
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Modeling Stories for Conceptual Model Assessment

Bernardo F. B. Braga and João Paulo A. Almeida

Ontology and Conceptual Modeling Research Group (NEMO)

Federal University of Espírito Santo (UFES), Vitória ES, Brazil

{bfbbraga,jpalmeida}@inf.ufes.br

Abstract. Conceptual modeling is a challenging activity and assessing the qual-

ity of conceptual models is key to ensure that they may be used effectively as a

basis for understanding, agreement and construction of information systems.

Stories have always been used as means of communicating complex affairs and

we argue that they may be used effectively to assess models and reveal model-

ing decisions to those that cannot understand the modeling language. This paper

proposes an approach to assess conceptual models by creating narratives about

a subject domain. These narratives employ concepts of the conceptual model

and are formalized as abstract stories. These stories guide model simulation,

supporting the validation of the conceptual model. Contrasting simulation with

the intended conceptualization is the basis for model assessment.

Keywords: Conceptual Modeling, Storytelling, Model Assessment, Ontology

1 Introduction

In a broad perspective, conceptual modeling has been characterized as “the activity of

formally describing some aspects of the physical and social world around us for pur-

poses of understanding and communication” [12]. These formal descriptions are

called conceptual models and are built using artificial modeling languages.

Conceptual models may be used as basis for information systems such as the se-

mantic web and its applications. Therefore, assessing their quality is key to ensure

they may be effectively put to use. Assessing model quality is a challenging activity,

in particular assessing whether the model corresponds to the modeler’s original inten-

tion, and whether it reflects accurately the conceptualization of a subject matter ex-

pert. This is aggravated by the fact that frequently subject matter experts do not know

the modeling language and modelers know little or nothing beforehand about the

subject matter. Helping communication between these parties motivated our efforts

into building tools and techniques for conceptual model assessment.

Here, we build on previous efforts by approaching model assessment using model

transformation and a lightweight formal method. In our previous approach [1,3,9], an

ontology-based conceptual model is translated to the Alloy logic-based language [11]

that presents valid instances of the model or may search for assertion counter exam-

ples. This allows the inspection of model instances (in what could be considered a

model “simulator”) and therefore allows the assessment of the consequences of mod-

eling choices. So far, the generation of model instances in this approach is based pure-

ly on a random strategy. This means that the modeler cannot control the validation

process. While this is useful to detect problems in the conceptual model (e.g., “edge

cases” [18]), the simulation still has an overwhelmingly large number of possible

instantiations. In order to control the model assessment process, we explore in this

paper a technique that allows the modeler to guide the simulation through storytelling.

The rest of this paper is organized as follows: in section 2, we position storytelling

and conceptual modeling as complementary means to transfer knowledge about reali-

ty. In section 3, we present our approach to creating stories and formalizing them,

using as a running example a model in the software configuration domain. In section

4, we discuss some related work, and, finally, in section 5, we present conclusions and

topics for further investigation.

2 Relating Storytelling and Conceptual Modeling

According to [7], “there is little doubt that narrative thought developed earlier in hu-

man history than scientific and logical thought”. The ability to narrate gives us the

possibility to reenact real-world events eliciting the imagination of the listeners, giv-

ing them experiences that they never had themselves. Early in the history of mankind,

oral storytelling culture produced collective, standardized narrative versions of reality,

particularly of past events; having become what we call the dominant “myths” of a

society. Myths reflect the earliest form of integrative thought. In contrast with myths,

theories are “very large, externally nested cultural products” which only emerged

much later, as our culture allowed the externalization of memory [7].

Similarly to storytelling, conceptual modeling is also used for transferring

knowledge. Nevertheless, the concrete representation of this knowledge takes a very

different form. Although a conceptual model also represents a view of some subject

matter, it does so in a very structured manner, using a formal language to describe the

categories of entities that are assumed to exist in a subject matter and how these enti-

ties relate to each other. We take ontology-based conceptual models to be a particular

means to represent a theory about a subject domain, formally capturing admissible

states of affairs [10] using invariants i.e. logical assertions or rules that are held to

always be true.

Our approach in this paper aims to leverage the value of storytelling as means for

transferring knowledge, not substituting but enriching ontology-based conceptual

modeling. In this approach both subject matter experts and modelers create natural

language narratives using the concepts that appear in the conceptual model. The mod-

eler translates these natural language narratives into Formal Stories using a story

specification language that makes explicit reference to the concepts in the conceptual

model. These formal stories constrain the generation of valid instances of the model

to generate Formal Narratives (simulations) that conform to the specified formal sto-

ry. By complementing a natural language narrative with a formal narrative, one can

exemplify how the domain was modeled. That means modelers may assess whether

their intentions were correctly expressed in the model by exemplifying model features

and “testing” their correctness with a subject matter expert. Also, this allows subject

matter experts to assess the content of a model regardless of their knowledge of the

modeling language: guiding which elements of a natural language narrative corre-

spond to formalized knowledge. This helps to bridge the communication between

modelers and subject matter experts. We integrate the support for story modeling in

the model assessment tool ecosystem developed at our research group. We thus as-

sume models are defined using the ontologically well-founded OntoUML profile [10],

which provides a clear semantics for a fragment of UML class diagrams.

3 Creating stories for model assessment

Our approach aims to validate existing conceptual models using a mix of informal and

formal storytelling. In Fig. 1 we summarize our approach, showing three of its ele-

ments: (i) the natural language narrative, (ii) the formal story (anchored in the concep-

tual model) and (iii) the formal narratives (roughly a simulated story). Typically, nat-

ural language narratives about the subject matter are recorded. These natural language

narratives are partially formalized regarding their semantic content (including the

specification of which classes are instantiated from the conceptual model), using in

this activity the specification language we defined. The product of that activity is

called a formal story, which may partially define valid instantiations of the model.

Formal stories are used to constrain the model simulation, resulting in what we call a

formal narrative (a.k.a. model simulation).

In order to demonstrate the application of the technique, we introduce a running

example in the domain of Software Configuration Management. We use as a starting

point a previously published conceptual model for this domain extracted from [4].

This model is presented briefly in section 3.1. In section 3.2, we discuss the develop-

ment of natural language narratives, providing a narrative for our running example. In

section 3.3, we present a Story Specification Language and the informal narrative of

our example is represented as a formal story. This formal story is simulated in section

3.4, demonstrating how formal narratives may support model assessment.

Fig. 1. An overview of the approach

3.1 Running Example

We use as running example a fragment of a model extracted from [4]. The diagram

in Fig. 2 specifies different kinds of Items that can be versioned: Software Tools and

Artifacts such as Source Code, Document and Diagram. Classes stereotyped as

Kinds are classes that apply necessarily to their instances and define a principle of

identity for them. Categories (e.g., Item) are classes that also apply necessarily to

their instances (i.e. are Rigid), but subsume instances with different principles of iden-

tity. An Item that has been selected by a Configuration Manager assumes the role of

a Configuration Item. Configuration Manager is the role a Person assumes in the

context of that selection. Roles are Anti-Rigid (a.k.a. dynamic) classes i.e. they apply

contingently to instances. The relationship between the Configuration Manager and

the Configuration Item is reified as a Configuration Selection. The Person class is

omitted from the diagram and appears in italics on the top classes that specialize it.

Each Configuration Item is characterized by some Version. Version is stereotyped

as Mode, meaning they are existentially dependent and inhere in the thing they char-

acterize. In this case, Versions can only exist in Configuration Items. Versions are

part of some Branch. Branches, on the other hand are part of some Repository. Ste-

reotyped as Collectives, their instances are collections formed by uniform parts. Ver-

sions can be submitted for change, when requested. A Developer is a Person that

may Check Out versions, modify them and Check In Modifications (a checked-in

modification is called a Registered Modification). Versions that are checked out are

Checked-Out Versions and generate Copies. A Copy that has been modified as-

sumes the role of Modified Copy, and when checked-in, makes the requested change

implemented. A verifier may assess an implemented change, making it verified.

Fig. 2. A model for Software Configuration Management

3.2 Natural Language Narrative

Producing some natural language narratives about the domain can be the first step

in our approach. The activity of creating these narratives and validating them is done

between subject matter experts and modelers. Either of them may create the narrative.

With regard to the scope of a narrative, in the case of modeler-authored narratives, the

modeler may exercise fragments of the model he/she suspects may be incorrect i.e.

he/she imagines a real-world scenario where the concepts of such fragment are instan-

tiated. In the case of subject matter expert authored narratives, the subject matter ex-

pert narrates real life events about a fragment of the model requested by a modeler.

The narratives help the modeler to understand how these concepts are exercised in

their real context.

Drawing from our running example, we produced the following natural language

narrative. It exercises the classes of the model presented in Figure 2. Whenever a

class is used in the narrative, it is highlighted in bold. This narrative is the basis for

the formal story presented in section 3.3 which will in its turn be used to generate

formal narratives (simulations) in section 3.4.

“John, Mary, Fred and Thomas work at OntoSoft company as developers. They

are working on an information system for a bakery to manage its finances and supply-

chain processes. The system they are producing already manages the finance aspects,

and currently they are developing new artifacts (such as diagrams, documents and

source code) to manage the supply-chain processes. Thomas is the Configuration

Manager and he selects some of the artifacts they created to be part the project’s

repository, where they are version-controlled.

As the team focuses efforts on the bakery’s supply-chain processes, Fred finds a

deadlock in a process diagram for buying raw materials and files a change request

for it, describing the problem he found and the change that should be implemented.

John evaluates the request and checks out the diagram in the version control system

to modify it. After doing the necessary adjustments, he checks in the modified version

and Mary is assigned to verify whether John has met the change request.

Mary verifies the code and notices that John’s modifications introduced bugs in

the already-approved finance processes. These changes have a deep impact in the

approved parts of the software so Mary rejects the version and asks John to branch

the project and try again from a different angle.”

3.3 Formal Stories

Stories are abstract representations of a narrative. Elsewhere, these concepts are alter-

natively called Fable and syuzhet [15], respectively. Here, Formal Stories are abstract

representations of both Natural Language Narratives, discussed in the previous sec-

tion, and Formal Narratives, which will be discussed in the next section.

There are two ways to create such stories. In the first case, they may be based on

an existing Natural Language Narrative. In this alternative, the modeler captures what

happens in the story using the concepts present in the conceptual model. When for-

malizing an existing natural language narrative much detail is lost since formal stories

only contain semantic aspects of the narrative that are relevant to the conceptual mod-

el. However, this process may create information that is more precise than their natu-

ral language counterparts. Inconsistencies, ambiguities and suppositions are removed

in this stage, making the modeler commit to a certain interpretation of the story's se-

mantic content. The formal story acts like an explanation, revealing the elements in-

volved in the story and its unfolding.

In the second case, a modeler may take the reverse approach: first create formal

stories and posteriorly elaborate a natural language narrative based on it. By narrating

this story to a subject matter expert, the modeler may validate his understanding of the

domain. This is especially helpful for checking edge cases, as it is common practice in

the testing of computer algorithms [18].

Formal Stories are model instances of our special-purpose language, whose

metamodel is presented in Fig. 3. In this language, the user may specify nodes and

links between nodes. Each node may be assigned to instantiate some Rigid classes

from the conceptual model, while links instantiate Associations. Individuals (nodes

and links) can be present in worlds and a world sequence represents the unfolding of

the story (the world sequence is represented using “next” and “previous” relations). A

world is a snapshot of the story, capturing the state of things in a particular point in

the story. As the story progresses, elements may be created, changed or destroyed.

Change is represented as classification statements that may be made about the nodes,

which specify contingent characteristics of it, i.e., the Anti-Rigid classes a node in-

stantiates.

The relations in this model capture the “facts” that the modeler asserts about the

story. The modeler can assert a fact (e.g., “John” is an instance of “Developer”) or

assert its negation (e.g., “Mary” is not an instance of “Developer”) by using the ap-

propriate relations. Whenever the model is silent with respect to a particular choice,

e.g., when nothing is said about whether “John” is a developer, the simulator will

allow both options, meaning either case can appear in a formal narrative of such story.

This is useful to partially formalize a narrative and simulate to see the possible rear-

rangements of states of affairs generated by the simulator. Later, a story may be revis-

ited to constraint it further, specifying more details.

Fig. 3. Metamodel of the formal story language

Formalizing our running example, John and his peers are represented as Nodes that

are instance of Person and each is referred to in a classification statement (Develop-

er). The Items are also nodes and their classifications statements specify they are Con-

figuration Items. All of those statements hold in every world of the story. A classifi-

cation statement about Fred instantiating Requester, does not hold in the first world

of the story and holds in the last two worlds exemplifying dynamic classification.

That statement enforces that, in every simulation, John will always be instance of

Requester in the last two worlds and will never be in the first. Other nodes defined

include a selection and a check-out. To specify that these are actually Thomas' selec-

tion and John's checkout, we must specify links between Thomas and the selection, as

well as between John and the checkout. We could specify the type of link instantiated

but in this case there is only one type of relationship between person and each of these

classes, meaning the simulator will assert the correct type of link, so there is no need

for specifying it in the formal story.

Figure 4 is a screenshot of the prototype application, showing part of the formal

story we just described. The tool represents this formal story internally as an instance

of the abstract syntax metamodel presented in Fig. 3 (using code generated by EMF).

The tree table specifies the story elements (Nodes and Links) in each row and the

Worlds on the columns. Each field determines if the element exists (a checkmark),

does not exist (an x), or if it is left unspecified (an empty box); for each world col-

umn. The classes each story element instantiates, as well as the anti-rigid classes for

the classification statements, can be defined in the list below the story elements panel.

Fig. 4. The Formal Story Specification interface

3.4 Formal Narrative Generation

The generated narratives allow the assessment of what is possible according to the

model’s constraints, confronting the modeler and the stakeholders with the conse-

quences of modeling choices. Counter-intuitive simulations of the story hints to mod-

eling issues. Here we discuss a small sample of the issues that were identified in the

simulation of our story and concern the quality of the conceptual model of Fig. 2.

Fig. 5 shows the first world in a simulation of our story. It shows not only those el-

ements explicitly mentioned in the natural language narrative but also reveals other

elements which are required to exist given the conceptual model. We have noticed

that, similar to Fig. 5, every single simulation of the story had in its first world simul-

taneous check-ins, check-outs and modifications. Inspecting the model closely, we

found that the minimum cardinalities of several relations create a cycle of mandatory

entities. This means that any check-in must be associated with a check-out. As a con-

sequence, a brand-new repository with no check-outs cannot be represented in this

model. Note that it is not the story that requires check-outs in the first world, but these

elements were included in the formal narrative by logical necessity by the Alloy Ana-

lyzer in order to show as a simulation of the story that is conformant with the concep-

tual model. The cycle in the model was most likely not detected by the authors of [4].

Identifying this by inspecting the conceptual model directly is not trivial as it involves

10 classes and requires navigation of several relationships. Relaxing the minimum

cardinalities would break the cycle.

Other issues concern role interaction. In Fig. 5, Thomas’s modifications were

checked in by John. Is this possible in the domain? If not, then the model is under

constrained, which could be fixed by requiring the modifier of a checked-in version to

be the same person that checked it out (e.g., we could write a temporal OCL invariant

[9] reflecting this domain rule). Further, in Fig. 5, Thomas selects the configuration

items but it is John who checks them in. Again, if needed, invariants could be re-

quired to specify that a person who selects items is the same who checks them in for

the first time. Finally, in Fig. 5, the set of items that were selected together and

checked-in together, have versions belonging to different branches, a situation which

could be presented to domain experts in order to assess validity.

Fig. 5. The first world (snapshot) of a simulation

4 Related Work

There are many applications of storytelling and narratives in computer science, with

many purposes different than ours (which is a posteriori assessment). [15] reviews

some of these approaches. E.g. there are symbolic annotation tools [7], metadata for

news stories [14] and means of assessing database systems [6]. One particular ap-

proach, Cucumber [16], share some of our goals by aiming to bridge communication

between subject matter experts and developers. Differently from our approach, their

technique consists of elaborating short stories that exemplify systems features with

the purpose of driving development. The technique shows a promising direction for

future work in expanding our approach to use stories to guide model development

(and not only a posteriori assessment).

Other model transformations have been defined for OntoUML to other languages

besides Alloy, including transformations to OWL [17] and SVBR [5]. The Alloy

transformations were specified initially in [1,3], and later merged and improved in

[13]. We build on these previous approaches by allowing the modeler to guide the

simulations and inspect them intentionally.

5 Final Considerations

We have presented a technique to incorporate storytelling in an existing model valida-

tion approach to improve communication between modelers and experts, as well as

facilitating model assessment. Formalizing natural language narratives allows the

simulation of the model for validation. Natural language narratives have details which

are not represented in the conceptual model and the process of formalizing natural

language narratives or interpreting formal narratives in terms of a natural language

narrative adds detail to the interpretation of the theoretical logical constructs. Analyz-

ing examples allows an intuitive understanding of the model and the consequences of

abstract definitions. To analyze the model by itself one must unfold in their own mind

the possibilities and interactions between classes. The mental workload of performing

this analysis is offloaded to the Alloy Analyzer, shifting the focus of the modeler to

the validation task.

While we have applied the approach on a number of models and performed quali-

tative evaluations, there is still work to be done on systematically evaluating the ap-

proach and specifying quality criteria that could be quantitatively measured.

Currently, there are limitations with respect to the scalability of the analysis, given

that the approach based on the Alloy Analyzer becomes intractable when the size of

the model grows. The tool we use allows the modeler to select fragments of a larger

model for assessment to cope with that. However, further investigation is required to

assess whether fragments of models are a sound basis for overall model assessment.

While the Alloy instance visualizer does provide customization of elements using

different shapes and colors, further work is required to incorporate visualization tech-

niques described in [2] to generate better diagrams. Further work also includes a re-

verse transformation from formal narratives to formal stories, allowing the use of a

simulation as a template for the definition of a formal story.

Acknowledgments. This research is funded by the Brazilian Research Funding

Agencies CNPq (grants number 311313/2014-0, 485368/2013-7 and 461777/2014-2)

and CAPES/CNPq (402991/2012-5).

6 References

1. Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.: Validating modal aspects

of OntoUML conceptual models using automatically generated visual world structures.

Journal of Universal Computer Science, 16, 2904–2933 (2011)

2. Braga, B.F.B.: Cognitive effective instance diagram design. Graduation Thesis, Federal

University of Espírito Santo (2011)

3. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming OntoUML

into Alloy: towards conceptual model validation using a lightweight formal method. Inno-

vations in Systems and Software Engineering, v. 6 (2010)

4. Calhau, R.F.: Uma Abordagem Baseada em Ontologias para a Integração Semântica de

Sistemas, Master Thesis, Federal University of Espírito Santo (2011)

5. Carraretto, R.: A modeling infrastructure for OntoUML. Graduation Thesis, Federal Uni-

versity of Espírito Santo (2010)

6. Ciarlini, A.E.M., Furtado, A.L.: Understanding and Simulating Narratives in the Context

of Information Systems. 21st International Conference on Conceptual Modeling (ER),

Proceedings. v. 2503, 291–306. Springer (2002)

7. Donald, M.: Origins of the modern mind: Three stages in the evolution of culture and cog-

nition Cambridge, MA: Harvard University Press (1991)

8. Elson, D.: Scheherazade, available at http://www.cs.columbia.edu/~delson/software.shtml

9. Guerson J., Almeida, J.P.A.: Representing Dynamic Invariants in Ontologically Well-

Founded Conceptual Models, 20th EMMSAD, Sweden (2015)

10.Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Telematica

Instituut, The Netherlands (2005)

11.Jackson, D.: Software Abstractions-Logic, Language, and Analysis. The MIT Press (2012)

12.Mylopoulos, J.: Conceptual Modeling, Databases, and CASE: An Integrated View of In-

formation Systems Development; Conceptual Modeling and Telos; Wiley (1992)

13. Sales, T.P.: Ontology Validation for Managers, MSc Thesis, Federal University of

Espírito Santo, UFES (2014)

14.Wilton, P., Tarling, J., Mc Ginnins, J.: Storyline Ontology; available at

http://www.bbc.co.uk/ontologies/storyline

15.Winer, D.: Review of Ontology Based Storytelling Devices. In Language, Culture, Com-

putation. Computing of the Humanities, Law, and Narratives, 394–405. Springer (2014)

16.Wynne, M., and Hellesoy, A.: The cucumber book: behaviour-driven development for

testers and developers. Pragmatic Bookshelf (2012)

17.Zamborlini, V., and Guizzardi, G.: On the representation of temporally changing infor-

mation in OWL. In: 14th IEEE International Enterprise Distributed Object Computing

Conference Workshops (EDOCW), 283–292. IEEE (2010)

18.Zimmerman, J.: Unit Testing. Principles of Imperative Computation (2012)

