi-Level Theory

Types are predicative entities (e.g. “Person”, “Organization”, “Product”) that can pos-
sibly be applied to a multitude of entities (including types as well). If a type t applies
to an entity e then it is said that e is an instance of t. In contrast, individuals are entities
that have no possible instances, i.e., they are entities that cannot be applied to other
entities (e.g. “John”, “this apple”, “my cellphone”). In the philosophical literature, types
are said to be repeatable, while instance are non-repeatable [14]. Since a type can be an
instance of another type, it is possible to conceive of chains of instantiations (of any
size), in order to represent multiple levels of classification. For instance, Fig. 1 presents
an example in the biological domain with four classification levels, from the individuals

3

“Cecil” and “Lassie”, until the type “TaxonomicRank”. Also, some of the types are
both instances and classifiers of other entities, for example “Lion” classifies “Cecil”
and is instance of (or is classified by) “Species”. In the following examples, and before
we arrive at the proposal of ML2, we use merely for illustrative purposes a notation
inspired by the class and object notations of UML, using dashed arrows to represent
relations that hold between the elements, with labels to denote the relation that applies
(in this case instance of).

Fig. 1. A four-level instantiation chain representing a biological domain.

The theory is built up first by defining common structural relations to support concep-
tual modeling, starting from specialization between types (a transitive and reflexive
relation), and proper specialization (which is in its turn irreflexive). Structural relations
that reflect variants of the powertype pattern are also included, given the pervasiveness
of this pattern in descriptions of multi-level phenomena. Based on Cardelli’s notion of
powertype [7], we define that t is powertype of t’ iff every instance of t is a specializa-
tion of t’ and all specializations of t’ are instances of t. For example, in Fig. 2, “Person-
Type” is the powertype of “Person”, thus every specialization of “Person” (e.g. “Man”,
“Woman”, “Adult” and even “Person” itself) instantiates it, throughout the specializa-
tion hierarchy (e.g. “AdultMan” is also an instance of “PersonType”).

Fig. 2. PersonType and its instances.

In order to address also the notion of powertype introduced by Odell [24], MLT* also
includes the so-called categorization relation. A type t categorizes a base type t’ iff all
instances of t are proper specializations of t’. Differently from Cardelli’s powertype, in
a categorization, the base type t’ is not itself an instance of t. Further not all possible
specializations of t’ are instances of t. For instance, as presented in Fig. 3, “Employ-
eeType” (with instances “Manager” and “Researcher”) categorizes “Person”, but is not

4

the powertype of “Person”, since there are specializations of “Person” that are not in-
stances of “EmployeeType” (“Woman” and “Man” for example).

The theory also defines useful variations of the categorization relation: (i) a type t
completely categorizes a type t’ iff every instance of t’ is instance of at least one in-
stance of t; (ii) a type t disjointly categorizes a type t’ iff every instance of t’ is instance
of at most one instance of t; finally, (iii) t partitions t’ iff every instance of t’ is instance
of exactly one instance of t. In Fig. 3, “PersonTypeByGender” partitions “Person” into
“Man” and “Woman”, and thus each instance of “Person” is either a “Man” or a
“Woman” but not both simultaneously.

Fig. 3. Examples of the categorization and partitions relations.

One can observe that, as presented in Fig. 2, entities in a subject domain can be orga-
nized based on their levels. For example, “Person” and its specializations only classify
entities that are individuals (e.g., “John”, “Bob” and “Ana”), while “PersonType” sits
at a higher level, classifying “Person” and other types. MLT* accounts for this organi-
zation of entities into levels using the notion of type order. Types whose instances are
individuals are called first-order types. Types whose instances are first-order types are
called second-order types. Those types whose extensions are composed of second-order
types are called third-order types, and so on.

Since they fall under a strictly stratified scheme, these types are called ordered types.
The theory explicitly accounts for orders using basic types. A basic type is the most
abstract type of its order, i.e., the type whose extension includes all entities in the order
immediately below. For example, “Individual” is the basic type whose extension in-
cludes all individuals, “1stOT” is the basic type whose extension includes all first-order
types, “2ndOT” is the one that classifies all second-order types, and so on. Due to this
definition, all basic types are related in a chain of powertype relations, as presented in
Fig. 4, with every ordered type specializing the basic type of the same order and instan-
tiating the one of the order above (e.g., “Person”). The ellipsis in that figure represents
that this chain of basic types can be extended as far as demanded, given the entities
involved in the captured domain. However, the formalization of MLT* does not neces-
sitate infinite chains of basic types, allowing the description of finite models (see [1]
for details).

5

Fig. 4. Example of MLT*’s basic types.

This stratification into type orders provides for a structure useful to guide modelers in
producing sound models. However, this is unable to account for types whose instances
do not fall into a unique order. Examples of such include notions of “Entity”, “Re-
source” and “Property”, which are key to a number of comprehensive conceptualiza-
tions [12, 14, 21, 25]. In MLT*, types that do not conform to the stratified scheme are
denominated orderless types. Consider the notion of “BusinessAsset” as an economic
resource owned by some “Enterprise”. In this context, we may say that Apple’s “Ap-
pleParkMainBuilding” is a business asset as well as its cellphone models, e.g., “IPh-
one5”. Note that while the former is an individual, the latter is a first-order type (having
individual cellphones as instances). Since “BusinessAsset” has instances in different
orders it is an example of a domain orderless type (Fig. 5). Finally, MLT* can also be
used to describe its own categories of types resulting in the model shown in Fig. 5.

Fig. 5. MLT* basic scheme extended by a domain example.

MLT* formally defines a number of structural relations and rules to govern such rela-
tions. Some of these rules concern the nature of the instantiation relation: whenever
instantiation involves solely ordered types, it is irreflexive, anti-symmetric and anti-
transitive, leading to a strict stratification of types. However, when involving orderless
types, there are situations in which instantiations can be reflexive, symmetric or transi-
tive. Table 1 summarizes the logical properties and rules of types involved in MLT*
structural relations, which arise out of the axioms and theorems of the theory [1].

6

Table 1. Summary of constraints on MLT* relations.

Relation (t → t’) Domain Range Constraint Properties

Specialization
Orderless Orderless

if t and t' are ordered
types, they must be at
the same type order

Reflexive,
anti-symmetric,

transitive
Ordered Orderless
Ordered Ordered

Proper
Specialization

Orderless Orderless Irreflexive,
anti-symmetric,

transitive
Ordered Orderless
Ordered Ordered

Powertype
Orderless Orderless

t cannot be a first-or-
der type if t and t' are
ordered types, t must
be at a type order im-
mediately above the
order of t’

Irreflexive,
anti-symmetric,
anti-transitive

Ordered Ordered

Categorization

Disjoint
Categorization

Orderless Orderless t cannot be a first-or-
der type

if t and t' are ordered
types, t must be at a
type order immedi-
ately above the order
of t’

Irreflexive,
anti-symmetric,
non-transitive

Ordered Orderless
Ordered Ordered

Complete
Categorization

Partitioning

Orderless Orderless Irreflexive,
anti-symmetric,
anti-transitive Ordered Ordered

3 ML2: The Multi-Level Modeling Language

ML2 is a textual modeling language for multi-level conceptual models that reflects the
concepts and rules of MLT*. MLT* provides to ML2 sound theoretical foundations
needed to address the demands of multi-level modeling in any degree of generality. The
development of ML2 has been based on the Xtext framework and provides a featured
Eclipse editor1, including model validation capabilities and compatibility with EMF-
based technologies.

3.1 Modeling Multi-Level Entities

The constructs of ML2 reflect the categories of entities defined by MLT*, as shown in
the Ecore model of Fig. 6. Besides minor terminological differences (with Class repre-
senting the notion of type for consistency with EMF terminology, and EntityDeclara-
tion representing entities in general), there are specific constructs for every sort of entity
previously presented: Individual representing entities with no instances; FirstOrder-
Class representing regular classes from the two-level scheme; HighOrderClass repre-
senting an ordered class at a certain order; and OrderlessClass representing entities
whose extension span across different orders. Both classes and individuals may declare
the instantiation of multiple classes. Specialization (proper) and the other structural re-
lations of the theory are considered for classes. For a class that categorizes another

1 The ML2 editor can be found at https://github.com/nemo-ufes/ML2-Editor

7

class, a categorization type should be defined to reflect which variant of the categori-
zation relation applies.

Fig. 6. Entities and classes in ML2.

Some of the rules of the theory are directly reflected in the representation of cardinality
constraints. For example, given the formal definition of powertype in MLT*, a class
can only be the powertype of at most one other class. All the other MLT* rules (includ-
ing those that apply to the instantiation relation and those present in Table 1) are re-
flected in the validation functionality of the editor coded in Xtend (a high-level pro-
gramming language for the Java Virtual Machine) and presented lively. The syntax of
ML22 is inspired by traditional OO languages and applies a collection of keywords
aiming at enhancing the readability of its models. The statements for entity declaration
follow a common pattern, varying the available structural relations for each type of
entity. Fig. 7 revisits the examples presented so far using ML2. Note that a namespace
mechanism is supported with modules. Unlike other multi-level languages, ML2 mod-
ules are not order bound (e.g., like MetaDepth’s notion of “model” [19] that restricts
the order of contained entities).

3.2 Features and Assignments

Classes contain common features of their instances, while entity declarations contain
value assignments for the features of the classes that an entity instantiates. Fig. 8 pre-
sents how features are handled in the abstract syntax. ML2 distinguishes features into
references and attributes (not unlike Ecore and OWL, for example). A feature has a
type, which is a class in the case of references or a datatype in the case of attributes.
Datatypes are first-order classes that have as instances particular values. For example,
the datatype String is a first-order class that has as instances all well-formed sequences
of characters. ML2 supports both user created datatypes and a set of primitive types,
namely String, Number and Boolean. The set of primitive types covers a minimal set
of data types for conceptual modeling and was inspired by JSON’s specification [10].

2 The language’s grammar is available at https://github.com/nemo-ufes/ml2-grammar.

8

Fig. 7. Examples of entity declarations in ML2.

Fig. 8. Features and assignments in ML2.

Fig. 9 presents an example of usage of features in an ML2 model. This model expands
the one in Fig. 7 by explicitly capturing the cross-level reference owns between “Enter-
prise” and “BusinessAsset” and adding some other entities. Note that ML2 does not
require exhaustive feature assignment (see “IPhone5” without an assignment for be-
longsTo). However, cardinality constraints are checked for every present assignment.

ML2 also accounts for a special kind of feature called regularity feature (see [8,15]).
This kind of feature has the characteristic of constraining features at a lower level. Con-
sider the previous example of “CellphoneModel” with an instancesScreenSize feature
that represents the specific screen size of a certain model. This feature regulates the
screenSize feature of “Cellphone”, since every cellphone will have the same screen size
specified by its respective model. Instances of “CellphoneModel” such as “IPhone5”
specialize “Cellphone” and determine specific value for instancesScreenSize, in this
case, 4 inches. Thereby, all instances of “IPhone5” have screenSize following the value
assigned to instancesScreenSize, i.e., 4 inches. Note that, in order to regulate a feature
of “Cellphone”, the high-order type “CellphoneModel” must categorize “Cellphone”,
since the regulation of a feature is defined in instances of the high-order type affecting
specializations of the categorized type. Fig. 10 presents a modification of Fig. 9 illus-
trating the usage of regularity features.

module example.model {
 orderless class BusinessAsset;
 order 2 class CellphoneModel;
 class IPhone5 : CellphoneModel, BusinessAsset;
 order 2 class PersonType isPowertypeOf Person;
 order 2 class EmployeeType specializes PersonType categorizes Person;
 class Person : PersonType;
 class Manager : EmployeeType specializes Person;
 class Researcher : EmployeeType specializes Person;
 individual Bob : Person, Researcher;
}

9

Fig. 9. Examples of features in ML2.

Fig. 10. Examples of regularity features in ML2.

ML2 foresees six types of regularity features. In the case above, values of in-
stancesScreenSize determines the exact value of screenSize. However, a regularity fea-
ture can also determine maximum or minimum values for a number feature (e.g., to
model the maximum storage capacity of a cellphone model) and to determine the set of
allowed values for a feature (e.g., to model that a phone model has either 16 or 32GB
of internal storage capacity). Additionally, a regularity feature can further constrain the

orderless class BusinessAsset {
 ref belongsTo : Enterprise isOppositeTo owns
};
class Enterprise {
 ref owns : [0..*] BusinessAsset isOppositeTo belongsTo
};
class Building;
order 2 class CellphoneModel categorizes Cellphone;
class Cellphone {
 screenSize : Number
};
class IPhone5 : CellphoneModel, BusinessAsset specializes Cellphone{
 ref belongsTo = Apple
};
individual AppleParkMainBuilding : Building, BusinessAsset;
individual Apple : Enterprise {
 ref owns = { AppleParkMainBuilding , IPhone5 }
};
individual MyIPhone : IPhone5{
 screenSize = 4
};

order 2 class CellphoneModel categorizes Cellphone {
 reglarity instancesScreenSize : Number determinesValue screenSize
 regularity ref compatibleProcessorModel : ProcessorModel
 determinesType installedProcessor
};
class Cellphone {
 screenSize : Number
 ref installedProcessor : Processor
};
class IPhone5 : CellphoneModel specializes Cellphone {
 instancesScreenSize = 4
 ref compatibleProcessorModel = A6
};
order 2 class ProcessorModel categorizes Processor;
class Processor;
class A6 : ProcessorModel specializes Processor;
individual Processor01 : A6;
individual MyIPhone : IPhone5 {
 screenSize = 4
 ref installedProcessor = Processor01
};

10

type of assignment for a feature, by either determining its type(s) or determining a set
of allowed types [14]. The specification of the regularity type can be omitted when the
type of regulation does not fit one of the six foreseen types of regulation.

Fig. 10 also presents an example in which the regularity reference compatiblePro-
cessorModel of “CellphoneModel” determines the type of installedProcessor for in-
stances of “Cellphone”. Since “IPhone5” assigns “A6” to compatibleProcessorModel,
instances of “IPhone5” can only have processors that are instances of “A6”. This is the
case of “MyIPhone”, with “Processor01” installed on it. Assignments of regulated fea-
tures, if present, are checked for conformance.

4 Related Work

In this section, we position ML2 with respect to the existing work in multi-level repre-
sentation approaches regarding a number of features, which are all supported by ML2.
We consider the following multi-level modeling approaches: Melanee, M-Objects,
MetaDepth and DeepTelos. Table 2 summarizes our evaluation of the various modeling
approaches: a plus sign (‘+’) indicates support for the feature, a minus sign (‘-’) indi-
cates no support, and plus/minus (‘+/-’) indicates partial support.

Table 2. Multi-level modeling techniques comparison.

Representation Features Melanee M-Objects MetaDepth DeepTelos
F1: represents entities of multi-
ple classification levels + + + +
F2: allows an arbitrary number
of classification levels + + + +
F3: defines guiding principles
for organization of models + + + +/-
F4: represents types that defy a
stratified classification scheme +/- - +/- +
F5: represents rules to govern in-
stantiation of related types - - - +/-
F6: allows domain relations be-
tween entities in various levels - + + +
F7: represents domain features
and feature assignments + + + +
F8: relates features of entities in
different levels + - + -

Melanee [2] is a tool that supports multi-level modeling founded on the notions of strict
metamodeling, clabject and potency. It is based on the idea of defining clabjects and
fields (attributes and slots) within the levels of a strict stratified scheme (i.e., strict met-
amodeling [4]) and assigning to both clabjects and fields a potency, which defines how
deep the instantiation chain produced by that clabject or field can become. This allows
Melanee to represent entities in multiple classification levels (F1), organizing and cap-
turing the instantiation chains allowing an arbitrary number of levels (F2), and

11

providing users guiding principles for the organization of models (F3). Melanee also
defines star potency as a means to support the representation of types having instances
of different potencies. While this allows the representation of types that defy a stratified
scheme (F4), star potency does not allow self-instantiation, which is required for the
abstract types we have dealt with here. Therefore, we consider that Melanee partially
supports F4. In Melanee, no constructs are provided to capture rules concerning instan-
tiation of related types at different levels (F5). For example, it is not possible to repre-
sent in Melanee that “CellphoneModel” categorizes (in MLT* sense) “Cellphone”, and
thus, it is not able to capture that every instance of “CellphoneModel” must specialize
“Cellphone”. Further, in Melanee, instantiations are the only relations that may cross
level boundaries and, thus, it is unable to capture certain domain scenarios in which an
entity is related to other entities at different instantiation levels (F6). For example, con-
sider a scenario in which every instance of “CellphoneModel” has a “designer” being
an instance of “Person” and every instance of an instance of “CellphoneModel” (i.e.,
every instance of “Cellphone”) has an “owner” which is also an instance of “Person”.
Since domain relations in Melanee cannot cross levels, both “Person” and “Cellphone”
must be placed in the same level to capture the “owner” relation. Because its instances
are specializations of “Cellphone”, “CellphoneModel” must be placed in one level
higher. This makes it impossible to capture the “designer” relation, as it would cross
level boundaries (which, once more, is not allowed in Melanee). Concerning domain
features, Melanee supports both the representation of features of types as well as the
attribution of values to those features (F7). Finally, the combination of the notions of
attribute durability and mutability [9] allows one to relate features of entities in different
levels (F8). For example, it allows one to capture that instances of “CellphoneModel”
prescribe the exact screen size their instances must have. Note that it supports directly
only one of the six types of regularity features covered in ML2 (namely, the one in
which the value is fully determined).

In [22], the authors propose a multi-level modeling approach founded on the notion
of m-object. M-objects encapsulate different levels of abstraction that relate to a single
domain concept, and an m-object can concretize another m-object. The concretize re-
lationship comprises indistinctive classification, generalization and aggregation rela-
tions between the levels of an m-object [22]. This approach allows the representation
of entities in an arbitrary number of levels relating them through chains of concretize
relationships, we consider that it supports F1 and F2. Given that the approach adopts a
stratified scheme in which concretize relationships may only relate types at adjacent
levels, we consider that it supports F3 and does not support F4. Further, since the con-
cretize relationships are the only structural relationships that cross level boundaries, the
approach fails to support F5. In [23], the authors observe that the approach was unable
to capture certain scenarios in which there are domain relations between m-objects at
different instantiation levels. To address this limitation, the approach was extended with
the concept of Dual-Deep Instantiation, which allows the representation of relations
between m-objects at different instantiation levels through the assignment of a potency
to each association end, thereby supporting F6. Finally, it provides support to represent
features of types (F7), but it does not include support to explain the relationship between
attributes of entities in different classification levels (not supporting F8).

12

MetaDepth [19] is a textual multi-level modeling language founded on the same no-
tions of clabject, potency, durability and star potency used by Melanee. Differently
from Melanee, MetaDepth supports the representation of domain relationships as ref-
erences, such that each reference has its own potency (a solution close to the one
adopted in Dual-Deep Instantiation [23]), allowing the representation of domain rela-
tions between clabjects at different instantiation levels. Therefore, MetaDepth supports
all the features Melanee supports, and further supports F6.

Finally, DeepTelos is a knowledge representation language that approaches multi-
level modeling with the application of the notion of “most general instance (MGI)”
[18]. In [17], the authors revisit the axiomatization of Telos and add the notion of MGI
to Telos’ formal principles for instantiation, specialization, object naming and attribute
definition. The notion of MGI can be seen as the opposite of Odell’s powertype relation.
For example, to capture that “Tree Species” is a “powertype” (in Odell’s sense) of
“Tree”, in DeepTelos it would be stated that “Tree” is the “most general instance”
(MGI) of “Tree Species”. Considering that the MGI construct allows representing en-
tities in multiple classification levels and that DeepTelos allows representing chains of
MGI to represent as many levels as necessary, we consider that DeepTelos supports
features F1 and F2. DeepTelos builds up on Telos, whose architecture defines the no-
tions of simple class and w-class, which are analogous to the notions of ordered and
orderless types we use. Nevertheless, stratification rules for simple classes (constrain-
ing specialization and cross-level relations) are not provided. Thus, we consider that it
partially supports F3 and that it supports F4 with the notion of w-class. Considering
that DeepTelos provides only the concept of MGI to constrain the instantiation of types
in different levels, not elaborating on the nuances of the relations between higher-order
types and base types, we consider that it partially supports F5. It admits relations be-
tween types in different levels, thus, supporting F6. DeepTelos supports the attribution
of values to features of types (F7). However, its account for attributes does not include
any support to explain the relationship between attributes of entities in different classi-
fication levels, thus, not supporting F8.

5 Final Considerations

In this paper, we have presented the ML2 multi-level conceptual modeling language.
We have approached the design of ML2 with a careful consideration of the conceptu-
alization of types in classification schemes that transcend a rigid two-level structure.
The language harnesses the conceptualization formalized in MLT*, reflecting the the-
ory’s definitions in its constructs and syntactical constraints. The language was de-
signed to offer expressiveness to the modeler by addressing a comprehensive set of
features for representing domains dealing with multiple levels of classification. Further,
rules incorporated in ML2 have been implemented in an Eclipse-based editor that sup-
ports the live verification of models to ensure adherence to the theory. The use of a
formally-verified semantic foundation is one of the distinctive features of ML2 (see [1]
for axiomatization and reference to a specification in the Alloy language [16]).

13

During this research, we investigated a number of multi-level representation tech-
niques reported in the literature, focusing on their capability of capturing different in-
tended multi-level scenarios. We have observed that multi-level approaches often opt
for one of two extremes: (i) to consider all classes to be orderless (or similarly to ignore
the organization of elements into stratified orders, the case of DeepTelos, what is re-
ferred to as a level-blind approach in [3]), or (ii) to consider all classes to be strictly
stratified (e.g., in the case of Melanee and MetaDepth). Approaches that opt for (i) are
able to represent all types ML2 can capture, however, fail to provide rules to guide the
use of the various structural relations (e.g., instantiation). As shown in [6], this lack of
guidance has serious consequences on resulting models quality. Approaches that opt
for (ii) do not support the representation of a number of important abstract notions,
including those very general notions that we use to articulate multi-level domains (such
as “types”, “clabjects”, “entities”) (these abstract notions are key to ML2 being able to
model the upper portion of the UFO foundational ontology [14], see ML2 models pro-
duced for it in [11] including a response to the so-called “Bicycle Challenge”).

The combination of both approaches in the design of ML2 places it in a unique po-
sition in multi-level modeling approaches. On top of that, the present approaches for
multi-level modeling also strive in order to accommodate the implications of the dual
nature of “clabjects” regarding the representation of features and feature assignments.
Besides ML2, only MetaDepth and Melanee were able to express related features in
different levels and cross-level references. Although, both of them support the repre-
sentation of only one of the various types of regularity attributes supported in ML2.

A few knowledge representation approaches (e.g., DeepTelos [18] and Cyc [12])
have also drawn distinctions between orderless and ordered types. However, Telos does
not provide rules for the various structural relations, including instantiation and spe-
cialization. In its turn, Cyc, arguably the world’s largest and most mature knowledge
base nowadays, employs a conceptual architecture for types similar to MLT*’s distinc-
tions of sorts of entities (see Fig. 5). Additionally, this architecture also includes instan-
tiation and specialization rules [12]. However, these rules are not incorporated in some
representation language and no deep characterization mechanism is provided in Cyc.

Future work concerning ML2 includes the development of transformations from
ML2 into the Semantic Web approach discussed in [5], the development of an inte-
grated constraint language to further increase the expressiveness of the language, and
the investigation of a suitable visual syntax to accompany the textual syntax.

Acknowledgements. This work is partially supported by CNPq (grants number
407235/2017-5, 312123/2017-5 and 312158/2015-7), CAPES (23038.028816/2016-
41), FAPES (69382549) and FUB (OCEAN Project).

References

1. Almeida, J.P.A., Fonseca, C.M., Carvalho, V.A.: A Comprehensive Formal Theory for
Multi-Level Conceptual Modeling. ER Conferece 2017. Valencia, Spain (2017).

2. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering environ-
ment. Proceedings of the 2nd International Master Class on Model-Driven Engineering
Modeling Wizards - MW ’12, ACM Press, New York, USA (2012).

14

3. Atkinson, C., Gerbig, R., Kühne, T.: Comparing Multi-Level Modeling Approaches. Pro-
ceedings of the 1st International Workshop on Multi-Level Modelling (2014).

4. Atkinson, C., Kühne, T.: Meta-level Independent Modeling. In International Workshop
“Model Engineering” (in conjunction with ECOOP’2000). Cannes, France, p. 16 (2000).

5. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Expressive Multi-level Mo-
deling for the Semantic Web. In: Groth P. et al. (eds) The Semantic Web – ISWC 2016.
ISWC 2016. Lecture Notes in Computer Science, vol 9981. Springer, pp. 53-69 (2016).

6. Brasileiro, F. et al.: Applying a Multi-Level Modeling Theory to Assess Taxonomic
Hierarchies in Wikidata. In Proceedings of the 25th International Conference Companion
on World Wide Web. pp. 975–980. Geneva, Switzerland (2016).

7. Cardelli, L.: Structural subtyping and the notion of powertype. Proceedings of the 15th ACM
Symposium of Principles of Programming Languages, pp. 70–79 (1988).

8. Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for multi-level conceptual
modeling. Software & Systems Modeling, Springer Berlin Heidelberg, pp. 1-27 (2016).

9. Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: Foundation for multi-level modelling.
CEUR Workshop Proceedings, 1286, pp. 43–52 (2014).

10. ECMA: The JSON Data Interchange Format. 1st Edition. Available at: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf (2013).

11. Fonseca, C. M.: ML2: an expressive multi-level conceptual modeling language. Dissertation
(master’s in informatics) - Federal University of Espírito Santo, Brazil (2017).

12. Foxvog, D.: Instances of instances modeled via higher-order classes, Foundational Aspects
of Ontologies, (9–2005), pp. 46–54. Available at: http://www.uni-
koblenz.de/fb4/publikationen/gelbereihe/RR-9-2005.pdf (2005).

13. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework.
Software & Systems Modeling, vol. 5, pp. 72–90 (2006).

14. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. 1st ed. The
Netherlands (2005).

15. Guizzardi, G. et al.: Towards an Ontological Analysis of Powertypes. Proceedings of the
Joint Ontology Workshops 2015, 1517 (2015).

16. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press (2006).
17. Jarke, M. et al.: ConceptBase - A deductive object base for meta data management, Journal

of Intelligent Information Systems, 4(2), pp. 167–192 (1995).
18. Jeusfeld, M. A., Neumayr, B.: DeepTelos: Multi-level Modeling with Most General

Instances. 35th Int’l Conf., ER 2016. Springer International Publishing, pp. 198–211 (2016).
19. de Lara, J., Guerra, E.: Deep Meta-modelling with MetaDepth, Proceedings of the 48th In-

ternational Conference, TOOLS 2010, Málaga, Spain (2010).
20. Mayr, E.: The Growth of Biological Thought: Diversity, Evolution, and Inheritance. The

Belknap Press (1982).
21. Mylopoulos, J.: Conceptual modeling and Telos. Conceptual Modelling, Databases, and

CASE: an Integrated View of Information System Development, John Wiley & Sons,
New York, New York. Edited by P. Loucopoulos and R. Zicari. Wiley, pp. 49–68 (1992).

22. Neumayr, B., Grun, K., Schrefl, M.: Multi-level domain modeling with m-objects and m-
relationships. 6th Asia-Pacific Conf. on Conceptual Modelling, vol. 96, pp. 107-116 (2009).

23. Neumayr, B. et al.: Dual Deep Instantiation and Its ConceptBase Implementation. Int’l Conf.
on Advanced Information Systems Engineering (CAiSE), pp. 503–517 (2014).

24. Odell, J.: Power types. Journal of Object-Oriented Programming, 7(2), pp. 8-12 (1994).
25. W3C: OWL 2 Web Ontology Language Document Overview. Available at:

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ (2009).

