
MODEL-DRIVEN
DESIGN OF
DISTRIBUTED
APPLICATIONS

 JO
Ã

O
 P

A
U

L
O

 A
N

D
R

A
D

E
 A

L
M

E
ID

A
M

O
D

E
L

-D
R

IV
E

N
 D

E
S

IG
N

 O
F

 D
IS

T
R

IB
U

T
E

D
 A

P
P

L
IC

A
T

IO
N

S

This publication is a collaborative
result of the Telematica Instituut
and the Centre for Telematics and
Information Technology (CTIT). It is
published as a part of the Telematica
Instituut Fundamental Research Series
and of the CTIT Ph.D. Thesis Series.

Part of the research presented in
this thesis was done in the context of
the A-MUSE (Architectural Modelling
Utility for Service Engineering) project.
A-MUSE is a BSIK Freeband project,
sponsored by the Dutch Government.
It aims at developing an advanced
methodology, comprising architectures,
methods, techniques and tools,
to facilitate the development and
provisioning of services.

Telematica Instituut (www.telin.nl)
is a unique partnership between the
business community, research centres
and government to perform research
in the field of telematics for the public
and private sectors. The emphasis is
on rapidly translating fundamental
knowledge into marked-oriented
applications. The institute’s objective is
to strengthen the competitiveness and
innovative strength of Dutch business,
as well as improving the quality of our
society through the proper application
of telematics. To achieve this, the
institute brings together leading
researchers from various institutions
and disciplines. The Dutch government
supports Telematica Instituut under
its ‘leading technological institutes’
scheme. Participation in the Telematica
Instituut Consortium is open to other
companies and research centres.

The Centre for Telematics and
Information Technology (www.ctit.
utwente.nl) is one of the key research
institutes of the University of Twente
(UT), Enschede, the Netherlands.
It conducts research on the design
of complex ICT systems and their
application in a variety of domains. Over
300 researchers actively participate
in the CTIT research programme. In
addition, CTIT closely co-operates with
many public and private organizations,
including industrial companies.

JOÃO PAULO ANDRADE ALMEIDA

U

IT
N

O
D

IG
IN

G

Hi

er
bi

j n
od

ig
 ik

 u
 u

it
vo

or
 h

et
 b

ijw
on

en
 v

an
 d

e

op

en
ba

re
 v

er
de

di
gi

ng
 v

an
 m

ijn
 p

ro
ef

sc
hr

ift

M

O
D

E
L
-D

R
IV

E
N

D

E
S
IG

N
 O

F

D

IS
T

R
IB

U
T

E
D

A

P
P

L
IC

A
T

IO
N

S

op
 d

on
de

rd
ag

 1
 ju

ni
 2

00
6

om
 1

5.
00

 in
 za

al
 2

va
n

ge
bo

uw
 ‘d

e
Sp

ie
ge

l’
va

n
de

 U
ni

ve
rs

ite
it

Tw
en

te
.

Vo
or

af
ga

an
d

aa
n

de
 v

er
de

di
gi

ng
 za

l i
k

om
 1

4.
45

 u
ur

 e
en

to
el

ich
tin

g
ge

ve
n

op
 d

e
in

ho
ud

 v
an

 h
et

 p
ro

ef
sc

hr
ift

.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

JO

Ã
O

 P
A

UL
O

 A
N

D
RA

D
E

A
LM

EI
D

A

Br

in
kh

ui
sb

ur
g

35

75

11
M

J E
ns

ch
ed

e

E-

m
ai

l:
jo

ao
pa

ul
o.

al
m

ei
da

@
te

lin
.n

l

Te

l.:
+3

1
(0

)6
29

01
88

19

Model-Driven Design of
Distributed Applications
João Paulo Andrade Almeida

The model-driven design approach
described in this thesis aims at supporting
designers in managing the complexity
of distributed application design and
evolution.

In this approach, different aspects of
a distributed application are described
throughout the design process using models.
This thesis proposes a technique that allows
designers to build application models that
are – to a certain extent – independent of
the technologies with which applications
can be implemented. These technologies
include the so-called middleware platforms,
which are used to cope with distribution
and to exploit distribution beneficially.

A cornerstone of the approach is the notion
of abstract platform. An abstract platform
is an abstraction of the characteristics of
potential technology platforms which are
assumed by application designers at a certain
point of the design trajectory. By choosing
abstract platforms carefully, a designer is
able to obtain application models that do
not have to be modified as a consequence
of the evolution of technology platforms,
and that can be used as a starting point for
realizations on different platforms.

We define criteria for abstract platform
definition and propose a design framework
for abstract platforms and platform-
independent application models. This
framework is based on the concepts of
service and abstract interaction, and includes
design operations to transform application
models through the various levels of
abstraction and platform-independence.

The main aspects of the approach are
illustrated with a case study involving the
design of context-aware mobile services.

About the author

João Paulo Andrade Almeida has a
master’s degree (M.Sc.) in Telematics
with honours from the University of
Twente, The Netherlands and a degree
in Computer Engineering from the
Federal University of Espírito Santo,
Brazil.

After completing his master’s thesis
work at Lucent Technologies Bell Labs
in 2001, he joined the Architecture
and Services of Network Applications
Group at the University of Twente to
become a full-time researcher, where
he developed his Ph.D. work. Since
October 2005, he has been working
at the Telematica Instituut, where he
applies the approach proposed in this
thesis to the development of context-
aware mobile services.

During the last six years, he has
participated in a number of European
and Dutch research projects. He
authored several international
publications, including conference
papers, journal and magazine articles
and book contributions. He has
served as reviewer for international
conferences and workshops. In
2005, he served as an organizing
committee member for the 9th IEEE
EDOC conference. Currently, he co-
chairs two international workshops,
namely, WODPEC (at the 10th IEEE
EDOC conference) and 3M4MDA (at
the ECMDA-FA 2006 conference).

In his spare time, he is an enthusiastic
amateur astronomer and rock climber. IS

B
N

:
90

-7
51

76
-4

2-
2

MODEL-DRIVEN DESIGN OF DISTRIBUTED APPLICATIONS

Telematica Instituut Fundamental Research Series

 001 G. Henri ter Hofte, Working Apart Together: Foundations for Component Groupware
 002 P. J.H. Hinssen, What Difference Does It Make? The Use of Groupware in Small Groups
 003 D.D. Velthausz, Cost Effective Network Based Multimedia Information Retrievel
 004 L. van de Wijngaert, Matching Media: Information Need and New Media Choice
 005 R.H.J. Demkes, COMET: A Comprehensive Methodology for Supporting Telematics Investment

Decisions
 006 O. Tettero, Intrinsic Information Security: Embedding Information Security in the Design Process

of Telematics Systems
 007 M. Hettinga, Understanding Evolutionary Use of Groupware
 008 A. van Halteren, Towards an Adaptable QoS Aware Middleware for Distributed Objects
 009 M. Wegdam, Dynamic Reconfiguration and Load Distribution in Component Middleware
 010 I. Mulder, Understanding Designers, Designing for Understanding
 011 R. Slagter, Dynamic Groupware Services – Modular Design of Tailorable Groupware
 012 N.K. Diakov, Monitoring Distributed Object and Component Communication
 013 C.N. Chong, Experiments in Rights Control: Expression and Enforcment
 014 C. Hesselman, Distribution of Multimedia Streams to Mobile Internet Users
 015 G. Guizzardi, Ontological Foundations for Structural Conceptual Models
 016 M. van Setten, Supporting People in Finding Information: Hybrid Recommender Systems and

Goal-Based Structuring
 017 R. Dijkman, Consistency in Multi-viewpoint Architectural Design
 018 J.P.A. Almeida, Model-Driven Design of Distributed Applications

Model-Driven Design of
Distributed Applications

João Paulo Andrade Almeida

Enschede, The Netherlands, 2006

CTIT Ph.D.-Thesis Series, No. 06-85
Telematica Instituut Fundamental Research Series , No. 018 (TI/FRS/018)

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Cover Photo: Alexander Calder, Red Lily Pads, 1956

Painted sheet metal, metal rods and wire
42 x 201 x 109 inches (106. 7 x 510.6 x 276.9 cm)
Solomon R. Guggenheim Museum, New York
65.1737
Photograph by David Heald
© The Solomon R. Guggenheim Foundation, New York

Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, The Netherlands

Graduation commitee:
Chairman, secretary: prof.dr.ir. A. J. Mouthaan (University of Twente)
Promotor: prof.dr.ir. C. A. Vissers (University of Twente)
Assistant Promotors: dr.ir. M. J. van Sinderen (University of Twente)

dr. L. Ferreira Pires (University of Twente)
Members: prof.dr. C. Atkinson (University of Mannheim)

prof.dr. P. F. Linington (University of Kent)
 prof.dr.ir. M. Akşit (University of Twente)

prof.dr. J. van Hillegersberg (University of Twente)
prof.dr.ir. L. J. M. Nieuwenhuis (University of Twente)

CTIT Ph.D.-Thesis Series, No. 06-85
ISSN 1381-3617; No. 06-85
Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Telematica Instituut Fundamental Research Series, No. 018
ISSN 1388-1795; No. 018
ISBN 90-75176-422
Telematica Instituut, P.O. Box 589, 7500AN Enschede, The Netherlands

Copyright © 2006, J. P. Andrade Almeida, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the copyright owner. No part of this publication
may be adapted in whole or in part without the prior written permission of the author.

MODEL-DRIVEN DESIGN OF
DISTRIBUTED APPLICATIONS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 1 juni 2006 om 15.00 uur

door
João Paulo Andrade Almeida

geboren op 18 juli 1977
te Vila Velha, Espírito Santo, Brazilië

Dit proefschrift is goedgekeurd door:
prof.dr.ir. C.A. Vissers (promotor), dr.ir. M.J. van Sinderen (assistent-promotor) en
dr. L. Ferreira Pires (assistent-promotor).

Abstract

A recent trend in the design of distributed applications is to systematically
separate their platform-independent and platform-specific aspects, by
describing them in separate models. The main benefits of this approach
stem from the possibility to derive different platform-specific models
(PSMs) from the same platform-independent model (PIM), and to partially
automate the model transformation process and the realization of the
distributed application on specific target (middleware) platforms. This may
reduce initial development costs and improve software quality, but also
forms the basis for facilitating evolution and migration of software solu-
tions, hence contributing to the limitation of maintenance costs for distrib-
uted applications.

A prominent development in this trend is the Model-Driven Architec-
ture (MDA) approach. In the context of MDA, much effort has been
invested in enabling technologies and techniques for model-driven design,
which include metamodelling (MOF), language definition and extension
mechanisms (e.g., UML and UML profiles), model transformation specifi-
cation languages (MOF Query/View/Transformation), tool support and tool
chain interoperability. In contrast, the methodological and architectural
foundations of platform-independent design have received little attention.

In particular, the state-of-the-art in model-driven design can be criti-
cized on a number of points:
– there is a lack of guidelines to select abstraction criteria and modelling

concepts for platform-independent design;
– there is little methodological support to distinguish between platform-

independent and platform-specific concerns, which is detrimental to the
beneficial exploitation of the separation between PIMs and PSMs;

– the distinction between PIM-PSM is coarse and insufficient to cope with
the diversity of application requirements and platform characteristics;

– little attention is given to the role of platform characteristics throughout
the development trajectory, possibly leading to models with unaccept-

VIII ABSTRACT

able levels of platform-independence and applications with unacceptable
quality attributes;

– the behavioural aspects of designs are largely ignored, and;
– design operations between PIMs and PSMs are not clearly defined, thus

inhibiting their effective application in model transformation.
This thesis aims at proposing a design approach for the development of

distributed applications that addresses the problems mentioned above,
focusing particularly on middleware-platform-independence. This approach
consists of:
– a design process, which results in application designs at different levels of

abstraction and platform-independence;
– the notion of an abstract platform, which defines the platform characteris-

tics that are relevant for an application design at a certain level of plat-
form-independence;

– a set of design quality criteria for abstract platform definition; and,
– a design framework, which aims at supporting a designer in defining

abstract platforms and platform-independent designs. This design
framework consists of two parts: a set of basic design concepts, which are
used at different levels of platform-independence to describe both ab-
stract platforms and the platform-independent designs that rely on
them, and design operations, which can be used in transformations to
bridge between different levels of platform-independence. The use of
the design framework enables designers to make statements about the
conformance of models at different levels of platform-independence.
The design process is structured into a preparation and an execution phase.

In the preparation phase, designers identify (and, when necessary, define)
the required levels of models, their abstract platforms and the modelling
language(s) to be used. In addition, a designer may also identify or define
transformations between related levels of models. The results of the prepa-
ration phase are used in the execution phase, which entails the creation of
models of an application using specific modelling languages and abstract
platforms.

The main aspects of the approach are illustrated with a case study in-
volving the design of context-aware mobile services. We define three levels
of models: a platform-independent service specification level, a platform-
independent service design level and a platform-specific service design level.
Particular attention is given to the representation and transformation of
behavioural aspects of service designs.

Acknowledgements

From all the things I have come to appreciate in the process that led to this
book, gratitude just stands out! Therefore, this section on acknowledgements
has special significance to me.

I would like to start by thanking Marten, Luís and Chris. They have sup-
ported me unconditionally and gave me freedom to explore! Together, they
have created a stimulating environment in the Architecture group. Their
previous work (and that of Dick and other “Visserians” [45]) has been
constant inspiration to me. We share a passion (or obsession?) for architec-
tural design and I hope we will have the chance to work together for a long
time to come.

I would like to thank the members of my defense committee: Prof. dr.
Mehmet Akşit, Prof. dr. Colin Atkinson, Prof. dr. Jos van Hillegersberg,
Prof. dr. Peter Linington and Prof. dr. ir. Bart Nieuwenhuis. It is an honour
to have you in this committee. Bart in particular should be acknowledged
for supervising me at the beginning of my Ph.D. trajectory.

Giancarlo Guizzardi and Remco Dijkman have been my closest peers
throughout this period. They are extremely intelligent and we have had such
great discussions about all kinds of thinkable things. It was a pleasure to
share these years with them, and I would like to thank them for that.

Maarten Wegdam has been a constant factor of life in the Netherlands;
first as my M.Sc. supervisor at Lucent, then as a colleague at the University
of Twente, but mostly as a friend. In fact, with Susan and now “Polycarpus”
they form part of what I could call my “extended Dutch family”.

The “Macandra crowd” (Maarten Schokker, Diana, Sander, Azita,
Ronald, Aleks, Ivo, Daan, Femke, Arjan, Maartje, and so many others) and
the “extended Brazilian family” (Gian, Renatinha, Pablo, Flávia, Cléver,
Kellen, Ciro, Léo, Diego, Sonia, Jaque, Luiz Olavo, Ricardo, Tiago) have
spared no efforts to make life so gezellig in Enschede! The same applies to
other (former) members of the ASNA group (Remco van de Meent, Tom,
Annelies, etc.). I would like to thank you all for that.

X ACKNOWLEDGEMENTS

I would also like to thank José Gonçalves. I would not be here in
Twente if it weren’t for our visit to the UT in 1998. He was also part of the
“extended Brazilian family”, when he was a visiting professor in our group
in 2002 and 2003.

Remco Dijkman should also be acknowledged for providing the ISDL
metamodels used in the case study. Bert and Dick provided prompt support
for the modelling and simulation tools (Grizzle and Sizzle) used in the case
study. Marten provided the Dutch translation of the abstract.

I would like to thank my colleagues at the Telematica Instituut for the
fruitful cooperation in the scope of the A-MUSE project, and for welcom-
ing me as part of the team so quickly. In this respect, Maria deserves special
mention.

My parents have sparked my interest in research a long time ago, most
likely without noticing. They used to travel to conferences to meet interest-
ing people and to have fun discussing and learning. Together with my
brother and my sister, they are an essential part of who I am.

My wife Patrícia has left the country she loves so much to be here by my
side “under the low sky”. This book is dedicated to her, to her courage and love.

João Paulo Andrade Almeida,
Enschede, May 2006.

Contents

CHAPTER 1. Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Research objectives 4
1.4 Approach 5
1.5 Scope and non-objectives 6
1.6 Thesis structure 6

CHAPTER 2. Model-driven design process 9
2.1 Basic concepts 9
2.2 Platform-independence 19
2.3 Abstract platforms 26
2.4 Overview of the design process 32
2.5 Related work on model-driven design methods 37
2.6 Concluding remarks 38

CHAPTER 3. Methodological guidelines for the preparation phase 41
3.1 Design quality criteria 41
3.2 Automated transformation 48
3.3 Levels of models 50
3.4 Concluding remarks 55

CHAPTER 4. Separation of concerns and the dependencies between models 57
4.1 Separation of concerns 57
4.2 Dependencies between models 59
4.3 Dependencies between models and the design process 68
4.4 Concluding remarks 75

CHAPTER 5. Design framework 79
5.1 Overview 80

XII CONTENTS

5.2 Design concepts 81
5.3 Service decomposition 87
5.4 Interaction refinement 100
5.5 Relation to RM-ODP 115
5.6 Evaluation 120
5.7 Related work and concluding remarks 122

CHAPTER 6. Support for abstract platforms in MDA 125
6.1 Abstract platform definition approaches 126
6.2 UML, Profiling and MOF 126
6.3 Language-level abstract platform definition 128
6.4 Model-level abstract platform definition 130
6.5 Example 130
6.6 Discussion 135
6.7 Concluding remarks 137

CHAPTER 7. Case study: the design of Freeband Services 139
7.1 Freeband Services 140
7.2 Preparation phase overview 142
7.3 Service specification level 144
7.4 Platform-independent service design level 157
7.5 Transformations 169
7.6 Execution phase 178
7.7 Evaluation 180

CHAPTER 8. Conclusions 183
8.1 General considerations 183
8.2 Main contributions 184
8.3 Directions for further research 186

APPENDIX A Methodology quick guide 191

APPENDIX B Specification of the trader service 195

 References 201

 Index 211

 Samenvatting 215

 Resumo 219

 Publications by the author 223

Chapter 1

1. Introduction

This thesis proposes a model-driven design methodology for distributed
applications. The main characteristic of this methodology is that it strives
for obtaining application models that are independent of the technology
platforms upon which the application is built. In this way, these models can
be reused for realization on different technology platforms and they are
more resilient to impact when platforms change. This chapter presents the
motivation of this thesis and outlines the main research objectives as well as
the approach adopted.

This chapter is organised as follows: section 1.1 provides some back-
ground for our work; section 1.2 outlines the main issues in the state-of-
the-art in model-driven design; section 1.3 presents our research objectives;
section 1.4 discusses briefly the approach proposed in this thesis; section
1.5 defines the scope of the work; finally, section 1.6 presents the structure
of this thesis.

1.1 Background

The wide spread of Information and Communications Technologies (ICT)
and the establishment of the Internet have popularized innumerable dis-
tributed applications beyond most predictions. Distributed applications
have increasingly come to occupy a central place in business, science,
engineering, and everyday life.

Important characteristics of distributed applications include remoteness,
concurrency, lack of global state, independent failures, asynchrony, heterogeneity, and
autonomy. These and other characteristics pose many challenges for the
development of distributed applications. As a result, the timely develop-
ment of high quality distributed applications is expensive.

2 CHAPTER 1 INTRODUCTION

Since a great amount of effort is invested in the development of distrib-
uted applications, an important quality of these applications is their ability
to survive the impact of change, both with respect to changes in application
requirements and with respect to changes in the technologies used to build
the application.

In the last decades, the development of distributed applications has been
facilitated to some extent by the introduction of distribution infrastructures
such as middleware platforms. These infrastructures offer generic distribu-
tion support for distributed applications, masking from application design-
ers some details and differences in the support offered by programming
languages, operating systems and network protocols. Since a significant
amount of development effort is spent on overcoming problems related to
distribution and in exploiting distribution beneficially (e.g., to achieve
performance and dependability), the reuse of middleware platforms signifi-
cantly increases the efficiency of application development.

Different middleware platforms have been developed in the last decades,
e.g., CORBA/CCM [73], J2EE [102] (including EJB [103] and JMS [104]),
DCE [109], and Web Services [120, 121]. Currently, designers of distrib-
uted applications are exposed to a multitude of platform standards, imple-
mentations of standards from different vendors, proprietary platforms and
ad hoc infrastructures, standard and proprietary extensions to platforms,
etc. Despite standardization efforts, different parts of a distributed applica-
tion may be built using various middleware platforms, and the set of plat-
forms used may change over time. In addition, middleware platforms may
evolve during the lifetime of applications. The use of a single immutable
distribution infrastructure is therefore not envisioned as a long term solu-
tion for the support of distributed applications.

Since different middleware platforms provide different constructs from
which applications can be built, the design of an application in terms of
platform constructs is platform-specific. This means that application de-
signs may be affected by changes in technology platforms, with the conse-
quence that applications have to be redesigned. Furthermore, application
designers must be knowledgeable about the peculiarities of specific target
middleware platforms.

1.2 Motivation

A recent trend in the design of distributed applications is to systematically
separate their middleware-platform-independent and middleware-
platform-specific aspects, by describing them in separate models. A promi-
nent development setting this trend is the Model-Driven Architecture
(MDA) [72, 76] approach.

 MOTIVATION 3

The notion of platform-independence is central to MDA development.
Platform-independence is a quality of a model that relates to the extent to
which the model abstracts from the characteristics of particular technology
platforms. A common pattern of MDA development is to define a platform-
independent model (PIM) , and to apply (parameterised) transformations
to this PIM to obtain one or more platform-specific models (PSMs). The
main benefits of this approach stem from the possibility to derive different
PSMs from the same PIM, and to partially automate the model transforma-
tion process and the realization of the distributed application on specific
target platforms. This may reduce development costs and improve software
quality, but also forms the basis for facilitating evolution and migration of
software solutions, hence contributing to limiting the maintenance costs for
distributed applications.

In the context of MDA, much effort has been invested in enabling tech-
nologies and techniques for model-driven development, which include
metamodelling (MOF) [77, 78], language definition and extension mecha-
nisms (e.g., UML and UML profiles) [81, 83, 84], model transformation
specification languages and approaches [64, 79], tool support and tool
chain interoperability [20]. In contrast, the methodological and architec-
tural foundations of platform-independent design have received little
attention.

In particular, the following research questions remain open:
– Which abstraction criteria should be used for platform-independent

design? Which concepts should be used to describe platform-
independent models of an application?

– How should designers distinguish platform-independent and platform-
specific concerns, in order to effectively exploit the PIM-PSM separa-
tion of concerns?

– Is the distinction between PIMs and PSMs sufficient to cope with the
diversity of application requirements and infrastructure characteristics?
Should there be more levels of models (or levels of platform-
independence)?

– What are the implications of the separation of platform-independent
and platform-specific concerns for the design process? How should the
design process be organized?

– Is there a trade-off between platform-independence and other relevant
design quality characteristics?

– How should designers cope with platform characteristics along the
design trajectory? When and how should restrictions imposed by plat-
forms be incorporated in designs?

– What are the relations between the various models in the design trajec-
tory?

– How to represent behaviour in a platform-independent way?

4 CHAPTER 1 INTRODUCTION

– Does the focus on a particular design language (e.g., UML) constrain the
designer? If so, how?

1.3 Research objectives

In order to obtain the potential benefits of the model-driven approach to
the development of distributed applications, we aim at coping with the
issues above in an effective model-driven design methodology. The objec-
tive of our work is to propose such a methodology for the design of distrib-
uted applications so that:
– available and future distribution infrastructures can be (re-)used, im-

proving the efficiency of the design process;
– the knowledge used to perform various design operations can be cap-

tured and re-used to improve the overall efficiency of the design proc-
ess, and;

– the design of applications can be to a certain extent platform-
independent, so that these designs can be reused to target different
middleware platforms and applications can outlive platforms upon
which they are built.
The methodology is defined so as to be generic with respect to applica-

tion domains and platform characteristics. We propose generic guidelines,
which can be applied by designers in specific application domains and with
particular requirements on target platforms.

We regard platform-independence as a quality characteristic of strategic
importance for distributed application models. Similarly to many other
quality characteristics, such as, e.g., adaptability and tailorability, achieving
platform-independence is not trivial and requires proper methodological
support.

We believe that platform-independence can only be defined once gen-
eral capabilities of potential target platforms can be established. This leads
to the observation that there can be platform-independent models at
different abstraction levels, depending on whether one wants to consider
different sets of target platforms. Another observation is that different
application domain characteristics or different sets of target platforms
generally lead to different types of (intermediate) models, design structures
or patterns, and model transformations. We have investigated these types of
models and design structures and formulated proper design criteria and
architectural concepts to support the design trajectory.

 APPROACH 5

1.4 Approach

An architectural concept that plays an important role in our approach is
that of an abstract platform. An abstract platform defines an acceptable
platform from an application developer’s point of view, representing the
platform support that is assumed by the application developer at some
point in the design trajectory. Alternatively, an abstract platform defines
characteristics that must have proper mappings onto the set of target
platforms that are considered for a design process, thereby defining the
level of platform-independence for this particular process.

Because of the variety of application domain characteristics and middle-
ware platform characteristics, different abstract platforms may be required.
Therefore, we do not provide a comprehensive catalogue of abstract plat-
forms. Instead, we provide methodological support to design abstract
platforms.

The design methodology proposed in this thesis can be decomposed
into the following main elements:
– a design process, which results in application designs at different levels of

abstraction and platform-independence;
– the notion of an abstract platform, which defines the platform characteris-

tics that are relevant for an application design at a certain level of plat-
form-independence;

– a set of design quality criteria for abstract platform definition; and,
– a design framework, whose purpose is to support a designer in defining

abstract platforms and platform-independent designs. This design
framework consists of two parts: a set of basic design concepts, which are
used at different levels of platform-independence to describe both ab-
stract platforms and the platform-independent designs that rely on
them, and design operations, which can be used in transformations to
bridge between different levels of platform-independence. The use of
the design framework enables designers to make statements about the
conformance of models at different levels of platform-independence.
The design process is structured into a preparation and an execution phase.

In the preparation phase, designers identify (and, when necessary, define)
the required levels of models, their abstract platforms and the modelling
language(s) to be used. In addition, a designer may also identify or define
transformations between related levels of models. The results of the prepa-
ration phase are used in the execution phase, which entails the creation of
models of an application using specific modelling languages and abstract
platforms.

6 CHAPTER 1 INTRODUCTION

1.5 Scope and non-objectives

The scope of this work is the architectural design of distributed ICT appli-
cations. We do not address application requirements engineering and we do
not propose specific implementation techniques. Furthermore, testing,
deployment, operation and retirement activities are outside the scope of
this research.

We focus on the methodological aspects of model-driven design, in par-
ticular with respect to achieving middleware-platform-independence.
Therefore, it is not our intention to propose model transformation ap-
proaches or specification languages. It is not our intention either to propose
metamodelling, language definition and extension mechanisms or modelling
languages, tools and tool architectures. Nevertheless, some developments in
these areas provide support for the practical application of our approach.
This is illustrated in chapters 6 and 7 of this thesis.

1.6 Thesis structure

This thesis is further structured as follows:
– Chapter 2 (Model-driven design process) identifies the elementary

concepts of our approach (such as design process, design, abstraction,
model); introduces the notions of platform, platform-independence and
abstract platform; and presents an overview of our approach to the de-
sign of distributed applications.

– Chapter 3 (Methodological guidelines for the preparation phase) pre-
sents methodological guidelines for platform-independent design, spe-
cifically addressing the definition of abstract platforms and discussing
the role of transformations in the design process.

– Chapter 4 (Separation of concerns and dependencies between models)
discusses the implications of the dimensions of separation of concerns
(as proposed in chapter 3) to the design process. The dependencies be-
tween the various models is visualised and analysed using Design Struc-
ture Matrices (DSMs). This results in guidelines for the design process.

– Chapter 5 (Design framework) defines a design framework, whose
purpose is to support a designer in defining abstract platforms and plat-
form-independent designs.

– Chapter 6 (Support for abstract platforms in MDA) discusses how
abstract platforms can be represented in the modelling infrastructure
provided in the MDA, which includes extensions to the Unified Model-
ling Language (UML) and the use of the Meta-Object Facility (MOF).

 THESIS STRUCTURE 7

– Chapter 7 (Case study: the design of Freeband Services) presents a case
study to illustrate the main aspects of our approach. This case study in-
volves the design of context-aware mobile services.

– Chapter 8 (Conclusions) concludes by outlining the main contributions
of this thesis and by proposing topics for further investigation.

Figure 1-1 shows the chapters in this thesis and how they can be related to
each other. The main body of this thesis consists of two parts: (i) the
description of the design approach (chapters 2 to 5) and (ii) the application
of our approach (chapters 6 and 7). Related work is discussed throughout
the thesis (but with specific considerations about related work in sections
2.5, 5.5, 5.7 and 6.7).

 Introduction (chapter 1)

 Design approach

 Model-driven design process (chapter 2)

 Methodological guidelines for the preparation phase (chapter 3)

 Separation of concerns and the dependencies between models (chapter 4)

 Design framework (chapter 5)

 Applying the approach

 Conclusions (chapter 8)

 Support for abstract platforms in MDA (chapter 6)

 Case study: the design of Freeband Services (chapter 7)

Methodological
support

Figure 1-1 Structure of
this thesis

Chapter 2

2. Model-driven design process

This chapter presents an overview of our approach to the design of distrib-
uted applications. We discuss the role of the separation of platform-
independent and platform-specific concerns in the design process, and
provide a general methodological framework for platform-independent
design, based on the notion of an abstract platform. We outline the design
activities and define the scope of our design methodology.

This chapter is organised as follows: section 2.1 introduces some basic
concepts; section 2.2 discusses the notions of platform and platform-
independence; section 2.3 introduces the concept of abstract platform;
section 2.4 provides an overview of the proposed design process; section
2.5 discusses related work; and, section 2.6 presents concluding remarks.

2.1 Basic concepts

2.1.1 Design process

The design of a distributed application can be regarded as the process of
building a realization of the application that satisfies user requirements while
applying a design methodology. This simplistic view of a design process is
depicted in Figure 2-1.

realization

design process design methodology

user requirements

Figure 2-1 Simplistic
view of a design process

10 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

Since the gap between user requirements and realization is wide, the de-
sign of a distributed application is a complex task. Therefore, it is difficult
to perform it in a single step. In order to deal with the complexity of this
task, a designer should address only a limited set of design concerns in each
of a series of design steps. This constitutes a basic design principle of effective
design methodologies called separation of concerns.

A means to achieve separation of concerns in a design process is to use
abstraction. Abstraction is the process of addressing only the characteristics
of an entity that are relevant from a particular point of view. Characteristics
that are considered irrelevant are ignored or suppressed. The term abstrac-
tion is also used to refer to the result of the process of abstraction. We call
an abstraction of a technical object of concern a design [40].

In the stepwise design approach, concerns are addressed sequentially in de-
sign steps, leading to designs of the system at different levels of abstraction.
The application of stepwise design in the design process is depicted in Figure
2-2.

design activities

.

.

.

design activities

design activities

level 1

level 2

level n-1

level n

design methodology user requirements

design 1

design 2

design n-1

design n

Figure 2-2 Stepwise
design

For each design step, design activities are executed, which consist of trans-
formation and assessment activities [94]. A transformation activity is a generic
design activity that entails the production of a target design on basis of some

 BASIC CONCEPTS 11

input, and, an assessment activity is a generic design activity that comprises the
evaluation of the target design as outcome of the transformation activity. In
principle, assessment activities should include conformance assessment, in
order to check whether the target design conforms to the original design.

Transformation activities in a design step typically entail selection from a
virtually infinite number of potential alternative realizations. The character-
istics of these potential realizations are constrained by a design, which
defines relevant characteristics of realizations at a particular level of abstrac-
tion.

2.1.2 Design decisions

During the design process, design activities result in a number of design
decisions, which add characteristics that will eventually be assigned to the
realization of a design. We define a design decision as a modification of a
design that reduces the number of elements of the class of conformant
realizations of that design. The reduction of the realization space imposed
by successive design decisions is depicted in Figure 2-3 (inspired by [94]).

design 1

design 2

design n-1

design i

2

7

8

1..8 – examples of elements from the universe of possible realizations
4..8 – examples of elements from the set of possible realizations defined by design 1
6..8 – examples of elements from the set of possible realizations defined by design i
8 – example of element from the set of possible realizations defined by design n

design n

universe of possible realizations

1

3

6

4 5

Figure 2-3 Reduction of
realization space for
designs at different
levels of abstraction

Design decisions taken in a design step should meet two requirements in
order for the design process to make progress [63]:
– they must preserve the characteristics present in the design that is input

to the design step, i.e., the resulting design should conform to the origi-
nal design; and,

– they must contribute to satisfying requirements that have not yet being
fulfilled.

12 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

The former requirement reveals the importance of conformance assess-
ment in a design step. The latter requirement reveals the importance of
user requirements throughout the design process. This is because user
requirements can be stated in terms of characteristics of a realization that
are only addressed at a lower level of abstraction. For example, a user may
require an application to be deployed in a particular hardware architecture,
e.g., because of the availability of this architecture. This requirement is not
considered in a design that defines the functions of the application; it is
only addressed when hardware characteristics become relevant in the design
process. The importance of user requirements throughout the design
process justifies the arrows from user requirements to design activities at
different levels of abstraction in Figure 2-2.

Design decisions should eventually lead to a design that defines all rele-
vant characteristics of an acceptable realization of the system. This design is
such that its correspondence with the eventual realization is straightforward.

2.1.3 Realization platform

The realization is defined in terms of realization resources such as, e.g.,
programming languages and their interpreters or compilers, operating
systems and hardware. We call the resources from which a realization can
be constructed a realization platform.

When capabilities of the realization platform are enhanced, the corre-
spondence between the design and the realization may be established at a
higher level of abstraction. In that case, a designer may stop performing
design steps earlier, using higher-level constructs entailed by the realization
platform. The resulting design process is depicted in Figure 2-4. The posi-
tion of the dashed line that defines the lower boundary of the design proc-
ess can be adjusted according to the resources available in the realization
platform.

 BASIC CONCEPTS 13

design activities

.

.

.

design activities

design activities

level 1

level 2

level n-1

level n

design methodology user requirements

design 1

design 2

design n-1

design n

capabilities
of realization

platform

Figure 2-4 Enhancement
of realization platform

When correspondence between design and realization can be established at
a higher level of abstraction, the realization platform embodies design
decisions taken at a lower level of abstraction. These design decisions must
be consistent with user requirements yet to be satisfied.

2.1.4 Reuse

A design methodology supports a designer in satisfying user requirements,
prescribing design goals to be accomplished. An important high level design
goal is increasing the efficiency of the design process, which contributes to
improving the cost-effectiveness of the design process.

The efficiency of the design process can be increased by reusing designs
and design knowledge. A design approach based on reuse of existing designs
and design knowledge is called design with reuse. A design approach that aims
at creating reusable designs and capturing reusable design knowledge is
called design for reuse [106].

While design by reuse increases the efficiency of the design process, cre-
ating reusable designs and capturing reusable design knowledge may actually
incur additional costs for the design process. Therefore, design for reuse
must be justified by potential opportunities for reuse. These opportunities

14 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

can be considered in the long term, whenever the development of several
with similar characteristics is foreseen. This motivates approaches such as
software product lines [27], in which a family of products with similar
functionality is designed and maintained, and domain analysis [11], which
identifies and captures reusable artefacts for particular classes of applica-
tions.

2.1.5 Design reuse

The reusability of designs is determined by a number of properties of the
design, such as its generality, open-endedness and level of abstraction.

Generality defines that aspects covered by a design should be defined in
their most general form [99]. Generality may come from generalizing user
requirements and design goals, or anticipating future user requirements and
design goals. Open-endedness is the property of a design of allowing future
extensions [99].

The higher the level of abstraction of a design, the higher its reusability.
Nevertheless, the higher the level of abstraction of a design, the wider the
gap between the design and its realizations. The trade-off between the level
of abstraction of a design and the gap between the design and its realiza-
tions can be visualized as a spotlight (Figure 2-5, inspired by [106]): higher
levels of abstraction illuminate a wider target area; the penalty, however, is
widening the gap between the design and its realizations.

increasing
level of

abstraction

a, b – gap between design and its realizations
c, d – potential target realizations

decreasing
gap

b

a

c
d

Figure 2-5 Abstraction
spotlight

Examples of categories of reusable (implementation-oriented) designs are
frameworks [16], software components [107], protocol stacks [48], and
middleware [18].

 BASIC CONCEPTS 15

2.1.6 Design knowledge reuse

A design step can be regarded as a problem solving activity (as suggested in
[108]). In this view, the source design and user requirements define a prob-
lem that is solved by adequate solutions in a target design.

Since a design step typically requires a selection from a virtually infinite
number of design solutions and alternatives, the selection of design solu-
tions and the exploration of design alternatives are guided by design goals
and design (or solution) knowledge provided by a design methodology. Design
knowledge includes experience, techniques, design patterns, heuristics,
technical engineering constraints, etc. The application of design goals and
design knowledge in a design methodology is depicted in Figure 2-6.

realization

design process

user
requirements

design
methodology

design goals

design
knowledge

experience, techniques, design
patterns, heuristics, procedures,
technical constraints, etc.

Figure 2-6 Application
of a design methodology
with design goals and
design knowledge

Design knowledge is used at each design step and may be specific to a
particular abstraction level. This is captured in Figure 2-2 in the relations
between the design methodology and the design activities at different levels
of abstraction.

Design knowledge can be captured with different degrees of rigour,
ranging from experience to algorithmic procedures based on mathematical
models.

Design experience is an example of design knowledge that is individual and
lacks any (rigorous) description. Design experience is the practical knowl-
edge, skill, or practice, which is derived from direct observation of or
participation in design activities.

Design experience can be documented in design techniques that can be
learned and transmitted to other designers.

Inspired from architecture design [2], design patterns [43] capture some
design knowledge explicitly. Design patterns have been introduced as a way
to reuse knowledge in the solution of recurring design problems. A design

16 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

pattern describes the core of a design solution, and often includes a general
description of the design problem addressed. A design pattern also de-
scribes the results and trade-offs of applying the pattern, which are critical
for evaluating design alternatives and for understanding the costs and
benefits of applying the pattern [43].

Often, design techniques and patterns include heuristics, which are pro-
cedures whose effectiveness has not been formally proven but are generally
accepted based on experience or common sense [16]. Heuristics may be
used to explore a design space, as is suggested in [108].

On the extreme end of rigour there are algorithmic procedures based on
mathematical models of the design space, which employ optimization
techniques to explore a well-defined space of possible designs.

An important kind of design knowledge is bottom-up knowledge [40]. Bot-
tom-up knowledge entails information about availability, quality and cost of
resources that can be used to construct realizations, e.g., reusable designs,
operating systems, programming languages, etc.

2.1.7 Models

We have defined designs as abstractions. Designs are, therefore, conceptual
entities that only exist in the mind of a designer or a community of design-
ers. Designs are constructed in terms of design concepts, which are abstract
constructs of certain aspects of the objects in a given (design) domain. A set
of design concepts and their combination rules is a design conceptualization.

For designs to be documented, communicated and analysed, they must
be captured, i.e. represented in terms of some (symbolic) artefact. This
implies that a language is necessary for representing designs in a concise,
complete and unambiguous way. We call the representation of a design a
model, and the language used in the creation of a model a modelling language.
The relation between design conceptualizations, designs and modelling
languages and models is depicted in Figure 2-7 (adapted from [22, 40]). In
Figure 2-7, we have represented symbolic artefacts with the icon used to
denote UML packages [83]. This convention is also adopted in the remain-
der of this thesis.

 BASIC CONCEPTS 17

design
conceptualization

design

modelling
language

model

interpreted as

represented by

interpreted as

represented by

used to
compose

used to
compose

instance
of

instance
of

conceptual world symbolic world

Figure 2-7 Relation
between design
conceptualization,
design, modelling
language and model

A design conceptualization should entail design concepts that allow the
expression of relevant characteristics of a design. Since different character-
istics are relevant at different levels of abstractions, different design concep-
tualizations may be necessary for designs at different levels of abstraction.
Correspondingly, different modelling languages may be necessary for mod-
els representing designs at different levels of abstraction.

2.1.8 Model transformation

When designs are captured in models, transformation activities can be
regarded as model transformations. Therefore, model transformation specifications
can be used to constrain or (partially) determine the output of transforma-
tion activities.

Model transformation specifications determine how the elements of dif-
ferent models relate to each other. When we use model transformation
specifications to constrain transformation activities, a model transformation
specification relates:
1. source models that represent a source design;
2. target models that represent a target design, and;
3. additional information that captures design decisions and requirements not

satisfied in the source design and that are to be satisfied in the target de-
sign.
For our purposes, model transformation specifications are intended to

capture generalized design knowledge used to perform transformation
activities. Therefore, these specifications define the correspondences
between types of model elements or particular combinations of types of
model elements of source and target modelling languages. Model transfor-
mation specifications are defined in transformation languages, such as the
ones compared in [28] and the one specified by the OMG in [79].

Figure 2-8 depicts schematically the relations between a transformation
specification, source and target modelling languages, transformation activi-

18 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

ties and source and target models. For the sake of clarity, only one source
model and one target model are shown in Figure 2-8.

modelling
language

source model

instance
of

modelling
language

target model

instance
of

transformation
specification

constrained or
determined by

transformation
activities

defined in
terms of

defined in
terms of

transformation
language

instance
of

Figure 2-8
Transformation
specifications constrain
transformation activities

Model transformation specifications may be used to constrain transforma-
tion activities with different degrees. For example, transformation specifica-
tions may contain enough information to determine how target models can
be created given a source model or a number of source models. If such a
model transformations specification can be executed, it can be used to
automate transformations activities. Model transformation specifications
can also be used to preserve a certain relation between source and target
models automatically in face of modification of these models. This includes
automating the modification of a source model to accommodate the modi-
fication of a target model and vice-versa (see “bidirectional transforma-
tions” and “execution scenarios” in [79]).

Transformation specifications can be used for purposes other than cap-
turing generalized design decisions. For example, they can be used to
automate assessment activities, by definining the acceptable relations be-
tween source and target models; or they can be used to support analysis of a
design [61]. These uses of transformation specifications are not precluded
by our approach, but are considered outside the scope of this thesis.

The model transformation pattern shown in Figure 2-8 can be applied
successively. In this case the notions of source and target models are rela-
tive, and an intermediary model is considered a target model from the
perspective of the transformation from the source model, and the same
intermediary model is considered a source model from the perspective of
the transformation to the final target model.

 PLATFORM-INDEPENDENCE 19

2.2 Platform-independence

In most traditional development cultures, the ultimate product of the
design process is the realization, deployed on available realization platforms.
The various models at different levels of abstraction that are produced
during the design process are mainly regarded as a means to obtain a reali-
zation of the system, and are not considered as final products of the design
process.

In our approach, however, intermediate models are reusable and, are
therefore, also considered final products of the design process. These
models are carefully defined so as to abstract from details in platform
technologies, and are therefore called platform-independent models (PIMs) (in
line with the MDA [76]). A platform-independent model can be used as
input to transformation activities that lead to different alternative realiza-
tions that use different platform technologies. In addition, platform-
independent models remain relatively stable in face of changes in platform
technologies.

The design process from platform-independent models to platform-
specific realizations may entail the use of intermediate platform-specific
models (PSMs).

The reduction of the realization space imposed by PIMs and PSMs is
illustrated in Figure 2-9. In this figure, a PIM of an application is trans-
formed into models Mi and Mi’, which are PSMs that depend on platforms
ΠA and ΠB, respectively. B

2 8

5

6

1..9 – examples of elements from the universe of possible realizations
4..9 – examples of elements from the set of possible realizations defined by model M1
4..6 – examples of elements from the set of possible realizations defined in terms of platform ΠA
7..9 – examples of elements from the set of possible realizations defined in terms of platform ΠB
6 – example of element from the set of possible realizations defined by model Mn
9 – example of element from the set of possible realizations defined by model Mn’

model M1
(PIM)

model Mi
 (PSM ΠA)

model Mi’

 (PSM ΠB)

model Mn’
(PSM ΠB)

9

model Mn
(PSM ΠA)

universe of realizations

1

3

7

4

Figure 2-9 Realization
space for a PIM and
PSMs

20 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

2.2.1 Platforms

Before we further refine the notion of platform-independence, we should
define more precisely the notion of a platform. The MDA guide [76]
defines a platform as “a set of subsystems/technologies that provide a coher-
ent set of functionality through interfaces and specified usage patterns that
any subsystem that depends on the platform can use without concern for
the details of how the functionality provided by the platform is imple-
mented.”

This definition is rather general, and lends itself to further refinement
into different types of platforms that entail different types of subsystems
and technologies defined with different purposes.

For example, in a certain context, an operating system may be consid-
ered a platform, including a kernel and a set of operating system libraries.
In this case, the functionality provided includes memory allocation and
protection, process concurrency, system file access, low-level input-and-
output access, etc. This functionality is accessed through interfaces offered
by the operating system in interactions called interrupts or kernel traps.

In another context, the term platform may refer to a programming lan-
guage, its standard libraries and a compiler or an interpreter for the lan-
guage. In this case, the functionality provided is program execution. Sys-
tems that rely on this platform are described using programming language
constructs, which include interactions with the programming language’s
libraries.

The term platform is also used to denote (standardized) middleware
technologies, such as CORBA/CCM [73], J2EE [102] (including EJB [103]
and JMS [104]), DCE [109], and Web Services [120, 121], or particular
implementations of these technologies, such as, e.g., .NET's implementa-
tion of Web Services [68], and IONA's Orbix implementation of CORBA
[50]. In this work, we are particularly interested in this notion of platform.

2.2.2 Middleware platforms

Middleware is software that provides a supporting infrastructure for distrib-
uted applications. Middleware facilitates distributed application develop-
ment by implementing reusable functionality that is commonly required,
and by masking from applications some details and differences in the
support offered by network technologies, programming languages, operat-
ing systems and hardware architectures. A middleware platform is posi-
tioned between parts of a distributed application and a distributed re-
sources platform [18], as depicted in Figure 2-10.

 PLATFORM-INDEPENDENCE 21

distributed resources
platform layer

middleware platform

app.
part

node

distributed
application layer

node

node

middleware
platform layer

app.
part

app.
part

app.
part

Figure 2-10 Middleware
platform is positioned
between parts of a
distributed application
and a distributed
resources platform

Middleware provides support for the distribution of application parts,
offering programming abstractions that are closer to application require-
ments than the low-level programming abstractions that would have to be
manipulated without middleware. For example, middleware may relieve the
application designer from explicitly addressing some common tasks distrib-
uted applications perform, such as the handling of the reliability of commu-
nication, the correlation of requests and responses, the registration, loca-
tion and activation of application parts, the encoding and decoding of
messages, the use of a transport protocol, and the replication of application
parts.

By hiding part of the complexity of the distribution support, middleware
is said to offer distribution transparencies [59], or, in short, transparencies. An
example of a specific transparency provided by a middleware platform is
replication transparency [59], in which the complexity of maintaining the
consistency between replicated application parts is hidden from the applica-
tion developer. In recent years, the evolution of middleware has led to an
increase in the level of transparency and in the number of generic services
provided by middleware platforms.

Since a significant amount of development effort is spent on overcoming
problems related to distribution (e.g., remoteness, partial failures, hetero-
geneity) and in exploiting distribution beneficially (e.g., to achieve perform-
ance and dependability), the reuse of middleware platforms significantly
increases the efficiency of the development of distributed applications. In
addition, the use of a middleware platform contributes to a reduction of
long-term maintenance costs by improving the portability of application
parts and facilitating the interoperability between (legacy) application parts.
This is particularly important when existing applications (or application
parts) are to be integrated.

Currently, there are several (competing) middleware standards, middle-
ware implementations from different vendors, proprietary platform exten-
sions and proprietary middleware implementations. In addition, different

22 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

parts of a distributed application may be built using different middleware
platforms, as depicted schematically in Figure 2-11.

middleware platform

node
node

node

middleware platform

node
node

node

app.
part

app.
part

app.
part

app.
part

app.
part

app.
part

Figure 2-11 Different
middleware platforms
used to support
distributed applications

During the lifetime of applications, these platforms may become obsolete,
requiring upgrade or replacement. Therefore, the use of a single immutable
distribution infrastructure does not provide an appropriate long term
solution for the support of distributed applications.

Different middleware platforms provide different constructs from which
applications can be built. For example, a number of popular middleware
platforms offer location-transparent operation invocation, following a
request-response interaction pattern. Examples of these platforms are
CORBA/CCM, Web Services, DCE, Java RMI, and .NET remoting. Other
popular middleware platforms offer support for interaction patterns other
than operation invocation. Examples of such platforms are event-based and
message-oriented middleware platforms such as JMS and MQSeries, re-
spectively. Often, middleware platforms provide languages in which applica-
tions must be described so that appropriate support can be provided.

Different middleware platforms also offer different services and distri-
bution transparencies. Examples of services that are typically offered by
middleware platforms are directory services, trading services and security
services. Examples of distribution transparencies often provided are loca-
tion transparency, replacement transparency, replication transparency and
migration transparency.

In addition to differences in the supported interaction patterns, services
and transparencies, different middleware platforms also exhibit different
quality characteristics, such as, e.g., time performance, scalability, reliabil-
ity, availability and security. These characteristics should be considered in
order to satisfy application quality requirements.

Since middleware platforms provide generic support for distribution,
their usage patterns may include several alternatives from which a developer
can choose. For example, CORBA offers both request-response invocations
and an Event Service [74] that supports interaction based on event queues.
If a designer determines that the Event Service must be used for all the

 PLATFORM-INDEPENDENCE 23

interactions between application parts, we consider that this additional
restriction in CORBA’s usage patterns actually defines a new platform. All
applications in this platform are also CORBA applications.

2.2.3 Relative notion of platform-independence

Since the concept of platform may refer to many different technical sys-
tems, the notion of platform-independence is relative to the particular
definition of platform.

For example, suppose that our platform comprehends alternative mid-
dleware technologies, such as, e.g., CORBA or Java RMI. In this case, a
CORBA IDL [73] specification is a platform-specific model, since it relies
on a specific instance of middleware technology. In this context, a plat-
form-independent model should be constructed by using only generic
concepts that allow one to define the application (components and their
behaviour) without being bothered by the idiosyncrasies of the middleware
platforms that could be used for deploying the application. Figure 2-12(a)
depicts the consequences of this definition of platform for the distinction
between PIMs and PSMs.

In contrast, suppose that our platform comprehends the C++ pro-
gramming language and a C++ CORBA ORB implementation (such as,
e.g., Orbacus [51]). In this case, a CORBA IDL specification is a platform-
independent model with respect to our platform, since this specification
abstracts from the different programming languages and ORB implementa-
tions. For example, the same IDL specification could be realized in Java.
Figure 2-12(b) depicts the consequences of this definition of platform for
the distinction between PIMs and PSMs.

platform selection (a)

.

.

.

platform-independent
models

platform-specific
models

Java RMI

CORBA

C++

Java

platform selection (b)

platform-independent
models

platform-specific
models

(a) platform = middleware (b) platform = programming environment

Figure 2-12 Abstraction
levels of PIMs and
PSMs

These two examples illustrate the importance of agreeing upon the abstrac-
tion criteria for PIMs and PSMs and agreeing upon what the platform is.
Since we are particularly interested in the development of distributed

24 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

applications that are supported by middleware platforms, we defined
platform-independence with respect to middleware technologies and their
implementations.

2.2.4 Levels of platform-independence

When pursuing platform-independence, one could strive for PIMs that are
absolutely neutral with respect to all different classes of middleware plat-
forms. This is possible at levels of abstraction in which the characteristics of
a supporting infrastructure are irrelevant. For example, conceptual domain
models [11] and RM-ODP Enterprise Viewpoint specifications [57] do not
commit to characteristics of a middleware platform.

However, when the application is described as a decomposition of inter-
acting application parts, one may use different sets of design concepts,
combinations of concepts or patterns, each of which is better suited for
specific classes of target middleware platforms. For example, a designer may
choose to describe the interaction between application parts using event
queues, favouring a realization on a platform that provides such an interac-
tion pattern.

A consequence of this observation is that models of an application can
be defined with different degrees of platform-independence, with respect
to the extent to which these models constrain the designer in selecting a
target platform. The various models of an application with different degrees
of platform-independence may be organized into different levels of platform-
independence. A model at a particular level of platform-independence can be
realized onto a number of platforms. A model defined at a lower level of
platform-independence further constrains platform selection when com-
pared to a model at a higher level of platform-independence. We define
platform-specific models (again, with respect to a particular definition of
platform), as models that constrain platform selection so that only a single
platform is acceptable for realization.

The reduction of the realization space imposed by models at different
levels of platform-independence is illustrated in Figure 2-13. Model M1
describes the application without constraining its internal structure. This
model is used as input to produce model Mi, which excludes all realizations
on top of platform ΠA, and, is therefore, defined at a lower level of plat-
form-independence with respect to M1.

 PLATFORM-INDEPENDENCE 25

1
5

6
8

1..9 – elements from the universe of realizations
4..9 – elements from the realizations defined by model M1, at high level of platform-independence
6..9 – elements from the realizations defined by model Mi, at lower level of platform-independence
4, 5 – realizations defined by model M1, platform ΠA
8 – realization defined by model Mn, platform ΠB
9 – realization defined by model Mn’, platform ΠC

model M1
(PIM)

model Mi
 (PIM)

model Mn
(PSM ΠB)

model Mn’
(PSM ΠC)

9

2

3

4

7

Figure 2-13 Realization
space for models at
different levels of
platform-independence

Figure 2-14 illustrates a design trajectory that considers a number of par-
ticular target platforms, namely, CORBA, Java RMI, MQSeries and JMS. A
model of the application at a high-level of platform-independence is de-
picted as the starting point of the trajectory. This model is used as input to
produce two alternative models of the application: a model based on inter-
action through object invocation (MOI), which facilitates the transformation
to CORBA and Java RMI; and a model based on interaction through event
queues (MEQ), which facilitates the transformation to JMS and MQSeries.

platform selection

.

.

.

.

.

.

platform-
independent design

platform-
specific design

object invocation (MOI)

event queues (MEQ)

MQSeries

JMS

CORBA JavaRMI

Figure 2-14 A design
trajectory with models at
different levels of
platform-independence

In Figure 2-14, MOI must not rely on specific characteristics and assump-
tions of either CORBA or Java RMI. Likewise, MEQ must not rely on specific
characteristics and assumptions of either JMS or MQSeries. These plat-

26 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

form-independent models should, instead, rely on generic infrastructure
characteristics that can be accommodated when transformation activities
are executed and platform-specific models are created.

The implicit assumption of infrastructure characteristics in models may
result in models that cannot be reused for different platforms. Further-
more, it may lead to models of different applications that cannot be directly
compared and integrated. Infrastructure characteristics assumed in plat-
form-independent models are better understood and controlled by design-
ers if they are explicitly represented. In our design approach, these charac-
teristics are embodied in what we call an abstract platform.

2.3 Abstract platforms

2.3.1 Definition

The concept of abstract platform1 is an important architectural concept of
our approach. An abstract platform is an abstraction of infrastructure
characteristics which are assumed in the construction of platform-
independent models of an application at some point of the design process.

An abstract platform defines an acceptable or, to some extent, ideal
platform from an application developer’s point of view. Alternatively, an
abstract platform defines characteristics that must have proper mappings
onto the set of target platforms that are considered for a design. In this way,
the notion of an abstract platform allows a designer to explicitly define
levels of platform-independence.

An abstract platform is determined by the platform characteristics that
are relevant for applications at a certain platform-independent level. For
example, if a platform-independent design contains application parts that
interact through operation invocations, then operation invocation is a
characteristic of the abstract platform. Capabilities of a realization platform
are used during platform-specific realization to support this characteristic of
the abstract platform. For example, if CORBA is selected as target platform,
this characteristic might be mapped directly onto CORBA operation invo-
cations. If JMS is selected as target platform this characteristic may be
mapped onto a pattern of JMS asynchronous message exchanges.

Some abstract platform characteristics may depend on application re-
quirements. For example, if a video-on-demand application requires the
manipulation of streams of audio and video, this need should be reflected in
models of the application at some point in the design process.

1 proposed initially in [9] and elaborated in [6].

 ABSTRACT PLATFORMS 27

An abstract platform should be clearly defined, for at least two reasons:
(1) application designers need to know the characteristics of the abstract
platform when defining platform-independent models of an application;
and (2) abstract platforms are a starting point for platform-specific realiza-
tion.

Identifying and defining an abstract platform forces a designer to ad-
dress two conflicting goals: (i) to achieve platform-independence (by
preserving freedom of implementation), and (ii) to reduce the size of the
design space explored for platform-specific realization.

2.3.2 Abstract platforms in the design process

In order to illustrate the use of the abstract platform concept along a design
trajectory, let us consider the design of a conferencing application that
facilitates the interaction of users residing in different geographical loca-
tions. Initially, the application designer describes the conference application
solely from its external perspective, revealing the interactions that occur
between the application and its environment.

Figure 2-15 shows a snapshot of the conference application with three
users fulfilling the role of conference participant and a user fulfilling the
role of conference manager. Since characteristics of the internal structure of
the conference entity are not revealed, this decomposition of the system is
specified at a relatively high level of abstraction. The abstract platform at
this level of abstraction supports the interaction between users and the
conference entity. The interfaces are described in terms of the shared
actions between users and the conference entity2.

conference
entity

manager
interface

participant
interface

participant
interface

participant
interface

Figure 2-15 Snapshot of
conference application
(in Figure 2-18)

The conference entity may be further decomposed into a centralized or
distributed, symmetric or asymmetric design, and different abstract plat-
forms may be used to support the interactions of the entities that imple-

2 We provide a set of design concepts and design operations for defining and transforming
designs in chapter 5. In this chapter, we assume an intuitive understanding of the notions of
entities, shared actions (or interactions) and decomposition of entities.

28 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

ment it. Any number of recursive decompositions of this entity may be
applied as necessary. This example shows that a high level of freedom of
implementation is preserved at this level of platform-independence.

One possible way to proceed with design is shown in Figure 2-16. In this
design, the internal structure of the conference entity is revealed. The
conference entity is refined into a multicast entity and parts that are inter-
connected through the multicast entity. The abstract platform at this level
of abstraction supports multicast interconnection as prescribed in the
definition of the external behaviour of the multicast entity.

multicast entity

conference entity

manager
interface

participant
interface

participant
interface

participant
interface

multicast
interface multicast

interface

multicast
interface

multicast
interface

Figure 2-16 Revealing
binding decomposition
(in Figure 2-18)

At this point in the design trajectory, it is possible to realize this design on
top of a target platform that offers a multicast scheme corresponding to that
provided by the abstract platform (in Figure 2-18). The implementation
structures required to provide an adequate level of support are provided by
the target platform. An alternative realization could implement the multi-
cast entity as a centralized object (in a distributed object middleware),
realizing the interactions between the objects and the multicast entity as
distributed interactions (in Figure 2-18). However, this alternative
mapping may prove to be inadequate with respect to its quality-of-service
characteristics, e.g., since a centralized implementation may fail to satisfy
performance and scalability requirements. This mapping flexibility is possi-
ble because the refinement of the conference entity does not commit to a
particular distribution in terms of nodes.

When the target platform does not provide the required level of sup-
port, the design can be further detailed in an abstract platform at a lower
level of platform-independence. The refinement depicted in Figure 2-17
assumes an abstract platform that only supports operation invocations. This
realization differs from the previous design steps in that it does not consist
solely of decompositions of entities; the internal structure of the conference
entity depicted in Figure 2-16 has been replaced by the structure depicted
in Figure 2-17.

 ABSTRACT PLATFORMS 29

conference entity

manager
interface

participant
interface

participant
interface

participant
interface

Figure 2-17 Revealing
binding decomposition
(in Figure 2-18)

Figure 2-18 summarizes the application development trajectory that results
from the application of the abstract platform concept to the conference
application example. A few different middleware platforms are depicted as
target platforms.

platform selection

platform-
independent design

platform-
specific design

object invocation

MQSeries

JMS

CORBA SOAP/WSDL

π

π

π

π π π π

.

.

.

multicast

interaction between users
and conference entity

Figure 2-18 Models at
related levels of
platform-independence

2.3.3 Abstract platforms and modelling languages

Abstract platform characteristics and the characteristics of modelling lan-
guages adopted for a design are interrelated. For example, let us suppose a
designer chooses to use SDL [54, 55] to represent platform-independent
designs. This language provides the “agent” structuring construct: an
“agent” is an entity can that exhibit reactive behaviour and communicates
with other “agents” by exchanging “signals” asynchronously. If a designer
models application parts as “agents” that interact with other application
parts through “signals”, this use of SDL implicitly defines an abstract
platform that supports reliable asynchronous message exchange.

30 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

One might be tempted to believe that all relevant characteristics of a de-
sign’s abstract platform can be derived from the concepts underlying the
modelling language adopted for the design. However, abstract platform
characteristics may depend on restrictions on the use of particular con-
structs in a modelling language or the use of certain modelling styles or
patterns. In the example above, several modelling choices have been made
by the designer with respect to which constructs to use for modelling
application parts and their interaction. An alternative and equally valid usage
of SDL might define that all application parts modelled using “agents” must
interact by broadcasting “signals” to all other application parts.

Furthermore, in the general case, it is not possible to derive the set of
modelling constructs that can actually be used by observing specific models
of applications. Specific models only reveal the set of constructs that are
used in particular combinations. For example, in the SDL examples above,
it is impossible to know what “types” of “signals” may be exchanged be-
tween application parts. A model of a specific application will reveal the
“types” actually used in the application. Without further definition of the
abstract platform, one may have to assume that all “types” allowed by the
language can be used (without restriction), and, hence, that all “types” are
supported by the abstract platform.

We conclude that even using the same modelling language, with the
same set of underlying concepts, a designer might implicitly define different
abstract platforms. Therefore, it is necessary that the designer clearly
document the styles and restrictions applied on the language, so that the
intended abstract platform can be determined explicitly and unambigu-
ously. We call this approach language-level abstract platform definition3.

This approach is illustrated schematically in Figure 2-19, where concepts
are represented as geometric forms.

modelling
language

language-level

model of
application

instantiation of language elements

model-level

additional
constraints,

styles
+

language elements

language-level
abstract platform

definition

Figure 2-19 Language-
level abstract platform
definition

3 This corresponds to what we have called “implicit abstract platform definition” in some of
our earlier works [5, 6, 9].

 ABSTRACT PLATFORMS 31

When the modelling language supports the definition and reuse of pre-
defined design artefacts, it is also possible to define some characteristics of
an abstract platform by defining design artefacts that are to be reused. We
call this approach to establishing the relation between the abstract platform
and the modelling language model-level abstract platform definition4. In this
approach, an application designer builds the application by composing
application parts with the pre-defined artefacts that comprise the abstract
platform.

The model-level abstract platform definition approach is necessary when
intended characteristics of the abstract platform cannot be supported by
language-level abstract platform definition. For example, let us suppose a
designer requires an abstract platform that supports group communication
between application parts and that the adopted modelling language is UML
2.0. While this language does not support group communication directly as
a primitive design concept, it is possible to specify the behaviour of the
required group communication scheme as a generic reusable sub-system in
UML. This sub-system can then be re-used in the design of the distributed
application.

The combination of the language-level and model-level approaches is
illustrated schematically in Figure 2-20.

modelling
language

language-level

model of
application

instantiation of language
elements

model-level

additional
constraints,

styles
+

language elements

language-level
abstract platform

definition

pre-defined
artefacts from

abstract platform

…

incorporation of
pre-defined artefacts

model-level
abstract platform

definition

set of pre-defined
design artefacts

Figure 2-20 Language-
and model-level
approaches to abstract
platform definition

In the model-level abstract platform definition approach, the modelling
language is used to describe: (i) the application, (ii) any necessary pre-
defined design artefacts, and (iii) the composition of application and pre-

4 This corresponds to “explicit abstract platform definition” in [5, 6, 9].

32 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

defined artefacts. Therefore, similarly to the case of the language-level
abstract platform definition approach, the set of design concepts is relevant
to derive some abstract platform characteristics. For example, in the group
communication example above, the characteristics of the interaction be-
tween application parts and the group communication sub-system are
relevant in the abstract platform definition. For instance, the reliability and
time performance of this interaction has consequences for the reliability
and time performance of the group communication scheme supported by
the abstract platform.

Since in both the language- and model-level abstract platform definition
approaches there is some overlap between language characteristics and
abstract platform characteristics, we formulate two important requirements
for a modelling language to support platform-independent design:
– the language should allow the designer to properly express the intended

abstract platform characteristics; and,
– the language should be well-defined so that it is possible to derive the

characteristics of the abstract platform unambiguously.

2.4 Overview of the design process

2.4.1 Preparation phase

Defining the organization of models into various levels of platform-
independence and the characteristics of the models at each level requires
careful consideration of application domain requirements and of a number
of design goals. We propose this activity should be addressed explicitly in
the preparation phase of the design process.

In the preparation phase, designers identify (and, when necessary, de-
fine) the required levels of models, their abstract platforms and the model-
ling language(s) to be used. In addition, a designer may also identify or
define transformations between related levels of models. The results of the
preparation phase are used in the execution phase, which entails the creation
of models of an application using specific modelling languages and abstract
platforms.

The role of the designer performing the preparation phase is to capture
design knowledge that is later reused in the execution phase. The prepara-
tion phase should be executed by designers that are knowledgeable in the
application domain, in the platforms that are used and in modelling lan-
guage definition. In the preparation phase, the generalization of application
requirements on the distribution infrastructure drives the consolidation of
reusable design knowledge for potential target platforms. The role of

 OVERVIEW OF THE DESIGN PROCESS 33

application domain requirements, application requirements and target
platform characteristics with respect to the preparation and execution
phases is depicted in Figure 2-21.

execution phase

user (application)
requirements

application domain
requirements

preparation phase

target platform
characteristics

designs (incl.
realization)

Figure 2-21 Role of
application domain
requirements,
application requirements
and target platform
characteristics in
preparation and
execution phases

The following activities are performed in the preparation phase:
– Platform definition: in this activity, potential target realization platform(s)

are identified and necessary abstract platforms are defined. This step is
discussed further in chapters 3 and 4 of this thesis, which focus on the
methodological aspects of abstract platform definition.

– Modelling language definition: models must be specified in a modelling
language that is suitable for its application domain. Since models can be
used for various different purposes, such as data representation, business
process specification, user requirements capturing, etc., different mod-
elling languages may be necessary in a development project. In this activ-
ity, the specific needs for modelling languages are identified, and suit-
able modelling languages are selected or defined. Modelling language
definition is further discussed in chapter 6 of this thesis. We focus on
modelling language support for the architectural design of distributed
applications addressing modelling needs arising from abstract platform
definition.

– Transformation definition: model transformation specifications capture
generalized (implementation) solutions for models, consolidating design
knowledge that is later reused in the execution phase. This activity iden-
tifies the possible or necessary transformation trajectories, including
transformations from models that rely on the abstract platform to the
models that rely on specific target platforms. Design operations for
transformation definition are discussed in chapter 5.

In a long term development strategy, the preparation phase can be consid-
ered a long running phase, and abstract platform, modelling language and
transformation definitions may be consolidated in a catalogue. Designers
would consult the catalogue in the search of abstract platforms and trans-

34 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

formations that are suitable for the design problem at hand. Figure 2-22
summarizes this approach using a UML activity diagram.

search for suitable
abstract platform,
transformation, or

language definition(s)

develop new
abstract platform,
transformation and

language definition(s)

[not found]

include new abstract
platform, transformation,

and language definition(s)
in catalogue

[found]

Figure 2-22 Abstract
platform and
transformation
definitions may be
consolidated in a
catalogue

Identifying reusable abstract platforms and transformations that should be
consolidated in a catalogue can be considered as an application of design for
reuse at the preparation phase. Searching the catalogue can be considered as
an application of design with reuse at the preparation phase. The costs and
benefits of identifying and maintaining reusable designs are discussed in
chapter 3 of this thesis.

2.4.2 Execution phase

The execution phase entails the creation of models of a specific application (or
family of applications [27]) using specific modelling languages and abstract
platforms and applying (manual and automated) transformations to models.
The execution phase leads ultimately to a realization (or alternative realiza-
tions) of the application that satisfies user requirements, while capturing
reusable platform-independent models of the application. This phase also
entails analysis, testing and validation of models and realizations. The
execution phase can be considered as a long-running phase, including
activities for the maintenance and evolution of an application.

Modelling and applying transformations
When using an abstract platform with automated transformations to target
platforms, the correspondence between some parts of the design and the
realization may be established at a higher level of abstraction. In this case, a
designer can simply use these parts of the design without performing any
additional design steps for these parts. The resulting design process is
depicted in Figure 2-23. The position of the top dashed line can be adjusted
according to the abstract platform definition.

 OVERVIEW OF THE DESIGN PROCESS 35

design activities

.

.

.

design activities

design activities

level 1

level 2

level n-1

level n

user requirements

design 1

design 2

design n-1

design n

capabilities
of realization

platform

capabilities
of abstract
platform

requirements satisfied
by abstract platform
and transformations

Figure 2-23
Enhancement of abstract
platform

When correspondence between design and realization can be established at
a higher level of abstraction, the abstract platform and the transformations
embody design decisions taken at lower levels of abstraction. These design
decisions must be consistent with user requirements yet to be satisfied
(these requirements are circled in Figure 2-23). A designer may influence
these design decisions by customizing transformations at the execution
phase (e.g., through configuration of parameters), which requires that
mechanisms for this customization be included in transformation specifica-
tions during the preparation phase.

While transformation specifications and abstract platforms definitions
may have been analysed, tested and validated during the preparation phase,
analysis, testing and validation of transformation results may still be neces-
sary. This is particularly required when properties to be considered for
analysis are platform-dependent and only emerge when the realization is
obtained and embedded in its environment.

Iterative design approach
While so far we have only shown the use of stepwise design in a top-down
design approach, the use of designs in stepwise design does not constrain
the designer in applying practical or more realistic design strategies, such as,

36 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

e.g., iterative design. In this approach, the design process is performed in
increments, iterations or cycles of manageable size. Examples of this ap-
proach are the spiral model [21] and the incremental model [69].

Figure 2-24 shows the iterative design approach. Since the understanding
of user requirements changes during the design process, user requirements
may change at each cycle. We have not depicted the influence of the design
activities at each cycle and the user requirements for sake of legibility.

design activities

.

.

.

design activities

level 1

level 2

level n

user requirements

design 1

design 2

design n

design activities

.

.

.

design activities

design 1’

design 2’

design n’

user requirements’

design activities

.

.

.

design activities

design 1’’

design 2’’

design n’’

user requirements’’ ...

Figure 2-24 Iterative
design approach

Iterative design approaches put additional requirements onto levels of
designs that are visited repeatedly, namely, that they can be altered or
extended to accommodate the requirements considered in the subsequent
cycles [94]. The separation of platform-independent and platform-specific
designs requires iteration to be considered carefully in our design approach.
This is because platform-specific design decisions in a cycle should not
influence platform-independent design decisions in a subsequent cycle.
How to cope with this aspect of iterative design is discussed further in
chapter 4 of this thesis.

Preparation and execution phases
Since the preparation phase defines generalized design knowledge that is
reused in the execution phase, experience in the execution phase may imply
that the preparation phase should be revisited. Therefore, the iterative
approach may also be applied for the preparation and execution phases, as
depicted in Figure 2-25.

 RELATED WORK ON MODEL-DRIVEN DESIGN METHODS 37

application domain
requirements

preparation phase

target platform
characteristics

application domain
requirements

preparation phase

target platform
characteristics

execution phase

user (application)
requirements

designs (incl.
realization)

execution phase

designs (incl.
realization)

user (application)
requirements

...

...

...

...

...

...

Figure 2-25 Iterative
approach for preparation
and execution phases

Conditions that justify revisiting the preparation phase include:
– when the support from abstract platforms does not satisfy specific

application requirements. In this case, abstract platforms should be ad-
justed or extended to address these requirements;

– when the defined modelling languages lack required expressiveness,
precision, or other desirable qualities. In this case, language definition
should be adjusted;

– when new target platforms are introduced, requiring the development of
new transformation specifications; and,

– when improved understanding of design steps performed manually
creates opportunities for the automation of these steps in terms of
transformation specifications.

The consequences of the use of the iterative design approach for the defini-
tion of abstract platforms and transformation specifications are discussed in
chapter 4 of this thesis.

2.5 Related work on model-driven design methods

In this section we discuss two specific efforts on model-driven design
methods which are closely related to our approach. Considerations about
other related work can be found in sections 5.5, 5.7 and 6.7.

2.5.1 Stratified frameworks

Similarly to our approach, the authors of [13] propose a technique in which
design concerns can be introduced at subsequent levels of models, which
they call strata. An abstract platform can be considered a stratum, possibly
with an associated framework. However, since we consider platform-
independence explicitly in the design criteria for abstract platform defini-

38 CHAPTER 2 MODEL-DRIVEN DESIGN PROCESS

tion (chapter 3), our notion of abstract platform is more specific than that
of stratum.

This allows us to provide more guidance for the design process than
[13]. In particular, by discussing the activity of abstract platform definition,
we provide further guidelines on the elaboration of strata (in our prepara-
tion phase). In addition, we discuss the implications of the various relations
between strata to the design process (chapter 4). We provide design con-
cepts that could be used at the different (platform-independent) strata and
the conformance relations that can exist between them (chapter 5).

2.5.2 Enterprise Fondue method

A number of UML profiles for model-driven development are defined in
the context of the Enterprise Fondue method [96]. These profiles can be
regarded as specific abstract platform models (as discussed in [97]).

The focus on UML makes their approach less suitable for designs at a
high level of platform-independence, as argued in chapter 6 of this thesis.
In particular, interaction between application parts cannot be described at a
high level of abstraction. As a consequence of concentrating on models at a
lower level of abstraction, their work addresses code generation with auto-
mated tool support.

As far as we are aware, this approach lacks a notion of conformance be-
tween models at the different levels. The UML profiles and model trans-
formations proposed in the Enterprise Fondue method have limited sup-
port for the behavioural aspects of designs.

2.6 Concluding remarks

Platform-independence has strategic importance as a quality requirement
for models of a distributed application. Considering platform-independence
as an explicit quality requirement in a design process justifies the develop-
ment of specific design methods that support the designer in obtaining
models with the appropriate level of platform-independence while preserv-
ing the cost-effectiveness of the design process.

Separation of concerns in the design process leads to the construction of
different models of an application. The different concepts, structures or
patterns used and defined in models constrain the choice of technology
platforms differently. Organizing models at different levels of platform-
independence allows one to separate aspects of designs that remain stable in
face of technology changes.

Our approach is based on capturing and reusing design knowledge. This
is done in the preparation phase of the design process. This phase is driven

 CONCLUDING REMARKS 39

by the generalization of application infrastructure requirements and plat-
form support, thereby incorporating respectively top-down and bottom-up
knowledge in the design process.

The notion of an abstract platform supports a designer in explicitly con-
sidering assumptions on infrastructure characteristics. In this chapter, we
have illustrated the role of this concept by appealing to the intuition of the
reader. In chapter 3, we define additional criteria that guide the definition
of abstract platforms. We have argued that abstract platforms and modelling
languages are somewhat interrelated, and, therefore, the definition of
abstract platforms should not ignore modelling language characteristics.
This is considered further in chapter 6 of this thesis.

Chapter 3

3. Methodological guidelines for the
preparation phase

This chapter presents some methodological guidelines for the preparation
phase of our approach. We discuss what qualities of platform-independent
designs, abstract platforms and transformation specifications are desirable.
We discuss how these qualities are related, forming a basis to enable trade-
off analysis in the preparation phase. Because our approach aims at increas-
ing the overall cost-effectiveness of the design process, we discuss the
conditions under which the automation of transformation activities is
beneficial, as well as the separation of models in different levels of platform-
independence.

This chapter is organised as follows: section 3.1 presents the design
quality criteria considered in our methodology, section 3.2 discusses how
the automation of transformations between two levels of models can be
justified, section 3.3 considers the costs and benefits of maintaining differ-
ent levels of models; finally, section 3.4 presents some concluding remarks.

3.1 Design quality criteria

The quality of a design refers to the extent to which the design is appropri-
ate for some intended purpose. An approach to achieving desirable qualities
is to incorporate design quality criteria in the design process. These criteria
should be used by designers when evaluating or engineering designs.

This section discusses the most relevant design quality criteria in our de-
sign process. We do not discuss design quality criteria in general, but focus
on the criteria relevant to guide some activities in the preparation phase. In
particular, we focus on how these criteria impact abstract platform defini-
tion and transformation specification.

42 CHAPTER 3 METHODOLOGICAL GUIDELINES FOR THE PREPARATION PHASE

3.1.1 Generality

Generality defines that a design should be defined in its most general form
[99]. Generality supports the reusability of designs in different contexts.
We are particularly interested in two aspects of generality:
(i) generality with respect to a class of applications, and;
(ii) generality with respect to technology platforms.

Generality with respect to a class of applications applies to (abstract)
platforms and transformations. Platforms and transformations should be
general-purpose, as opposed to specific for a particular application within
an application domain. This allows reuse of platforms, abstract platform
definitions and transformation specifications. Generality with respect to a
class of applications is the basic distinction between preparation and execu-
tion activities5. The reuse of (abstract) platforms and transformations has an
important role in improving the ratio between costs and benefits of the
design process as discussed in section 3.3.

Generality with respect to technology platforms facilitates the realization
of a design in a number of specific platforms. Therefore, it constitutes an
important criterion for the composition of a platform-independent design
and its abstract platform.

3.1.2 Stability

Stability of a design is the quality of a design of enduring without funda-
mental or significant change. Stability implies tolerance to some factors that
are subject to variation or change in time. A means to cope with instability
is to separate stable and unstable aspects of a design that are, to a large
extent, independent of each other. Stability is a prerequisite for reusability
of designs in time.

In our research, we are particularly interested in:
(i) the stability of a design despite changes in the set of potential target platforms,

and;
(ii) the stability of abstract platforms despite changes in application domain

infrastructure requirements.
The stability of a design despite changes in the set of potential target

platforms is a pre-requisite for platform-independence. Ideally, a change in
target platform should neither lead to a change in the abstract platform nor
platform-independent designs that depend on the abstract platform. If
possible, platform changes should be accommodated in transformation
specifications.

5 this distinction is explored in chapter 4

 DESIGN QUALITY CRITERIA 43

The stability of abstract platforms despite changes in application domain
infrastructure requirements contributes to the reuse of (abstract) platforms
and transformations.

Defining stable abstract platforms is challenging because it involves con-
sidering uncertain factors whose impact should be anticipated, both in the
application domain and in the support from technology platforms. For
example, business requirements may affect the set of potential target plat-
forms, introducing a target platform that cannot be accommodated by
transformations from the original abstract platform.

3.1.3 Buildability

Buildability of a design is inversely proportional to the amount of time, effort
and resources required to build a conformant realization of the design in a
particular platform. We say that a design is buildable if, and only if, a realiza-
tion of acceptable overall quality can be obtained at acceptable costs. A
necessary condition for acceptable buildability is that the class of confor-
mant realizations of the design is non-empty.

Buildability and level of abstraction of a design are related. However,
determining the relationship between the buildability and the level of
abstraction of a design is not straightforward. On the one hand, lowering
the level of abstraction of a design decreases the size of the design space to
be explored in transformation activities, which tends to affect buildability
positively. On the other hand, lowering the level of abstraction of a design
may lead to design decisions that conflict with design decisions on the
target platform, which also tends to affect buildability negatively. Therefore,
not only the level of abstraction of the design should be considered in
evaluating buildability, but also the similarity and differences in the con-
cepts, patterns and structures used in the design and those used in confor-
mant designs that are built on top of a target platform.

Buildability depends on the contents of a design. The actual contents of
a platform-independent design depend on the abstract platform, which is
defined in the preparation phase. Therefore, in the preparation phase,
buildability can only be estimated indirectly, by analysing the impact of the
use of an abstract platform in the buildability of the class of application
designs supported by the abstract platform. We propose this is done by
examining the differences and similarities in the abstract and target plat-
forms.

Differences in the characteristics of an abstract platform and a target
platform may result in the use of intricate combinations of constructs in
conformant designs that rely on the target platform, which affects the
complexity of transformation activities (and hence lowers buildability) and
may affect the quality of the conformant realizations.

44 CHAPTER 3 METHODOLOGICAL GUIDELINES FOR THE PREPARATION PHASE

It is questionable whether transformations between disparate abstract
and target platforms would provide platform-specific designs with appro-
priate quality properties, such as, e.g., traceability from platform-
independent design, time performance, and maintainability.

3.1.4 Ease of use

Ease of use of a design [99] denotes the quality of a design to be used in a
straightforward way. Since a design may have different types of users, ease
of use concerns a particular type of user.

If we consider the ease of use of an abstract platform, these users are:
1. abstract platform designers who conceive and maintain the abstract plat-

form;
2. transformation designers who define transformation specifications that

relate platform-independent design and platform-specific design; these
designers use abstract platforms as a starting point for transformation
definition;

3. application designers who define platform-independent designs that use
the abstract platforms.
Figure 3-1 illustrates the different types of users of an abstract platform.

abstract platform

application designer:
increase application design productivity

transformation designer:
interpret and relate with realization

abstract platform designer:
conceive and maintain

Figure 3-1 Different
types of users of an
abstract platform

Ease of use has a different meaning for each of these types of users:
1. an abstract platform designer expects the abstract platform to require

little or no maintenance. The ideal abstract platform for an abstract plat-
form designer is stable with respect to changes in target platforms and
general enough to cope with (unanticipated) application requirements;

2. a transformation designer expects the abstract platform to be defined in
a precise and unambiguous way, without unnecessarily constraining the

 DESIGN QUALITY CRITERIA 45

freedom of implementation; for the transformation designer an ideal
abstract platform facilitates buildability;

3. an application designer expects the abstract platform to provide facilities
that improve productivity in application design. The ideal abstract plat-
form for an application designer provides all infrastructural services re-
quired by the application. In this way, the application designer is able to
focus on the problem at hand, i.e., the design of a specific application.
For example, if an application requires transaction management, an
ideal abstract platform should provide services for transaction manage-
ment to match the requirements.

3.1.5 Balancing design quality criteria

Designers should strive to obtain overall design quality rather than focussing
solely on a specific quality characteristic. If quality criteria are conflicting,
the designers should balance compliance to the different quality criteria in
order to obtain the most preferable design.

In the previous sections, we have discussed a number of design quality
criteria that influence abstract platform design. These criteria are affected
by the following factors (depicted schematically in Figure 3-2):
1. application domain requirements;
2. the abstraction gap and the differences in concepts, patterns and structures in the

abstract platform and a target platform; and,
3. portability requirements;

abstract platform

target platformA

target platformC

1. application domain requirements

target platformB

2. abstraction gap and
differences in concepts,
patterns, structures

3. portability requirements:
set of target platforms

Figure 3-2 Factors in the
choice of abstract
platform

Application domain requirements (1) primarily affect ease of use of the abstract
platform for the application designer. Ease of use for the application de-
signer calls for both matching between application domain requirements

46 CHAPTER 3 METHODOLOGICAL GUIDELINES FOR THE PREPARATION PHASE

and abstract platform characteristics, and alleviating the task of the designer
by providing generic functionality in the abstract platform.

The abstraction gap and the differences in concepts, patterns and structures in the
abstract platform and a target platform (2) primarily affect buildability of designs
with respect to each of the target platforms. Considering these factors, an
abstract platform should be established by analysing the set of potential
target platforms and their common and diverging characteristics.

Factors (1) and (2) are often conflicting:
– Raising the provided support to match application domain requirements

may increase the gap between the abstract platform and target plat-
forms. This is the case, for example, for the support of multicast mes-
sage exchange in the abstract platform, when a target platform supports
only the request/response interaction pattern.

– Reducing the gap between support provided by the abstract platform
and target platforms may lead to an abstract platform that handicaps the
designer. This is the case, for example, for a “minimalist” abstract plat-
form that supports a common denominator of a broad class of middle-
ware platforms such as point-to-point one-way message exchange. Pat-
terns such as request/response and multicast message exchange are ex-
pected to be included in the application design.

Portability requirements, buildability and platform-independence
Having introduced the notion of buildability, we are able to reformulate the
definition of platform-independence of a design. We say that a design is
platform-independent if, and only if, it is buildable on a number of target
platforms. The set of target platforms is determined by portability requirements
(factor 3 in Figure 3-2) for the design, which are themselves determined by
technical, business and strategic arguments.

Increasing the buildability of designs with respect to a number of target
platforms is a challenging activity. This is partly because increasing the
buildability with respect to a particular platform may enlarge the gap be-
tween the abstract platform and other platforms, and hence lowers
buildability with respect to these other platforms. Therefore, when defining
an abstract platform, buildability should be evaluated with respect to each
of the platforms implied by the portability requirements.
The set of target platforms may change in the course of time, e.g., due to
business arguments. This is depicted in Figure 3-3. The modified set of
platforms is a result of the inclusion of target platformD, the exclusion of
target platformA and a change in target platformB. B

 DESIGN QUALITY CRITERIA 47

abstract platform

target platformA

target platformC

target platformB’

target platformD

1. application domain requirements

target platformB

3. portability requirements:
set of target platforms

2. abstraction gap and
differences in concepts,
patterns, structures

current situation future situation

Figure 3-3 Change in
the set of target
platforms

Since platform-independence requires preserving buildability even in future
usage scenarios, is it difficult to evaluate platform-independence a priori.
This evaluation requires defining the possible future usage scenarios, i.e.,
possible future target platforms, and estimating buildability for each of
these scenarios. Actual use of an abstract platform reveals actual buildability
in time, which may improve confidence in the level of platform-
independence or lead to narrowing portability requirements if acceptable.

3.1.6 Concluding remarks

Defining an abstract platform explicitly brings attention to balancing be-
tween ease of use (from the perspective of application designers) and
buildability, while observing generality and stability.

On the one hand, an abstract platform indicates directly the support
available to designers during platform-independent modelling, and there-
fore, reflects the needs of application designers, including the needs to
handle complexity in application design. On the other hand, an abstract
platform is established by considering the set of potential target platforms
and their (common and diverging) characteristics; this bottom-up knowl-
edge is useful to reduce the design space to be explored for platform-
specific realization, increasing the efficiency of the design process.

The factors we have discussed in the previous section vary in different
projects, according to different application domains and specific application
requirements, possibly resulting in different abstract platforms. A compre-
hensive model-driven design approach should, therefore, allow a designer to
select or define suitable abstract platforms for their platform-independent
designs.

48 CHAPTER 3 METHODOLOGICAL GUIDELINES FOR THE PREPARATION PHASE

3.2 Automated transformation

During the execution phase, an application developer derives models at a
lower-level of platform independence from models at a higher-level of
platform independence. In order to increase the efficiency of the design
process, it may be possible to automate transformation activities required to
bridge between different levels of models.

A requirement to the automation of transformation activities is the
specification of transformation in the preparation phase. Full automation of
transformation between two levels of models requires the transformation
specifier to define rules to transform all possible source models into appro-
priate target models. The transformation specifier must fully understand the
relation between source and target (abstract) platform definitions, and
express these rules in a suitable transformation language, supported by a
transformation tool. For these reasons, transformation specifications should
be produced by a knowledgeable expert.

When transformation is automated, the creative design activities that
would otherwise be executed manually by a designer are generalized and
moved to the specification of the transformation itself and to the parame-
terization of transformations. This distribution of design activities is de-
picted in Figure 3-4. In this figure, a star denotes the corresponding design
activities. Figure 3-4(a) shows the situation with manual transformation.
Figure 3-4(b) shows the situation with automated transformation. The thick
arrow labelled with T represents the execution of a transformation specifi-
cation T, and aT represents transformation arguments, i.e., transformation
parameters values. Transformation arguments are also called markings when
these are associated to elements in a source model, in which case parame-
ters of the transformation are called marks. Combining markings and the
source model in the same model results in a marked model.

 AUTOMATED TRANSFORMATION 49

application domain
requirements

preparation phase

target platform
characteristics

execution phase

application
requirements

model MB

execution phase

application
requirements

arguments
aT

design activities

design A

design B

…

… models and
realization

specification of
transformation T

…

models and
realization

parametrization

…

design activities

… …

a) manual transformation

b) automated transformation

…

…

model MA

T

Figure 3-4 Design
activities with manual
and automated
transformation

The costs of defining an automated transformation between two related
levels of models A and B must be compensated by reusing the transforma-
tion specification. The following conditions contribute to the reuse of a
transformation specification:
– the number of applications built using models at level A and targeting B is high,

i.e., the (abstract) platform at level B is popular for targeting applications
that can be expressed in terms of (abstract) platform at level A;

– changes in application requirements are frequent, but these changes do not
affect the stability of the (abstract) platform at level A;

– the development process is cyclic, and the number of design iterations is high, i.e.,
the model of the application in A is modified several times during the
development. In this case, manual manipulation of models would have
required manual propagation of changes applied at level A.
The bottom-line is that the cost of building an automated transforma-

tion between levels A and B must be lower than the costs of manually
deriving models at level B (from designs at level A) over (a long period of)
time. Therefore, the stability of the (abstract) platforms at level A and B

50 CHAPTER 3 METHODOLOGICAL GUIDELINES FOR THE PREPARATION PHASE

should be considered. The stability of the (abstract) platform at level A
allows more applications to be developed in terms of this platform and the
stability of (abstract) platform at level B is required to reuse the transforma-
tion, since transformation from A to B is specific to the platform at level B.

It is possible that models obtained manually and automatically differ sig-
nificantly with respect to relevant qualities. These qualities should be
considered when justifying automation. For example, automated code
generation may result in implementations of lower time performance. This
can be reflected in cost estimates by lowering the cost of manual coding to
account for the benefits of obtaining implementations that perform better.
In contrast, automated code generation may lead to improvements in the
correctness of implementations. In this case, cost estimates should include
the costs incurred by testing, both for testing the transformation and testing
the code obtained manually.

3.3 Levels of models

We envision two different extreme approaches to organizing the develop-
ment process with respect to platform-independence levels:
1. an approach with one level of platform-independent models and one level of

platform-specific models related through a (fully- or partially automated) trans-
formation), and;

2. an approach with exhaustive use of intermediate levels of models and several (fully-
or partially automated) transformations between these models.
We argue that a combination of these extreme approaches is the most

effective way to handle the problem. In the sequence, we examine the costs
and benefits of introducing an intermediate level of models between two
arbitrary levels, a source level and a target level. This allows us to consider
the full range of combinations of the extreme approaches (1) and (2), since
the recursive introduction of intermediate levels eventually leads to an
exhaustive use of intermediate levels. In the discussion, we distinguish
between fully or partially automated transformations.

3.3.1 Fully automated transformations

Figure 3-5 depicts the alternative situations which we contrast for fully
automated transformations:
(a) a situation in which a transformation T produces models at level B from

models at level A; and,
(b) a situation in which a transformation T1 produces models at level X

from models at level A, and a transformation T2 produces models at
level B from models at the intermediate level X.

 LEVELS OF MODELS 51

model MB

model MA

T

level B

(a) direct transformation
(without intermediate model)

(b) transformation with
intermediate model

level A

model MB

model MA

T1

T2

model MX

level B

level A

level X

Figure 3-5 Direct
transformation and
transformation with
intermediate model

Considering solely the effort spent in the preparation phase to specify the
transformations in situations (a) and (b), we cannot formulate a general rule
to decide whether an intermediate step should be introduced. In some
cases, it may be easier to define two transformations using an intermediate
model, and, in some other cases, direct transformations may be easier to
define.

Nevertheless, it is possible to draw some general conclusions on the
consequences of introducing intermediate levels of models for the reuse of
transformations. In this respect, an intermediate level of models may be
beneficial since:
1. it may be possible to reuse the transformation from source models to intermedi-

ate models, even if the original transformation from intermediate models
to target models cannot be reused (e.g., because of platform change);
and,

2. it may be possible to reuse the transformation from intermediate models to
target models in new projects, since there may be transformations from
different source levels to the intermediate level.
In both cases (1) and (2) above, situation (a) in Figure 3-5 would imply

no reuse for the transformation from level A to level B.
A transformation between levels A and B is specific to the (abstract) plat-

form at level B. Therefore, the stability of the (abstract) platform at level B
is required to reuse the transformation. Introducing an intermediate level of
models may serve to factor out parts of the transformation that are less
platform-specific, capturing unstable transformation X to B separately from
stable transformation A to X. For example, consider that the level A consists
of models in an application-domain-specific language [29], and that level B

52 CHAPTER 3 METHODOLOGICAL GUIDELINES FOR THE PREPARATION PHASE

consists of middleware platforms, such as CORBA/CCM [73, 75] and Web
Services [120, 121]. Instead of defining a transformation directly from A to
B, one may consider the introduction of EDOC CCA models [82] as inter-
mediate models at level X, capturing a transformation from the domain-
specific language to a solution that is more stable than middleware plat-
forms. Additional transformations that do not have to consider the speci-
ficities of the domain-specific language can be used to transform the EDOC
CCA models to CORBA/CCM or Web Services PSMs. Clearly, this solution
requires the stability of the intermediate level X, in the example, EDOC
CCA models. This solution is depicted in Figure 3-6(a).

A transformation between levels A and B is also specific to the (abstract)
platform of the source level A. Introducing an intermediate level of models
may also lead to the reuse of the transformation from the intermediate
model to the target model. For example, consider that the level A consists
of models in different application-domain-specific languages, and level B
consists of Web Services. Introducing an intermediate level X, e.g., popu-
lated with EDOC CCA models allows us to reuse the general-purpose
EDOC to Web Services transformation. This transformation is not “con-
taminated” with application-domain-specific issues. Again, this solution
requires the stability of the intermediate level X. This solution is depicted in
Figure 3-6(b). Although we have presented both solutions separately, they
could be combined, as depicted in Figure 3-6 (c).

model MX

model MX

Level B

Level X

Level A

T1 T2

(c) combination of (a) and (b)

T4 T3

(a) reuse of transformation from
source to intermediate levels

T1

T3

(b) reuse of transformation from
intermediate to target levels

T2

T3 T4

T1

π = DSL1

π =
EDOC
CCA

π = WS π = CORBA π = WS π = CORBA π = WS

π =
EDOC
CCA

π =
EDOC
CCA

π = DSL1 π = DSL2 π = DSL1 π = DSL2

model MA

model MA’

model MA

model MA

model MA’

model MX

model MB

model MB

model MB

model MB’

model MB’

Figure 3-6 Reuse of
transformations due to
introduction of
intermediate level of
models

In order to justify the introduction of the intermediate levels of models X,
the abstract platform of the level X must be suitable for a large number of
applications that can be described at level A and realized on platforms at
level B. In our example, the consequence of this observation is that the

 LEVELS OF MODELS 53

abstract platform at level X should be independent of application domains at
level A and independent of technology platforms at level B. In addition,
standardization of this abstract platform may be necessary to increase
number of the opportunities for the reuse of transformations to and from
the intermediate level. The EDOC CCA is an example of such an abstract
platform, allowing the description of distributed application in terms of
components and their interconnection in terms of messages exchanged
through ports.

The same pattern of transformation reusability can be observed when
considering the transformation of EDOC CCA models at level X to models
at the level of programming languages such as Java. In this case, level B in
Figure 3-6 can be regarded as an intermediate level in the transformation,
consisting of CORBA and Web Services-specific models. These models are
transformed into Java interfaces, stubs and skeletons through standardized
transformations [86, 92]. These transformations are executed through tools
such as the one available in [93] and the ones listed in [87].

3.3.2 Partially automated transformations

It may be necessary to introduce an intermediate level of models between a
source and a target level when no automated transformation can be defined
directly, or when automated transformations produce results that do not
satisfy non-functional requirements. By introducing an intermediate level of
models, intermediate models can be elaborated upon, e.g., incremented,
modified, combined with additional models and marked. The intermediate
level can be regarded as a means to systematically lowering the degree of
automation, and introducing opportunities to insert design decisions in the
transformation from source to target models.

For example, let us consider again level A consisting of models in appli-
cation-domain-specific languages, level X consisting of EDOC CCA models
and level B consisting of CORBA/CCM and Web Services-specific models.
This situation is depicted in Figure 3-7. In this example, marking EDOC
CCA models manually is a means to specify properties that are not stated in
source nor intermediate models and that may be required for the realization
of the application on a target middleware platform. Examples of these
properties are requirements on the replication of components to satisfy
availability requirements, requirements on the potential location of compo-
nents in the distributed environment to satisfy time performance require-
ments, requirements on the persistency mechanisms required, etc. These
requirements refer to specific components in the EDOC CCA models and
cannot be specified meaningfully at level A or derived directly from EDOC
CCA models.

54 CHAPTER 3 METHODOLOGICAL GUIDELINES FOR THE PREPARATION PHASE

T1

level A

level B

level X

π = DSL1

π =
EDOC
CCA

manual modification,
marking, or combination
with additional models

π = CORBA π = WS

T3 T4

model MX

model MX

model MA

model MB

model MB’

Figure 3-7 Intermediate
models as means to
introduce design
decisions

Changes in models at a high-level of platform-independence may lead to
changes in all intermediate models and their associated markings. In the
case of partially automated transformations, intermediate models affected
by changes may have been modified or marked manually. In this case,
propagation of changes may lead to high costs, since manual modifications
and markings may have to be adjusted. In contrast, in fully automated
transformation chains, changes are automatically propagated through
transformation. Since the state-of-the-art still requires significant developer
intervention along transformation chains, the propagation of changes
contributes to a large portion of the costs incurred by introducing separate
levels of models. These costs should ideally be contained by appropriate
traceability mechanisms in (MDA) tools.

With the introduction of an intermediate level of models, it may be nec-
essary to design a specific abstract platform for that level. This incurs some
additional effort for the preparation activities. For the case of partially
automated transformation, application designers using the intermediate
level of models must learn how to use the abstract platforms and transfor-
mations required at that level, which usually incurs training costs and
increases the threshold for developers to apply this approach. In order to
reduce these costs, ease of use of the abstract platform for the application
designer should be prioritized in the preparation phase.

 CONCLUDING REMARKS 55

3.4 Concluding remarks

A conclusive study of the costs and benefits of introducing different levels of
models requires empirical verification. Such a study should consider a
multitude of application requirements, as well as the opportunities for reuse
across different instances of model-driven development projects.

In the absence of such an empirical study, we have discussed, in general
terms, the benefits and costs of introducing different levels of models and
transformations. We believe this discussion forms a basis to enable trade-off
analysis between the different factors in the preparation phase of our design
approach. Evaluating these trade-offs at early stages of development remains
nevertheless a challenging activity, since the benefits of the separation
PIM/PSM must be considered on the long run, particularly due to the role
of reuse of models and transformations.

Opportunities for reusing transformations play an important role in de-
ciding the organization of the execution phase in terms of levels of models
and transformations. A single transformation from high-level models to
implementations may be costly to develop and is rendered useless in the
face of technology platform changes. Given that technology platforms are
generally regarded as unstable, it is important to attempt to recognize
(intermediate) stable abstract platforms that can be used for a large number
of applications. This makes transformations to and from this intermediate
abstract platform more general and stable, and hence, reusable.

The proliferation of different (incompatible) intermediate levels of
models reduces the opportunities for large-scale reuse of intermediate
models and transformations to and from intermediate models. This calls for
the agreement on a small number of abstract platforms that are, to a great
extent, application-domain-neutral and platform-independent.

Chapter 4

4. Separation of concerns and the
dependencies between models

In chapter 3, we have proposed design criteria that lead to the separation of
stable and unstable aspects of designs, and the separation of generic and
specific aspects of designs. This chapter discusses the implications of these
dimensions of separation of concerns to our design approach.

The application of separation of concerns in our approach results in dif-
ferent aspects of a design being captured in different models. Ideally,
models should be independent of each other, i.e., it would be possible to
create models independently, and a modification in one model should not
impact other models. Nevertheless, as we elaborate in this chapter, not all
models are independent of each other. For this reason, we examine the
relations between the different kinds of models. This provides further
insight into what distinguishes these models. Moreover, we discuss the
consequences of the separation of models for the design process.

This chapter is organised as follows: section 4.1 sets out the research
questions addressed in this chapter; section 4.2 analyses the (in-
ter)dependencies between the various types of models, which results in
requirements and guidelines for the separation of models; section 4.3
discusses how the dependencies between models affect the design process;
finally, section 4.4 presents some concluding remarks.

4.1 Separation of concerns

Our design approach explores two main dimensions of separation of con-
cerns: the separation of platform-independent and platform-specific con-
cerns; and the separation of preparation and execution concerns.

58 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

The separation of platform-independent and platform-specific concerns
leads to the organization of the models of an application in different levels
of platform-independence.

The separation of preparation and execution concerns is reflected in the
organization of the design process in the phases of preparation and execu-
tion. In the execution phase, a specific application is developed using the
generalized designs and design knowledge captured during the preparation
phase. Separation of concerns in this dimension leads to the definition of
(abstract) platforms and transformation specifications that are generally
applicable for the class of applications considered.

Figure 4-1 shows the various models in our approach. Three levels of
platform-independence are depicted, and the results are classified according
to the phase in which they are produced. In this figure, an arrow indicates
that a model is dependent on the existence of another model. Abstract
platforms have also been depicted as models, indicating that abstract plat-
forms definitions can be captured in abstract platform models.

application

PIM M1

application
PIM M2

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

abstract
platform Π2

level 1

level 2

application
PSM M3

transformation
specification T2

transformation
arguments a2

concrete
platform Π3

level 3

preparation phase execution phase

Figure 4-1 Models in
our design approach

Once we propose the use of different types of models in the design process,
we must determine what distinguishes the various types, defining the design
concerns that are addressed in each of the different types of models.

In order to exploit the separation of models beneficially, we must also
understand how the various models relate to each other. The benefits of
separation of models are reduced when models are related in such a way
that modifications in a model affect other models. Ideally, the impact of
change should be limited to the model affected. We should, therefore,
analyse the dependencies between models and strive to find techniques to
avoid undesirable dependencies between models.

 DEPENDENCIES BETWEEN MODELS 59

Dependencies between models also restrict the possibility for division of
labour and concurrent design. Interdependencies reduce the efficiency of
the design process and often have to be addressed in the design process by
introducing iteration cycles [14]. As we elaborate on the following sections,
some interdependencies can be avoided by following a number of rules with
respect to the content of the various models and with respect to the modifi-
cations that may be applied to the various models.

In the remainder of this chapter, we address the following questions
with respect to the separation of models in our approach:
– Which design decisions should be captured in PIMs, PSMs, abstract

platforms, target platforms, transformation specifications, and transfor-
mation arguments?

– Can target platforms be modified without affecting PIMs and abstract
platforms?

– Can transformation specifications be modified without affecting PIMs
and abstract platforms?

– Does a modification in a PIM affect a corresponding PSM?
– Does a modification in a PSM affect a corresponding PIM?
– Are there interdependencies between the various models that require

iterations in the design process? Can these be avoided?
– What are the criteria to group design decisions in a certain level of

platform-independence?

4.2 Dependencies between models

4.2.1 Models as modules

In order to examine the relations between the various models, we consider
models as modules. Typically, a module is a set of elements of a design that
are grouped together according to an architecture or plan, with three main
purposes [14, 15]:
– to make complexity manageable;
– to enable parallel work; and
– to accommodate future uncertainty.
While modularization is often used as a technique to split up and assign
different functions of a complex system to different system parts, we split
up and assign different design decisions to different models. A number of
basic principles of modularity apply both to the functional decomposition
of system parts (within a model) and to the separation of models in our
design approach.

60 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

As is noted in [14]: “a complex engineering system is modular-in-design
if (an only if) the process of designing it can be split up and distributed across
different separate modules, that are coordinated by design rules, not by ongoing
consultations amongst the designers.” This definition reveals two important
features of systems that are modular-in-design:
– Independence: The absence of ongoing consultations amongst the design-

ers of different modules reveals that modules should be largely inde-
pendent of each other. Modules correspond to independent activities in
the design process; and

– Dependence: The relations between the different modules are defined by a
set of design rules6 to be respected. These design rules reflect the need
for coordination of design choices. Separating strongly related modules
forces the number of design rules to increase, constraining the freedom
of designers of the different modules.
In the following sections, we examine independence and dependence of

models in our design approach. We employ a technique to visualize modu-
larity-in-design which uses Design Structure Matrices (DSMs) [101, 116].
DSMs have been employed extensively in the field of Engineering Design,
both for products and production processes and design processes [14]. In
this technique, modules are arrayed along the rows and columns of a square
matrix. The matrix is filled in by determining, for each module, which
other modules affect it and which are affected by it. The result is a map of
the dependencies between the various modules.

4.2.2 Two levels of models

We start our analysis by assuming two levels of design within a single itera-
tion cycle as depicted within the rounded rectangle in Figure 4-2.

design activities

design activities

level 1

level 2

user requirements

design 1

design 2

design activities

design activities

design 1’

design 2’

user requirements’

design activities

design activities

design 1’’

design 2’’

user requirements’’ ...

Figure 4-2 Initial
analysis assumes a
design step

6 In functional decomposition, interfaces between components are considered design rules.

 DEPENDENCIES BETWEEN MODELS 61

We assume further that the preparation phase results in an abstract plat-
form Π1 for designs at level 1, a concrete (or realization) platform Π2 for
designs at level 2. The design activities are constrained by a transformation
specification T1 that relates models that rely on Π1 to models that rely on
Π2. This situation is depicted in Figure 4-3. This figure reveals the various
models of the execution phase that are considered at this point of our
analysis, namely, an application PIM, transformation arguments, and an
application PSM.

application
PIM M1

application
PSM M2

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

concrete
platform Π2

T1

design activities

…

parametrization

…

pr
ep

ar
at

io
n

ph
as

e

transfer of results

dependency by construction

Figure 4-3 Two levels of
models related by
transformation

We discuss the dependencies between each of the models depicted in Figure
4-3 in the following sections. In each section, we discuss how the various
models are affected as a result of a modification of one of the other models.
After the relations between all models are examined, a DSM is built to
visualize the dependencies between the various models.

62 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

Application PIM
Table 4-1 shows the dependencies between the various models and an
application PIM. The ‘ ’ symbol marks the existence of some dependency.
The absence of the symbol indicates there is no dependency. We justify the
existence or absence of a dependency for each pair of models.

 Application

PIM
Explanation

Application
PIM

N/A trivial

Abstract
platform

 An abstract platform is designed so that is can be used to
design a class of applications; the modified application PIM is
still a member of this class of applications.
This constitutes a generality requirement for abstract platform,
but also sets the constraints on possible modifications of an
application PIM for a given abstract platform.

Application
PSM

 through
transformation

The relations between application PIMs and PSMs are deter-
mined by transformation specifications and transformation
arguments; if the application PIM is modified, it is possible that
the modified PIM and the original PSM no longer respect this
relation; in this case, the PSM or transformation arguments
may be affected by change.

Concrete
platform

 The concrete platform is a member of the set of platforms
implied by portability requirements; all application PIMs that
rely on the abstract platform must be buildable in the concrete
platform, thus requiring no modifications in the concrete
platform.
This constitutes requirements for the abstract platform and
transformation specification.

Transf.
arguments

 Transformation arguments are used to introduce variation in
transformation specifications, in order to capture particular
design decisions; these decisions may be application-specific
or may refer to elements of the application PIM; e.g., transfor-
mation parameters can be used to specify the physical alloca-
tion of each application component in the application PIM.

Transf.
specification

 Transformation specifications are designed so that they can be
applied to the class of applications that can be built on top of
an abstract platform; the modified PIM is still a member of this
class of applications.
This constitutes a generality requirement for transformation
specification.

Table 4-1 Dependencies
between the various
models and an
application PIM

 DEPENDENCIES BETWEEN MODELS 63

Abstract platform
Table 4-2 shows the dependencies between the various models and an
abstract platform.

 Abstract

platform
Explanation

Application
PIM

 By definition: “an abstract platform is an abstraction of infrastructure
characteristics assumed in the construction of PIMs of an applica-
tion” (see chapter 2). If these characteristics change, the application
PIM may be affected.

Abstract
platform

N/A trivial

Application
PSM

 Modifying an abstract platform may affect PIMs, transformation
specifications (see respective cells in this table), which in turn may
affect application PSMs (see other tables); however, only direct
dependencies are represented in a DSM.

Concrete
platform

 The set of target platforms is determined by portability requirements
(see chapter 3); during abstract platform definition, buildability with
respect to the target platform must be observed.
This constitutes a requirement for abstract platform definition.

Transf.
arguments

 Transformation arguments depend on transformation specification,
which depends on abstract platforms (see cell below); however, only
direct dependencies are represented in a DSM.

Transf.
specification

 The abstract platform defines the common characteristics of a class
of platform-independent designs for which there should be general-
ized implementation relations to different platforms; these imple-
mentation relations are captured in transformation specifications; a
change in abstract platform characteristics changes the class of
applications, invalidating assumptions on common concepts,
patterns and structures that were made to define transformations.

Table 4-2 Dependencies
between the various
models and an abstract
platform

The separation between an abstract platform and a transformation specifi-
cation is analogous to the separation between an interface definition and a
realization of the interface in component-based design: an abstract platform
defines requirements which are satisfied by one or several transformation
specifications.

64 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

Application PSM
Table 4-3 shows the dependencies between the various models and an
application PSM.

 Application

PSM
Explanation

Application
PIM

 through
transformation

The relations between application PIMs and application PSMs
are determined by transformation specifications and transfor-
mation arguments; if the application PSM is modified, it is
possible that the modified PSM and the original PIM no longer
respect this relation; in this case, the PIM or transformation
arguments may be affected by change7.

Abstract
platform

 A modification in an application PSM may result in a modifica-
tion in the application PIM (see cell application PIM above); the
modified PIM is still a member of this class of applications for
which the abstract platform is defined.
This constitutes a generality requirement for abstract platform,
but also sets the constraints on possible modifications of an
application PSM for a given abstract platform.

Application
PSM

N/A trivial

Concrete
platform

 A concrete platform is designed so that is can be used to
design a class of applications; the modified PSM is still a
member of this class of applications.
This constitutes a generality requirement for concrete plat-
forms.

Transf.
arguments

 through
transformation

(see cell application PIM above)

Transf.
specification

 Transformation specifications define generalized implementa-
tion relations; transformation specifications define a class of
PSMs that conform with PIMs; the modified PSM is still a
member of this class of applications.
This constitutes a generality requirement for transformation
specifications, but also sets the constraints on possible
modifications of an application PSM for a given transformation
specification and a PIM).

Table 4-3 Dependencies
between the various
models and an
application PSM

7 Our analysis of dependencies is valid regardless of whether transformation specifications
are “unidirectional”, “bidirectional” or “multidirectional” (in the sense of [79]). In this
particular cell of the matrix, the only difference is that, in the case of a unidirectional
transformation from PIM to PSM, changes to an application PSM cannot be propagated
automatically to an application PIM or transformation arguments.

 DEPENDENCIES BETWEEN MODELS 65

Concrete platform
Table 4-4 shows the dependencies between the various models and a con-
crete platform.

 Concrete

platform
Explanation

Application
PIM

independence is
engineered

Independence is engineered in the definition of abstract
platforms (see design criteria for abstract platform in chapter
3).

Abstract
platform

independence is
engineered

Independence is engineered in the definition of abstract
platforms (see design criteria for abstract platform in chapter
3).

Application
PSM

 Application PSM depends on sets of concepts, patterns and
structures provided by a concrete platform; the instability of
concrete platforms, and hence application PSMs, motivates
separation of platform-independent and platform-specific
concerns in our approach.

Concrete
platform

N/A trivial

Transf.
arguments

 Transformation arguments may be platform-specific, e.g.,
markings may define that particular components should be
transformed into Session or Message-Driven Enterprise Java
Beans [103].

Transf.
specification

 Transformation specifications define generalized implementa-
tion relations for a particular target platform; change the target
platform and these relations may be invalidated.

Table 4-4 Dependencies
between the various
models and a concrete
platform

Ideally, the dependency between concrete platforms and transformation
specifications could be reduced by using concrete platform models as
transformation arguments. However, this solution requires highly general
transformation specifications, which define generalized implementation
relations for a class of target platforms (resulting in a platform-independent
transformation specification). For this solution to reduce the dependency
between concrete platforms and transformation specifications, a modified
target platform must still be a member of the class of target platforms.

66 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

Transformation arguments
Table 4-5 shows the dependencies between the various models and trans-
formation arguments.

 Transf.

arguments
Explanation

Application
PIM

 Abstract platforms are defined to preserve freedom of imple-
mentation, so that different implementations of application
PIMs built on top of it are possible; since transformation
arguments are used to introduce variations in generalized
implementation relations, changes in transformation arguments
should not affect application PIMs or abstract platforms.
This constitutes a requirement for abstract platforms and
transformations, and sets the constraints on possible modifica-
tions of transformation arguments for a given combination of
abstract platform and transformation specification.

Abstract
platform

 (see cell application PIM above)

Application
PSM

 through
transformation

The relations between PIMs, transformation arguments and
PSMs are determined by transformation specifications; if
transformation arguments are modified, it is possible that the
original PIM, the modified arguments and the original PSM no
longer respect this relation; in this case, the PSM may be
affected by change in transformation arguments.

Concrete
platform

 A concrete platform is designed so that is can support a class
of applications; a PSM that is affected by a change in transfor-
mation arguments is still a member of this class of supported
applications, therefore, requiring no modification of the
concrete platform.
This constitutes a requirement for transformation specification,
namely that the results of transformations are always PSMs that
use the concrete platform.

Transf.
arguments

N/A trivial

Transf.
specification

 Transformation specifications have transformation parameters,
which are assigned values when the transformation specifica-
tion is instantiated.

Table 4-5 Dependencies
between the various
models and
transformation
arguments

From the perspective of model transformation, the distinction between
PIMs and transformation arguments is unnecessary: both PIMs and trans-
formation arguments may be considered as input information for an un-
parameterized transformation. However, the distinction is relevant from the
perspective of the design process: PIMs are platform- and transformation
independent, while transformation arguments may be platform- and transforma-
tion specific. Transformation arguments may be defined after PIMs have been

 DEPENDENCIES BETWEEN MODELS 67

conceived. As a consequence, designers of PIMs may not be aware of
whatever transformation parameters may be chosen by a designer using the
PIM as a starting point to derive a PSM.

Transformation specification
Finally, Table 4-6 shows the dependencies between the various models and
a transformation specification.

 Transf.

specification
Explanation

Application
PIM

 Abstract platforms are defined to preserve freedom of imple-
mentation, so that different implementations of application PIMs
built on top of it are possible; these different implementations
are captured in transformation specifications.
This constitutes a requirement for abstract platform, but also
sets the constraints on possible modifications of transformation
specifications for a given abstract platform.

Abstract
platform

 (see cell application PIM above)

Application
PSM

 The relation between application PIM and application PSM is
determined by transformation specifications and transformation
arguments; since a change in transformation specification
should not affect PIMs (see cell application PIM above),
modifications to transformation specifications must be accom-
modated in the PSM or in transformation arguments.

Concrete
platform

 PSMs related by transformation specifications must be realiz-
able on top of a concrete platform.
This constitutes a requirement for transformation specifications.

Transf.
arguments

 Transformation parameters are used to introduce variations in
generalized implementation specifications; if a transformation
specification is modified, parameters may be modified and new
parameters may be introduced, affecting transformation
arguments.

Transf.
specification

N/A trivial

Table 4-6 Dependencies
between the various
models and a
transformation
specification

Since transformation arguments may be transformation-specific, transfor-
mation arguments must be captured separately from PIMs so that PIMs do
not become transformation-specific. Therefore, in case of parameterization
by marking, the unmarked PIM must be kept separately from markings.
The unmarked PIM and markings can be combined into a separate marked
model for the purposes of transformation if necessary.

68 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

Design Structure Matrix
Table 4-7 provides an overview of the dependencies between each of the
models considered in our analysis so far. The columns of this table corre-
spond to the columns of tables Table 4-1 to Table 4-6. When the table is
read row-wise, the ‘ ’ mark indicates that the model that names to the row
is affected by the models that name each of the columns. When the table is
read column-wise, the mark shows the models that may be affected directly
as a result of a modification in the model that names the column.

 Application

PIM
Abstract
platform

Application
PSM

Concrete
platform

Transf.
arguments

Transf.
specification

Application
PIM

N/A through
transformation

independence
is engineered

Abstract
platform

 N/A independence
is engineered

Application
PSM

 through
transformation

 N/A through
transformation

Concrete
platform

 N/A

Transf.
arguments

 through
transformation

 N/A

Transf.
specification

 N/A

Table 4-7 Dependencies
between models: Design
Structure Matrix

DSMs exhibit an interesting property for our analysis: if we consider that
there is a time sequence associated with the position of the elements in the
matrix, then all marks above the diagonal are considered feedback marks
[122]. Feedback marks require iterations in the sequence of tasks executed.
DSMs can be manipulated to eliminate or reduce feedback marks, e.g., by
reordering the sequence of elements in the matrix. It is also possible to
group elements of the matrix into clusters, a technique which allows us to
consider the set of elements of a cluster as a single module .

In the following section, we manipulate the DSM represented in Table
4-7 to show how the dependencies between models affect the design
process.

4.3 Dependencies between models and the design process

4.3.1 Preparation and execution phase concerns

Table 4-8 shows a reordered DSM. The models that result from the prepa-
ration activities, namely, concrete and abstract platforms and transforma-

 DEPENDENCIES BETWEEN MODELS AND THE DESIGN PROCESS 69

tion specifications are placed in the first three positions of the matrix,
respectively. These models are grouped into a cluster, which represents the
preparation phase. A second cluster represents the execution phase, group-
ing application PIM, transformation arguments and application PSM.

 Concrete

platform
Abstract
platform

Transf.
specification

Application
PIM

Transf.
arguments

Application
PSM

Concrete
platform

N/A

Abstract
platform

independence
is engineered

N/A

Transf.
specification

 N/A

Application
PIM

independence
is engineered

 N/A through
transformation

Transf.
arguments

 N/A through
transformation

Application
PSM

 through
transformation

 through
transformation

N/A

Table 4-8 Clustering
dependencies with
respect to preparation
and execution activities

The absence of feedback marks above the diagonal formed by the prepara-
tion and execution phase clusters in Table 4-8 shows that the preparation
phase does not depend on the execution phase. This result is made possible
by requirements imposed on the preparation phase. These requirements are
described in the cells of tables Table 4-1 to Table 4-6 that correspond to the
cells positioned above the diagonal formed by the two clusters. Failure to
satisfy these requirements would imply the presence of feedback dependen-
cies, which would require revisiting the preparation phase. The absence of
feedback marks above the diagonal formed by the preparation and execu-
tion phase clusters can be summarized by the following design rule:

Changes in PIM, PSM or transformation arguments must be accommodated in
PIM, PSM or transformation arguments, but not in the abstract platform, concrete
platform or transformation specification.

Table 4-8 also reveals the absence of feedback dependencies within the
preparation phase, since, within the cluster, no feedback marks appear
above the diagonal. The same, however, cannot be said of the execution
phase: modifications in the application PSM may affect the PIM and trans-
formation arguments.

4.3.2 Platform-independent and platform-specific concerns

The presence of feedback dependencies in the execution phase is addressed
through iteration in the execution phase. An iteration in the execution

70 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

phase allows a designer to gain insight into the implications of design
decisions at the PIM-level for the application PSM, which may result in
adjusting the PIM in a subsequent iteration.

However, for the design process to advance towards a stable application
PIM, it is necessary that the dependencies between PSM and PIM should
eventually decrease, as indicated in Figure 4-4. Eventually, the application
PIM must be such that it does not depend on design decisions that con-
strain the choice of target platform. This constitutes an important require-
ment for the iterative approach in the execution phase.

design activities

design activities

level 1

level 2

user requirements user requirements’ user requirements’’

application
PIM

application
PSM

design activities

design activities

application
PIM

application
PSM

design activities

design activities

application
PIM (stable)

application
PSM

dependencies decrease

Figure 4-4 Dependency
between PIM and PSM
is addressed through
iteration

In order to respect this requirement, a designer must be able to distinguish
between platform-independent and platform-specific design decisions.
Nevertheless, the distinction between platform-independent and platform-
specific design decisions is not always obvious, particularly because platform
characteristics may impact designs at different levels of abstraction. In order
to illustrate this, let us consider the design of a groupware service that
facilitates the interaction of users residing in different geographical loca-
tions.

Initially, the service designer describes the service solely from its exter-
nal perspective, possibly stating quality-of-service requirements on the
service, e.g., that the service should have high availability. At subsequent
stages of development, the designer is confronted with design decisions. In
this example, we consider the following alternatives: (i) a centralized
(server-based) design, and (ii) a distributed (peer-to-peer) design.

Figure 4-5 depicts these two solutions. In solution (i), a server facilitates
the interaction between users. In solution (ii), symmetric components
facilitate the interaction without the support of a centralized application-
level component.

 DEPENDENCIES BETWEEN MODELS AND THE DESIGN PROCESS 71

groupware service

participant
interface

participant
interface

participant
interface

server

groupware service

participant
interface

participant
interface

participant
interface

participant
interface

participant
interface

(i) centralised server-based solution (ii) distributed peer-to-peer solution

Figure 4-5 Alternative
designs for the
groupware service

Solution (i) introduces a single point of failure, unless the platform provides
support for replication transparency (as defined in the Reference Model for
Open Distributed Processing (RM-ODP) standards [58, 59]). Solution (ii),
in contrast, facilitates interaction without the support of a centralized
application-level component and, hence, does not require replication
transparency.

If one of alternative solutions is to be chosen and captured in a PIM,
this PIM would break the requirement we have stated for stable PIMs, since
platform selection would affect platform-independent design.

In order to solve this, a designer should be able to express, at a plat-
form-independent level, requirements on platform-specific realizations that
would allow all design decisions that are relevant for platform-independent
modelling to be captured. In our groupware service example, this would
mean that requirements on the reliability of individual components should
be stated at the platform-independent level, justifying the selection of a
centralized or a distributed design.

Requirements expressed at a platform-independent level should justify
design decisions for the design at that level, and provide input for platform-
specific realization. If these requirements invalidate portability require-
ments for platform-independent designs, then it is impossible to consider
the design at the current level of platform-independence. In this case, we
envision two different contrasting solutions:
(a) to consider the design at a higher level of abstraction, at which the

platform characteristics are no longer relevant for design decisions
taken at that level; or,

(b) to relax portability requirements, lowering the degree of platform-
independence for the design.

For our groupware service example, possible applications of these solu-
tions would be:

72 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

(a) to describe the groupware service solely from its external perspective.
At this level of abstraction, the reliability characteristics of the support-
ing infrastructure are irrelevant. Details on the service’s internal design
are only addressed at platform-specific modelling, and hence cannot be
re-used for different target platforms; and,

(b) to restrict the set of potential target platforms, e.g., to include only
platforms that provide support for highly available components. In this
case, it is possible to describe the groupware service’s internal design at
the newly defined level of platform-independence, while still guarantee-
ing the satisfaction of the service requirements. The abstract platform
considered provides support for highly available components.

4.3.3 Multiple levels of models

We continue our analysis by considering the dependencies between the
models at three different levels related by transformation. This situation is
depicted in Figure 4-6.

application
PIM M1

application
PIM M2

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

abstract
platform Π2

T1

design activities

…

parametrization

…

pr
ep

ar
at

io
n

ph
as

e

application
PSM M3

transformation
specification T2

transformation
arguments a2

target
platform Π3

T2

parametrization

…

Figure 4-6 Three levels
of models related by
transformations

Table 4-9 shows the dependencies between the models depicted in Figure 4-
6. These dependencies are clustered for each pair of consecutive levels of

 DEPENDENCIES BETWEEN MODELS AND THE DESIGN PROCESS 73

models, i.e., a cluster for models of levels 1 and 2 and a cluster for models
of levels 2 and 3. This DSM is build by reapplying the transformation
pattern, which explains the isomorphic nature of the dependencies in the
two clusters.

Ab
st

ra
ct

 p
la

tfo
rm

 Π
1

Ap
pl

ic
at

io
n

PI
M

 M
1

Tr
an

sf
. s

pe
ci

fic
at

io
n

T 1

Tr
an

sf
. a

rg
um

en
ts

 a
1

Ab
st

ra
ct

 p
la

tfo
rm

 Π
2

Ap
pl

ic
at

io
n

PI
M

 M
2

Tr
an

sf
. s

pe
ci

fic
at

io
n

T 2

Tr
an

sf
. a

rg
um

en
ts

 a
2

Co
nc

re
te

 p
la

tfo
rm

 Π
3

Ap
pl

ic
at

io
n

PS
M

 M
3

Abstract platform Π1 N/A

Application PIM M1 N/A

Transf. specification T1 N/A

Transf. arguments a1 N/A

Abstract platform Π2 N/A

Application PIM M2 N/A
Transf. specification T2 N/A

Transf. arguments a2 N/A
Concrete platform Π3 N/A

Application PSM M3 N/A

Table 4-9 Clustering
dependencies with
respect to levels of
models

The table shows an overlap between the two clusters. This overlap indicates
that the design activities in the different levels are not completely independ-
ent, and that the intermediate model PIM forms the ‘interface’ between the
two clusters, as could be expected.

Preparation and execution activities with multiple levels of models
We modify the sequence of models in the matrix and cluster the prepara-
tion and execution activities separately. The result is presented in Table 4-
10. Again, the absence of feedback marks above the diagonal formed by the
preparation and execution phase clusters shows that the preparation phase
does not depend on the execution phase. Feedback dependencies in the
execution phase are shown by marks above the diagonal in the execution
phase cluster.

74 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

Ab
st

ra
ct

 p
la

tfo
rm

 Π
1

Ab
st

ra
ct

 p
la

tfo
rm

 Π
2

Tr
an

sf
. s

pe
ci

fic
at

io
n

T 1

Co
nc

re
te

 p
la

tfo
rm

 Π
3

Tr
an

sf
. s

pe
ci

fic
at

io
n

T 2

Ap
pl

ic
at

io
n

PI
M

 M
1

Tr
an

sf
. a

rg
um

en
ts

 a
1

Ap
pl

ic
at

io
n

PI
M

 M
2

Tr
an

sf
. a

rg
um

en
ts

 a
2

Ap
pl

ic
at

io
n

PS
M

 M
3

Abstract platform Π1 N/A

Abstract platform Π2 N/A

Transf. specification T1 N/A

Concrete platform Π3 N/A

Transf. specification T2 N/A

Application PIM M1 N/A

Transf. arguments a1 N/A

Application PIM M2 N/A
Transf. arguments a2 N/A
Application PSM M3 N/A

Table 4-10 Clustering
dependencies with
respect to preparation
and execution activities

Let us consider the execution phase in isolation. The DSM for the execu-
tion phase is shown in Table 4-11. An attempt to create independent
clusters within the execution phase will for each pair of consecutive levels of
models, results in the overlap between the different clusters, confirming our
observations with respect to Table 4-9, namely that the activities in the
different levels of models are not independent of each other.

 Application

PIM M1

Transf.
arguments a1

Application
PIM M2

Transf.
arguments a2

Application
PSM M3

Application PIM M1 N/A through
transformation

Transf. arguments a1 N/A through
transformation

Application PIM M2 through
transformation

 through
transformation

N/A through
transformation

Transf. arguments a2 N/A through
transformation

Application PSM M3 through
transformation

 through
transformation

N/A

Table 4-11 Clustering
dependencies with
respect to levels of
models in the execution
phase

As we have discussed in 4.2.2, these feedback dependencies are addressed
with iterations in the execution phase.

 CONCLUDING REMARKS 75

4.4 Concluding remarks

4.4.1 Classification of models

This section concludes our analysis by classifying the various models and
design decisions according to the following dimensions of separation of
separation of concerns:
– platform-independent and platform-specific concerns;
– application-independent and application-specific concerns, which

correspond to preparation and execution phases concerns, respectively;
and,

– transformation-independent and transformation-specific concerns.
Figure 4-7 places the different models according to the first two dimen-

sions. Three levels of models are depicted.

application
PIM M2

application
PSM M3

transformation
specification T2

transformation
arguments a2

abstract
platform Π2

concrete
platform Π3

application-specific application-independent

application
PIM M1

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

pl
at

fo
rm

-in
de

pe
nd

en
ce

Figure 4-7 Dimensions
of separation of
concerns and models

In Figure 4-7, transformation specifications are placed in the boundary
between two levels of platform-independence. This is to denote that trans-
formation specifications rely on the (abstract) platforms of both source and
target levels of models (see Table 4-2 and Table 4-4). In addition, transfor-
mation specifications may also capture some transformation rules which are
independent of the target platform.

Similarly to transformation specifications, transformation arguments are
also placed in the boundary between two levels of platform-independence.
In addition, transformation arguments are placed in the boundary between
the application-specific and application-independent concerns area. This is
to denote that arguments may be application-specific (see Table 4-1 row
“transformation arguments”), but may also capture application-

76 CHAP. 4 SEPARATION OF CONCERNS AND THE DEPENDENCIES BETWEEN MODELS

independent design decisions. Application-independent transformation
parameterization is used to improve flexibility of transformation specifica-
tions in general, e.g., to cope with to variation in user requirements that are
not captured in the source models but that are to be addressed during
transformation. An example of an application-independent transformation
argument determines that, irrespective of the application model, all applica-
tion parts should be allocated to the same unit of deployment of the target
platform.

Although not apparent in Figure 4-7, the separation of application-
specific and application-independent concerns is not the same at the
different levels of models. Each level of models is defined in the preparation
phase, and consists of a different balance of the quality criteria we have
discussed in chapter 3.

In addition to the dimensions considered in Figure 4-7, we can also clas-
sify models related in a transformation step as transformation-independent or
transformation-specific. This classification is relative to a transformation
specification. In a transformation step, the source application model is
transformation-independent (with respect to a transformation specification
from that level of models), since it relies on an abstract platform, which is
itself transformation-independent (see Table 4-6). In constrast, the target
application model and the transformation arguments can be classified as
transformation-specific. This dimension helps to determine whether design
decisions should be captured at the source application model level (which
may only capture transformation-independent design decisions) or at
transformation arguments (which may capture transformation-specific
design decisions).

4.4.2 Main conclusions and directives

From the analysis of the relations between the various models, we can
conclude that:
– Feedback dependencies between execution and preparation phases can be avoided

by addressing generality requirements at the preparation phase. Failure to ad-
dress these requirements results in cycles between the execution and
preparation phases;

– Platform-independent and platform-specific models are interrelated, their depend-
encies defined by transformation. The interrelation between PIMs and PSMs
is addressed through iteration in the execution phase. An iteration in the
execution phase allows a designer to gain insight into the implications of
design decisions at the PIM-level.

– The distinction between platform-independent and platform-specific concerns is not
obvious and is constrained by the interdependencies between design decisions. This
is apparent in the groupware service example we have presented, in

 CONCLUDING REMARKS 77

which some platform characteristics impact the definition of a distrib-
uted application’s architecture.

Our analysis leads to the following directives for the design process:
– Changes in PIM, PSM or transformation arguments must be accommodated in

PIM, PSM or transformation arguments, but neither in the abstract platform, con-
crete platform nor transformation specification.

– Dependencies between PIM and PSM are handled by iterations in the execution
phase, leading to a stable application PIM that does not depend on platform-
specific design decisions.

– Interdependent design decisions must be captured at the same level of platform-
independence. Since some design decisions are platform-specific, this imposes con-
straints on the organization of models at different levels of platform-
independence8.

– The classification of models according to the various dimensions of concerns9 serves
as a guideline to determine in which models design decisions should be captured.

8 see section 4.3.2 for approaches to coping with interdependent design decisions
9 see section 4.4.1 for the classification

Chapter 5

5. Design framework

We have discussed in chapter 3 that a number of design goals and design
criteria influence the definition of abstract platforms in the preparation
phase of the design process. We have concluded that different design goals
in different projects and different stages of the design process may lead to
different abstract platforms. It is, therefore, necessary to design abstract
platforms in the preparation phase of our design process. In this chapter,
we define a design framework, whose purpose is to support a designer in
defining suitable abstract platforms.

This design framework consists of two parts: a set of basic design concepts,
which are used at different levels of platform-independence to describe
both abstract platforms and the platform-independent designs that rely on
them, and design operations, which can be used in transformations to bridge
between different levels of platform-independence. An important principle
underlying the proposed design framework is that it should enable a de-
signer to make statements about the conformance of designs at different
levels of platform-independence.

This chapter is organised as follows. Section 5.1 provides an overview of
our design framework. Section 5.2 introduces the basic design concepts in
the framework, focussing on the role of the service concept. Two types of
design operations are introduced: service decomposition and interaction
refinement. Service decomposition and interaction refinement are discussed
in further detail in sections 5.3 and 5.4. Section 5.5 relates our framework
to the RM-ODP. Section 5.6 presents an evaluation of the design frame-
work, according to the quality criteria defined in chapter 3. Finally, section
5.7 discusses related work and presents some concluding remarks.

80 CHAPTER 5 DESIGN FRAMEWORK

5.1 Overview

In the previous chapters, we have argued that the design of a system can be
considered at various levels of platform-independence in a model-driven
design process. An initial design in a model-driven design process is given at
a high level of platform-independence, meaning that it considers little or
none of the constraints that a platform imposes on the way in which that
design can be implemented. During the design process, a designer must
gradually consider these constraints, and the means to incorporate them
into designs. Eventually, this should lead to a design at a sufficiently low
level of platform-independence such that the realization of the design
becomes straightforward.

For these reasons, a model-driven design process requires design con-
cepts and supporting modelling languages that are abstract enough to
construct designs in which no specific platform constraints are imposed. At
the same time, this design process requires design concepts that allow the
construction of designs at a sufficiently detailed level to describe how the
design can (eventually) be realized.

In our design framework, we adopt a basic set of design concepts that
can be used to support design at various levels of platform independence.
We use the concept of service [115] to describe application parts from an
external perspective, which allows us to abstract from characteristics of
middleware platforms that are eventually used to realize the internal design
of an application part. This technique is particularly useful when interaction
aspects of applications parts are captured as separate objects of design,
which are called interaction systems [112].

The service of an application-level interaction system is used as a starting
point for service decomposition, which should result in a design of the interac-
tion system into a structure of interaction system parts interconnected by
an underlying abstract platform. This technique can be applied recursively,
in which case the abstract platform is itself described as a service, until a
transformation into a realization platform can be established.

We use the concept of abstract interaction in order to abstract from par-
ticular interaction mechanisms that may be used for the interaction be-
tween application parts. Designers relate abstract interactions to their
realizations in middleware platforms by applying interaction refinement,
possibly using intermediate abstract platforms.

Figure 5-1 depicts service decomposition and interaction refinement
schematically. It also shows that these techniques can be applied in combi-
nation. Rounded rectangles represent the behaviour of system parts and
arrows between rounded rectangles represent abstract interactions.

 DESIGN CONCEPTS 81

service
decomposition

system

I1

I3

I2

I2

I3

I1

interaction
refinement

system

I1.1 I1.2 I2

I3.1 I3.2 I3.3

I2 I1.1 I1.2

I3.1 I3.2 I3.3

interaction
refinement

combined
refinement service

decomposition

part part part part

part part

Figure 5-1 Approaches
to system refinement
[39]

In service decomposition (which is called interaction allocation and flowdown in
[119]), the designer decomposes the application parts into smaller parts
and allocates the existing interactions to these parts. In this case, the inter-
actions remain unchanged, except for the introduction of new (internal)
interactions between the smaller parts. In interaction refinement, the
designer refines the interactions between the application parts and their
environment without changing the granularity of the parts, i.e., without
decomposing the parts into smaller parts [39].

Service decomposition and interaction refinement are applied in design
steps, either incorporated into automated transformations or performed
manually by a designer. In either case, the design step comprises design
decisions, which modify a source design. As we have discussed in chapter 2,
these decisions must preserve the characteristics of the system that are
defined by the source design. This is reflected in the proposed design
framework in that service decomposition and interaction refinement must
result in conformant refinements of designs.

5.2 Design concepts

5.2.1 The service concept

According to the Webster’s dictionary: “A system is a regularly interacting
or interdependent group of items forming a unified whole”. This definition
indicates two different perspectives of a system: an integrated and a distrib-
uted perspective [91]. The integrated perspective considers a system as a
whole or black box, defining only what function a system performs for its
environment. The distributed perspective defines how this function is

82 CHAPTER 5 DESIGN FRAMEWORK

performed by an internal structure in terms of system parts (which are also
systems) and their relationships. Figure 5-2 depicts both system perspec-
tives.

system

part

system

system
part

system
part

(a) integrated perspective (b) distributed perspective

Figure 5-2 Integrated
and distributed
perspective of a system
[91]

When the behaviour of a system is considered according to the integrated
perspective, we call the description of this behaviour a service [115]. A
service is a design that defines the observable behaviour of a system in terms
of the interactions that may occur at the interfaces between the system and
the environment and the relationships between these interactions10. A
service does not disclose details of an internal organization that may be
given to implementations of the system [114].

Since the concept of system is recursive, in the sense that a system part
is a system in itself, the service concept can be applied recursively in a
system. The recursive application of the service concept allows a designer to
consider the behaviour of a system at different related decomposition levels.
In general, the number of decomposition levels and the particular choices
for decomposition depend on particular system requirements and objectives
of a designer.

5.2.2 Interaction systems

The distributed perspective of a system (depicted in Figure 5-2(b)) shows
that a system consists of interacting system parts. In this perspective, a
designer focuses on system part design and the interactions between system
parts are defined implicitly in the composition of system parts. An alterna-
tive to this perspective identifies interaction systems, which are systems that
support the set of related interactions between two or more systems parts
[99, 100].

Figure 5-3 depicts two views of an interaction system: (a) an interaction
system as consisting of parts of the system parts that were identified in the
distributed perspective (in the previous section), and (b) an interaction

10 The notion of abstract interaction is introduced in detail in section 5.4. At this point, we
assume an intuitive notion of interaction, as a shared action between two or more system
parts that results in the establishment of information.

 DESIGN CONCEPTS 83

system as a separate system. In the former view, the boundaries of the
interaction system (show in dotted lines) divide each system part into two.
The latter view redefines the original system parts to exclude the functional-
ity that is attributed exclusively to the interaction system.

(a) in the distributed perspective, interaction
system consists of parts of system parts

sp’

sp’

sp’

interaction
system

(b) interaction system is considered as
separate system, system parts are redefined

system
part

system
part

system
part

Figure 5-3 Introducing
an interaction system

The complexity of interaction systems varies, depending on the interactions
that need to be considered. For example, when interactions concern multi-
party agreement or business negotiations, the interaction system will be
more complex than when datagram transfer is considered.

The benefits of explicitly designing the interaction mechanisms between
distributed system parts has been acknowledged in the past in seminal work
in the area of systems and protocol design [115]. A systematic design
method for protocols [112] consists of: (i) defining the service to be sup-
ported by a service provider in terms of the service primitives that occur at
service access points and the relationships between service primitives; and,
(ii) decomposing this service in terms of a structure of protocol entities and
a lower level service. This resulting structure, which is called a protocol, has
to be a correct implementation of the service.

The importance of interaction mechanisms for distributed applications
has been recognized also in standardization efforts. In particular, the RM-
ODP [56] has introduced the notion of a binding object, which is responsi-
ble for facilitating the interaction between objects in the Computational
Viewpoint.

More recently, efforts in the area of Software Architecture (e.g., [3])
have identified the “connector” construct. Connectors satisfy basic com-
munication needs between software components, thus emphasizing the
importance of describing and analysing interaction aspects of software
components in software architectures.

5.2.3 Middleware platforms and interaction systems

Middleware platforms can be seen as providing interaction systems for the
interconnection of application parts, as depicted in Figure 5-4.

84 CHAPTER 5 DESIGN FRAMEWORK

interaction systemΠ2

system
part

system
part

system
part

interaction systemΠ2

(a) Π1 provides an interaction system

interaction systemΠ1

system
part

system
part

system
part

(b) Π2 provides interaction systems

Figure 5-4 Middleware
can be regarded as
providing interaction
system(s)

Different middleware platform offer different types of interaction systems,
for example, CORBA/CCM [73, 75], .NET [68], Java RMI [102] and Web
Services [120, 121] offer interaction systems based on a request response
pattern, which is realized by a generic interaction system, as depicted in
Figure 5-4(a). CORBA (with the Event Service) [75], the Java Messaging
Service (JMS) [104] and many other so-called Message-Oriented Middle-
ware (MOM) platforms, offer interaction systems based on event channels, or
message queues. Each of these channels of queues can be regarded as a sepa-
rate interaction system, as depicted in Figure 5-4(b).

The interaction systems provided by the various middleware platforms
have different characteristics. In particular, the way in which a design that
uses these interaction systems can be structured is often subject to plat-
form-imposed restrictions or constraints. For example, in the CORBA
platform, operation invocation between objects is supported, however, only
a single interface per object is supported. A consequence of the differences
in the various interaction systems provided by middleware platforms is that
designs of application parts that rely on the service of these interaction
systems are platform-specific.

5.2.4 Application interaction systems

Instead of defining the interconnection of application parts directly in terms
of the interaction systems provided by a middleware platform, it is possible
to identify application interaction systems that support application-level interac-
tions between application parts. Figure 5-5 illustrates the identification of an
application interaction system as a separate system.

 DESIGN CONCEPTS 85

interaction systemΠ1

application interaction system

(a) application interaction system is identified,
contrasted with interaction systemΠ1

(b) application interaction system is considered
as separate system

Figure 5-5 Introducing
an application
interaction system

Whether or not the design of application interaction systems should be
considered explicitly depends on the application requirements and on the
objectives of the designer [4, 99]. In the following situations, application
interaction system design should be considered:
– The relation between system parts is complex. In this case, designers should

pay attention to the design of the relation between system parts. Design-
ers can make this relation a separate design object, i.e., considering the
system parts’ interaction system separately. Designers can consider the
interaction system at different abstraction levels to cope with the rela-
tion’s complexity. The middleware-provided interaction system plays an
important role at lower abstraction levels.

– Alternative internal designs for the interaction system are expected. This occurs,
e.g., when the designer anticipates the use of different middleware plat-
forms as alternatives to support the interactions. A designer can only re-
place an interaction mechanism by another equivalent interaction
mechanism if the design clearly indicates the mechanism’s relevant char-
acteristics. Interaction system design naturally supports this.

– The interaction system is general-purpose, offering opportunity for reuse. Interac-
tion systems provided by middleware platforms are an example of gen-
eral-purpose interaction systems.

– Different design authorities are responsible for the process of designing the interac-
tion system and system parts. Specifying the interaction system’s service
serves as a contract for the communication between system part and in-
teraction system designers.
An interaction system is a system in itself, and therefore the behaviour

of an interaction system can be defined as a service. A starting point in the
design of an application interaction system is the specification of its service.
The design of the application interaction system may, in principle, have any
internal structure as long as it provides the required service. For example, it
may make use of a data transport service via an application protocol as in a
protocol approach [98]. Nevertheless, we observe that the middleware
leverages the reuse of a large building block that provides an interoperability
architecture across programming languages, operating systems and network

86 CHAPTER 5 DESIGN FRAMEWORK

technologies. Furthermore, middleware often supports information ex-
change at the application level, e.g., with the definition of information
structures in an interface definition language (such as CORBA IDL [73]). A
consequence of that is that designers do not have to be concerned with
encoding and decoding pieces of information in protocol data units, which
is necessary in a protocol-based approach. For these reasons, we argue that
interaction systems provided by the middleware should be considered for
building application interaction systems.

Nevertheless, if we structure the design of an application interaction sys-
tem in terms of the constructs provided by a particular middleware plat-
form, the design of the application interaction system would not be suitable
for realizing this design on multiple platforms. Therefore, we define a
platform-independent service design in terms of an abstract platform. Later
in the design process, platform-independent design is realized on top of a
concrete-platform.

5.2.5 Interaction systems provided by abstract platforms

Abstract platforms can be seen as providing interaction systems for the
interconnection of application parts described in a platform-independent
manner. These interaction systems can also be described by using the
service concept, in which case the model-level approach to abstract plat-
form definition is used (see chapter 2).

In this case, the interaction system provided by an abstract platform and
an application-level interaction system are similar to each other. The main
distinction lies in the criteria used for their definition. The application-level
interaction system is defined according to the criteria defined in section
5.2.4 and the abstract platform is defined according to the criteria dis-
cussed in chapter 3. The latter include the requirement of buildability in
different target platforms, and thus, the interaction systems provided by an
abstract platform are defined by considering the characteristics of potential
target platforms. Furthermore, we treat application-level interaction sys-
tems and abstract platforms as distinct because different realization tech-
niques apply for application-level interaction systems and abstract plat-
forms, as we discuss in section 5.3. The similarity between abstract plat-
forms and application-level interaction systems does not exist when the
language-level approach to abstract platform definition is used.

In addition to interaction systems, abstract platforms may also provide
other parts to be composed with application parts. For example, an abstract
platform may include a service discovery or service trader component, such
as the RM-ODP trader. Interaction systems and other parts provided by an
abstract platform should respect the criteria for abstract platform definition
as defined in chapter 3 of this thesis.

 SERVICE DECOMPOSITION 87

5.3 Service decomposition

The starting point for service decomposition is either a design of the appli-
cation that consists of application parts and an application interaction
system (section 5.3.1) or a design of the application that consists of applica-
tion parts and interaction systems provided by an abstract platform (section
5.3.2).

5.3.1 Application interaction system decomposition

When the design of the application consists of application parts and an
application interaction system, the service of the application interaction
system can be decomposed if necessary into a number of service compo-
nents and an underlying service. This underlying service may represent a
simpler application interaction system, in case the criteria defined in sec-
tion 5.2.4 apply to this underlying service, or it may represent an abstract
platform, as proposed in section 5.2.5. The latter alternative is depicted in
Figure 5-6.

interaction systemΠ1

app. part

application interaction system

app. part

app. part

app. part

app. part

app. part

service comp.

service comp.

service comp.

source design
(level i)

target design
(level i+1)

service
decomposition

Figure 5-6 Service
decomposition,
underlying interaction
system provided by
abstract platform

A consequence of the application of this structuring technique is that
application parts that rely on the application interaction system are poten-
tially defined at a high-level of platform-independence. The structure of
these application parts is not directly dependent on the interaction systems
provided by the abstract platform. The platform-independent level at which
application parts are defined is also “paradigm”-independent (as in [23]),
in the sense that it does not imply characteristics of a target platform, and,
therefore, a broad set of middleware platforms that support different

88 CHAPTER 5 DESIGN FRAMEWORK

interaction patterns can potentially be used to support the interaction
between application parts.

While the design of the application parts does not depend on the inter-
action systems that can be used in the internal design of the application
interaction system, this design depends on the support for abstract interac-
tions between application parts and the application interaction system.
Figure 5-7 identifies the abstract platforms at the two levels of design in a
service decomposition design step. In the source design, the abstract plat-
form supports abstract interactions, and in the target design, the abstract
platform both supports abstract interactions and provides an interaction
system.

interaction systemΠ1

app. part

application interaction system

app. part

app. part

app. part

app. part

app. part

service comp.

service comp.

service comp.

source design
(level i)

target design
(level i+1)

service
decomposition

abstract platform at
level i supports abstract

interactions

abstract platform at
level i+1 supports

abstract interactions and
interaction systemΠ1

Figure 5-7 Abstract
platforms at the different
levels with service
decomposition

We discuss the refinement of abstract interactions in section 5.4. In the
next section, however, we focus on the decomposition of interaction
systems that abstract platforms provide (such as the one shown in grey in
Figure 5-7, level i+1). This abstract platform supports the interaction
between service components, which are, therefore, defined at the level of
platform-independence that is provided by this abstract platform.

5.3.2 Abstract platform decomposition

Whether or not an application interaction system is used, the platform-
independent design of an application can be defined as a composition of
application parts and the abstract platform. The platform-independent
design is used as input to a design step, which results in a design at a lower
level of platform-independence. The resulting design is structured in terms

 SERVICE DECOMPOSITION 89

of the target (abstract) platform for the design step and parts that depend
on this platform (the platform-specific application design from the perspec-
tive of the target platform).

In general, we distinguish two contrasting extreme approaches for this
step, namely to:
1. Adjust the target platform, so that it corresponds directly to the abstract

platform of the source design, or;
2. Adjust the target application design so that the application design can be

composed with the target platform.
In approach 1, the boundary between abstract platform and source ap-

plication design is preserved during the design step (see Figure 5-8(a)). This
implies the introduction of some target-platform-specific abstract platform
logic to be composed with the target platform. The abstract platform service
is a composition of target platform and abstract platform logic. The corre-
spondence between source application design and target application design
is trivial in this case.

In approach 2, the boundary between abstract platform and source ap-
plication design is lost during the design step (see Figure 5-8 (b)). In order
to establish a correspondence between source and target designs one must
compare the external behaviour of both source and target designs.

interaction systemΠ1

application (Π1-specific design)

application (Π1-specific design)

abstract platform logic (Π2-specific design)

interaction systemΠ2

application (Π2-specific design)

interaction systemΠ2

trivial

(a) approach 1: abstract platform service is composition
of target platform and abstract platform logic

(a) approach 2: source and target designs are
alternative decompositions of the system’s service
(represented by dotted lines)

service
decomposition

service
decomposition

source design
(level i)

target design
(level i+1)

Figure 5-8 Alternative
approaches to
proceeding with design

Approach 1 provides clear correspondence between source and target
designs. Abstract platform logic is application-independent and can be
directly reused for other platform-independent designs that rely on the
same abstract platform. Approach 1 is explicitly enabled by the identifica-

90 CHAPTER 5 DESIGN FRAMEWORK

tion and definition of the service of interaction systems provided by an
abstract platform, and allows us to obtain application software components
that can be reused on top of different platforms. Approach 1 can be gener-
alized as a recursive application of service definition (external perspective)
and service decomposition (service’s internal design), resulting in a hierar-
chy of abstract platforms and (ultimately) a realization platform.

Approach 2 cannot be seen as decomposition of the service of the ab-
stract platform. Therefore, the service of the abstract platform is not used
as a starting point in this design step. We consider the target design to be
an alternative decomposition of the service provided by the source design as
a whole, i.e., the composition of the source application and abstract plat-
form. If a description of this service is not available, a correspondence
cannot be established in terms of service decomposition.

The choice for approach 2 is not justified by top-down rationale. In-
stead, it is justified by bottom-up arguments. For example, a realization of
target designs obtained through approach 1 may not satisfy time perform-
ance requirements, e.g., due to the use of a layered software architecture
that preserves the structure of target platform and abstract platform logic.
Another bottom-up argument for choosing for approach 2 may be that it is
not possible to adjust the target platform by introducing some abstract
platform logic, e.g., due to the lack of extension mechanisms of the target
platform or due to the cost of development of these extensions.

Both approaches allow us to target different target platforms from the
same platform-independent model. In approach 1, the gap in buildability is
reflected in the complexity of abstract platform logic. In approach 2, the
gap in buildability is reflected in the complexity of adjustments to the
application design during transformation.

At each design step from a source level i to a target level i+1, both ap-
proaches to realization can be chosen. This leads to innumerable possible
structures for designs at different levels of platform-independence. Service
decomposition stops when the target platform provides the service of the
interaction system.

5.3.3 Example: the service of a floor-control interaction system

In order to illustrate the use of an application service in a design trajectory,
we introduce a running example, namely, the floor-control application. In this
example, several application parts share a set of named resources. Each of
these resources can only be used by a single application part at a time, and
hence application parts have to coordinate their behaviours in order to
ensure that there is no concurrent use of a resource. Application parts are
assumed to be cooperative, i.e., they do not use the resources indefinitely.
In addition, no pre-emption of control over a resource is necessary.

 SERVICE DECOMPOSITION 91

The service of the floor-control interaction system relates the following
interactions: request, granted and free. These interactions occur at the bound-
ary between the floor-control service and each of the application parts,
which we call subscribers. A result of the occurrence of each of these interac-
tions is the establishment of the resource identification and the identifica-
tion of the subscriber. The latter is implied by the location where the
interaction occurs. The occurrence of the request interaction means that a
subscriber needs to use a resource. The occurrence of the granted interac-
tion means that a subscriber is allowed to use the resource. The occurrence
of the free interaction means that a subscriber no longer intends to use the
resource.

The following relations between interactions are informally identified:
– The occurrence of granted follows the occurrence of request (at the same

location, and for a given resource identification);
– The occurrence of free follows the occurrence of granted (at the same

location, and for a given resource identification); and,
– A resource is only granted to one subscriber at a time, i.e., the occur-

rence of granted cannot be followed by another occurrence of granted,
before the occurrence of free (for a given resource identification).
The floor-control service is illustrated in Figure 5-9.

Interactions:
request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);

floor control
interaction

system

subscribers

subscriber

Figure 5-9 The service
of the floor control
interaction system

5.3.4 Example: service decomposition and platform-specific
realization

Using the service of the floor-control interaction system as a starting point,
we follow the design trajectory for two different abstract platforms: an
abstract platform that supports message exchange and an abstract platform
that supports the request/response pattern. We consider different design
solutions for the floor-control service, illustrating that the service definition
is to a large extent implementation-independent. For each platform-
independent design obtained, we consider realizations in two target plat-
forms: CORBA [73] and the Java Message Service (JMS) point-to-point

92 CHAPTER 5 DESIGN FRAMEWORK

domain [104]. Figure 5-10 illustrates the design trajectories followed in our
examples.

service components
(Π2-specific)

abstract platform logic
(ΠA-specific design)

interaction systemΠA

service components
(ΠA-specific design)

interaction systemΠA

trivial

service
decomposition

service
decomposition

source design
(level 2)

target design
(level 3)

floor control interaction system

service
decomposition

service components
(Π2-specific)

interaction systemΠ2

service components
(Π1-specific)

interaction systemΠ1

callback-based
solution

polling-based
solution

service
decomposition

Π2 = request /
response

Π1 = message
exchange

source design
(level 1)

target design
(level 2)

Transformation of a Π1-specific design into
JMS and CORBA realizations is straightforward
Transformation of a Π2-specific design into a
CORBA realization is straightforward
Transformation of a ΠA-specific design into a
JMS realization is straightforward

Figure 5-10 Example
trajectories

Callback-based solution with message exchange abstract platform

Abstract platform: message exchange. Initially, let us consider an abstract plat-
form that supports message exchange (Π1 in Figure 5-10). We identify two
interactions that are related by the abstract platform:
– send, which results in the establishment of a destination and some payload.

The occurrence of send means that the payload data should be delivered
to a certain destination; and

– receive, which results in the establishment of some payload. The occur-
rence of receive means that the payload data has been delivered.
An occurrence of receive follows an occurrence of send. The interaction

receive is executed at the location specified by the information attribute
destination of send. The attribute payload represents the information to be
sent. The value of the attribute payload for an occurrence of receive is the
value of the attribute payload for the related occurrence of send.

Platform-independent design. The message exchange abstract platform is used
in our callback-based solution to exchange messages between subscriber

 SERVICE DECOMPOSITION 93

service components and the controller service component. The structure of
the platform-independent design is depicted in Figure 5-11.

app. part
(subscriber)

app. part
(subscriber)

abstract platform

message exchange

subscriber
service

component

subscriber
service

component

controller
service

component

subscriber
service

component

app. part
(subscriber)

send(Location destination,Object payload);
receive(Object payload);

request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);

interactions supported by
the abstract platform

floor-control service
provider

Figure 5-11 Structure of
the callback-based
floor-control service
provider

The controller service component centralizes the control of the access to
the resources. When a subscriber requests for access to a resource, by
executing the interaction request, the subscriber service component sends a
request message to the controller with the identification of the resource.
This is done in interaction with the abstract platform through the send
interaction, which is followed by the occurrence of the receive interaction at
the boundary between the controller service component and the abstract
platform. Eventually, when the resource is to be granted to the subscriber,
the controller sends a grant message to the subscriber service component.
When the subscriber wants to release the resource, a free interaction is
executed, resulting in the sending of a free message to the controller. A
successful execution of a request for a resource is illustrated in Figure 5-12.

subscriber1 floorControlSC1

request(Res1)

grant(Res1)

abstractPlatform controller

send(controller, <Request,
Res1, floorControlSC1>) receive(<Request, Res1,

floorControlSC1>)

send(floorControlSC1,
<Grant, Res1>)

receive(<Grant, Res1>)

floor-control service provider

Figure 5-12 A resource
is requested and granted
(Platform-independent
design)

Realization. A realization of the platform-independent design in the JMS
platform is straightforward. The service provided by JMS corresponds

94 CHAPTER 5 DESIGN FRAMEWORK

directly to the service provided by the defined abstract platform. A success-
ful execution of a request for a resource in our realization in JMS is illus-
trated in Figure 5-13. In the JMS platform, the destination of a message is
addressed by a queue identifier. In this solution, there is a queue for mes-
sages destined to the controller and a queue for messages destined to each
subscriber. The addressing of the destination for a message is done through
selection of a queue, and the instantiation of a message producer for the
queue (qSenderContr for the queue directed to controller and qSenderS1 for the
queue directed to subscriber1).

subscriber1 floorControlSC1

request(Res1)

grant(Res1)

qSenderContr controller

send(<Request, Res1,
floorControlSC1>)

return(<Request, Res1, floorControlSC1>)

send(<Grant, Res1>)
return(<Grant, Res1>)

qReceiverS1 qReceiverContr qSenderS1

receive()

receive()

floor-control service provider

realized internally by the JMS provider

Figure 5-13 A resource
is requested and granted
(JMS-specific
realization)

The realization in the CORBA platform can be obtained through a simple
transformation: message exchange is realized through an operation invoca-
tion with no return parameters. A successful execution of a request for a
resource in our realization in the CORBA platform is illustrated in
Figure 5-14.

subscriber1 floorControlSC1

request(Res1)

grant(Res1)

controller

request(Res1,
floorControlSC1)

granted (Res1)

floor-control service provider

Figure 5-14 A resource
is requested and granted
(CORBA-specific
realization)

For the CORBA realization, we could have also considered the use of the
CORBA Notification Service [85] in a similar way as we have used JMS to
accomplish message exchange. This illustrates our observation that there are
many possible ways to realize a platform-independent design even for a
particular target platform.

 SERVICE DECOMPOSITION 95

Polling-based solution with request-response abstract platform

Abstract platform: request-response. Let us consider an abstract platform that
supports the request-response pattern (Π2 in Figure 5-10). We identify four
interactions that are related to each other through the abstract platform:
– request, with attributes: target, operation and argument_list. The attributes

represent, respectively, the identifier of the target object, the identifier
of the requested operation and the argument list for the request. The
occurrence of request means that operation should be invoked on the tar-
get with a number of arguments (defined in argument_list);

– request_ind, with attributes: operation and argument_list. The occurrence of
request_ind means that the target of the invocation is requested to exe-
cute the operation with a number of arguments (defined in argument_list);

– response, with attribute return_parameters, which represents the list of
return parameters. The occurrence of response means that the target in-
forms it has executed the operation, resulting in return_parameters; and,

– response_ind, with attribute return_parameters. The occurrence of re-
sponse_ind informs the requester that the target has executed the opera-
tion.
The occurrence of request_ind follows the occurrence of request, the oc-

currence of response follows the occurrence of request_ind, and the occur-
rence of response_ind follows the occurrence of response.

This is a generalization of the service provided by request/response plat-
forms. These platforms provide some software infrastructure to generate
customized stubs that in conjunction with the middleware core provide
specializations of the service as presented in this section.

Platform-independent design. The abstract platform is used in our polling-based
solution to enable the subscriber service components to issue invocations to
the controller. The structure of the platform-independent design is de-
picted in Figure 5-15.

96 CHAPTER 5 DESIGN FRAMEWORK

app. part
(subscriber)

app. part
(subscriber)

abstract platform
request-response

subscriber
service

component

subscriber
service

component

controller
service

component

subscriber
service

component

app. part
(subscriber)

request(Location target, OperationId operation,
 Object[] arguments_list);
request_ind(OperationId operation,
 Object[] arguments_list);
response(Object[] return_argument);
response_ind(Object[] return_argument);

request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);

interactions supported by
the abstract platform

floor-control service
provider

Figure 5-15 Structure of
the callback-based
floor-control service
provider

The subscriber service components poll the controller for a certain resource
by invoking its operation request_permission, which returns the Boolean value
true when the resource is available and false otherwise. When the subscriber
wants to release the resource, the operation free of the controller’s interface
is invoked. A successful execution of a request for a resource is illustrated at
the top of Figure 5-16.

Realization. A realization of the platform-independent design in terms of the
CORBA platform is straightforward. The realization in terms of the JMS
platform deserves more attention, since this platform does not support the
request/response pattern directly.

We have applied the approach 1 to realization as presented in section
5.3.2: the abstract platform service specification is used as a starting point
for a recursive application of service design. The diagram at the bottom of
Figure 5-16 illustrates a successful execution of a request for a resource, in a
realization with the abstract platform realized in terms of the JMS platform.
The occurrence of a request interaction results in the sending of a request
message to the controller, containing the identification of the request, the
name of the operation to be invoked, and the parameters for the operation.
The identification of the request is used by the abstract platform service
components to correlate request and response messages.

 SERVICE DECOMPOSITION 97

subscriber1 floorControlSC1

request(Res1)

grant(Res1)

abstractPlatform controller

request(controller,
request_permission, <Res1,

floorControlSC1>)
request_ind(

request_permission,
<Res1, floorControlSC1>)

response(<true, Res1>)

response ind(<true, Res1>)

floor-control service provider

floorControlSC1 abstPlatSC2 controller

request(controller,
request_permission, <Res1,

floorControlSC1>)
request_ind(

request_permission,
<Res1, floorControlSC1>)

response(<true>)

response ind(<true, Res1>)

abstPlatSC1 subscriber1

request(Res1)

grant(Res1)

qSenderContr

return(<request, ReqID1,
request_permission,

Res1, floorControlSC1>)

return(<response, ReqID1, true>)

qReceiverS1

qReceiverContr

qSenderS1

receive()

receive()

send(< request, ReqID1,
request_permission,

Res1, floorControlSC1>)

send(<response,
ReqID1, true>)

abstract platform

floor-control service provider

realized internally by the JMS provider

Figure 5-16 A resource
is requested and granted

A solution based on approach 2 (section 5.3.2) would also be possible,
embedding functionality to correlate request and response in the floor
control service components. In this case, the structure of the platform-
independent design would not be directly recognizable in the platform-
specific design.

Symmetric solutions
Both platform-independent solutions we have explored are asymmetric
implementations of the floor-control service. Asymmetric solutions are
characterized by separate controller and subscriber roles. The controller
centralizes the coordination of access to shared resources, while subscribers
must request the controller for access to a resource.

In addition to the asymmetric solutions we have presented, we identify a
class of symmetric solutions to the floor-control service. In symmetric solu-
tions, there is no controller, and all application parts have identical roles in
the coordination. An example of a symmetric solution is based on token
passing. In this solution, a list with the set of available resources circulates
among the subscribers. Each subscriber service component examines the
list with the set of identifiers of available resources, removes the identifier
of the resource desired and forwards the list by invoking an operation on
the interface of the following subscriber. When a subscriber wants to
release a resource, the subscriber service component inserts the identifier of
the resource to be released in the list. These solutions have been investi-

98 CHAPTER 5 DESIGN FRAMEWORK

gated [4] and can be approached in the same way as the asymmetric solu-
tions presented here. They are not further discussed in this thesis.

Conclusions
Among the solutions discussed for the floor-control problem, the floor-
control service is a stable abstraction, and shields the design of subscribers
from the particular way in which the service is implemented. The floor-
control service is neutral, both with respect to commitments to particular design
solutions (callback-, polling-, or token-based) and with respect to commit-
ments to a particular middleware interaction pattern (as provided by CORBA and
JMS). It is irrelevant for the design of subscriber application parts whether
the design of the floor-control solution is symmetric or asymmetric, call-
back-, polling-, or token-based, or whether the platform is CORBA or JMS.

For the design of the application interaction system itself, we have relied
on abstract platform definitions. This allowed us to target CORBA and JMS
from the same platform-independent design. Moreover, by using the
abstract platform service specification as a starting point for a recursive
application of service design (approach 1 for platform-specific realization),
we have obtained software components that can be reused on top of differ-
ent platforms.

5.3.5 Realization with platform extension mechanisms

In section 5.3.2, we have discussed two approaches for a design step be-
tween two levels of platform-independence: an approach based on the
adjustment of the target platform (approach 1), and an approach based on
the adjustment of the application design (approach 2). An assumption
underlying these two approaches is that both source and target designs are
defined in the scope of the proposed design framework. The target design is
not a realization, but a design which can be transformed into a realization in
a straightforward manner. Having defined the design approaches in this
way, it is possible to regard both approach 1 and 2 as service decomposi-
tion, and hence, make statements about the conformance of source and
target designs.

If we relax this assumption, however, we are able to benefit from plat-
form extension mechanisms to enable approach 1. The abstract platform logic is
then incorporated into the platform at the realization level. Examples of
extension mechanisms that can be used for this purpose are CORBA port-
able interceptors [73], composition filters [17] and specific mechanisms of
aspect-oriented programming [37]. Since most of these mechanisms are
platform-specific, the choice of mechanism depends on their availability in
a particular platform. The availability of the source code of the platform
also impacts the choice of extension mechanism, e.g., while CORBA inter-

 SERVICE DECOMPOSITION 99

ceptors can be added to a deployed CORBA ORB, many aspect-oriented
programming mechanisms require the availability of source code, since new
executable code should be compiled. The capabilities of the different
extension mechanisms also vary, and must therefore be considered in the
choice of a suitable extension mechanism.

The use of a platform extension mechanism to enable adjustment of a
platform is depicted schematically in Figure 5-17(b). Figure 5-17(a) depicts
a realization based on layering, which preserves the structure of a design at
level i+1 which is obtained through the decomposition of the service of the
abstract platform defined at level i. Figure 5-17(c) depicts the modification
of a target platform. This latter technique may be necessary due to the lack
of extension mechanisms or due to limited capability of these mechanisms.
One can argue, however, that certain platform modifications result in a
different platform, and hence, this technique may not satisfy requirements
on the portability of platform-independent designs. Any modifications to
platforms must, therefore, be considered in the light of these requirements.

modified

interaction systemΠ2

interaction systemΠ1

application (Π1-specific design)

application (Π1-specific design)

abstract platform logic
(Π2-specific design)

interaction systemΠ2

trivial

service
decomposition

source design
(level i)

target design
(level i+1)

(a) layering, preserving structure
of design at level i+1

application (Π1-specific design)

abstract platform logic
(Π2-specific design)

interaction systemΠ2

application (Π1-specific design)

interaction systemΠ2

application (Π1-specific design)

abstract platform logic
(Π2-specific design)

(b) extension mechanism
used to adjust Π2

(c) modification of Π2

Figure 5-17 Realization
approaches

100 CHAPTER 5 DESIGN FRAMEWORK

Extension mechanisms are particularly useful to introduce required quality-
of-service (QoS) mechanisms in the middleware, as is shown in [10, 117].
In [7], we have discussed the role of extension mechanisms for the realiza-
tion of an abstract platform that support the dynamic reconfiguration of
application parts.

5.4 Interaction refinement

The service concept can be used to abstract from the internal design of a
system or system part at a particular point in the design process (as we have
shown in the previous section). In order to abstract from internal structure,
a service focuses on the interactions between application parts. These
interactions should be described in a platform-independent way in plat-
form-independent designs, it they are to be potentially realized in different
middleware platforms.

In this section, we discuss a concept of abstract interactions that can be
refined into interactions that can be realized by a target middleware plat-
form. For that, abstract interactions must not commit to interaction
mechanisms provided by a particular middleware platform. We define a
number of design operations that can be applied to designs that use abstract
interactions.

5.4.1 Interaction refinement in the design process

Before we discuss the concept of abstract interaction in further detail, let us
consider the role of interaction refinement in a design process with plat-
form-independent designs. For that, let us consider the design of a confer-
encing application. This application facilitates the interaction of users
residing in different hosts. Let us suppose that, initially, the designer de-
scribes the application as a composition of conference participants, a
conference manager and a conference service provider. In addition, we
assume that the interfaces are described in terms of abstract interactions
and interaction relations, which do not prescribe any particular interaction
mechanism. The abstract platform at this level of abstraction supports the
interactions between application parts and the conference service provider.
Figure 5-18 shows how a snapshot of this design (D0) could be visualized. It
distinguishes three conference participants and one conference manager.

 INTERACTION REFINEMENT 101

participant

conference

service provider

manager

participant

participant

Figure 5-18 A initial
design of the conference
application (D0)

We consider several alternative transformations of design D0 according to
the interaction refinement approach. The following alternatives show how
different platform characteristics influence the refinement process:
1. We refine D0 into a design D1 that uses an abstract platform that sup-

ports operation invocation between objects and supports multiple operation in-
terfaces per object. The conference service provider is not decomposed,
and is directly implemented as a single object in the realization.

2. We refine D1 into a design D2, and as in design step (1) described above,
we use an abstract platform that supports operation invocation. In this
case, however, we add the platform-imposed constraint that the abstract
platform supports only a single operation interface per object.

3. We refine D0 into a design D3, and as in design step (1) described above,
we use an abstract platform that supports operation invocation between
objects. The abstract platform supports a single operation interface per
object. In this case, however, we add a platform-imposed constraint that
participants and managers are located in so-called ‘thin clients’, which cannot be
used as targets for operation invocation.

4. We refine D0 into a design D4 that uses an abstract platform that sup-
ports asynchronous messaging between objects. The abstract platform supports
multiple messaging queues. The conference service provider is not further
decomposed.
The abstract platform used in design D2 facilitates the realization of this

design in a CORBA platform (which offers only a single operation interface
per CORBA object). The abstract platform used in design D3 facilitates the
realization of this design in a Web Services platform, e.g. with the confer-
ence service provider hosted in a J2EE platform, with ‘thin clients’ running
in Mobile Information Device Profile (MIDP) devices [105]. The abstract
platform used in D4 facilitates the realization of this design using the Java
Message Service (JMS) [104] or the CORBA Event Service.

Figure 5-19 depicts these alternative transformations steps and the re-
sulting designs capture in models.

102 CHAPTER 5 DESIGN FRAMEWORK

π4

application model

alternatives

(abstract) platform model π

π1

π3

π2

Interaction between participants, managers and service provider
supported by an abstract platform that:
1. offers operation invocation between objects;
2. allows multiple operation interfaces per object.

Add restriction that the abstract platform:
allows only one operation interface per object.

π 0

Interaction between participants, managers and service provider
supported by an abstract platform that:
1. offers operation invocation;
2. allows only one operation interface per object;
3. does not allow participants and managers to be targets for

operation invocation.

interaction between participants, managers and service provider
supported by an abstract platform that:
offers asynchronous messaging with multiple queues.

Abstract platform supports interaction between participants,
managers and conference service provider.

op
er

at
io

n
in

vo
ca

tio
n

as
yn

ch
or

no
us

m

es
sa

gi
ng

D0

D1

D3

D4

D2

Figure 5-19 Alternative
design steps

5.4.2 Abstract interactions

The example in the previous section motivates requirements for design
concepts that are not considered in current state of the art modelling
languages. These concepts refer to both the behavioural and structural
aspects of interaction between application parts.

With respect to behavioural aspects, an interaction concept is required that
abstracts from the behaviour of a particular interaction mechanism. This is
because at the highest level of platform-independence no interaction
mechanism should be committed to. In the example both an operation
invocation and an asynchronous messaging mechanism are considered as
alternatives for the eventual realization of interactions described in D0. An
abstract interaction concept should abstract from these interaction mecha-
nisms and allow the designer to use mechanisms available in middleware
platforms for the realization of the design.

We adopt an interaction concept that captures:
– the identity of the interaction;
– the successful occurrence of the interaction;
– the information that is available to the interacting parties as a result of

the interaction (the information attribute of the interaction) and the lo-
cation at which this information is available (the location attribute of the
interaction); and

– optionally, the direction in which the information flows.
Such an interaction concept has been proposed in [112]. An interaction

is defined in as a unit of common activity of two or more functional enti-

 INTERACTION REFINEMENT 103

ties, in which a value of information is established. This interaction concept
abstracts from:
– roles that the interacting parties play in the interaction (e.g. initiator or

responder);
– aspects of interaction mechanisms that have yet to be decide upon (e.g.

whether an interaction corresponds to an operation invocation or a
message being passed, whether queues are used to temporarily store
messages, or whether an operation is blocking or non-blocking).
With respect to structural aspects, an interaction point concept is required

that abstract from a particular interaction mechanism through which
interaction takes place. We adopt an interaction point concept that cap-
tures:
– the identity of the interaction point,
– optionally, the interactions that may occur at the interaction point.

This concept is based on the interaction point concept that has been
proposed in [112]. It is defined as the logical or physical location at which
interactions occur, and is shared by two or more functional entities.

The interaction point concept abstracts from:
– any constraints on the interaction mechanisms that are available at the

interaction point (e.g. only remote procedure calls can occur at this in-
teraction point);

– the addressing scheme that is used to identify the interaction point (e.g.
whether it is identified by a URI or a CORBA object reference).
We distinguish an integrated and a partitioned perspective for the interaction

concept. In the integrated perspective, an interaction is seen as a shared
action executed by all interacting parts in conjunction. For example, in the
integrated perspective, an interaction send_mail does not identify parts with
roles receiver and sender. In the partitioned perspective, each part that
participates in an interaction can define its own constraint on the occur-
rence of that interaction. We call that constraint an interaction contribution.
For example, the part fulfilling the role of receiver in a send_mail interac-
tion, accepts any value for the information attribute message. The part
fulfilling the role of sender constraints the value of this attribute so that it
equals the message it wants to send. A counterpart to interaction contribu-
tions in the structural domain is the concept of interaction point part, which is
an abstraction of part of the mechanism that supports interaction. Interac-
tion point parts can be bound together forming an interaction point.

If an interaction occurs, its results are available to all its participants. If
an interaction does not occur, no result is established. Hence, none of the
participants can refer to any (intermediate) result. The possible results of an
interaction are represented by information attributes. If an interaction
occurs, the values of its information attributes represent the result of the

104 CHAPTER 5 DESIGN FRAMEWORK

interaction. An interaction can also be associated with a location attribute
that represents the possible locations at which it can occur. If an interaction
occurs, the value of its location attribute represents the location at which its
results are available. This location identifies an interaction point.

Each interacting entity constrains the attributes established as result of
an interaction: a party may offer a set of values, accept a set of values, or
both. These constraints on values supply different ways of cooperation [91],
namely, value passing, value checking and value generation. Value passing occurs
when an interacting party offers a value and the other parties accept this
value. Value checking occurs when all interacting parties offer the same
value. In value generation, the interacting parties offer a range of acceptable
values and the interaction happens if it is possible to establish a value that
matches all requirements.

Application of design concepts to D0
Figure 5-20 presents a snapshot of the structural aspects of D0 in terms of
the basic concepts described above. An entity is represented by a rectangle
with cut-off corners that contains entity’s name. An interaction point part is
represented as a line that is connected to the owner of the interaction point
part by another line. An interaction point is represented by a dashed line
that connects the bound interaction point parts. Interaction points are
annotated with their identifiers.

Conference Service Provider c

Participant p3

λp3,c

Participant p2

λp2,c

Participant p1

λp1,c

Manager m

λc,m

Figure 5-20 D0 Snapshot

We identify the following (value passing) interactions:
– sendmsg interactions, which occur at the interaction points between

participants and the conference service provider (λpn,c in Figure 5-20).
These interactions result in the establishment of a message to be sent
(the information attribute imsg). In this interaction, information flows
from participants to the conference service provider;

– receivemsg interactions, which occur at the interaction points between
participants and the conference service provider (λpn,c). These interac-
tions result in the establishment of the message received. In the re-
ceivemsg interaction, information flows from the conference service pro-
vider to a participant;

– the include interaction, which occurs at the interaction point between
the manager and the conference service provider (λc,m). This interaction
establishes the identification of a participant (the information attribute

 INTERACTION REFINEMENT 105

iparticip) that is to be included in the conference. In this interaction, in-
formation flows from the manager to the conference service provider;

– the exclude interaction, which occurs at the interaction point between the
manager and the conference service provider (λc,m). This interaction es-
tablishes the identification of a participant (the information attribute
iparticip) that is to be excluded from the conference. In this interaction,
information flows from the manager to the conference service provider.

The following constraints apply to the interactions:
1. the occurrence of receivemsg interactions follows the occurrence of a

sendmsg interaction; receivemsg interactions occur at the interaction points
between participants currently included in the conference and the con-
ference service provider;

2. the occurrence of include eventually leads to a participant being included
in the conference (constraint 1 depends on the participants included in
the conference), and;

3. the occurrence of exclude eventually leads to a participant being excluded
from the conference (constraint 1 depends on the participants included
in the conference).
In this thesis we do not present the precise way to represent constraints

(we refer to [91] for more information about this aspect of design).

5.4.3 Design operations

A design that does not correspond directly to a realization in a selected
target platform can be further transformed using the following design
operations: (inter)action refinement, interaction point (and interaction
point part) decomposition, interaction point (and interaction point part)
merging, and entity merging. We present each of these operations in the
following sub-sections, by motivating and illustrating them with the confer-
ence application and using the concepts presented in section 5.4.2.

Action refinement
If an action (i.e., either an interaction of internal action) cannot be sup-
ported by a construct from the realization platform, we must refine that
action into multiple actions that can be directly supported by the realization
platform.

An action cannot be refined into an arbitrary set of actions and con-
straints, because the refined behaviour must preserve the characteristics that
the original behaviour prescribed. [89] explains how designs, constructed
with an extension of the concepts from section 5.4.2, can be refined cor-
rectly. Basically, each action is refined into a group of final actions that
correspond to the completion of that action and inserted actions that do not.
Since the final actions correspond to the original action, they must together

106 CHAPTER 5 DESIGN FRAMEWORK

enforce the same constraints and deliver the same results as the original
action.

Table 5-1 presents the rule for refining an action into multiple actions,
making certain design decisions.

Input Any action a.

Design decisions Any (as long as constraints imposed by conformance relation are re-
spected, see below).

Output A group of actions that capture design decisions made. This group of
actions consists of final actions that correspond to the completion of the
original action a and inserted actions that do not.
Final actions must together enforce the same constraints and deliver the
same results as the original action a [89].

Table 5-1 Action
refinement: definition

Action refinement example
In our conference example, none of the realization platforms support the
abstract interaction concept directly through the supported interaction
mechanisms. All the mechanisms in the considered platforms require
additional design decisions, such as, defining the party responsible for
initiating interaction. Therefore, the behaviour of a platform’s interaction
mechanisms is often defined at a level of abstraction at which multiple
lower level actions are executed by the interacting parties. For example,
asynchronous messaging mechanisms identify an interaction for a party to
send a message and an interaction for a party to receive a message. A re-
mote procedure invocation mechanism identifies an interaction for a client
to issue a request, an interaction for a server to receive a request, an inter-
action for a service to respond to a request and an interaction for a client to
receive the response to the request. Table 5-2 illustrates how action refine-
ment can be applied to refine an interaction into multiple interactions that
form a remote invocation.

Input Any interaction i in which a value is passed from one party to another.

Design decisions Operation invocation is used to realize interaction. The entity that passes
value in the interaction initiates communication.

Output The interaction i is refined into: a invocation_req interaction, a invoca-
tion_ind interaction, a invocation_rsp interaction and a invocation_cnf
interaction. invocation_ind is a final interaction, all others are inserted
interactions.

Table 5-2 Action
refinement:
transformation

Interaction point decomposition
The consideration of platform characteristics in a design may require
interaction points and interaction point parts to be decomposed into
multiple interaction points and interaction point parts. This operation must

 INTERACTION REFINEMENT 107

be applied to an interaction point and its parts in a source design, if the
interaction mechanisms that a realization platform provides cannot directly
support the interaction point.

Table 5-3 presents the rule for interaction point decomposition. The en-
tities and interaction points by which an interaction point is replaced in the
refined design must connect the entities that correspond to the original
entities of the abstract design. Otherwise, the refinement does not preserve
the connectivity of the original design.

Input Any interaction point λ (and interaction point parts associated with it).

Design decisions Any (as long as constraints imposed by conformance relation are
respected, see below).

Output Entities that are connected through the original interaction point λ are
connected through a configuration of interaction points and entities that
replace λ.

Implications for
behaviour domain

Interactions that occur at interaction point λ should occur at locations
introduced by interaction points or entities that replace λ.

Table 5-3 Interaction
point decomposition:
definition

Interaction point decomposition and action refinement are often coupled,
because, if an interaction point is refined, interactions that occurred at that
interaction point must be refined into actions that can be assigned to the
refinement of that interaction point.

Interaction point decomposition example
We obtain design D1 from D0 in two steps. Table 5-4 shows the transforma-
tion used in the first step, in which the interaction points from D0 are
decomposed into multiple entities.

Input Any interaction point λ (and interaction point parts associated with it)

between two entities e1 and e2.

Design decisions Operation invocation is used.

Output An entity eπ that supports operation invocation is introduced. This entity
is connected to e1 through an interaction point λπ1 and connected to e2
through a λπ2.

Implications for
behaviour domain

(Inter)actions that replace original interactions that occur at interaction
point λ should occur at λπ1 or λπ2 or eπ.

Table 5-4 Interaction
point decomposition:
transformation

108 CHAPTER 5 DESIGN FRAMEWORK

Figure 5-18 illustrates this decomposition step graphically.

Conference Service Provider c

Participant p3

Πp3

λΠp3,c

λp3,Πp3

Participant p2

Πp2

λΠp2,c

λp2,Πp2

Participant p1

Πp1

λΠp1,c

λp1,Πp1

Manager m

Πm

λc,Πm

λΠm,m

Conference Service Provider c

Participant p3

λp3,c

Participant p2

λp2,c

Participant p1

λp1,c

Manager m

λc,m D0

Figure 5-21 Action
refinement and
interaction point
decomposition applied
to D0

The interactions that occurred at the original interaction point are refined
according to the rule from Table 5-2. The sendmsg interactions which occur
at interaction points λpn,c are refined into:
– an invocation_req interaction, which occurs at interaction point λpn,Πpn

between a participant and an entity that is part of the abstract platform
(see Figure 5-21). This interaction results in the establishment of the
name of an operation to be invoked, arguments for the invocation, and
an identifier for the invocation iid. This identifier is unique in the con-
text of the interaction point and is used to distinguish between multiple
simultaneous invocations11. In this refinement, the name of the opera-
tion is sendmsg (not to be confused with the sendmsg interaction in D0)
and the argument is the value of information attribute iarg. In our case
this argument will carry a more concrete representation of the message
that is sent.

– an invocation_ind interaction, which follows the occurrence of invoca-
tion_req. The invocation_ind interaction occurs at interaction point λΠpn,c
between an entity that is part of the abstract platform and the confer-
ence service provider (see Figure 5-21). The results of this interaction
are the same as the results of the invocation_req interaction;

– an invocation_rsp interaction, which occurs at the same interaction point
at which the invocation_ind interaction occurs. Since the sendmsg interac-

11 This identifier is either implicit or explicit in realization platforms. For example, a CORBA client using the
Dynamic Invocation Interface (DII) manipulates the identifier of a request explicitly. In contrast, for a client
using compiled stubs the identifier of a request is implicit and corresponds to the thread in which the local
stub method is invoked.

 INTERACTION REFINEMENT 109

tion only consists of an information flow from a participant to the con-
ference service provider, the response does not have to carry any infor-
mation;

– an invocation_cnf interaction, which occurs at the same interaction point
at which the invocation_req interaction occurs. This interaction follows
the occurrence of the invocation_rsp interaction.
The include and exclude interactions are refined in a similar way. The re-

ceivemsg operation differs in that it is targeted at participants. For the sake of
conciseness, we omit a detailed discussion of this refinement.

The final action for the sendmsg interaction from D0 is invocation_ind with
a value of sendmsg for iop. Similarly, invocation_ind with a value of receivemsg for
iop is a final action for the receivemsg interaction from D0. After abstracting
from inserted actions invocation_req, invocation_rsp and invocation_cnf, the
final actions enforce the same constraints as the actions for which they are
final actions. The constraint that receivemsg is caused by sendmsg (in D0) must
also be enforced by the final actions for receivemsg and sendmsg.

The targets of operation invocation are implied by interaction points in
which an invocation_req occur. For example, if an invocation_req occurs at
interaction point λp1,Πp1, the invocation is targeted at the conference service
provider. We can further transform this design by generalizing the behav-
iour of the entities that make up the abstract platform so that they support
operation invocations between two arbitrary entities. This results in a better
matching between this behaviour and the behaviour of realization platforms
(such as, CORBA, Web Services, Java RMI). This generalization is accom-
plished by adding an information attribute (idst) to invocation_req, which
identifies the interaction point at which a corresponding invocation_ind
should occur. This attribute is defined by the entity that initiates an invoca-
tion.

Entity merging
The consideration of platform characteristics in a design may require
entities to be merged into a single entity. This operation must be applied, if
a realization platform supports multiple entities in a design as a single
entity. Table 5-5 presents the rule for entity merging. The resulting entity
has all the interaction points that the original entities had. Similarly, the
resulting entity carries all the behaviours of the original entities.

Input Any set of entities ei.

Design decisions None.

Output A merged entity e replaces the original entities ei.

Implications for
behaviour domain

Merged entity carries behaviour of entities ei.

Table 5-5 Entity
merging: definition

110 CHAPTER 5 DESIGN FRAMEWORK

Figure 5-22 shows the application of entity merging in our example. Entities
Πp1, Πp2, Πp3 and Πp4 are merged into an entity Π1’. Entity merging does not
affect the behaviour domain. The behaviour of the original entities is carried
by the merged entity.

Conference Service Provider c

Participant p3

Πp3

λΠp3,c

λp3,Πp3

Participant p2

Πp2

λΠp2,c

λp2,Πp2

Participant p1

Πp1

λΠp1,c

λp1,Πp1

Manager m

Πm

λc,Πm

λΠm,m

Conference Service Provider c

Participant p3

λΠp3,c

λp3,Πp3

Participant p2

λΠp2,c

λp2,Πp2

Participant p1

Π1’

λΠp1,c

λp1,Πp1

Manager m

λc,Πm

λΠm,m

D1

Figure 5-22 Entity
merging to obtain D1

Interaction point merging
The consideration of platform characteristics to a design may require
interaction points to be merged into a single interaction point. This opera-
tion must be applied to some interaction point parts and their interaction
points, if a realization platform imposes constraints on the number of
interaction points that can be attached to an entity and the design violates
these constraints. Merging of interaction points may require the interac-
tions that occur at these interaction points to be refined, because interac-
tions with the same name could originally be distinguished by the interac-
tion point names. However, if the interaction points are merged, they can
not be distinguished anymore. Table 5-6 presents the rule for interaction
point merging.

 INTERACTION REFINEMENT 111

Input Any set of interaction points λi between the same set of entities.

Design decisions None.

Output A interaction point λ replaces the interaction points λi.

Implications for
behaviour domain

Behaviour preserves distinction between interactions. For example,
information attributes can be used to distinguish interactions that occur at
different original interaction points λi.

Table 5-6 Interaction
point merging: definition

Interaction point merging example
We use interaction point merging to obtain D2 from D1. In platform Π2, an
entity is not allowed to have more than one interaction point part through
which it plays the responding role in invocations. Therefore, multiple
interaction point parts through which an entity plays a responding role must
be merged into a single interaction point part (the corresponding interac-
tion points are also merged). This step is depicted in Figure 5-23.

Conference Service Provider c

Participant p3

λΠp3,c

λp3,Πp3

Participant p2

λΠp2,c

λp2,Πp2

Participant p1

Π1’

λΠp1,c

λp1,Πp1

Manager m

λc,Πm

λΠm,m

Conference Service Provider c

Participant p3

λp3,Πp3

Participant p2

λp2,Πp2

Participant p1

Π2

λΠ,c

λp1,Πp1

Manager m

λΠm,m

D1

D2

Figure 5-23 Interaction
point and entity merging
applied to D1, resulting
in D2

The application of the interaction point merging operation consists of
replacing interaction points λΠp1,c, λΠp2,c, λΠp3,c, and λc,Πm by λΠ,c and
should be reflected in the behaviour of entity Π1’ by replacing the interac-
tion points being merged by λΠ,c. In addition, invocation_req interactions
that occur at interaction points λΠp1,c, λΠp2,c, λΠp3,c, and λc,Πm (in D1) are
replaced by interactions at interaction point λΠ,c which have an additional
information attribute idst that can have the values λp1,Πp1, λ p2,Πp2, λp3,Πp3,
and λΠm,m. respectively. This ensures that the interactions can still be
distinguished as belonging to different original interaction points. For

112 CHAPTER 5 DESIGN FRAMEWORK

example, an invocation_req interaction that originally occurred at interaction
point λΠp1,c is replaced by an invocation_req interaction that occurs at
interaction point λΠ,c and has the value λp1,Πp1 for idst. We say that in this
way the topology of the original structure is preserved.

Realization of abstract platforms
By applying the design operations we have presented, a designer gradually
refines a design into a design whose implementation onto a realization
platform is straightforward. For example, the implementation of platform
D2 on a CORBA platform is straightforward, because we can apply the
following transformation: each abstract platform entity from D2 is imple-
mented as a remote procedure invocation mechanism that is supported by
CORBA; each interaction point is implemented as a CORBA operation
interface on the client or on the server side, as it is specified in CORBA
IDL; and each interaction is implemented as an interaction in the remote
procedure invocation mechanism (invocation request, indication, response
or confirmation).

5.4.4 The example revisited

In the previous section, we have discussed how the design operations can be
applied to obtain designs D1 and D2. In this section, we show how designs
D3 and D4 can be obtained from the same platform-independent design D0.

For D3, we use an abstract platform that supports operation invocations
between objects to realize the interactions between participants, managers
and the conference service provider. In this design participants and managers
are located in so-called ‘thin clients’, which cannot be used as targets for operation
invocation.

The refinements of interactions sendmsg, include and exclude are identical
to the refinement we have presented earlier for D2. The refinement of
receivemsg differs significantly, since this interaction is realized through a
polling scheme. The receivemsg interaction is refined into the following
interactions:
– an invocation_req interaction, which occurs at interaction point λpn,Πpn

between a participant and an entity that represents the abstract plat-
form. This interaction results in the establishment of the name of an op-
eration to be invoked, in this case receivemsg_poll, and an identifier for
the invocation, with the same role as the identifier used in the interac-
tion point decomposition example shown in Figure 5-21;

– an invocation_ind interaction, which follows the occurrence of invoca-
tion_req. The invocation_ind interaction occurs at interaction point λΠpn,c
between an entity that represents the abstract platform and the confer-
ence service provider;

 INTERACTION REFINEMENT 113

– An invocation_resp interaction, which occurs at the same interaction point
at which the invocation_ind interaction occurs. The information attribute
consists of a Boolean value (iisavailable), which indicates whether a message
is available, and the message (iarg), if available;

– An invocation_cnf interaction, which occurs at the same interaction point
at which the invocation_req interaction occur. This interaction follows the
occurrence of the invocation_resp interaction.
A recursion in the refined behaviour is necessary, when the value of the

iisavailable information attribute of invocation_cnf is false. The final action that
corresponds to the original interaction is invocation_cnf with iisavailable equals
true. Similarly to the case of design D2, we can further transform this design
by generalizing the behaviour of the entities representing the abstract
platform so that they support operation invocations between two arbitrary
entities.

For D4, we use an abstract platform that supports asynchronous messaging
between objects. The abstract platform supports multiple messaging queues. The
sendmsg interaction is refined into the following interactions:
– a data_req interaction, which occurs at interaction point λpn,Πpn between a

participant and an entity that represents the abstract platform. This in-
teraction results in the establishment of the message to be sent;

– a data_ind interaction, which follows the occurrence of data_req. The
data_ind interaction occurs at interaction point λΠpn,c between an entity
that represents the abstract platform and the conference service pro-
vider.
Similar refinements apply to the other interactions, with the exception

of receivemsg, in which case the data_req is directed from the conference
service provider to the abstract platform and the data_ind is directed from
the abstract platform to a conference participant. Each pair of participant
and service provider shares a message queue.

The data_ind interaction is the final interaction in the refinements. De-
pending on the constraints on the original interaction, it may be necessary
to insert additional interactions to preserve the constraints in the source
design. For example, if a participant performs an action that follows the
occurrence of the sendmsg interaction, it is necessary to insert interactions in
the target design to inform the participant that data_ind has occurred. This
can actually be seen in the refinement framework as a refinement of the
causality relation between sendmsg and the actions that depend on its occur-
rence [89].

We summarize the operations we have shown in Figure 5-24:
– the transformation marked by consists of interaction refinement

(with a request/response pattern), generalization and entity merging;
– the transformation marked by consists of interaction point merging;

114 CHAPTER 5 DESIGN FRAMEWORK

– the transformation marked by consists of interaction refinement
(with a polling scheme), and generalization;

– the transformation marked by consists of interaction refinement
(asynchronous messaging).

application model

alternatives

(abstract) platform model π

π1

π3

π2

interation between participants, managers and service provider
supported by
abstract platform that offers operation invocation between objects
multiple operation interfaces per object are allowed

add restriction:
only one operation interface per object

π0

interation between participants, managers and service provider
supported by
abstract platform that offers operation invocation
only one operation interface per object
participants and managers cannot be targets for operation invocation

interation between participants, managers and service provider
supported by
abstract platform that offers asynchronous messaging with multiple
queues

abstract platform supports interaction between participants,
managers and conference service provider

op
er

at
io

n
in

vo
ca

tio
n

as
yn

ch
or

no
us

m

es
sa

gi
ng

D0

D1

D3

D2

π4
D4

Figure 5-24 Design
operations and the
designs

5.4.5 Remaining issues

In this section, we discuss some issues in the use of the design concepts
proposed in this section.

Describing failure
In our approach, an interaction represents the successful completion of a
shared activity. When the activity being modelled fails to complete, we say
that the abstract interaction does not occur. If it is necessary to represent
the failure of an activity explicitly, the failure should be modelled as an
interaction, which can only occur if the interaction that models the success-
ful completion of the activity does not occur.

A consequence of this modelling choice is that failure is perceived by all
interacting entities. Therefore, it is not possible to model partial failures of
a shared activity in this way. If it is necessary to model partial failure explic-
itly, the designer must model the shared activity at a lower level of abstrac-
tion, e.g., by modelling an entity between interacting entities and describing
partial failure through the behaviour of this entity.

 RELATION TO RM-ODP 115

Value generation
As discussed in section 5.4.2, the notion of interaction we adopt can be
used to model value generation. Value generation can be used to describe
complex shared activities at a high-level of abstraction. For example, it is
possible to model the negotiation of quality-of-service contracts between
parties with their own requirements using a single interaction. However,
value generation should not be used indiscriminately, since it may require
sophisticated mechanisms for its reliable realization when distribution must
be considered.

Dynamic configuration
The design concepts we have described in this chapter represent the behav-
iour of the system given a certain system configuration of entities and
interaction points, i.e., ignoring the actions necessary to modify the system
structure during execution. [31] describes design concepts that can be used
to describe some of these actions, like the dynamic creation and destruction
of entities and interaction points. The application of the interaction refine-
ment operations presented in this chapter when considering these dynamic
modifications in the system configuration still remains to be investigated.

Information value types
Our framework focuses on the behavioural aspects of interaction. We have
not explored issues related to the exchange of information value types.
Nevertheless, we acknowledge that these issues are an important aspect of
model-driven design. Techniques used traditionally in the modelling of the
information viewpoint in RM-ODP can be useful, as well as abstract data
types and metamodelling frameworks and languages to describe abstract
syntax (and mappings to concrete syntaxes).

5.5 Relation to RM-ODP

The ISO/ITU-T Reference Model for Open Distributed Processing (RM-
ODP) [56] provides a specification framework for distributed systems
development based on the concept of viewpoints. For each viewpoint, con-
cepts and structuring rules are provided, defining a conceptual framework
for specifications from that viewpoint. The use of different viewpoints in
the design of complex systems is an accepted technique to achieve separa-
tion of concerns. This also has been reflected in standards such as, e.g.,
IEEE 1471 [49].

The RM-ODP computational and engineering viewpoints are relevant to
the purpose of our work since they focus on application and infrastructure
concerns, respectively. In this section, we argue that the separation of

116 CHAPTER 5 DESIGN FRAMEWORK

application and infrastructure in RM-ODP should be interpreted in the
same way as the separation between applications and abstract platforms in
our approach. In light of this interpretation to the separation of concerns
proposed in RM-ODP, we discuss how our design framework compares to
RM-ODP.

5.5.1 Concepts in the computational viewpoint

The computational viewpoint is concerned with the decomposition of a
distributed application into a set of interacting objects, abstracting from the
supporting distribution infrastructure. In contrast, the engineering viewpoint
focuses on the infrastructure required to support distributed applications. It
is concerned with properties and mechanisms required to overcome prob-
lems related to distribution (e.g., remoteness, partial failures, heterogene-
ity) and to exploit distribution capabilities (e.g., to achieve performance and
dependability), but that are abstracted from in computational viewpoint
specifications.

The RM-ODP relies on the concept of (distribution) transparency,
which is defined as the property of hiding from a particular user (or devel-
oper) the potential behaviour of some parts of a system [56]. In the context
of the computational and engineering viewpoints, transparency is used to
hide mechanisms that deal with some aspect of distribution. An example of
distribution transparency is replication transparency, which hides the
possible replication of an object at several locations in a distributed system.
In the computational viewpoint, a single computational object would be
represented, while this computational object may possibly correspond to
several replica objects in the engineering viewpoint. The mechanisms
necessary to ensure replica consistency and management are addressed in
the engineering viewpoint, shielding the (computational viewpoint) design-
ers from the burden of developing these mechanisms. Distribution trans-
parency is selective in ODP; the Reference Model includes rules for select-
ing transparencies. Transparencies are constraints on the mapping from a
computational specification to a specification that uses specific ODP func-
tions and engineering structures to provide the required transparency.

In the computational viewpoint, applications consist of configurations of
interacting computational objects. A computational object is a unit of distribu-
tion characterized by its behaviour. A computational object is encapsulated,
i.e., any change in its state can only occur as a result of an internal action or
as a result of an interaction with its environment. An object is said to have
interfaces, each of which expose a subset of the interactions of that object.
Interaction between objects is only possible if a binding can been established
between interfaces of these objects. The computational viewpoint supports
arbitrarily complex bindings, through the concept of binding object, which

 RELATION TO RM-ODP 117

represents the binding itself as a computational object. The behaviour of a
binding object determines the interaction semantics they support. As with
any other object, binding objects can be qualified by quality of service
assertions that constrain their behaviour. The computational model does
not restrict the types of binding objects, allowing various possible commu-
nication structures between objects to be defined [59].

The concepts of entity, interaction and interaction point parts as de-
scribed in this chapter can be used to describe snapshots of applications in
the computational viewpoint. The concept of an entity corresponds to that
of a computational object. The concept of interaction point part corre-
sponds to the structural aspect of an interface, and the concept of interac-
tion point corresponds to the structural aspect of a binding. Binding objects
are considered interaction systems, whose behaviours can be described as
services.

The most significant divergence in the design framework presented in
this chapter and the RM-ODP is the notion of interaction. In the computa-
tional viewpoint, objects interact via special kinds of interactions, namely,
operations, signals and flows. The notion of interaction in our framework
corresponds to the more general notion of interaction in the basic model-
ling concepts of RM-ODP, without the restriction that one of the kinds of
interaction should be chosen (as in the computational viewpoint). As we
have discussed in section 5.4, this more general notion of interaction is
necessary to obtain designs at a high-level of platform-independence, since
it can be refined into the more specific types of interactions, such as opera-
tions and signals in the computational viewpoint.

Another significant diversion in the adopted framework and the RM-
ODP refers to quality-of-service (QoS) constraints on interfaces. While
these are defined for the RM-ODP, we have not explored them in this
thesis. Nevertheless, the framework we have presented can be extended to
accommodate these constraints, as has been shown in [89] with the use of
timing and probability constraints for the relations between interactions.
We do not explore this further in this thesis, but we acknowledge the
importance of QoS constraints in the model-driven design trajectory (sec-
tion 4.3.2 presents an example in which QoS constraints are required).

5.5.2 The RM-ODP notion of infrastructure

In [19], Blair and Stefani have equated the boundary between the computa-
tional and the engineering viewpoints to the distinction between application
and infrastructure: “It is important to realize that the boundary between the
two viewpoints is fluid, depending on the level of the virtual machine
offered by the system’s infrastructure. Some systems will provide a rich and
abstract set of engineering objects whereas others will provide a more

118 CHAPTER 5 DESIGN FRAMEWORK

minimal set of objects leaving more responsibility to the applications devel-
oper.” Specifications in the computational viewpoint are, according to this
interpretation, influenced by the level of support provided by the infrastruc-
ture. By setting the level of support provided by the infrastructure, one can
refer to computational concerns and engineering concerns.

Equating infrastructure to predefined middleware platforms would lead
us to the conclusion that computational specifications are directly influ-
enced by the level of support provided by a selected middleware platform.
Computational specifications would therefore be, to some extent, platform-
specific. In this case, the separation of computational and engineering
concerns would be identical to the separation between application and
middleware platform concerns. The reusability of a computational view-
point specification would be restricted by its dependence on platform
characteristics. Furthermore, from the perspective of application develop-
ers, the separation of computational and engineering concerns would be
implied by the availability of a software infrastructure. Therefore, we con-
clude that the motivation for the separation of computational and engineer-
ing concerns is predominantly bottom-up.

Another interpretation for the infrastructure assumed by the computa-
tional viewpoint is that of an ‘ideal infrastructure’. In this interpretation,
the motivation for the separation of computational and engineering con-
cerns is predominantly based on the needs of the developer to handle the
complexity of application and infrastructure separately, regardless of the
availability of a software infrastructure. The engineering viewpoint offers the
possibility for a designer to engineer the infrastructure explicitly. While this
interpretation is ideal from the perspective of separation of concerns for the
application developer, it does not leverage the reuse of middleware plat-
forms, which would significantly improve the efficiency of the development
process.

Table 5-7 summarizes the implications of these contrasting interpreta-
tions of infrastructure. We conclude that both interpretations considered
have limitations when applied in conjunction with our design approach,
which inspired us to investigate an alternative.

Interpretation (infra-
structure equals to)

Reuse of middle-
ware

Separation of concerns Platform-
independence

Available middleware
platform

Yes Based on target platform Low

Required middleware
platform (ideal from
application point of view)

No explicit considera-
tion

Defined by designer’s
needs; motivated by
complexity in application
design

High

Table 5-7 Interpretations
of infrastructure
compared

 RELATION TO RM-ODP 119

5.5.3 RM-ODP infrastructure notion revisited

Committing to one of the previously discussed interpretations of infrastruc-
ture is undesirable for the adoption of computational viewpoint concepts
for our design process. It may lead to models at a low level of platform-
independence, or it may lead to models which cannot be realized on exist-
ing middleware platforms. We propose to equate the term infrastructure, as
used in RM-ODP, to our notion of abstract platform. This approach can be
beneficial for the development of distributed applications, so that a proper
balance can be obtained between the following design goals:
– designers can use the separation of application and infrastructure con-

cerns to cope with the complexity of distributed application design;
– middleware platforms can be reused to improve significantly the effi-

ciency of distributed application development; and
– platform-independence can be obtained as a means to preserve invest-

ments in application development and withstand changes in technology.
A consequence of equating infrastructure to abstract platform is that

computational viewpoint concepts can be applied recursively at different
levels of platform-independence.

In the computational viewpoint, an abstract platform may be defined in
terms of the bindings (and binding objects) supported, the transparencies
supported, and the types of QoS constraints that may be applied to inter-
faces.

The use of binding objects in an abstract platform provides considerable
flexibility to implementations of platform-independent designs, since it is
possible to provide countless different implementations of a binding object.

One could argue that binding objects should be decomposed exclusively
in the engineering viewpoint, since they are part of the infrastructure and
should not be considered in the computational viewpoint. However, there
are two main reasons to refute this argument. First, the definition of infra-
structure (and hence abstract platform) varies during the design process.
Second, the engineering viewpoint forces a designer to commit to a particu-
lar distribution in terms of nodes, capsules and clusters. Committing to a
particular distribution may not be necessary at some point in the design
process, in which case, it could unnecessarily constrain the choice of target
platform or realization approach.

The use of transparencies and QoS constraints also provides flexibility in
implementations, since there is considerable freedom in choosing mecha-
nisms for obtaining a required transparency and satisfying QoS constraints.
An example that reveals this flexibility is shown in Figure 5-25. In this
example, a client and a server object interact through an operation inter-
face. A replication transparency schema is used to specify constraints on the
availability and performance of the server object. Two different mappings of

120 CHAPTER 5 DESIGN FRAMEWORK

the source model (a) are depicted below. In Figure 5-25(b), a realization is
obtained by mapping the source model directly to a platform that supports
replication transparency, namely, Fault Tolerant CORBA. The infrastruc-
ture depicted is provided with this platform [73]. In Figure 5-25(c), a
realization is obtained by mapping the source model into a target model
that explicitly addresses the replication of the server object. A replication
object is introduced to execute the replication function, delegating requests
to the different replicas. For simplicity, we consider stateless server objects,
and therefore we can omit extra interfaces required for checkpointing. This
step can be considered as service decomposition applied to the server
object. A possible realization of this client server application in Web Ser-
vices [120, 121] is depicted schematically in Figure 5-25(d).

if1 (a)

(b) (FT-CORBA)

(c)

(d) (Web Services)

SOAP
runtime

SOAP
runtime

SOAP
runtime

Client

Replication
proxy

Server
replica

Server
replica

Host
H1

Host
H2

Host
H3

client

server

server
replica1

server
replica2

client

replication
Proxy object

if1

if1 if1 if1 if1

Figure 5-25 Example of
flexibility in realization
approach

5.6 Evaluation

This section presents an evaluation of the design framework, according to
the quality criteria defined in chapter 3 of this thesis, namely: generality,
stability, buildability and ease of use. We discuss how the design framework
enables designers to produce abstract platform that satisfy quality require-
ments.

 EVALUATION 121

Generality
The design concepts we have adopted in our design framework can be used
to define a number of interaction systems of varying generality. In this
chapter, we have used the design concepts for the design of a conference
interaction system, which can be considered fairly application-specific. At
the same time, we have used the design concepts for abstract platforms that
support request/response and asynchronous messaging patterns, which can
be considered general-purpose. The generality of abstract platforms and
interaction systems is, therefore, not guaranteed by the framework, but is
enabled by the framework.

In addition, the notion of interaction we have adopted can accommo-
date a number of interaction mechanisms in the realization as we have
shown in the examples presented in this chapter. Therefore, we can con-
clude that this notion of interaction satisfies the generality requirement.

Buildability
Not unlike generality, buildability is not directly guaranteed by the use of
the framework. Designers can obtain designs which are more or less
buildable in particular platforms. We have shown that buildability can be
increased through application of service decomposition and interaction
refinement, through which platform constraints can be progressively incor-
porated in designs. Platform-independent designs can be transformed by
applying the design operations and realized into a number of different
platforms with different characteristics. While we have shown realizations of
designs in terms of middleware platforms, the concepts we have employed
have also been used in protocol design serving as starting point for obtaining
protocol implementations [16].

Stability
The concepts we have adopted in the design framework allow description of
application designs and abstract platforms at high-level of abstraction. This
allows changes in target platforms to be accommodated in the path to
realization (e.g., through transformations that apply design operations with
different design decisions), preserving the stability of designs at a high-level
of abstraction.

Ease of use
The explicit definition of the service of interaction systems that make up an
abstract platform is beneficial to transformation designers, which can use
abstract platform service definitions as a starting point for transformation
definition. Approach 1 to realization can be followed (section 5.3.2), in
order to allow transformation designers to gain confidence in the correct-
ness of transformation. Transformation designers also expect the abstract

122 CHAPTER 5 DESIGN FRAMEWORK

platform to be defined in such a way that does not unnecessarily constrain-
ing the freedom of implementation; we have shown in this chapter, that this
framework can be used to define platform-independent designs so as to
preserve freedom of implementation.

5.7 Related work and concluding remarks

Design transformations in which implementation constraints are incorpo-
rated have been proposed earlier, for example, in the LOTOSphere [22]
project. Some of the design operations we have presented here have been
inspired by the transformations described in [94]. These transformations
have been developed to bridge the abstraction gap between formal lan-
guages and implementation environments, which is in some aspects similar
to the gaps between platform-independent models and platform-specific
models that have to be bridged by transformations in model-driven design.
The main difference between the transformations in [94] and the design
operations proposed here is that the former transformations do not con-
sider middleware technologies as implementation environments (platforms)
and therefore they cannot be directly applied to our situation.

Most efforts related to transformations in model-driven design and
MDA focus on the languages, methods and tools for the specification of
model transformation. These efforts are complementary to the work pre-
sented in this chapter, since the design operations we have defined can be
used to derive model transformation specifications that could be imple-
mented by tools. This chapter contributes to the understanding of the
design operations that are applied by transformation in a model-driven
design approach. Furthermore, we argue that suitable notions of confor-
mance between source and target designs are necessary if we want to reach
a mature model-driven design process. This chapter explores how these
notions of conformance can be defined and enforced, both with service
decomposition and interaction refinement.

With respect to service decomposition, the design framework implies an
approach based on service definition and service design. While this suggests
a top-down design trajectory it does not exclude the use of bottom-up
knowledge. Bottom-up knowledge is what allows designers to re-use mid-
dleware infrastructures, by defining an abstract platform that can be realized
in terms of these concrete middleware platforms, and to find appropriate
service designs that implement the required service. This is similar to
finding stable solution domains in a synthesis-based design method [108].
The use of approach 2 described in section 5.3.2 allows bottom-up ration-
ale to justify partially ‘breaking’ the structure of a design in a design step. In
addition, (bottom-up) extension mechanisms available in platforms can be

 RELATED WORK AND CONCLUDING REMARKS 123

used to provide suitable realizations of abstract platforms with software
composition techniques that are outside the scope of the framework, such
as, e.g., aspect-oriented programming [37].

We have shown that the interaction concept and interaction refinement
design operations can be used to realize a platform-independent design in
multiple realization platforms. This is possible because interaction can be
modelled at a high level of abstraction.

We approach interaction refinement from the perspective of architec-
tural design. Several authors approach interaction refinement from a pure
formal perspective (e.g., [24, 25]). We believe that, in many cases, these
approaches make simplifications at the cost of the usefulness of the formal
model for pragmatic engineering purposes (as argued in [113]).

The use of a uniform set of concepts in different levels of models facili-
tates the establishment of conformance relations between the levels. While
this applies to application design at different levels of platform-
independence, other authors have shown that this set of concepts can also
be applied successfully in describing business process [118], and defining
the relations between business process and applications that support these
processes [32]. In [30], an approach is shown that uses the set of basic
design concepts to relate the RM-ODP Engineering and Computational
viewpoints. That work could be used in a design approach that also encom-
passes business environments and business processes, which are outside the
scope of this thesis.

Due to the large variety of target platform characteristics, and hence, the
variety of abstract platform characteristics, we do not claim that the con-
cepts of system, interaction system, service and the abstraction interaction
are sufficient to define all possible abstract platforms. We anticipate that
this set of concepts may have to be extended in the context of a modelling
language with concepts that facilitate the structuring and maintenance of
designs. For example, the notion of inheritance between different services
can be added to allow for the reuse of service definitions. Patterns formed
from basic design concepts can also be defined to form coarse grained
building blocks that facilitate the definition of abstract platforms and
application designs.

Chapter 6

6. Support for abstract platforms in
MDA

In chapter 2 of this thesis, we have discussed in general how abstract plat-
forms and modelling languages can be related. This resulted in two ap-
proaches for abstract platform definition: the language-level approach and
the model-level approach. In this chapter we discuss how these approaches
can be used to define abstract platforms with the Unified Modelling Lan-
guage (UML) [81] and the Meta Object Facility (MOF) [77].

We have chosen the UML and the MOF for their relevance in the con-
text of OMG’s MDA [76] standardization. We assume that the use of
widely adopted modelling languages and language definition architectures
can promote the reusability of platform-independent models, abstract
platform models and transformation specifications. However, we are aware
that this argument is only significant if these standards provide proper
support for our design approach. This motivates our investigation in this
chapter.

This chapter is organised as follows: section 6.1 recapitulates the lan-
guage-level and the model-level approaches to abstract platform definition;
section 6.2 briefly introduces the UML and MOF; sections 6.3 and 6.4
focus on the how to support the language-level and model-level abstract
platform definition approaches with UML and MOF; section 6.5 illustrates
both approaches with an example; section 6.6 discusses the strengths and
limitations of the UML for abstract platform definition; finally, section 6.7
presents some concluding remarks.

126 CHAPTER 6 SUPPORT FOR ABSTRACT PLATFORMS IN MDA

6.1 Abstract platform definition approaches

In chapter 2, we have defined the following general approaches to abstract
platform definition: the language-level approach and the model-level ap-
proach.

In the language-level approach, the abstract platform designer defines
styles and restrictions that are to be applied to elements of a particular
modelling language. These styles and restrictions combined with the con-
cepts underlying the modelling language allow one to unambiguously
determine the abstract platform.

In the model-level abstract platform definition approach, the abstract
platform designer defines a set of pre-defined design artefacts which are to
be composed with the application by the application designer. Similarly to
the case of the language-level abstract platform definition approach, the set
of design concepts underlying the language is relevant to derive some
abstract platform characteristics, since the modelling language is used to
describe: (i) the application, (ii) any necessary pre-defined design artefacts,
and (iii) the composition of application and pre-defined artefacts.

Since in both the language- and model-level abstract platform definition
approaches there is some overlap between language characteristics and
abstract platform characteristics, a modelling language can be evaluated
based on its suitability to represent intended abstract platform characteris-
tics.

In the sequel, we discuss how UML, its Profiles and MOF can be used
to represent abstract platforms in both the language- and model-level
abstract platform definition approaches. We assume the reader is ac-
quainted with OMG standards, but when necessary, we introduce specific
UML concepts. We conclude by discussing some limitations of UML with
respect to describing abstract platforms at the various levels of platform-
independence.

6.2 UML, Profiling and MOF

The UML has been developed initially as a methodology-independent
technique for the modelling of the structure and the behaviour of object-
oriented systems. It provides a large number of diagrams and notations, is
supported widely by modelling tools, and is defined in OMG specifications
[81, 84].

Since UML’s inception, the language has been used for a number of
other purposes, in part thanks to a language extension mechanism called
profiling. More recently, the profiling mechanism has been incorporated in

 UML, PROFILING AND MOF 127

OMG’s general metamodelling framework, which includes the MOF. The
MOF serves as an infrastructure for defining the abstract syntax of the UML
and other OMG languages, resulting in a language definition architecture
for the MDA. Figure 6-1 shows a possible usage of this language definition
architecture. It shows that the MOF (metametamodel) is used to define the
UML metamodel and that the profiling mechanism is used to extend the
UML with the EDOC profile. Figure 6-1 also shows that the UML meta-
model defines the abstract syntax of UML models.

«metamodel»
UML

«metamodel»
MOF

«instance of»

A UML model

«profile»
EDOC

«instance of»

«instance of»

«instance of»

«instance of» «apply»

An EDOC
UML model

«import»

Figure 6-1 Example:
usage of OMG’s MDA
language definition
architecture

Interestingly enough, we use a notation for depicting the metamodels and
the profile which is based on the profiling mechanism itself. This can be
seen in Figure 6-1. We use stereotypes, depicted as labels within a pair of
guillemets, such as «instance of», «profile», «metamodel» and «apply». The
stereotypes provide specializations of UML concepts, in this example, the
concepts of dependencies (depicted as open arrows with dashed lines) and
packages (depicted with a “package” icon).

Metamodels are usually accompanied by natural language descriptions of
concepts that correspond to elements of the metamodel, defining infor-
mally the semantics of the modelling elements. This approach has been
adopted by the OMG in the UML specifications. More rigorous approaches
define the semantics of modelling elements in terms of a mathematical or
formal domain, such as the formal semantics of the Specification and
Description Language (SDL) in [55], or in terms of explicit representations
of domain conceptualizations, such as an ontology, as proposed in [46].

128 CHAPTER 6 SUPPORT FOR ABSTRACT PLATFORMS IN MDA

6.3 Language-level abstract platform definition

We start by considering how the MDA language definition architecture can
be used to define abstract platforms in the language-level approach.

6.3.1 UML constructs for modelling application parts and their
interaction

In order to adopt the language-level approach for abstract platform defini-
tion in UML, we must first consider the constructs provided by UML for
modelling application parts and their interaction.

In the UML 2.0 metamodel, the constructs for interaction are operations
and receptions, which are offered by BehavioredClassifiers. Operations represent
the capability of a classifier to receive and to respond to requests. Requests
are sent when objects or components (instances of classifiers) execute
CallOperationActions. Receptions represent the capability of a classifier to
receive Signal instances, which are sent asynchronously by other objects or
components when these execute SendSignalActions and BroadcastSignalActions.

Given these constructs, we can conclude that the language-level ap-
proach can in principle be used in UML for abstract platforms based on
request-response invocations and point-to-point message passing.

As we have discussed in section 6.2, UML is currently regarded as a
general purpose language that is expected to be customized for a wide
variety of domains, platforms and methods [83]. A certain degree of cus-
tomization may be obtained in UML through semantic variation points and
profiles. This choice in the definition of UML has two implications for
language-level abstract platform definition. First, the UML specification
(“plain” UML) is not definitive with respect to the abstract platform im-
plied. Second, customization mechanisms must be applied in order to
precisely define specific abstract platforms.

Semantic variation points provide an intentional degree of freedom for
the interpretation of the UML’s metamodel semantics. Some semantic
variation points defined in the UML specification should be resolved for
plain UML to be conclusive with respect to the abstract platform implied by
the language. An example of such a semantic variation point is described in
the UML 2.0 specification [81] (page 381): “The means by which requests are
transported to their target depend on the type of requesting action, the target, the
properties of the communication medium, and numerous other factors. In some cases,
this is instantaneous and completely reliable while in others it may involve transmission
delays of variable duration, loss of requests, reordering, or duplication.”

Without resolving this semantic variation point, a designer would be
forced to assume worst-case interpretations, e.g., that the implied abstract
platform provides an unreliable request/response mechanism. If this is

 LANGUAGE-LEVEL ABSTRACT PLATFORM DEFINITION 129

undesirable, e.g., because the abstract platform should provide a reliable
request/response mechanism, a designer should resolve the semantic varia-
tion point, by defining that requests and response signals are transported
reliably. Semantic variation points may be partially resolved, i.e., only for
the relevant aspects. For example, a designer may consider the reliability
characteristics of requests relevant, but may consider the timing characteris-
tics irrelevant. In this case, any interpretation of the timing characteristics
of requests would be acceptable. One could resolve these semantic variation
points by relating the UML metamodel with a formal semantics, or to a
basic set of design concepts with a formal semantics. Examples of efforts
towards a formal semantics for UML are [38, 62, 111].

6.3.2 Profiles and MOF

The specialization of UML for defining abstract platform characteristics can
be made more manageable and clearly defined through the use of UML
profiles. Profiles are language extensions consisting of metamodel elements
that specialise elements of a reference metamodel. The specialized elements
can be given specific semantics, in this way resolving semantic variation
points. Furthermore, constraints expressed in the Object Constraint Lan-
guage (OCL) [80] can be added to profiles to restrict the use of specific
concepts or combinations of concepts. This use of profiling for language-
level abstract platform definition is restricted to constraining or specialising
the abstract platform implicitly defined by plain UML. In this approach, the
referenced metamodel (UML 2.0’s metamodel) in combination with the
UML profile assumes the role of abstract platform model. This approach is
illustrated in 6.5.1.

In case the relevant abstract platform characteristics cannot be repre-
sented by resolving semantic variation points through the definition of
profiles, one should define new languages in terms of MOF metamodels.
This approach is illustrated in chapter 7 of this thesis. The design concepts
of languages defined in MOF are not constrained by UML, and can be
arbitrarily defined through mappings from the metamodel elements to any
suitable semantic domain. In this case, the metamodel (defined using the
MOF) assumes the role of an abstract platform model.

UML Profiling is more suited to the abstract platforms that require con-
cepts that can be represented as specialisations of UML concepts. MOF
metamodelling is suitable in case the required concepts differ too much
from the UML concepts, so that a new independent metamodel has to be
defined. When used systematically, profiling has the advantage that UML
tools can be used for model validation and verification, since the resulting
models still comply with the UML rules and constraints. MOF metamodel-
ling has a potential drawback that available validation and verification tools

130 CHAPTER 6 SUPPORT FOR ABSTRACT PLATFORMS IN MDA

may be impossible to reuse, so that new tools may have to be built for the
new metamodel.

6.4 Model-level abstract platform definition

In addition to changing the design concepts of plain UML in the language-
level abstract platform definition approach, we can define the abstract
platform at the model-level. The abstract platform is then modelled in
UML and is composed with the application model. This can be accommo-
dated in UML 2.0 by using model library packages [81] to define the
abstract platform model. Model library packages are packages stereotyped
with the standard «modelLibrary» stereotype. The abstract platform model
library package can be imported by the application PIM. This is represented
by creating a dependency between the package where the PIM is defined
and the model library package where the abstract platform is defined.

An abstract platform can have an arbitrarily complex behaviour and
structure, varying from a simple one-way message passing mechanism to a
communication system that maintains transactional integrity and time order
of messages. To make the design of complex abstract platforms manageable,
we can use UML 2.0’s composite structures to break up a complex design
into smaller pieces. State machine and activity diagrams may be associated
with encapsulated classifiers to define their behaviour.

Since the behaviour of the abstract platform is also described in UML, it
is often necessary to combine the model-level and the language-level ab-
stract platform definition approaches, e.g., by resolving semantic variation
points that are relevant for the composition of the abstract platform (explic-
itly defined) and the platform-independent model of the application.

6.5 Example

In order to illustrate both approaches to abstract platform definition in
UML, we specify the platform-independent model of a simple chat applica-
tion. This application allows users residing in different hosts to exchange
text messages.

Initially, the application is described in terms of an abstract platform
that supports the interaction of objects through a conference interaction
system. We call this abstract platform the ConferenceAbstractPlatform. In order
to define the composition of the conference interaction system with the
application, we use reliable exchange of asynchronous signals. For this
purpose, we define an abstract platform that supports reliable signal ex-
change with the implicit approach, by defining a UML profile. Later, we

 EXAMPLE 131

consider two possible realizations of the ConferenceAbstractPlatform, one of
them relying on an event-based platform we define at the model-level, and
the other relying solely on the exchange of reliable signals. The relations
between the different models are depicted in Figure 6-2 (the EventAbstract-
Platform is only necessary for the realization presented in section 6.5.4).

«profile»
ReliableSignalsProfile

«system»
Application

«modellibrary»
ConferenceAbst ractPlatform

«mode llibrary»
EventAbstractPlatform

«apply»
«apply»

«apply»

«import»

«import»

Figure 6-2 Relations
between the application
PIM and the abstract
platforms defined with
the implicit and explicit
approaches

6.5.1 Reliable signal exchange

Figure 6-3 depicts the ReliableSignalsProfile that specializes the exchange of
asynchronous messages in UML 2.0. A stereotype «reliable» is defined that
can be applied to instances of SendSignalAction (defined in the package
IntermediateActions of the UML 2.0 metamodel). Signals created by executing
a SendSignalAction with this stereotype are exchanged reliably, in that they
cannot be lost or duplicated. The SendSignalAction meta-class is the only
meta-class specialized in the profile. It is not necessary to specialise the
meta-classes Signal and Reception, since these represent respectively, the type
of signal instances exchanged and the ability to receive signal instances. The
semantics of these meta-classes are independent of the manner of transmit-
ting signal instances.

«profile»
ReliableSignalsProfile

«metaclass»
IntermediateActions::

SendSignalAction

«stereotype»
reliable

Figure 6-3 A UML
profile specializing the
exchange of
asynchronous messages

132 CHAPTER 6 SUPPORT FOR ABSTRACT PLATFORMS IN MDA

6.5.2 The ConferenceAbstractPlatform

The ConferenceBinding component provides the ConferenceInterface and re-
quires the ParticipantInterface. An application part that uses the Conference-
Binding should provide the ParticipantInterface. The signals exchanged be-
tween application parts and the abstract platform are defined explicitly. A
class diagram showing the ConferenceAbstractPlatform’s component, signals and
interfaces is depicted in Figure 6-4.

cd ConferenceAbstractPlatform

«interface»
ParticipantInterface

+ «signal» MessageInd(String)

«signal»
MessageInd

+ content: String

«interface»
ConferenceInterface

+ «signal» Join(ParticipantInterface)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

«signal»
Join

+ participantid: ParticipantInterface

«signal»
Leave

+ participantid: ParticipantInterface

«signal»
MessageReq

+ content: String
+ participantid: ParticipantInterface

ConferenceBinding

Port1

ConferenceInterface
ParticipantInterface

cd ConferenceAbstractPlatformFigure 6-4 The
ConferenceAbstract-
Platform

«interface»
ParticipantInterface

«interface»
ConferenceInterface

+ «signal» MessageInd(String) + «signal» Join(ParticipantInterface)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

«signal»
MessageInd

+ content: String

«signal»
Join

+ participantid: ParticipantInterface

«signal»
Leave

+ participantid: ParticipantInterface

«signal»
MessageReq

+ content: String
+ participantid: ParticipantInterface

ConferenceBinding

ConferenceInterface
ParticipantInterface

Port1

Figure 6-5 shows the behaviour of the ConferenceBinding component specified
as a state machine. ComponentBinding keeps a list of conference participants,
which is updated whenever a Join or Leave signal is handled. Upon reception
of a MessageReq signal, the ConferenceBinding sends out MessageInd signals to all
participants of the conference. In order to simplify the behaviour we have
assumed that the MessageInd signals are sent sequentially based on the order
imposed by the list of participants (result of i.next()). This illustrates the use
of the «reliable» stereotype.

 sm ConferenceBindingStateMachine

Initial

[joinleave]

[messaging]

Initial

Initial

waitjoinleave

waitmessagereq

«reliable»
MessageInd(content)

to i.next()

processmessage

[i.hasNext()]
[!i.hasNext()]

MessageReq(content, participant) /i=getParticipants()

Join(participant) /addParticipant(participant)

Leave(participant) /removeParticipant(participant)

sm ConferenceBindingStateMachine

Initial

[joinleave]

[messaging]

Initial

Initial

waitjoinleave

waitmessagereq

«reliable»
MessageInd(content)

to i.next()

processmessage

[i.hasNext()]
[!i.hasNext()]

MessageReq(content, participant) /i=getParticipants()

Join(participant) /addParticipant(participant)

Leave(participant) /removeParticipant(participant)

Figure 6-5 The
ConferenceBinding state
machine

 EXAMPLE 133

The application that uses the ConferenceAbstractPlatform may be defined at a
high-level of platform-independence, communicating with the conference
binding through signal exchange. Many alternative implementations for
signal exchange are possible, depending on the target platform. Further,
there is a large freedom of implementation for the conference abstract
platform itself. Since the application is shielded from the internal design of
the conference abstract platform, it does not depend on the interaction
support eventually used by the conference interaction system.

6.5.3 Realization of the ConferenceAbstractPlatform

Figure 6-6 depicts a realization of the ConferenceBinding. This realization
relies on the abstract platform that provides reliable signals.

cd ConferenceAbstractPlatformRealization1
ConferenceBindingRealization1

port1 :
Conf erencePort

c [*] :ConferenceComponent
port2

ConferenceComponent

+ «signal» message(String)
+ «signal» MessageReq(ParticipantInterf ace, String)

port2

«Inv ariant»
{Conf erenceComponent .allInstances ()->f orAll (c1 |
(c1 .target .select(c1)->isEmpty ()) and
(c1.target ->asSet()->size()=c.allInstances ()->size)
)}

ConferencePort

+ «signal» Join(ParticipantInterf ace)
+ «signal» messageInd(Conf erenceComponent, String)
+ «signal» Leav e(ParticipantInterf ace)
+ «signal» MessageReq(ParticipantInterf ace, String)

Conf erenceInterf ace

ParticipantInterf ace

participant

1 1
+conf comp

+source *
+target *

Figure 6-6 A realization
of the
ConferenceAbstract-
Platform

The interaction point that corresponds to port1 is of type ConferencePort. The
ConferencePort handles the signals Join and Leave and delegates the handling of
signals MessageReq to the appropriate ConferenceComponent. There is a Confer-
enceComponent instance for each participant in the conference. Conference-
Component instances exchange message signals among each other and message-
Ind with the interaction point of port1. The definition of these signals is
omitted. An OCL [80] constraint is used to define that ConferenceComponent
instances are fully connected, and that there are no links between an in-
stance and itself. Figure 6-7 shows the behaviour associated with the Confer-
enceComponent. The behaviour of ConferencePort is omitted for conciseness.
The signals are exchanged reliably, and therefore, the stereotype «reliable» is
applied to all SendSignalAction instances.

134 CHAPTER 6 SUPPORT FOR ABSTRACT PLATFORMS IN MDA

sm ConferenceComponentStateMachine

Initial

waitMessageReq

«reliable»
message(content)

to target[i++]

processMessageReq

waitmessage

«reliable»
MessageInd(this,
content) to port2

InitialInitial

MessageReq(participantid, content) /i=0

[i<target.size()]

[i==target.size()]

message(content)

Figure 6-7 Behaviour of
the
ConferenceComponent
represented as a state
machine

6.5.4 ConferenceAbstractPlatform realized in terms of EventAb-
stractPlatform

Figure 6-8 depicts an alternative realization of the ConferenceBinding. This
realization illustrates the recursive use of an explicitly defined abstract
platform. The EventAbstractPlatform is used as part eap in ConferenceBindingRe-
alization2. The dashed line around part eap is used to denote that this part is
contained by reference. The multiplicity of eap is one, i.e., only one instance
of the EventAbstractPlatform is used in this decomposition of the Conference-
Binding.

 cd ConferenceAbstractPlatformRealization2
ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ « signal » Join(ParticipantInterface)
+ « signal » MessageInd(String)
+ « signal » Leave(ParticipantInterface)
+ « signal » MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»
EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage ::
EventAbstractPlatform

port1 «interface»
EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2
ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ « signal » Join(ParticipantInterface)
+ « signal » MessageInd(String)
+ « signal » Leave(ParticipantInterface)
+ « signal » MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»
EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage ::
EventAbstractPlatform

port1 «interface»
EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2
ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ « signal » Join(ParticipantInterface)
+ « signal » MessageInd(String)
+ « signal » Leave(ParticipantInterface)
+ « signal » MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»
EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage ::
EventAbstractPlatform

port1 «interface»
EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2
ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ « signal » Join(ParticipantInterface)
+ « signal » MessageInd(String)
+ « signal » Leave(ParticipantInterface)
+ « signal » MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»
EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage ::
EventAbstractPlatform

port1 «interface»
EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

Figure 6-8 Alternative
realization of the
ConferenceAbstract-
Platform

 DISCUSSION 135

The EventAbstractPlatform accepts events and subsequently forwards these
events to objects that have subscribed to the particular event type. There is
a ConferenceComponent for each participant in the conference. The definition
of the behaviour of the EventAbstractPlatform is omitted here, as well as the
classes Event and EventKind.

The EventAbstractPlatform can be realized on a number of event-based
platforms, such as, e.g., JMS [104] and CORBA (with the Event Service)
[73]. Alternatively, a recursive decomposition of the EventAbstractPlatform can
be done, resulting, e.g., in a design of the EventAbstractPlatform that relies on
a request-response abstract platform.

6.6 Discussion

This section discusses some lessons learned by applying the MDA language
definition architecture for abstract platform representation and provides
some remarks with respect to the interaction concepts provided in UML.

6.6.1 Lessons learned

The example presented in section 6.5 illustrates two kinds of problems that
can arise when defining abstract platforms with a particular modelling
language.

Firstly, a language’s design concepts may force decisions about desired
platform properties to be taken too early in the design process, because
they do not permit abstraction of these properties. The example in section
6.5 illustrates this for the case of UML state machines. The state machine in
Figure 6-5 determines that message requests are processed one at a time.
Therefore, a strict interpretation of this model would exclude realizations of
this abstract platform that accept multiple message requests simultaneously.
Alternatively, we could have specified that a number of concurrent threads
process multiple message requests at the same time. However, this alterna-
tive commits to a particular concurrency model. Ideally, we would have
stated only that message requests are independent of each other, which is
appropriate at the level of abstraction considered. The decision on a par-
ticular concurrency model would be delayed, and different alternative
implementations would be deemed acceptable. A designer may try to
mitigate the limitation of the UML representation by interpreting the
behavioural specification loosely, e.g., informally defining that message
requests can also be treated simultaneously despite the state machine
model. However, this limits the usability of models for model transforma-
tion, automated testing, validation and simulation.

136 CHAPTER 6 SUPPORT FOR ABSTRACT PLATFORMS IN MDA

Secondly, a language’s design concepts may indirectly favour some plat-
forms over others, due to similarities in the structure of models and realiza-
tions in a particular platform. Although an implementer could try to ignore
the structure and choose to adhere only to the model’s semantics, he or she
will be inclined to use the platform with the matching structure. The
example from section 6.5 illustrates this for UML composite structures. In
composite structures, interaction points that correspond to ports can only
be created and destroyed along with the component to which they are
attached. This implies that, if we want to model that an unbound number
of distinct users may use the component through ports, we have to use a
multiplexing scheme like the one used in Figure 6-6 and Figure 6-8. Al-
though the specification gives the impression that the multiplexing scheme
has to be implemented, it is wiser for the implementer to ignore this
scheme in case the target platform allows the dynamic creation and destruc-
tion of a component’s interaction points. This raises issues with respect to
suitable conformance relations for model-driven design with UML.

6.6.2 UML interaction concepts

The basic interaction concepts of UML are derived from operation invoca-
tion and message passing mechanisms. Operation invocation and message
passing concepts represent both the direction in which information flows
and roles of components (or objects) in an interaction (initiator or re-
sponder). This forces a designer to commit to a direction of an interaction
and roles in an interaction at all levels of platform-independence. This, for
example, forces a designer to decide at a high level of platform-
independence, whether information is obtained by an entity using a call-
back, event-based or polling mechanism. For all these mechanisms, infor-
mation may flow in the same direction, but different parties may initiate
interaction. The decision on which mechanism to use often depends on
characteristics of the realization platform, and therefore, a designer should
not be forced to consider this decision at a high level of platform-
independence. For example, a designer may choose between a callback and
a polling mechanism for performance reasons. If CORBA is used as a
realization platform, using a callback mechanism requires the server-side
part of an ORB to be installed on the side of the recipient of the informa-
tion. This may be problematic, e.g., for mobile devices with few resources.
Installing the server-side part of an ORB is not required in the case where
the designer chooses for a polling mechanism.

In addition, languages that use operation invocation and message passing
concepts often define some details of the mechanisms that realize operation
invocation and message passing. In the example we have considered in
UML, interacting parties exchange messages through queues of infinite

 CONCLUDING REMARKS 137

length. Messages exchanged are always delivered unaltered and in sequence.
These assumptions may not match the characteristics of a target realization
platform, forcing a designer to bridge a large gap between the design and its
realization. This significantly decreases the benefit of a model-driven design
approach. As we have discussed in section 6.3, UML leaves some of these
aspects for the designer to decide (“The means by which requests are transported
to their target depend on the type of requesting action, the target, the properties of the
communication medium, and numerous other factors. In some cases, this is instanta-
neous and completely reliable while in others it may involve transmission delays of
variable duration, loss of requests, reordering, or duplication.” [81]) Such aspects
must be decided upon by the application designer (or tool designer), even
at a high-level of platform-independence. This is because different decisions
for these aspects would result in different application models. We can
conclude that semantic variation points allow designers to select between
alternative semantics for some of its constructs, but they do not allow
designers to abstract from the alternatives, e.g., at a high-level of platform-
independence (choice is different from abstraction).

6.7 Concluding remarks

Since modelling language concepts and characteristics of abstract platforms
are interrelated, careful selection of a modelling language is indispensable
for the beneficial exploitation of the PIM/PSM separation and the definition
of abstract platforms.

The MDA Guide [76] provides some examples of “generic platform
types” and mentions briefly the need for a “generic platform model”, which
“can amount to a specification of a particular architectural style.” Neverthe-
less, the introduction of these concepts is superficial: for example, the term
“generic platform” is not even defined explicitly, and no further informa-
tion is given on what a “generic platform model” is. In our interpretation of
that documentation, we position our notion of abstract platform as sub-
suming that of generic platform. This is because abstract platforms can have
other relevant characteristics in addition to defining a “particular architec-
tural style”. In this chapter, we have identified models that may serve as
abstract platform models, in two different approaches to abstract platform
definition that can be incorporated in MDA.

In the model-level approach, we have proposed that pre-defined in-
stances of language elements should be part of the abstract platform model.
This is corroborated by [12] where a “generalized notion” of platforms is
proposed which includes pre-defined instances of language elements.

138 CHAPTER 6 SUPPORT FOR ABSTRACT PLATFORMS IN MDA

We have presented an example in UML in which a number of abstract
platforms can be combined, both in the language-level and the model-level
abstract platform definition approaches.

We have discussed how to support the concept of abstract platform in
standard UML, through both the language-level and the model-level ab-
stract platform definition approaches. In the language-level definition
approach, the semantic variation points of UML should either be resolved
or should be considered irrelevant for deriving intended abstract platform
characteristics. UML Profiles can be useful in this approach to specialise
design concepts, and manage and package abstract platforms. In the model-
level definition approach, UML 2.0’s composite structures are useful for
defining abstract platforms both from an external and from an internal
perspective. Composite structures have been a useful addition to UML 2.0.
Nevertheless, we have identified some limitations with respect to the level
of abstraction that can be obtained in the representation of abstract plat-
forms with composite structures. In addition, UML 2.0 still lacks some
notion of behaviour conformance in order to relate behaviours defined at a
high-level of abstraction and the refined realizations of these behaviours.

In chapter 7, we present an example of abstract platform definition with
the MOF. In the example, we use a modelling language called Interaction
Systems Design Language (ISDL) [52, 89]. The concepts in ISDL are not
constrained by the UML, and provide better support for the design frame-
work presented in chapter 5, in particular with respect to the notion of
abstract interaction.

Chapter 7

7. Case study: the design of Freeband
Services

In this chapter, we report on the case study that has been conducted in
order to show the applicability of the design approach proposed in this
thesis. We illustrate all the steps defined in the proposed design process.
We start with the definition of abstract platforms and transformations in
the preparation phase, and continue to describe the application models
produced in the execution phase.

The application domain of this case study is context-aware services.
Context-aware services exhibit behaviour that depends on the situation or
environment of the user. The target platforms considered include middle-
ware platforms and part of the mobile telecommunications infrastructure,
which is used in this case study to send messages to mobile terminal users,
and to determine the current location and availability (or presence) of
mobile terminal users. We use the term Freeband Services to denote
context-aware services that are deployed on the mobile telecommunications
infrastructure. This terminology is in-line with that employed in the Free-
band A-MUSE project [42], in the context of which this case study has
been developed.

This chapter is organised as follows. Section 7.1 defines Freeband Ser-
vices and the infrastructure upon which they are realized. Section 7.2 gives
an overview of the preparation phase activities. Section 7.3 and 7.4 describe
the abstract platforms of the service specification and service design levels,
respectively. Section 7.5 discusses model transformations. Section 7.6
presents the design of a specific Freeband Service, namely, the Telemoni-
toring Service. This is intended to illustrate the activities in the execution
phase of the design process. Finally, section 7.7 evaluates the results of the
case study in terms of the design quality criteria discussed in section 3.1.

140 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

7.1 Freeband Services

This section defines Freeband Services, by describing both the requirements
of the application domain and the characteristics of the infrastructures that
are necessary to realize these services. This is an input for the preparation
phase of the design process, as shown in the shaded ovals in Figure 7-1.

execution phase

user (application)
requirements

application domain
requirements

preparation phase

target platform
characteristics

models and
realization

models and
realization

 transformations

abstract
platforms

abstract
platforms

Figure 7-1 Input for the
preparation phase

7.1.1 Context-awareness

Context-awareness has emerged as an important and desirable feature in
distributed mobile applications [35]. Context-awareness refers to the
capabilities of applications to provide relevant services to their users by
sensing and exploring the users’ context [34]. Context is defined as a “collec-
tion of interrelated conditions in which something exists or occurs”. The
users’ context often consists of a collection of conditions, such as, e.g., the
users’ location, environmental aspects (temperature, light intensity, etc.),
and users’ activities [26]. For example, a context-aware service may inform
the user when he or she is located within walking range of certain points-
of-interest, such as a restaurant or a train station. COMPASS [95] is an
example of this kind of application.

Figure 7-2 represents the relation between users, their context and con-
text-aware services.

Figure 7-2 Context-
aware service

condition 1

condition 3

…

context

condition 2

users

context-aware
service

 FREEBAND SERVICES 141

The users’ context may change dynamically, and, therefore, a basic re-
quirement for a context-aware system is its ability to sense context without
intervention of the user. Changes in context can be considered external
stimuli, which require a reaction from the context-aware system. In section
7.3, we describe a level of models in which a Freeband Service can be
described in terms of events, which represent contextual changes, and
actions, which represent actions to be performed in order to provide the
service to the user.

7.1.2 Mobility

Two aspects of mobility are relevant to Freeband Services. Firstly, users
should be able to access Freeband Services anywhere. A consequence for
the realization of a service is that mobile phones and personal digital assis-
tants (PDA) can be used to access the service. Secondly, sensing the users’
context may require users to carry or wear devices that are parts of the
system. Therefore, the interaction between these devices and other parts of
the context-aware system must be supported by a mobile telecommunica-
tions platform.

7.1.3 A-MUSE Service Platform

Further decomposition of a context-aware service reveals the architecture
shown in Figure 7-3. This architecture consists of context sources, which are
able to sense context and represent it as context information in the scope of
the system. The service provided by context sources is used by a coordination
component, which requests actions to be executed by action providers depend-
ing on situations that can be inferred from context information. For exam-
ple, two users may require a service to establish a call between them when
they are located within a certain range of each other. An example of an
action provider suitable for this service is a Parlay gateway [110], which can
be requested to establish a telephone call between two users. Each user
accesses the service through a user component, which provides the user
interface and interacts with the coordination component.

Figure 7-3 Further
decomposition of
context-aware service

condition 1

condition 3

…

context

condition 2

users

context-aware
service

user
component

context
sources

context
sources

coordination
component

 action
providers

user
components

service
trader

142 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

The user component and the coordination component exhibit service-
specific behaviour, and are called service components. In contrast, context
sources and action providers are general-purpose and, therefore, can be
reused in several different Freeband Services. For this reason, we consider
context sources and action providers as part of the A-MUSE Service Plat-
form. This platform also supports the interaction between the user compo-
nent and the coordination component, and the interactions between the
coordination component and context sources and action providers. The
services provided by context sources and action providers to the coordina-
tion component are registered in a service trader. This allows the coordination
component to select context sources and action providers dynamically
according to service offers that are registered in the service trader. Service
offers have properties that can be used to select a particular service offer.
For example, an action provider can be selected according to its geographi-
cal proximity to a user.

7.2 Preparation phase overview

In the preparation phase, we define the required levels of models, identify
their abstract platforms and the modelling languages to be used. In addi-
tion, we define transformations between related levels of models. The
shaded model icons in Figure 7-4 represent the results of the preparation
phase.

execution phase

user (application)
requirements

application domain
requirements

preparation phase

target platform
characteristics

models and
realization

models and
realization

transformations

abstract
platforms

Figure 7-4 The
preparation phase and
its results

Our objective is to capture design knowledge that is applicable to a large
number of different Freeband Services and that can be later reused in the
execution phase in the design of a specific service that addresses specific
service requirements. These requirements correspond to the oval “user
(application) requirements” in Figure 7-4.

 PREPARATION PHASE OVERVIEW 143

Levels of models
We define the scope of the Freeband Services design trajectory to include
the design activities from the specification of a service at a high-level of
abstraction to the realization of this service. Given this scope, one extreme
approach to organizing the design trajectory would be to have one level of
service specification and one level of service realization and one transforma-
tion that relates these two levels. However, the gap between these two levels
of models is very large.

This means that a lot of effort should be invested in defining the trans-
formation. This effort is rendered useless when changes in the target plat-
form invalidate the transformation. Therefore, the opportunities for reuse
can be increased if an intermediate level of models is introduced. This level
of models uses an abstract platform to achieve platform independence, and,
hence, models at this level can be reused for different target platforms. The
organization of the design trajectory is depicted in Figure 7-5.

model MB1

model MA

T1

T2

model MX

level B – platform-specific realization

level A – service specification

level X – platform-independent
service design

platform
selection

platform-
independent

design

platform-specific
design

T3

model MB2

πA = ECA-DL

πX = A-MUSE abstract platform

πB1 = WS + Parlay-X πB2 = CORBA + Parlay

Figure 7-5 An
intermediate level of
models between service
specification and
platform-specific
realization

The three levels of models are defined as follows:
– Service specification level. This level of models describes the behaviour of a

Freeband Service from an integrated perspective, i.e., we do not distin-
guish the environment (including service users) and the service provider.
The concept of abstract action (described in chapter 5) is used to model
both the occurrence of events originated from context sources and the
execution of actions. The language we use to represent service specifica-
tions is called Events-Conditions-Actions Domain Language (ECA-DL)
and it is presented in section 7.3.

– Platform-independent service design level. This level of models describes the
behaviour of a Freeband Service revealing the A-MUSE Service Platform
(as illustrated in Figure 7-3). The A-MUSE Service Platform is described

144 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

as an abstract platform, and is decomposed into a hierarchy of abstract
platforms (see section 7.4). It relies on a Service-Oriented Architecture
(SOA) abstract platform. This SOA abstract platform uses abstract inter-
actions to support the communication of application parts in this de-
sign, and provides a service trader with support for dynamic service
properties.

– Platform-specific service design level. This level of models describes the
realization of the service for a particular middleware platform. In order
to show the flexibility of the relation between the platform-independent
service design level and the platform-specific service design level two
different middleware platforms are used, namely, Web Services and
CORBA. These platforms offer support Parlay-X and Parlay services re-
spectively.

Simplifications
In order to limit the size of the case study reported in this chapter, a num-
ber of simplifications have been made. First, we assume that context
sources and action services are available and can be reused by service com-
ponents. The implications of this assumption are explained in section
7.4.4. Second, we assume that the communication with users is done via
action services. Therefore, the coordination component does not interact
with user components but uses a suitable action service for communication
with users.

7.3 Service specification level

In this section, we show the definition of the service specification level. The
shaded icons in Figure 7-6 denote the phase and activity performed.

 SERVICE SPECIFICATION LEVEL 145

application domain
requirements

preparation phase

target platform
characteristics

execution phase

application
requirements

specification of
transformation T

…

models and
realization

modelling language
and (abstract)

platform definition

model MB1

model MA

T1

T2

model MX

level B – platform-specific realization

level A – service specification

level X – platform-independent
service design

platform
selection

platform-
independent

design

platform-specific
design

T3

model MB2

πA = ECA-DL

πX = A-MUSE abstract platform

πB1 = WS + Parlay-X πB2 = CORBA + Parlay

Figure 7-6 Defining the
service specification
level during the
preparation phase

7.3.1 Abstract platform definition

At the level of service specification, a Freeband Service is described in terms
of events, which represent contextual changes, queries to context sources, and
actions, which represent actions to be performed in order to provide the
service to the user. The abstract platform supports the execution of these
events, queries and actions according to the behaviour defined in the service
specification.

We use the language-level approach to the definition of the abstract
platform at this level. This leads to a domain-specific language for the
domain of Freeband Services specification. We specialize elements of a
general-purpose design language, namely the Interaction System Design
Language (ISDL) [52, 89] thus defining a dialect of it, which we call
Events-Conditions-Actions Domain Language (ECA-DL). This language
provides a means to specify behaviours in terms of actions and causality
relations between these actions. The concept of an action in ISDL is identi-
cal to that of an abstract action as defined in the design framework pre-
sented in chapter 5 of this thesis, since they are both based on the same
basic concepts, as defined in [40, 90]. The definition of this abstract plat-
form is illustrated schematically in Figure 7-7.

146 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

ISDL

language-level

service
specification

instantiation of language elements

model-level

additional
constraints

and patterns
+

language elements

language-level
abstract platform

definition

+

CE

specialization
of language
elements CQ

AI

CQ’

AI’

CE
AI

…

…

+
…

UML Class Diagrams

Figure 7-7 Language-
level abstract platform
definition for service
specification

The ISDL specialization consists of defining special types of actions,
namely, context events (CE in Figure 7-7), context query requests (CQ), context
query responses (CQ’), action invocation requests (AI) and action invocation re-
sponses (AI’). Context query request and context query responses are always
related by causality, forming a pattern.

We use the notation supported by the ISDL modelling tool Grizzle [52].
A behaviour is represented by a rounded rectangle. An action is represented
by an oval. Action attributes are drawn inside a box and attached to an
action by a line. A causality condition is represented by an arrow. The
action pointed to by an arrow can only occur after the action at the origin
of the arrow has occurred. Figure 7-8 shows an example of a simple service
specification, using the specialized types of actions and some causality
conditions between the actions. We use a simple naming convention with
suffixes to denote specialized actions: the suffix _indC (or shortly _ind)
denotes a context event, _reqC denotes a context query request, _rspC
denotes a context query response, _reqA denotes an action invocation
request and, finally, _rspA denotes an action invocation response. This
allows us to reuse tool support without modifications. In the example, the
occurrence of a context event seizureAlert_ind is followed by the occurrence
of an alertTeam_reqA action invocation request. This example is inspired by
the Telemonitoring service that is described in detail in section 7.6. The
context event seizureAlert_ind occurs when an (imminent) epileptic seizure is
detected on a patient being monitored. The result of alertTeam_reqA is that a
health care team is alerted. This team can provide proper care for the
patient suffering a seizure.

 SERVICE SPECIFICATION LEVEL 147

TelemonitoringECAService

seizureAlert_ind alertTeam_req

Figure 7-8 Example of a
service specification

ISDL allows designers to use a modelling language of their choice to define
the attributes of actions and constraints on these attributes. For ECA-DL,
we have chosen to use UML class diagrams for the information attributes.
Further, we use a simple constraint language to express constraints on
information attributes. The constraint language is defined in section 7.3.2.
A straightforward transformation of expressions in this language to expres-
sions in Object Constraint Language (OCL) [80] is also provided in that
section.

Figure 7-9 shows the example presented in Figure 7-8 augmented with
information attributes. The context event seizureAlert_ind has an information
attribute pat of type Patient. The action invocation request alertTeam_reqA
has an information attribute pat of type Patient and an information attribute
alert of type String. The attribute pat of alertTeam_reqA is constrained so that
it is identical to pat of seizureAlert_ind. The attribute alert is constrained so
that its value equals the string “Epileptic seizure”. The type Patient is de-
fined with a UML class. In this specification, the value for the attribute pat
of seizureAlert_ind is established in a non-deterministic way, since it is left
unconstrained. This allows us to capture the behaviour of the service for any
patient, abstracting from the conditions which cause a seizure.

Patient

+ name: String
+ endUserIdentifer:String

Figure 7-9 Example of a
service specification
with information
attributes

Constraints on information attributes can be used to specify not only the
required results of action services, but also required properties of these
services. This is illustrated in Figure 7-10. In this example, the attribute
isAvailable is required to be true. We can say that the attribute isAvailable
represents a property of the health team alert service. Properties can be
used to select action services based on context information.

148 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

Patient

+name: String
+ endUserIdentifer:String

Figure 7-10 Example of
a service specification
with an information
attribute playing the role
of a property

Location attribute
The specialized actions in ECA-DL are said to occur at different locations.
The notion of location in ISDL and ECA-DL does not necessarily corre-
spond to the geographical location of users, but rather the (logical) location
at which an action occurs in the system being modelled. For example, a
location may represent a context source at which a context event occurs, or
an action provider at which an action invocation request occurs.

Similar to the case of information attributes, it is possible to model
ISDL location attribute types with UML. We have created a pre-defined
location attribute type called Locus. Service specifications may specialize
Locus. Figure 7-11 shows an example of specification with a location attrib-
ute. The alertTeam_reqA action invocation request has been augmented with
a location attribute locus of type HealthTeamAlert. The predefined location
attribute type and its specialization are depicted in a UML class diagram.

Figure 7-11 Example of
a service specification
with information and
location attributes

Locus is defined at the model-level, so, actually, a combination of the lan-
guage-level and model-level approaches is used for the service specification
level. This is shown in Figure 7-12.

 SERVICE SPECIFICATION LEVEL 149

ISDL

language-level

service
specification

instantiation of language elements

model-level

additional
constraints

and patterns
+

language elements

language-level
abstract platform

definition

+

CE

specialization
of language
elements CQ

AI

CQ’

AI’

CE
AI

…

…

+
…

UML Class Diagrams
and OCL

Locus (pre-defined
location attribute type) …

incorporation of pre-defined artefacts

Figure 7-12 Language-
level and model-level
abstract platform
definition for service
specification

7.3.2 ECA-DL metamodel

In this section, we present the ECA-DL metamodel. It consists of: (i) a
specialization of the ISDL metamodel12, (ii) part of the UML metamodel
(which is used to represent information and location attributes) and (iii)
metaclasses for modelling constraints. First, we present the ISDL meta-
model, then specialize it with ECA-DL metaclasses to obtain (i). After that,
we discuss (ii) and (iii).

ISDL metamodel
We start with the part of the ISDL metamodel that supports behaviour
description. The metamodel in Figure 7-13 shows that a monolithic behav-
iour (an instance of MonolithicBehaviourType) consists of causality relations
(instances of CausalityRelation). Causality relations describe the conditions
(an instance of CausalityCondition) for the occurrence of a causality target
instantiation (an instance of CausalityTargetInstantiation). At this level of
models, causality relations are applied to actions (an instance of ActionIn-
stantiation, which is a subclass of CausalityTargetInstantiation).

12 We use the ISDL metamodel described in chapter 4 of [33]

150 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

Figure 7-13 Monolithic
Behaviours in ISDL

Interaction contributions are not used at the service specification level (and
hence InteractionContributionType should not be instantiated in ECA-DL),
since at this level we define the integrated behaviour of the Freeband
Service and its environment. In addition, we do not use synchronization
conditions (SynchronizationCondition) nor uncertainty attributes
(UncertaintyAttribute). The disabling condition (DisablingCondition) is only
used in a choice pattern, which is a composition of mutual disabling condi-
tions [89]. These restrictions in the use of concepts limit the expressiveness
of ECA-DL, but facilitate the transformations of service specifications to
service designs.

Figure 7-14 shows the ISDL metaclasses that represent the attributes of
actions, namely, information attributes (InformationAttribute, with a corre-

 SERVICE SPECIFICATION LEVEL 151

sponding InformationType), location attributes (LocationAttribute, with a
corresponding LocationType) and time attributes (TimeAttribute, with a corre-
sponding TimeType). Time attributes are not used in our version of the
ECA-DL.

Figure 7-14 Attributes in
ISDL

+name: String

-name: String

target+

attribute+*

+name: String attribute+

*type+

type+

attribute+*

type+

attribute+*

Specializing the ISDL metamodel
Figure 7-15 shows the specialization of the ActionType and ActionInstantiation
metaclasses, introducing metaclasses for context events (ContextEventType,
ContextEventInstantiation), context query requests (ContextRequestType,
ContextRequestInstantiation), context query responses (ContextResponseType,
ContextResponseInstatiation), action invocation requests (ActionInvocation-
RequestType, ActionInvocationRequestInstantiation) and action invocation re-
sponses (ActionInvocationResponseType, ActionInvocationResponseInstantiation).

The specialization shown in Figure 7-15 could have been implemented
by using the MOF profiling mechanism on the ISDL metamodel. In this
case, the ECA-DL profile would consist of stereotypes for ActionType and
ActionInstantiation.

152 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

ActionInstantiation
(from ISDLModel)

ActionType
(from ISDLModel)

instantiated+

instantiation+

*

ActionInvocationRequestInstantiation ActionInvocationRequestType

ActionInvocationResponseInstantiation ActionInvocationResponseType

ContextRequestInstantiation

ContextResponseType

ContextEventInstantiation ContextEventType

ContextResponseInstantiation

ContextRequestType

Figure 7-15
Specialization of actions
in ECA-DL

Information and location attributes
Figure 7-16 shows the ISDL language elements used to model the types of
the information, location and time attributes. A composite information type
(an instance of CompositeInformationType) consists of several information
blocks (instances of InformationBlock), which are themselves typed by an
information type (an instance of InformationType).

Figure 7-16 Attribute
types in ISDL

 SERVICE SPECIFICATION LEVEL 153

In order to use UML as a language for information and location attributes,
we define a correspondence between ISDL language elements (depicted in
Figure 7-16) and UML language elements. Figure 7-17 shows the part of the
UML metamodel used to describe the types of information and location
attributes in ECA-DL. Primitive types that can be used are Integer, Boolean
and String.

Class
(from Kernel)

superClass+

Classifier
(from Kernel)

Property
(from Kernel)

0..1 ownedAttribute+

*

StructuralFeature
(from Kernel)

<< dataType >>
Boolean

(from PrimitiveTypes)

<< dataType >>
Integer

(from PrimitiveTypes)

<< dataType >>
String

(from PrimitiveTypes)

Figure 7-17 Part of the
UML metamodel used to
define information and
location attributes

For each CausalityTargetType instance (thus including instances of the sub-
class ActionType), there is a corresponding instance of Class. For each Causali-
tyTargetAttribute instance, there is a corresponding instance of Property. This
instance of Property represents either an information attribute or a location
attribute, and is typed by a Class which corresponds to a LocationType or an
InformationType. For each instance of InformationBlock associated with a
CompositeInformationType, there is a corresponding instance of Property. The
correspondence is shown in an example in Figure 7-18, which revisits the
example presented in Figure 7-11.

Figure 7-18 Example of
a service in ECA-DL,
revealing the binding
with UML to represent
information and location
attributes

154 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

Table 7-1 summarizes the relation between ISDL language elements and
UML language elements (adapted from chapter 4 of [33]).

ISDL language element UML 2.0 language element

InformationType Classifier (Class or DataType)

PrimitiveInformationType DataType (primitive data types: Integer, Boolean and String)

CompositeInformationType Class

InformationBlock Property of Class that represents CompositeInformationType

CausalityTargetInstantiation Class

Attribute Property of Class that represents the result of an Action or
Interaction

AlternativeConstraint OclExpression (that can be derived from the ECA-DL
Constraint language, see below)

Table 7-1 Relation
between ISDL language
elements and UML
language elements

Constraints
Figure 7-19 shows the metamodel of the ECA-DL constraint language. An
expression in ECA-DL constraint language allows us to represent con-
straints on attributes (instances of AlternativeAttributeConstraint, a subclass of
AlternativeConstraint). Integer, Boolean and String literals are supported, as
well as Boolean operators (and, or and not), arithmetic operators (unary
minus and binary addition, subtraction, multiplication and division) and compari-
son operators (equals, greater than, great than or equal, less than and less than or
equal). A property expression (instance of PropertyExpression) refers to an
information or location attribute, or an information block of an attribute
(which are represented as instances of Property in UML). Since the Property
metaclass in UML is a subclass of MultiplicityElement, properties may have
cardinalities larger than one, e.g., to represent sequences. In the constraint
language, we provide an index expression to select an element of such
sequences. A class expression (instance of ClassExpression) is used to test the
occurrence of an action or interaction, and is evaluated to true in case the
action or interaction has occurred and false otherwise.

 SERVICE SPECIFICATION LEVEL 155

Expression

LiteralExpression

BinaryBooleanExpression

+operator:BinaryBooleanOperator

righthandoperand+

BinaryExpression

lefthandoperand+

UnaryExpression

<< enumeration >>
BinaryBooleanOperator

+and:void
+or:void
+equals:void
+greaterThan:void
+lessThan:void
+greaterThanOrEqual:void
+lessThanOrEqual:void

BinaryArithmeticExpression

+operator:BinaryArithmeticOperator

<< enumeration >>
BinaryArithmeticOperator

+addition:void
+subtraction:void
+multiplication:void
+division:void

NotExpression

MinusExpression

BooleanLiteral

+value:Boolean

StringLiteral

+value:String

IntegerLiteral

+value:Integer

Property
(from Kernel)

attribute+

NavigationExpression

qualifier+
*

{ordered }

IndexExpression

lefthand operand is a PropertyExpression
righthand operand is an Expression
(whose value denotes an index for an element of
a Property with cardinality larger than one)

Class
(from Kernel)

causalitytarget+

ClassExpressionPropertyExpression

Figure 7-19 Metamodel
of the ECA-DL constraint
language

For convenience, we define a concrete textual syntax for the ECA-DL
constraint language. The EBNF (Extended Backus-Naur Form) is given in
Figure 7-2013.

<Expression> :=
 <LiteralExpression> |
 <UnaryExpression> |
 <BinaryExpression> |
 <NavigationExpression> |
 (<Expression>)

<LiteralExpression> :=
 <BooleanLiteral> |
 <IntegerLiteral> |
 <StringLiteral>

<BooleanLiteral> :=
 true |
 false

<IntegerLiteral> := <Digits>

<Digits> :=
 <Digits> <Digit> |
 <Digit>

<StringLiteral> := " <TextChars> "

<TextChars>:=
 /* <empty> */ |
 <TextChars> <TextChar>

<TextChar>:=
 <Alpha> |
 <Digit> |
 <Other> |
 <Special>

<Special>:=
 \\ |
 \"

<UnaryExpression> :=
 - <Expression> |
 not <Expression>

<BinaryExpression> :=
 <BinaryArithmeticExpression>
 <BinaryBooleanExpression>

<BinaryArithmeticExpression> :=
 <Expression> + <Expression> |
 <Expression> - <Expression> |
 <Expression> * <Expression> |
 <Expression> / <Expression>

<BinaryBooleanExpression> :=
 <Expression> and <Expression> |

Figure 7-20 EBNF
specification of concrete
textual syntax for
ECA-DL constraint
language

|

 <Expression> or <Expression> |
 <Expression> < <Expression> |
 <Expression> <= <Expression> |
 <Expression> > <Expression> |
 <Expression> >= <Expression> |
 <Expression> <> <Expression>

<NavigationExpression> :=
 <Ident> |
 <Expression> . <Ident>

<Ident>:=
 <Leader> <FollowSeq>

<FollowSeq>:=
 /* <empty> */ |
 <FollowSeq> <Follow>

<Leader>:=<Alpha>

<Follow>:=

<Alpha>|
<Digit>|
_

Textual expressions in ECA-DL are also OCL expressions. The textual
expression defines in this way an implicit mapping between ECA-DL and (a
subset of) OCL.

13 <Alpha> is the set of alphabetic characters (from “A” to “Z”, and “a” to “z”), <Digit>
is the set of digits (from “0” to “9”), and <Other> is the set of ASCII characters that are
not <Alpha>, <Digit>, nor <Special>.

156 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

7.3.3 Service specification example

The design trajectory described in this chapter aims at providing support
for the design of Freeband Services in general. In order to illustrate how a
designer can make use of the abstract platform at a certain level of models,
we must show the design of a specific service. We have chosen to use the
Telemonitoring Service as example. This service has been used as a case
study in both the Freeband A-MUSE [42] and AWARENESS [41] projects.
We describe a simplified version of the scenario considered.

We assume that patients are monitored with a wearable 24-hour epi-
lepsy seizure monitoring system. During a couple of minutes around the
onset of a seizure, the monitoring system detects its signs. The patient is
warned of a (imminent) seizure and based on location information a volun-
tary aid person or a health team can be dispatched for assistance.

The Telemonitoring Service specification is depicted in Figure 7-21. We
use a shorthand notation to denote a choice between two actions (a white
diamond). Choice can be described in terms of enabling and disabling
causality conditions, as discussed in [52, 89].

Figure 7-21 The
Telemonitoring Service
specification

The specification shows a number of specialized actions. A simple naming
convention has been used to indicate the type of action. The event sei-
zureAlert_ind represents that an (imminent) epileptic seizure has been
detected in a patient being monitored. The action alertPatient_reqA requests
the patient to be informed about the seizure. Following a seizure alert, the
patient’s current location and speed is requested (position_reqC followed by
position_rspC). An aid person within range of the patient is informed of the
seizure and the current location of the patient (alertAid_reqA). When no aid
persons are available or the speed of the patient exceeds a certain value
(which could indicate a hazardous situation) a health team capable of

 PLATFORM-INDEPENDENT SERVICE DESIGN LEVEL 157

handling epileptic seizures is dispatched to the location of the patient. Figure
7-22 show the attribute types for the Telemonitoring Service specification.

Figure 7-22 Attribute
types for the
Telemonitoring Service
specification

In section 7.6, we show the transformation of the Telemonitoring service
specification into a platform-independent service design. Before that, we
present both the platform-independent service design level (section 7.4)
and the transformation from service specification level to the service design
level (section 7.5).

7.4 Platform-independent service design level

In this section, we show the definition of the platform-independent service
design level. The shaded icons in Figure 7-23 denote the phase and activity
performed.

application domain
requirements

preparation phase

target platform
characteristics

execution phase

application
requirements

specification of
transformation T

…

models and
realization

modelling language
and (abstract)

platform definition

model MB1

model MA

T1

T2

model MX

level B – platform-specific realization

level A – service specification

level X – platform-independent
service design

platform
selection

platform-
independent

design

platform-specific
design

T3

model MB2

πA = ECA-DL

πX = A-MUSE abstract platform

πB1 = WS + Parlay-X πB2 = CORBA + Parlay

Figure 7-23 Defining the
platform-independent
service design level
during the preparation
phase

158 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

7.4.1 Abstract platform definition

In the platform-independent service design level, action services and con-
text sources interact with a coordination component to provide the service
specified at the service specification level. Context sources, action services
and a service trader are parts of the A-MUSE abstract platform. The A-
MUSE abstract platform relies on an underlying service discovery abstract
platform and an underlying service-oriented abstract platform. The abstract
platforms at the platform-independent service level are depicted schemati-
cally in Figure 7-24. This figure also shows the relation between the service
specification level and the platform-independent service design level. We
discuss this relation in further detail in section 7.5.

model MB1

model MA

T1

T2

model MX

service specification

platform-independent
service design

platform
selection

platform-
independent

design

platform-specific
design

T3

model MB2

πB1 = WS + Parlay-X πB2 = CORBA + Parlay

user
component

context
sources

context
sources

 action
providers

user
components

service
trader

service-oriented abstract platform

context and action services in the
A-MUSE abstract platform

service discovery abstract platform

context-aware
service

service decomposition

coordination
component

Figure 7-24 Abstract
platforms at the
platform-independent
service design level

The decomposition of the A-MUSE abstract platform into a hierarchy of
abstract platforms facilitates its definition. We use a combination of the
language-level and model-level abstract platform definition approaches to
define this hierarchy.

We start with the definition of the underlying service-oriented abstract
platform. The service-oriented abstract platform is defined using a pure
language-level approach. Similarly to the case of the service specification
level, the language adopted for this level is ISDL; however, at this level, no
specialization of the language is necessary. The information and location
attributes are described with UML.

The service discovery abstract platform is built on top of the underlying
service-oriented abstract platform and is defined with a model-level ap-
proach. This abstract platform provides a trader service, which can be
composed with an application (in this case, service components). The
trader service is defined in ISDL. Information attributes (e.g., service

 PLATFORM-INDEPENDENT SERVICE DESIGN LEVEL 159

offers) are described with UML. This use of a trader service is a well estab-
lished pattern of service discovery in service-oriented architectures. Exam-
ples of service traders in middleware platforms are the OMG CORBA
trader [88] and the UDDI registry [71] (a Web Services technology).

The A-MUSE Abstract Platform is built on top of the service discovery
abstract platform (and the service-oriented abstract platform). It is defined
with the model-level approach. The A-MUSE Abstract Platform offers
context sources and action services, which can be composed with service
components. Service components discover context services and action
services through the trader service.

A schematic overview of the approach for the definition of this hierarchy
of abstract platform is shown in Figure 7-25.

ISDL
concepts

language-level

service
components

instantiation of language
elements

model-level

language elements

SOA platform

pre-defined
artefacts from

abstract platform

…

incorporation of
pre-defined artefacts

Service Discovery
platform

Service Trader

…

A-MUSE Services
Platform

Context Sources and
Action Services

Figure 7-25 Defining the
hierarchy of abstract
platforms definition

In the following sections, we define each of the abstract platforms.

7.4.2 Service-oriented abstract platform

The service-oriented abstract platform supports the composition of various
(potentially distributed) components which operate through services. The
concept of abstract interaction is used, as well as some supporting structur-
ing concepts. The modelling language we use at this level is ISDL.

160 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

Figure 7-26 shows part of the ISDL metamodel revealing interaction
contribution instantiation and interaction contribution types, which are
special kinds of causality target instantiation and causality target types. A
behaviour can therefore relate different interaction contributions with
causality conditions.

Figure 7-26 Monolithic
behaviour types
including interactions

Figure 7-27 reveals that interaction contribution types may have attributes
in the same way as action types. The constraints can be used by each inter-
acting party in an interaction to constrain the results of an interaction
(information and location attributes): each party may offer a set of values,
accept a set of values, or both. This results in value passing, value checking and
value generation as discussed in chapter 5 of this thesis.

 PLATFORM-INDEPENDENT SERVICE DESIGN LEVEL 161

Figure 7-27 Attributes of
interactions

+name: String

+name: String

target+

attribute+*

+name: String attribute+

*type+

type+

attribute+*

type+

attribute+*

So far, we have only discussed how interaction contributions can be de-
scribed within the context of a single monolithic behaviour. However, since
at the platform-independent service design level we describe the composi-
tion of different services, we require structured behaviour definitions. Figure
7-28 shows metaclasses for structured behaviour definition. An interaction
type (instance of InteractionType) consists of two or more interaction partici-
pations (instance of InteractionParticipation). An interaction participation
represents the participation of a behaviour (identified by InteractionParticipa-
tion.participant) and an interaction contribution of that behaviour in an
interaction type (identified by InteractionParticipation.contribution).

Figure 7-28 Structure
behaviour

162 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

Figure 7-29 shows an example of a structured behaviour (of name Composi-
tion), which consists of five behaviour instantiations (of names c1, c2, c3, s1
and s2) of two behaviour types (of names ClientBehaviour and ServerBehaviour).
An interaction contribution is represented by a semi-circle drawn on the
border of the behaviour in the context of which it is defined. An interaction
is represented as lines that connect the interaction contributions that form
the interaction. We have encircled with dashed lines three pairs of interac-
tion contributions which form three interactions (between c1 and s1, c2 and
s1, and, c3 and s1).

ClientBehaviour

i

ServerBehaviour

i

Composition

c1
i

c2
i

c3
i

s1

i

s2

i

Figure 7-29 Example of
structure behaviour

Figure 7-30 shows the role of constraints on location attributes to establish
which behaviours are allowed to interact with each other. A constraint of an
interaction contribution is drawn on a box attached to the interaction
contribution. We use a composite location type (Location), which consists of
two service endpoints (ServiceEndpoint). For describing constraints, we use
OCL, which is more expressive than the constraint language we have de-
fined for the service specification level. In this example, c1 only interacts
with s1, c2 only interacts with s1 and c3 only interacts with s2.

 PLATFORM-INDEPENDENT SERVICE DESIGN LEVEL 163

Figure 7-30 Example of
use of location attributes

Figure 7-31 shows the UML class diagrams that define the location attribute
type Location, which is used at the platform-independent service design
level.

Location

+e1:ServiceEndpoint
+e2:ServiceEndpoint

ServiceEndpoint

+type:ServiceType
+id:EndpointId

ServiceType

<< dataType >>
String

(from PrimitiveTypes)

EndpointId

Figure 7-31 Location
attribute type class
diagram

In the next section, we use service endpoints to identify service offers in the
service trader.

7.4.3 Service discovery abstract platform

In order to allow for service discovery, the service discovery abstract plat-
form introduces a trader service. The trader registers a number of service
offers. Service offers (instances of ServiceOffer) are information attributes,

164 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

exchanged with the trader in an export interaction. Service offers include a
service endpoint (ServiceOffer.serviceEndpoint) and a number of service proper-
ties (ServiceProperty). Service properties may be either static or dynamic.
Static properties have immutable values, while dynamic properties have
values that change at runtime. Each static service property consists of a
name-value pair. Each dynamic service property consists of a service end-
point (DynamicServiceProperty.serviceEndpoint) and a service property type
(DynamicServiceProperty.datatype). The service endpoint associated to a dy-
namic service property is used by the trader to request the current value of
the dynamic property. The service property type identifies the type of the
dynamic property. The classes relevant to service offers are depicted in
Figure 7-32.

ServiceOffer

ServiceProperty

+name:String

*

StaticServiceProperty DynamicServiceProperty

+datatype:ServicePropertyType

ServiceEndpoint
(from predefined)

+type:ServiceType
+id:EndpointId

BooleanServiceProperty

+value:Boolean

IntegerServiceProperty

+value:Integer

StringServiceProperty

+value:String

<< enumeration >>
ServicePropertyType

+Boolean:void
+Integer:void
+String:void

ServiceOfferId

<< dataType >>
String

(from PrimitiveTypes)

Figure 7-32 Service
offers

A client of the trader service specifies a service query by providing a service
type (ServiceType) and an expression (ServiceQueryExpression) involving service
properties (ServiceProperty), which are referred to by their names (in a “leaf”
expression ServicePropertyExpression). Figure 7-33 shows the model that de-
fines the Expression information attribute type. This model is similar to the
metamodel of the ECA-DL constraint language, but should not to be
mistaken for a metamodel. This model is part of the abstract platform at the
model level.

 PLATFORM-INDEPENDENT SERVICE DESIGN LEVEL 165

ServiceQueryExpression

LiteralExpression

BinaryBooleanExpression

+operator:BinaryBooleanOperator

righthandoperand+

BinaryExpression

lefthandoperand+

UnaryExpression

<< enumeration >>
BinaryBooleanOperator

+and_:
+or_:
+equal_:
+greaterThan:
+lessThan:
+greaterThanOrEqual:
+lessThanOrEqual:

BinaryArithmeticExpression

+operator:BinaryArithmeticOperator

<< enumeration >>
BinaryArithmeticOperator

+addition:
+subtraction:
+multiplication:
+division:

NotExpression

MinusExpression
BooleanLiteral

+value:Boolean

StringLiteral

+value:String

IntegerLiteral

+value:Integer

ServicePropertyExpression

+servicePropertyName:String

Figure 7-33 Expressions
for service queries

Figure 7-34 shows the ISDL specification of the service trader. The details
of the relations between the interactions are omitted. A complete specifica-
tion of the service trader is provided in Appendix B.

Figure 7-34 Trader
service

166 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

Table 7-2 describes the interactions and the information attributes estab-
lished.

Interaction Information attributes

reqServiceQuery – the trader service is
queried for a service

ServiceType – the type of service being requested
ServiceQueryExpression – an expression involving
service properties

rspServiceQuery – the trader service
responds to a service query

ServiceEndpoint[] – a sequence of service endpoints,
which is a result of the query

export – a service offer is published in
the trader service

ServiceOffer – a service offer,
ServiceOfferId – the identification of the offer

withdraw – a service offer is removed
from the trader service

ServiceOfferId – the identification of the offer for its
removal

reqEvalDP – the service trader
requests a dynamic property to be
evaluated

none

rspEvalDP – the current value of the
property is sent to the trader

Boolean, Integer or String – the value of the dynamic
property, depending on its type

Table 7-2 Interactions
and information
attributes for the trader
service

7.4.4 A-MUSE abstract platform

The A-MUSE Service Platform offers context and action services which can
be composed with service components. Since they are part of the abstract
platform, these context and action services should be general-purpose
within the application domain considered. Context services in the domain
of mobile applications include (device) positioning and availability services.
These services can be provided by the mobile telecommunications network.
Action services in this domain include messaging services (such as Short-
Message Services or SMS). In addition to these general-purpose services, we
have included a number of domain-specific services required for the
telemonitoring health application that is considered in this case study: a
seizure detection service, which informs when a patient is about to suffer an
epileptic seizure, and a number of alert services (for the patient, health care
team and aid persons). The decision to include these domain-specific
services contributes to limiting the size of this case study. However, we
acknowledge that a general solution to coping with domain-specific services
would be to allow service designers to define their own service-specific
context and action services.

Figure 7-35 shows the ISDL specification of the context services in the
A-MUSE platform: EventBasedSeizureService, PositionService and AvailabilitySer-
vice. The specification abstracts from the environment, i.e., users and their
devices.

 PLATFORM-INDEPENDENT SERVICE DESIGN LEVEL 167

Figure 7-35 Context
services

These services are offered by entities which are part of the abstract plat-
form. PositioningService and AvailabilityService are defined as singletons, i.e., are
offered by a single entity in the system. They can provide the location and
availability of any user relevant to the Freeband service. Modelling these
services as singletons simplifies the management of the entities that provide
these services. In constrast with PositioningService and AvailabilityService,
EventBasedSeizureService is not a singleton, and is offered by several entities in
the system, namely, one entity for each patient being monitored for sei-
zures. This simplifies the specification of the “subscription” scheme be-
tween an entity that offers this service and its users.

Figure 7-36 shows the ISDL specification of the action services in the A-
MUSE platform: PatientAlertService, HealthTeamAlertSeizure, AidPersonAlertService
and SendSMSService.

Figure 7-36 Action
services

168 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

SendSMSService and PatientAlertService are singletons and can send messages
and alerts to any terminal user and patient, respectively. In constrast, an
entity that provides the HealthTeamAlertService is available for each health
team, and an entity that provides the AidPersonAlertService is available for each
aid person. These services are not singletons so that each different entity
providing these services can be registered as a service offer in the service
trader with different properties.

All endpoints that offer context and action services are registered in the
service trader, so that service components can find them and interact with
them. Service components use service properties in queries that are sent to
the trader to select a suitable service offer. Table 7-1 shows the services
registered in the A-MUSE abstract platform and their service properties.

Services Singleton? Service properties

PositioningService Yes -

AvailabilityService Yes -

EventBasedSeizureService No, one entity for each
patient monitored

-

SendSMSService Yes -

PatientAlertService Yes -

AidPersonAlertService No, one entity for each aid
person

Dynamic properties:
geoLocation_x : Integer
geoLocation_y : Integer

HealthTeamAlertService No, one entity for each
health team

Static properties:
coverageArea_geoLocation_x : Integer
coverageArea_geoLocation_y : Integer
range : Integer

Table 7-3 Services in the
A-MUSE abstract
platform

An offer of AidPersonAlertService allows a user of the service to contact a
particular aid person. The dynamic properties of an offer of AidPersonAlert-
Service refer to the current geographical location of the aid person. These
coordinates change when aid persons move and are, therefore, dynamic
properties. These coordinates can be used to select a service offer based on
the aid person’s location. The properties of an offer of HealthTeamAlertService
are static, and refer to the coordinates of the location from which a health
team is dispatched (e.g., a hospital), and the operating range, i.e., the
maximum distance a health team may travel to support a patient.

 TRANSFORMATIONS 169

7.5 Transformations

In this section, we demonstrate buildability by defining transformations for
the service specification- and platform-independent service design levels.
Figure 7-37 depicts these transformations. Transformation T1 is discussed in
section 7.5.1 and T2 and T3 are discussed in section 7.5.2.

model MB1

model MA

T1

T2

model MX

level B – platform-specific realization

level A – service specification

level X – platform-independent
service design

platform
selection

platform-
independent

design

platform-specific
design

T3

model MB2

πA = ECA-DL

πX = A-MUSE abstract platform

πB1 = WS + Parlay-X πB2 = CORBA + Parlay

Figure 7-37
Transformations

7.5.1 From service specification to platform-independent service
design

The transformation from the service specification level to the platform-
independent service design level results in a composition of a coordination
component and the A-MUSE abstract platform.

ECA-DL actions at the service specification level are refined into se-
quences of interactions in the service design. While at the service specifica-
tion level an action represents an activity performed by the Telemonitoring
system as a whole (including any context sources and action services), at the
service design level the same action has to be performed by cooperation of
different services, revealing the trader service, and the various context and
action services. Figure 7-38 illustrates schematically the refinement of
actions in the service specification level.

170 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

context-aware service

model MA

T1

model MX

service specification

platform-independent
service design

platform-
independent

design

context
sources

context
sources

 action
providers

service
trader

service-oriented abstract platform
context and action services in
the A-MUSE abstract platform service discovery abstract platform

refinement

coordination
component

e.g., context query request

Figure 7-38 From
service specification to
platform-independent
service design

Action invocation request and response
Each ECA-DL action of type ActionInvocationRequestType (denoted with suffix
_reqA) corresponds to a sequence of three interactions in the service design:
a request to the service trader, a response from the service trader and the
invocation of the appropriate action service according to the response
issued by the service trader.

Figure 7-39 shows, informally, the transformation of an action invoca-
tion request. The corresponding behaviours on the source and target levels
are depicted at the top and bottom sides of the picture, respectively. Behav-
iour blocks are used to help in the visualization, and are not actually part of
the transformation.

reqA

alertPatient_reqA

]alert = "seizure"
pat = seizureAlert_indC.pat;[

PatientAlert loc, String alert, Patient pat

reqA_

reqServiceQuery_alertPatient_reqA

reqDo_alertPatient_reqA

rspServiceQuery_alertPatient_reqA

ServiceEndpoint[] serviceEndpoints

]loc.e2 = rspServiceQuery_alertPatient_reqA.serviceEndpoints->first()
alert = "seizure";

pat = notifyEvent_seizureAlert_indC.pat;[
Location loc, String alert, Patient pat

]expression = '""
serviceType = "PatientAlert";[

ServiceQueryExpression expression, ServiceType serviceType

Figure 7-39
Transformation of an
action invocation
request

 TRANSFORMATIONS 171

The reference to seizureAlert_indC in the constraints must be replaced by a
reference to the final action that corresponds to seizureAlert_indC (noti-
fyEvent_seizureAlert_indC), since this original action must also be refined in
the transformation.

The service type in the service query is derived from the specific type of
Locus for the action. In the example in Figure 7-39, the required service type
is “PatientAlert”. Expressions on service properties in the query to the service
trader are derived from information attributes and their constraints at the
service specification level. This derivation requires marking of the service
specification to indicate which information attributes should be used in the
service query. In Figure 7-39, no information attributes are marked, and
hence the query is empty. In this transformation, we define that the first
service offer returned by the trader is used for the action invocation re-
quest. The information attributes for the request are the same as those for
the original action.

Figure 7-40 shows informally the transformation of an action invocation
which includes information attributes to be used as service properties.

Figure 7-40
Transformation of an
action invocation
request with constraints

172 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

This transformation requires marking of coverageArea as input for query
expression. The query expression is given in its text format, for the sake of
readability. Appendix B shows how these expressions are defined in OCL.
The reference to position_rspC is replaced by a reference to the final action
that corresponds to position_rspC (rspQueryContext_position_rspC).
Figure 7-41 shows informally the transformation of the pattern of action
invocation request and action invocation response. This transformation
requires marking of aidperson_xy as input for query expression.

Figure 7-41
Transformation of
pattern of action
invocation request and
action invocation
response

Context query request and response
The transformation of the pattern of context query request (ContextRequest-
Type) and context query response (ContextResponseType) is similar to that of

 TRANSFORMATIONS 173

action invocation request and responses. Figure 7-42 shows this transforma-
tion informally.

Figure 7-42
Transformation of
pattern of context query
request and response

Causality constraints
The transformation of causality constraints is rather intuitive when de-
scribed in terms of the notation: arrows pointing to an action in the source
design should point to the first inserted interaction in the target design, and
arrows pointing from an action in the source design should point from the
final action in the target design. The constraints are enforced by the coordi-
nation component.

Context event
Figure 7-43 shows informally the transformation of a context event. Each
context event is transformed into an initialization behaviour and a final
interaction between the coordination component and a context source. The
initialization behaviour consists of subscribing to all context service offers
returned by the trader service. This differs from the transformations we

174 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

have seen so far that use only the first result of the service query. This is
necessary because we are interested in any context sources whose service
type matches the location type for the original action. Subscribing to con-
text sources is required for future notification of the occurrence of context
events. The initialization behaviour is not subject to the same causality
conditions as the original action, and maybe performed in advance, as long
as results required for the service query are available. The behaviours
initSubscribeContext and subscribeContext are generic and can be reused for
other context events.

indC

seizureAlert_indC

Seizure loc, Patient pat

indC_

e

notifyEvent_seizureAlert_indC

rspServiceQuery_seizureAlert_indC

reqServiceQuery_seizureAlert_indC

subscribe_seizureAlert_indC

b_192

rspServiceQuery

reqServiceQuery

subscribe

]queryexpression = ""
servicetype = "Seizure";[

Patient pat

initSubscribeContext

rspServiceQuery

reqServiceQuery

subscribe

e

b_91

subscribe

]i = 1
serviceEndpoints = rspServiceQuery.serviceEndpoints;[

ServiceQueryExpression expression, ServiceType servicetype

]expression = e.expression
servicetype = e.servicetype;[

ServiceQueryExpression expression, ServiceType servicetype

ServiceEndpoint[] serviceEndpoints

subscribeContext

e

subscribe

b_41

e

subscribe

]i = e.i+1
serviceEndpoints = e.serviceEndpoints;[

]loc.e2 = e.serviceEndpoints->at(e.i)[
Location loc

int i, ServiceEndpoint[] serviceEndpoints

]e.i <= serviceEndpoints->size()[

Figure 7-43
Transformation of a
context event

The entry points in the service specification are replicated in the coordina-
tion component, as well as any recursive behaviour instantiation.

Conformance
The transformation described above results in service designs which con-
form to the source service specification under the following assumptions: (i)
the service trader is always able to produce a service offer for a service
query, (ii) context sources always reply to context query requests, and (iii)
action services always reply to action invocation requests (in case action

 TRANSFORMATIONS 175

invocation request and action invocation response is used in a pattern).
Assumption (i) can be guaranteed by availability of service offers in the
service trader. Assumptions (ii) and (iii) can be verified in the design of
context sources and action services.

These assumptions are necessary to integrate the interaction contribu-
tions in the target design into actions and then apply the conformance
assessment method described in [89]. This assessment method requires the
identification of inserted and final actions for the refinement (as we have
discussed in chapter 5). Table 7-4 shows, for each original action type, the
inserted and final interactions in the target design.

Original action type Inserted interactions Final interaction

ActionInvocationRequestType
(<name>_reqA)

reqServiceQuery_<name>_reqA
rspServiceQuery_<name>_reqA

reqDo_<name>_reqA

ActionInvocationResponseType
(<name>_rspA)

none rspDo_<name>_reqA

ContextRequestType
(<name>_reqC)

reqServiceQuery_<name>_reqC
rspServiceQuery_<name>_reqC

reqDo_<name>_reqC

ContextResponseType
(<name>_rspC)

none rspDo_<name>_reqC

ContextEventType
(<name>_indC)

initialization behaviour, including:
reqServiceQuery_<name>_indC
rspServiceQuery_<name>_indC
subscribe_<name>_indC (possi-
bly many occurrences)

notifyEvent_<name>
_indC

Table 7-4 Original
actions and the
corresponding inserted
and final actions

The information attributes of the final interactions correspond to informa-
tion attributes of the original action by construction, since these attributes
(and constraints on them) are copied during transformation. The informa-
tion attributes in the source design that are marked to be used in the service
query have no corresponding information attribute at the target design;
however, the constraints on these information attributes are captured in the
service query, and hence the location (service endpoint) where the interac-
tion occurs respects these constraints.

Implementation
Currently, ISDL models in Grizzle are not stored in a model repository.
They can be exported in an XML format defined in an ISDL XML schema
[53] or stored in a proprietary Grizzle textual file format. Models can only
be imported in the tool in the Grizzle textual file format.

In order to use generic model transformation tools with Grizzle, it
would be necessary to populate a model repository based on the contents of

176 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

the exported ISDL XML, apply the transformation based on a model
transformation tool and then generate Grizzle file format from the target
models. Instead of using a model transformation tool, we have opted for
implementing transformation T1 in the Java programming language. A Java
program reads ISDL XML and generates an output file in the Grizzle textual
file format, as shown in Figure 5-2. The parameterization of the transforma-
tion is done through a simple XML file format, which lists the names of the
information attributes which are used as service properties in the target
model. The information attributes are qualified through their action names.

ISDL XML
file

Grizzle tool

Grizzle format
file

T1

A-MUSE platform
marking transformation

implemented in Java

Grizzle tool

service specification
(ECA-DL)

platform-independent service design
(A-MUSE platform)

Figure 7-44
Implementation of
transformation T1

The Grizzle tool is currently being redesigned and its implementation will
be based on the Eclipse Modelling Framework (EMF) [36]. This will
facilitate the use of generic transformation tools, since the models will be
directly stored in a model repository which model transformation tools can
access, avoiding format conversions.

7.5.2 From platform-independent to platform-specific service design

In order to show the flexibility of the relation between the platform-
independent service design level and the platform-specific service design we
describe in this section a possible transformation of platform-independent
service designs into two different middleware platforms, namely, Web
Services and CORBA. These platforms differ significantly with respect to
their support for service discovery.

CORBA provides a trader that supplies a constraint language which can
accommodate the constraints that can be defined with the ServiceQueryExpres-
sion information attribute type defined in Figure 7-33. In addition, it sup-
ports dynamic service properties.

In the case of Web Services technologies, service discovery is provided
by UDDI. UDDI does not support dynamic service properties and supports

 TRANSFORMATIONS 177

no query language, being able only to provide the values of static service
properties (tModels [71]) to its clients.

A realization of the trader service in CORBA is rather straightforward
and does not require service decomposition. A realization of the trader
service in UDDI is more complex due to the differences in the support
provided by UDDI and the trader service as specified in the abstract plat-
form. We approach this by introducing a service decomposition step prior
to realization. The two approaches to platform-specific realization are
shown in Figure 5-10. In the case of the CORBA realization, only platform-
independent service design level 1 is used. In the case of the Web Ser-
vices/UDDI realization, both platform-independent service design levels 1
and 2 are used.

service components
(Π1-specific)

abstract platform logic
(ΠA-specific design)

service trader in ΠA

trivial

service
decomposition

specific service

service components
(Π1-specific)

service trader in Π1
(dynamic properties)

service decomposition and
interaction refinement

Π1 = service trader with
dynamic prorperties, query
language

source design
(level service specification level)

target design
(platform-independent
service design level 1)

Transformation of a Π1-specific design into
CORBA / OMG trader realizations does not
require a service decomposition step.
Transformation of a ΠA-specific design into a
Web Services / UDDI realization does not
require a service decomposition step.

ΠA= service trader with
static properties only,
restricted queries

source design
(platform-independent
service design level 1)

target design
(platform-independent
service design level 2)

Figure 7-45 Realization
of the service discovery
platform into two
different platforms

The abstract platform logic must bridge the gap between the trader service
at the abstract platform and the service provided by a UDDI registry. Each
service offer is registered as an entry in the UDDI registry. Given a query,
the abstract platform logic uses the UDDI registry to retrieve all entries for
a particular service type, evaluates the expressions (which may include
dynamic property evaluation) and returns the list of service offers for which
expressions evaluate to true. In order to support dynamic service properties,
Web service endpoints that are used to evaluate dynamic properties must be

178 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

registered as an additional tModel, which is present only for dynamic service
properties.

7.6 Execution phase

In this section, we show the results of the execution phase. The shaded
icons in Figure 7-46 indicates the phase and activities performed and the
results obtained.

 modelling language
and (abstract)

platform definition

application domain
requirements

preparation phase

target platform
characteristics

execution phase

application
requirements

models and
realization

specification of
transformations

…

model MB1

model MA

T1

T2

model MX

level B – platform-specific realization

level A – service specification

level X – platform-independent
service design

platform
selection

platform -
independent

design

platform - specific
design

T3

model MB2

∏A = ECA-DL

X = A-MUSE abstract platform

B1= WS+Parlay-X

B2 = CORBA + Parlay

∏

∏ ∏

A-MUSE platform
marking

Figure 7-46 The
execution phase and its
results

7.6.1 Service specification

The Telemonitoring Service specification as defined in section 7.3.3 is
depicted in Figure 7-47. The information attributes that have to be trans-
formed into trader service properties are marked with dashed boxes.

 EXECUTION PHASE 179

Figure 7-47 The
Telemonitoring Service
specification, with
markings

7.6.2 Platform-independent service design

The platform-independent service design is the result of the application of
T1 to the service specification with its markings. The generated Telemonitor-
ingECAServiceCoordination enforces the behaviour defined in the service
specification level. This behaviour is illustrated in Figure 7-48. The dashed
lines represent causality relations in the service specifications.

Figure 7-48 Behaviour
of the coordination
component

180 CHAPTER 7 CASE STUDY: THE DESIGN OF FREEBAND SERVICES

Figure 7-49 shows the behaviour responsible for the initialization of the
coordination component, which subscribes to the relevant context sources.

Figure 7-49 Initialization
of the coordination
component

7.7 Evaluation

The service specification level emphasizes ease of use for the service speci-
fier and platform-independence for service specifications. A Freeband
Service is defined from its integrated perspective, abstracting from any
components that may support the execution of the service in terms of
technology platforms such as Parlay (which provides context and action
services in the telecommunications domain) and Web Services or CORBA
(which provide service-oriented middleware architectures, including some
service discovery functionality).

We have used a simple constraint language at the service specification
level. An alternative to that could have been to adopt a standard language
such as OCL for this level. However, this would compromise buildability of
service specifications on top of the A-MUSE Platform. In the realization in
the A-MUSE platform, constraints on information attributes become
constraints on service properties of the trader service. Support for full OCL
at the service specification level would introduce a large gap between the
expressiveness of constraints on information attributes and the capabilities
of the trader service (and its realizations). In addition, a simple constraint

 EVALUATION 181

language improves ease of use for service designer. The constraint language
adopted is a strict subset of OCL, which greatly simplifies the transforma-
tion of constraints (in T1).

We have sacrificed generality at the service specification level to limit
the size of the case study. The most important decision in this respect is
that we assume that general-purpose reusable context sources and action
services are available and can accommodate the needs of different services.
A general solution would allow service designers to define their own ser-
vice-specific context and action services. This is, however, not considered in
this thesis.

The abstract platform at the platform-independent service design level
has been chosen based on the pattern of service discovery found in a num-
ber of middleware platforms (e.g., OMG CORBA trader [88] and the
UDDI registry [71] and in the ODP trader [60]). The trader service in the
A-MUSE abstract platform is capable of supporting a simple constraint
language and is capable of supporting dynamic service properties. These
capabilities of the service trader do not have to be implemented in the
coordination component, therefore simplifying the design of transforma-
tions that use the A-MUSE platform as target.

We have defined the abstract platform at the platform-independent ser-
vice design level with a combination of the language-level and the model-
level approaches. The decomposition of the A-MUSE abstract platform into
a hierarchy of abstract platforms has facilitated its definition.

We have outlined how one can implement the trading service by service
decomposition on top of a service discovery platform that does not support
constraint languages or dynamic service properties (UDDI), in order to
provide some indication of the buildability of the platform-independent
service design level on middleware platforms of divergent characteristics.
However, we have not included transformations T2 and T3 in the scope of
this example.

Other quality characteristics of the A-MUSE abstract platform are a re-
sult of the set of design concepts adopted, and their direct support in the
modelling language ISDL. An evaluation of the impact of these design
concepts in quality characteristics of the abstract platforms is provided in
chapter 5 of this thesis.

Chapter 8

8. Conclusions

This chapter summarizes the conclusions of this thesis and identifies some
areas for further investigation. This chapter is organised as follows: section
8.1 presents some general considerations of our work; section 8.2 summa-
rizes the main contributions and section 8.3 provides recommendations for
future work.

8.1 General considerations

Understanding the methodological and architectural foundations of plat-
form-independent design is paramount to reaping the benefits of platform-
independence in model-driven design. We believe this thesis contributes to
a better understanding of middleware-platform-independence and its
consequences for the model-driven design process.

The methodology proposed in this thesis explores two main dimensions
of separation of concerns: the separation of platform-independent and
platform-specific concerns; and the separation of preparation and execution
concerns. The former dimension results in the organization of application
designs in several levels of platform-independence and the accompanying
notion of abstract platform. The latter dimension results in the structuring
of the design process into preparation and execution phases, and is neces-
sary to deal with the vast diversity of application domain requirements and
target platform characteristics.

The work we have presented in this thesis is complementary to meta-
modelling and model transformation engineering techniques. These tech-
niques are neutral with respect to the abstraction criteria and design con-
cepts used for platform-independent design. Therefore, these techniques
do not clarify the relation between source and target designs, although they

184 CHAPTER 8 CONCLUSIONS

allow designers that know these relations to capture them in transformation
specifications.

We have shown that service decomposition and interaction refinement
can serve as design operations that progressively introduce middleware-
platform-specific restrictions to designs, while preserving the conformance
between source and target application designs. Conformance rules ensure
that design decisions captured at a high level of platform-independence are
preserved throughout the design trajectory.

We believe that the methodology proposed in this thesis enables more
cost-effective development of distributed applications in the long term,
especially due to the reuse of platform-independent designs. Inevitably,
however, evidence for that can only be obtained with long-term cost-
effectiveness studies, which fall outside the scope of this thesis.

8.2 Main contributions

We categorize the contributions of our work by their relation to:
– the notion of an abstract platform;
– the proposed design process, including the design quality criteria for abstract

platform definition;
– the relation between abstract platforms and modelling languages; and,
– the adopted design framework.

8.2.1 Platform-independence and the notion of an abstract platform

Separation of concerns in the design process leads to the construction of
different models of an application. The different concepts, structures or
patterns used to construct application models constrain the choice of
platforms differently, i.e., one can refer to many degrees of platform-
independence. Organizing models at different levels of platform-
independence allows designers to separately capture aspects of designs that
remain stable in face of technology changes, leading to reusable platform-
independent models.

Platform characteristics may affect designs at various levels of platform-
independence, which may lead to subtle relations between designs at a low-
level of platform-independence and designs at a higher-level of platform-
independence. Platform characteristics assumed in platform-independent
designs are better understood and controlled by designers if explicitly
captured in abstract platform definitions as proposed in chapter 2 of this
thesis.

We have shown the suitability of the abstract platform concept in several
design examples throughout this thesis. We have also shown that the ab-

 MAIN CONTRIBUTIONS 185

stract platform concept can be used in the context of the RM-ODP, leading
to a recursive application of the Computational Viewpoint. This is a first
step towards reconciling the RM-ODP and the MDA in a comprehensive
design framework for distributed application design.

8.2.2 Design quality criteria and the design process

The definition of abstract platforms should be guided by design quality
criteria, as we have shown in chapter 3 of this thesis. Compliance to the
criteria ensures that an abstract platform is influenced by a combination of
top-down (generality, stability and ease of use) and bottom-up forces
(buildability and platform portability requirements). The proposed design
criteria have been justified by the Design Structure Matrices (DSM) [101,
116] analysis we have conducted in chapter 4. In the analysis, we have
regarded models at different levels of platform-independence as modules in
order to analyse their dependencies and interdependencies. We believe this
is a useful application of the DSM technique, and perhaps can be explored
in other design trajectories to analyse the dependencies of models at differ-
ent levels of abstraction.

Since we have not restricted ourselves to an analysis of the design proc-
ess based on the general model transformation pattern, we have been able
to provide guidelines for separation of concerns that are grounded in design
goals, including that of achieving platform-independence. For example,
from the sole perspective of the general model transformation pattern, the
distinction between a source model and transformation parameters is
arbitrary, since both can be treated as inputs for the transformation. How-
ever, from a methodological perspective, it is possible to establish a mean-
ingful distinction between a source model and transformation parameters:
transformation parameters can be transformation-specific and platform-
specific, whereas source models should be transformation-independent and
platform-independent (see chapter 4 of this thesis).

8.2.3 Abstract platforms and modelling languages

We have shown that modelling language concepts and characteristics of
abstract platforms are interrelated. Therefore, careful selection of a model-
ling language is indispensable for the definition of suitable abstract plat-
forms, and, hence, beneficial exploitation of platform-independence.

Nevertheless, not all relevant characteristics of a design’s abstract plat-
form can be derived from the concepts underlying the modelling language
adopted for the design. In particular, abstract platform characteristics may
depend on restrictions on the use of particular constructs in a modelling
language or the use of certain modelling styles or patterns. This is reflected

186 CHAPTER 8 CONCLUSIONS

in our methodology in the language-level abstract platform definition approach
(see chapter 2 section 2.3.3 and chapter 6 section 6.3).

We have also shown that it may be necessary to define an abstract plat-
form by defining reusable design artefacts that are composed with the
application in the execution phase of the design process. This approach is
called model-level abstract platform definition (see chapter 2 section 2.3.3 and
chapter 6 section 6.4).

8.2.4 Design framework for platform-independent design

We have argued the case for a more prominent role of interaction system
design in the model-driven design of distributed applications. In particular,
by using service definitions for application interaction systems, a designer is
able to obtain a high-level of platform-independence, in the sense that a
broad set of middleware platforms that support different interaction pat-
terns can potentially be used to support the interaction between application
parts.

We have shown that the abstract interaction concept and interaction re-
finement design operations can be used to realize a platform-independent
design in multiple platforms. This is possible because interaction can be
modelled at a high level of abstraction with the abstract interaction concept.
This level of abstraction is higher than the level of abstraction that can be
obtained with concepts that correspond closely to operation invocation and
asynchronous messaging mechanisms, such as those underlying UML and
SDL.

We have shown that conformance can be defined and enforced by using
service decomposition and interaction refinement design operations. The
use of a uniform set of concepts in different levels of models facilitates the
establishment of conformance relations between the levels.

8.3 Directions for further research

8.3.1 Reusable elements for abstract platform definition

The proliferation of different abstract platforms conflicts with the econo-
mies of scale that can be obtained by large-scale reuse of abstract platforms
and transformations. The term abstract platform is meant to expose that, not
unlike middleware platforms, abstract platforms can become themselves
sources of heterogeneity.

One approach to cope with this is to define a small number of (refer-
ence) abstract platforms that are, to a great extent, application-domain-
neutral and platform-independent. The event-based abstract platform, the

 DIRECTIONS FOR FURTHER RESEARCH 187

service-oriented abstract platform and the service discovery abstract plat-
form (chapters 6 and 7) are examples of abstract platforms that are general
enough to qualify for inclusion in a reference architecture for abstract
platform definition. However, since abstract platforms can be considered as
coarse-grained architectural elements, this approach may lead to a reference
architecture that is not flexible enough to deal with the variety of require-
ments for abstract platforms.

An alternative to this approach is to define a number of finer-grained
abstract platform elements that can be composed to form abstract platforms
that suit the needs of particular projects. While, in principle, this alternative
would address the issue of flexibility, it would not directly address the issue
of reuse of transformations, since specific transformations may be required
for each valid combination of abstract platform elements. A solution to that
would be to require transformation to be compositional, i.e., to require
some correspondence between abstract platform elements and transformation
elements to be established.

We believe the set of design concepts discussed in chapter 5 of this the-
sis can serve as a foundation for either of these two approaches, with the
basic design concepts serving as the finest-grained abstract platform ele-
ments.

8.3.2 Conformance and transformation

Conformance rules and (non-parameterized) transformation specifications
can be regarded as two extremes in relating source and target designs from
the perspective of flexibility in the target design. Conformance rules deter-
mine the minimum to be preserved in a design step (hence maximum
flexibility for target design without losing design decisions in the source
design) and transformation specifications determine the maximum that can
be prescribed in a design step (hence minimum flexibility for the target
design). Future work should investigate techniques to assert whether a
transformation specification complies with a set of conformance rules.

In addition, it would be interesting to investigate both conformance and
transformation within the same transformation framework, possibly using
the same techniques and tools for model transformation and for capturing
and enforcing conformance rules. An application of that would be to allow
designers to manually modify results of a transformation step when neces-
sary, without breaking the relation between source and target design as
defined by the conformance rules. We believe this is feasible by regarding
both transformation and conformance as relations ([1] and [79]).

188 CHAPTER 8 CONCLUSIONS

8.3.3 Platform-independent transformations

We have considered that transformations are specific to a target platform.
In order to improve the opportunities for transformation reuse, the de-
pendency between transformation specifications and target platforms could
be reduced by using target platform models as transformation arguments.
However, this solution would require general transformation specifications
to define generalized implementation relations for a class of target plat-
forms. Effectively, this would result in platform-independent transforma-
tion specifications. The level of generality that can be obtained with this
technique is unclear and the feasibility of such an approach is issue for
further investigation.

8.3.4 Beyond the scope of the design framework

Composition mechanisms
In section 5.3.5, we have discussed an approach to platform-specific reali-
zation based on the extension of middleware platforms with a number of
mechanisms, such as middleware-level interceptors (with message reflec-
tion) [73, 117], composition filters [17] and aspect-oriented programming
[37]. These mechanisms provide composition operators that can be used at
middleware-platform level to separate extensions from a “base” platform.
There is no direct correspondence between these mechanisms and service
composition in the design framework. Further investigation is necessary to
indicate whether similar approaches would facilitate composition at the
design level, e.g., for the composition of abstract platform elements. Any
composition operators introduced would have to be accounted for in an
adequate conformance framework.

Conformance for the realization step
In the scope of the design framework presented in chapter 5, the use of a
uniform set of concepts in different levels of models facilitates the estab-
lishment of conformance relations between the levels. However, since
realizations fall outside the scope of the design framework, the notion of
conformance we have explored cannot be directly applied to determine the
relation between detailed designs and the realization of the application. A
natural extension of our work would be to investigate practical confor-
mance relations for the realization step.

Quality-of-service concepts
While we have considered the impact of platform quality-of-service (QoS)
characteristics in our methodology (e.g., see chapter 4 section 4.3.2), we
have not explored QoS concepts in the design framework. Further investi-

 DIRECTIONS FOR FURTHER RESEARCH 189

gation should aim at establishing the relation between timing and probabil-
ity constraints [89] and platform QoS support. Furthermore, the usage of
specific transparency schemas referring to specific distribution transparen-
cies should be investigated in the context of the recursive application of the
computational viewpoint in RM-ODP.

Appendix A

Methodology quick guide

This appendix can be used as a quick reference guide for designers applying
the methodology described in this thesis. Section A.1 provides an overview
of the proposed design process; section A.2 outlines the activities of the
preparation phase; section A.3 outlines the activities in the execution phase;
finally, section A.4 provides some overall directives for the design process.

A.1 Overview of the design process

The design process is structured into a preparation and an execution phase. In
the preparation phase, designers identify (and, when necessary, define) the
required levels of models, their abstract platforms and the modelling lan-
guage(s) to be used. A designer may also identify or define transformation
specifications between related levels of models in the preparation phase. The
results of the preparation phase are used in the execution phase, which
entails the creation of models of an application using specific modelling
languages and abstract platforms, and the (possibly automated) execution of
transformation activities.

Iterations between the preparation and execution phases may be neces-
sary when new target platforms are introduced, thus requiring the develop-
ment of new transformations, or when improved understanding of design
steps performed manually creates opportunities for the automation of these
steps in terms of transformation specifications. The preparation phase may
also have to be revisited in case it becomes evident during the execution
phase that requirements for abstract platforms, modelling languages and
transformations are not satisfied.

192 APPENDIX A METHODOLOGY QUICK GUIDE

A.2 Preparation phase

In the preparation phase, designers should:
1. define the organization of the execution phase, i.e., define required

levels of models, their abstract platforms, and transformations;
2. define the modelling language(s) used for representing models at each

level;
3. define abstract platforms using the language-level or model-level abstract

platform definition approaches; and,
4. define (parameterized) transformation specifications between the

various levels of models.
Figure A-1 shows the activities in the preparation phase schematically.
Activity (1) precedes (2), (3) and (4). Activities (2) and (3) are interrelated
and are depicted in the same block.

definition of
transformation
specification(s)

application domain
requirements

preparation phase

target platform
characteristics

execution phase

application
requirements

models and
realization

definition of
organization of

execution phase

definition of
transformation
specification(s)

definition of modelling
language(s) and

(abstract) platform(s)

definition of modelling
language(s) and

(abstract) platform(s)
(1) (2)

(3)

(4)

Figure A-1 Preparation
and execution phases
and their results

Criteria for activity (1) are defined in chapters 3 and 4 of this thesis. An
example of organization of the execution phase is provided in chapter 7.
Design concepts relevant for activities (2) and (3) are defined in chapter 5,
and include the concepts of interaction systems, abstract interaction and
service. The language-level and model-level abstract platform definition
approaches are defined in chapter 2 (section 2.3) and illustrated in chapter
6 (with UML and UML Profiling) and chapter 7 (for ISDL and MOF).
Activity (4) consists of capturing service decomposition and interaction
refinement design operations (chapter 5) in transformation specifications.

 APPENDIX A 193

The results of the preparation phase (abstract platform, modelling lan-
guage and transformation definitions) may be consolidated in a catalogue,
which a designer consults in the preparation phase of each new project.

A.3 Execution phase

The execution phase entails the creation of models of a specific application
using modelling languages, abstract platforms and transformations defined
in the preparation phase. The execution phase leads ultimately to a realiza-
tion (or alternative realizations) of the application and reusable platform-
independent models of the application (at different levels of platform-
independence). This phase also entails analysis, testing and validation of
models and realizations (outside the scope of this thesis). The execution
phase can be considered as a long-running phase, including activities for the
maintenance and evolution of an application.

Figure A-2 shows how the preparation phase relates to the execution
phase, considering only two levels of models A and B related by an auto-
mated transformation T. An abstract platform model ΠA is used in the
elaboration of a model MA. When the transformation defined in the prepa-
ration phase is parameterized, a designer may provide transformation
arguments aT to influence design decisions for the transformation activities.
The result of transformation activities is a model MB, which relies on a
(abstract) platform model Π

B

BB.

 application domain

requirements

preparation phase

target platform
characteristics

execution phase

application
requirements

model MB

arguments
aT

specification of
transformation T

…

models and
realization

parametrization

design activities

… …

…

…

model MA

T

modelling language
and (abstract)

platform definition

ΠA

ΠB

Figure A-2 Preparation
and execution phases
and their results

194 APPENDIX A METHODOLOGY QUICK GUIDE

A designer may apply an iterative design approach in the execution phase, as
illustrated in Figure A-3 for the case of two levels of models, a platform-
independent level and a platform-specific level. Implications of the iterative
design approach for platform-independence are discussed in chapter 4 of
this thesis.

design activities

design activities

level 1

level 2

user requirements user requirements’ user requirements’’

application
PIM

application
PSM

design activities

design activities

application
PIM

application
PSM

design activities

design activities

application
PIM (stable)

application
PSM

Figure A-3 Iterative
design approach in the
execution phase

A.4 Some overall directives

The following directives apply to the design process (for motivation see
chapter 4):
– Interdependent design decisions must be captured at the same level of

platform-independence. Since some design decisions are platform-
specific, this imposes constraints on the organization of models at dif-
ferent levels of platform-independence (see section 4.3.2 for approaches
to coping with interdependent design decisions).

– Platform-independent models must be transformation-specification-
independent and transformation-arguments-independent;

– Transformation arguments can be transformation-specific as well as
platform-specific;

– Changes in source and target models or transformation arguments
should be accommodated in source, target models or transformation
arguments, but neither in the (abstract) platforms nor transformation
specification;

– A designer may identify application-specific interaction systems to
define application parts at a high-level of platform-independence. Crite-
ria for justifying this technique are presented in section 5.2.4 and tech-
niques to apply service decomposition, designing application interaction
systems in terms of an abstract platform are presented in section 5.3.1.

Appendix B

Specification of the trader service

In this appendix, we show the complete specification of the trader service
which is used in our case study (see chapter 7 of this thesis, section 7.4.3).

Figure B-1 depicts the behaviour definition of the trader service in ISDL.
A reqServiceQuery interaction is followed by the execution of the Proper-
tyEvaluation behaviour which evaluates the service query expression. Its
exit_offers exit parameter represents a sequence of offers which comply with
the service query. The rspServiceQuery interaction returns the list of endpoints
for the service offers in exit_offers. The list of current offers (offers) is updated
in a recursive instantiation of the ServiceTrader behaviour: the occurrence of
export results in the inclusion of the exported offer (export.offer) in offers and
the occurrence of withdraw results in the exclusion of the offer.

Figure B-1 Trader
behaviour

196 APPENDIX B SPECIFICATION OF THE TRADER SERVICE

Figure B-2 shows the PropertyEvaluation behaviour definition. This behaviour
evaluates the service query expression for each service offer. It is defined by
recursive instantiation. A service offer is only included in exit_offers when the
service query evaluates to true to that particular offer. Evaluating the service
query may require the evaluation of dynamic service properties, which is the
role of the DynamicPropertyEvaluation behaviour.

Figure B-2
PropertyEvaluation
behaviour definition

Recursive instantiation of PropertyEvaluation does not force a particular order
for service property evaluation: all service properties are evaluated inde-
pendently, and the results are merged.

Figure B-3 shows the DynamicPropertyEvaluation behaviour definition. This
behaviour is also defined by recursive instantiation, using the same instan-
tiation pattern that was used for PropertyEvaluation. For each dynamic prop-
erty, two interactions occur: reqEvalDP and rspEvalDP. These interactions
occur at the endpoint registered in the service offer as a dynamic property
evaluator.

Figure B-3 Dynamic-
PropertyEvaluation
behaviour definition

 APPENDIX B 197

The constraints attached to exit point dpx are shown in Figure B-4. Depend-
ing on the type of the dynamic property its value is added to either
bool_values, int_values or string_values.

properties = dpe.properties

bool_values =
 if (dpe.properties->empty()) then
 Sequence{}
 else
 if (dpe.properties->first().serviceProperty.datatype == ServicePropertyType::Boolean)
 dpx.bool_values->prepend(rspEvalDP.bool_value)
 else
 dpx.bool_values->prepend(false) /* this value is a placeholder */
 endif
 endif
int_values =
 if (dpe.properties->empty()) then
 Sequence{}
 else
 if (dpe.properties->first().serviceProperty.datatype == ServicePropertyType::Integer)
 dpx.bool_values->prepend(rspEvalDP.int_value)
 else
 dpx.bool_values->prepend(0) /* this value is a placeholder */
 endif
 endif
string_values =
 if (dpe.properties->empty()) then
 Sequence{}
 else
 if (dpe.properties->first().serviceProperty.datatype == ServicePropertyType::String)
 dpx.bool_values->prepend(rspEvalDP.string_value)
 else
 dpx.bool_values->prepend("") /* this value is a placeholder */
 endif
 endif

Figure B-4 Constraints
attached to exit point
dpx

In the design of the trader service, dynamic properties are evaluated by
invoking a dynamic property evaluator. To accommodate potential differ-
ences between the services that provide property values and the behaviour
which is expected by the trader, we introduce wrappers when necessary.
Figure B-5 shows the wrappers that expose context information as service
properties, in this case the coordinates for the location of an aid person.

DPWrapper_geoLocation_x

reqEvalDP rspEvalDP

reqQueryC rspQueryC

e

wx

reqEvalDP rspEvalDP

reqQueryC rspQueryC

ServiceEndpoint endpoint, String endUserIdentifer

double speed, Coordinates xy

]endUserIdentifier = e.endUserIdentifier[
String endUserIdentifier

]loc = reqEvalDP.loc
int_value = rspQuery.xy.x;[

Location loc, Integer int_value

]loc.e2 = e.endpoint[
Location loc

DPWrapper_geoLocation_y

reqEvalDP rspEvalDP

reqQueryC rspQueryC

e

wy

reqEvalDP rspEvalDP

reqQueryC rspQueryC

ServiceEndpoint endpoint, String endUserIdentifer

double speed, Coordinates xy

]endUserIdentifier = e.endUserIdentifier[
String endUserIdentifier

]loc = reqEvalDP.loc
int_value = rspQuery.xy.y;[

Location loc, Integer int_value

]loc.e2 = e.endpoint[
Location loc

Figure B-5 Dynamic
property wrappers

198 APPENDIX B SPECIFICATION OF THE TRADER SERVICE

Figure B-6 shows the OCL definition of the evalQExpression helper operation.
This operation evaluates the service query expression for a particular offer.
It is defined recursively, navigating the ServiceQueryExpression tree.

/*
evalQExpression is a helper in behaviour PropertyEvaluation.
It evaluates the service query expression. It is used in PropertyEvaluation to determine whether an
offer complies with the service query expression.

Parameters dproperties, bool_values, int_value, string_values represent dynamic properties and their
values.
pre: expression is valid expression
*/
context px
def: evalQExpression(offer : ServiceOffer, expression : ServiceQueryExpression,
 dproperties : Sequence(ServiceProperty), bool_values : Sequence(Boolean),
 int_values : Sequence(Integer), string_values : Sequence(String)) : oclAny
=
/* defined recursively */
if (expression.oclIsKindOf(LiteralExpression)) then
 expression.value
else
if (expression.oclIsKindOf(UnaryExpression)) then
 if (expression.oclIsKindOf(MinusExpression)) then
 -evalQExpression(offer, expression.serviceQueryExpression).oclAsType(Integer)
 else
 /* inv: expression.oclIsKindOf(NotExpression) */
 not evalQExpression(offer, expression.serviceQueryExpression).oclAsType(Boolean)
 endif
else
if (expression.oclIsKindOf(BinaryExpression)) then
 if (expression.oclIsKindOf(BinaryArithmeticExpression)) then
 let exp = expression.oclAsType(BinaryArithmeticExpression) in
 if (exp.operator = BinaryArithmeticOperator::addition) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer)+
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 else
 if (exp.operator = BinaryArithmeticOperator::subtraction) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer)-
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 else
 if (exp.operator = BinaryArithmeticOperator::multiplication) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer)*
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 else
 if (exp.operator = BinaryArithmeticOperator::division) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer)/
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 endif
 endif
 else
 /* inv: expression.oclIsKindOf(BinaryBooleanExpression) */
 let exp = expression.oclAsType(BinaryBooleanExpression) in
 if (exp.operator = BinaryBooleanOperator::or_) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Boolean) or
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Boolean))
 else if (exp.operator = BinaryBooleanOperator::and_) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Boolean) and
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Boolean))
 else if (exp.operator = BinaryBooleanOperator::equal_) then
 (evalQExpression(offer, expression.lefthandoperand) =
 evalQExpression(offer, expression.lefthandoperand))
 else if (exp.operator = BinaryBooleanOperator::notequal_) then
 (evalQExpression(offer, expression.lefthandoperand) <>
 evalQExpression(offer, expression.lefthandoperand))
 else if (exp.operator = BinaryBooleanOperator::greaterThan) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer) >
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 else if (exp.operator = BinaryBooleanOperator::lessThan) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer) <
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 else if (exp.operator = BinaryBooleanOperator::greaterThanOrEqual) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer) >=
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 else if (exp.operator = BinaryBooleanOperator::lessThanOrEqual) then
 (evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer) <=
 evalQExpression(offer, expression.lefthandoperand).oclAsType(Integer))
 endif
 endif
else
if (expression.OclisTypeOf(ServicePropertyExpression)) then
 let property : ServiceProperty =
 offer.serviceProperty->select(name = expression.servicePropertyName)->first() in
 if (property.OclisTypeOf(StaticServiceProperty)) then
 if (property.OclisKindOf(BooleanServiceProperty))
 property.asOclType(BooleanServiceProperty).value
 else if (property.OclisTypeOf(IntegerServiceProperty))
 property.asOclType(IntegerServiceProperty).value
 else if property.OclisTypeOf(StringServiceProperty))
 property.asOclType(StringServiceProperty).value
 endif
 else
 /* property is a dynamic service property of the offer */
 let datatype : ServicePropertyType =
 property.asOclType(DynamicServiceProperty).datatype in

 /* read value of dynamic service property */
 if (datatype = ServicePropertyType::Boolean) then
 bool_values->at(dproperties->indexOf(property))
 else if (datatype = ServicePropertyType::Integer) then
 int_values->at(dproperties->indexOf(property))
 else if (datatype = ServicePropertyType::String) then
 string_values->at(dproperties->indexOf(property))
 endif
endif

context px
def: evalQExpressionStatic(offer : ServiceOffer, expression : ServiceQueryExpression) : oclAny
=
evalQExpression(offer, expression, Sequence{}, Sequence{}, Sequence{}, Sequence{})

Figure B-6 Helper
evalQExpression used in
constraints of behaviour
PropertyEvaluation

 APPENDIX B 199

Figure B-7 shows the OCL definition of a helper operation used in the
PropertyEvaluation behaviour. This operation returns to a list of dynamic
service properties which must be evaluated for the service query expression
to be evaluated.

/*
exprRequiresDPEval is a helper in behaviour PropertyEvaluation.
This operation returns to a list of dynamic service properties that have to be
evaluated in order to evaluate the expression.
*/
context pe
def: exprRequiresDPEval (offer : ServiceOffer, expression : ServiceQueryExpression) :
 Sequence(ServiceProperty)
=
/* defined recursively, until leaf nodes of expression tree are found */
if (not expression.oclAsType(ServicePropertyExpression).oclIsUndefined()) then
 /* either a static or a dynamic property */

 let property : ServiceProperty =
 offer.serviceProperty->select(name = expression.servicePropertyName)->first() in

 if (not property.oclAsType(StaticServiceProperty).oclIsUndefined()) then
 /* static property */
 Sequence {}
 else
 /* dynamic property */
 (Sequence{})->append(property)
else
if (not expression.oclAsType(UnaryExpression).oclIsUndefined()) then
 /* recursively evaluate */
 requiresDPEval (expression.serviceQueryExpression)
else
if (not expression.oclAsType(BinaryExpression).oclIsUndefined()) then
 /* recursively evaluate both left- and right-hand sides of binary expression */
 requiresDPEval (offer, expression.righthandoperand).union(
 requiresDPEval (offer, expression.lefthandoperand))
else
 /* a leaf that is not a property */
 Sequence {}
endif

Figure B-7 Helper
exprRequiresEval used
in constraints of
PropertyEvaluation

The expression parameter expected by the trader in the reqServiceQuery inter-
action has type ServiceQueryExpresssion. This means that during the transfor-
mation from service specification to the platform-independent service
design level, constraints on information attributes that have been marked as
service properties must be translated into OCL statements that define an
equivalent expression as an instance of ServiceQueryExpresssion. The instance
of a ServiceQueryExpression can be seen as a parsed tree that corresponds to
the expression in textual format. Figure B-8 shows an example of the trans-
formation of a textual expression at the service specification level to a set of
OCL statements at the service design level.

200 APPENDIX B SPECIFICATION OF THE TRADER SERVICE

((coverageArea.geoLocation.x - position_rspC.xy.x) *
 (coverageArea.geoLocation.x - position_rspC.xy.x) +
 (coverageArea.geoLocation.y - position_rspC.xy.y) *
 (coverageArea.geoLocation.y - position_rspC.xy.y))
 < coverageArea.range * coverageArea.range

expression =
"((coverageArea.geoLocation.x - ".concat(
rspQueryContext_position_rspC.xy.x.toString()).concat(
") * (coverageArea.getLocation.x - ").concat(
rspQueryContext_position_rspC.xy.x.toString()).concat(
") + (coverageArea.getLocation.y - ").concat(
rspQueryContext_position_rspC.xy.y.toString()).concat(
") * (coverageArea.getLocation.y - ").concat(
rspQueryContext_position_rspC.xy.y.toString()).concat(
")) < coverageArea.range * coverageArea.range ")

expression.isOclType(BinaryBooleanExpression) and
expression.operator = BinaryBooleanOperator::lessThan and
 expression.lefthand.isOclType(BinaryArithmeticExpression) and
 expression.lefthand.operator = BinaryArithmeticOperator::addition and
 expression.lefthand.lefthand.isOclType(BinaryArithmeticExpression) and
 expression.lefthand.lefthand.operator = BinaryArithmeticOperator::multiplication and
 expression.lefthand.lefthand.lefthand.isOclType(BinaryArithmeticExpression) and
 expression.lefthand.lefthand.lefthand.operator = BinaryArithmeticOperator::subtraction and
 expression.lefthand.lefthand.lefthand.lefthand.isOclType(ServicePropertyExpression) and
 expression.lefthand.lefthand.lefthand.lefthand.servicePropertyName = "coverageArea.geoLocation.x" and
 expression.lefthand.lefthand.lefthand.righthand.isOclType(IntegerLiteral) and
 expression.lefthand.lefthand.lefthand.righthand.value = rspQueryContext_position_rspC.xy.x and
 expression.lefthand.lefthand.righthand.isOclType(BinaryArithmeticExpression) and
 expression.lefthand.lefthand.righthand.operator = BinaryArithmeticOperator::subtraction and
 expression.lefthand.lefthand.righthand.lefthand.isOclType(ServicePropertyExpression) and
 expression.lefthand.lefthand.righthand.lefthand.servicePropertyName = "coverageArea.geoLocation.x" and
 expression.lefthand.lefthand.righthand.righthand.isOclType(IntegerLiteral) and
 expression.lefthand.lefthand.righthand.righthand.value = rspQueryContext_position_rspC.xy.x and
 expression.lefthand.righthand.isOclType(BinaryArithmeticExpression) and
 expression.lefthand.righthand.operator = BinaryArithmeticOperator::multiplication and
 expression.lefthand.righthand.lefthand.isOclType(BinaryArithmeticExpression) and
 expression.lefthand.righthand.lefthand.operator = BinaryArithmeticOperator::subtraction and
 expression.lefthand.righthand.lefthand.lefthand.isOclType(ServicePropertyExpression) and
 expression.lefthand.righthand.lefthand.lefthand.servicePropertyName = "coverageArea.geoLocation.y" and
 expression.lefthand.righthand.lefthand.righthand.isOclType(IntegerLiteral) and
 expression.lefthand.righthand.lefthand.righthand.value = rspQueryContext_position_rspC.xy.y and
 expression.lefthand.righthand.righthand.isOclType(BinaryArithmeticExpression) and
 expression.lefthand.righthand.righthand.operator = BinaryArithmeticOperator::subtraction and
 expression.lefthand.righthand.righthand.lefthand.isOclType(ServicePropertyExpression) and
 expression.lefthand.righthand.righthand.lefthand.servicePropertyName = "coverageArea.geoLocation.y" and
 expression.lefthand.righthand.righthand.righthand.isOclType(IntegerLiteral) and
 expression.lefthand.righthand.righthand.righthand.value = rspQueryContext_position_rspC.xy.y
 expression.righthand.isOclType(BinaryArithmeticExpression) and
 expression.righthand.operation = BinaryArithmeticOperator::multiplication and
 expression.righthand.lefthand.isOclType(ServicePropertyExpression) and
 expression.righthand.lefthand.name = "coverageArea.range" and
 expression.righthand.righthand.isOclType(ServicePropertyExpression) and
 expression.righthand.lefthand.name = "coverageArea.range"

constraint on information attribute at
service specification level

instance of ServiceQueryExpression at
service design level

service query expression in textual
format at service design level

Figure B-8 Textual
expression at the service
specification level and
OCL statements at the
service design level

References

1. D. Akehurst, S. Kent, O. Patrascoiu, “A relational approach to defining and
implementing transformations between metamodels”, Software and Systems
Modeling, vol. 2. no. 4, Springer-Verlag, 2003, pp. 215-239.

2. C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns,
Buildings, Construction, Center for Environmental Structure Series, Oxford Uni-
versity Press, 1977.

3. R. Allen and D. Garlan, “A Formal Basis for Architectural Connection,” ACM
Transactions on Software Engineering and Methodology, vol. 6, no. 3, ACM Press,
July 1997, pp. 213-219.

4. J.P.A. Almeida, M. van Sinderen, D. Quartel, and L. Ferreira Pires, “Design-
ing Interaction Systems for Distributed Applications”, IEEE Distributed Systems
Online, vol. 6, no. 3, IEEE Computer Society, March 2005.

5. J.P.A. Almeida, R. Dijkman, M. van Sinderen, and L. Ferreira Pires, “Plat-
form-independent modelling in MDA: supporting abstract platforms”, Proceed-
ings Model-Driven Architecture: Foundations and Applications 2004 (MDAFA 2004),
Linköping University, Linköping, Sweden, June 2004, pp. 219-233. Revised
version appeared in Lecture Notes in Computer Science, vol. 3599, Springer-
Verlag, June 2005, pp. 174-188.

6. J.P.A. Almeida, R. Dijkman, M. van Sinderen, and L. Ferreira Pires, “On the
Notion of Abstract Platform in MDA Development,” Proceedings 8th IEEE In-
ternational Conference on Enterprise Distributed Object Computing (EDOC 2004),
IEEE Computer Society Press, Sept. 2004.

7. J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires, and M. Wegdam, “Plat-
form-independent Dynamic Reconfiguration of Distributed Applications,”
Proceedings 10th IEEE International Workshop on Future Trends in Distributed Com-
puting Systems (FTDCS 2004), IEEE Computer Society Press, May 2004, pp.
286-291.

8. J.P.A. Almeida, M. van Sinderen, and L. Ferreira Pires, “The role of the RM-
ODP Computational Viewpoint Concepts in the MDA approach,” Proceedings

202 REFERENCES

of the 1st European Workshop on Model-Driven Architecture with Emphasis on Indus-
trial Applications (MDA-IA 2004), technical report TR-CTIT-04-12, ISSN
1381-3625, Centre for Telematics and Information Technology, University of
Twente, The Netherlands, March 2004, pp. 43-51.

9. J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires, and D. Quartel, “A sys-
tematic approach to platform-independent design based on the service con-
cept,” Proceedings 7th IEEE Intl. Enterprise Distributed Object Computing Conference
(EDOC 2003), IEEE Computer Society Press, Sept. 2003, pp. 112-123.

10. J.P.A. Almeida, Dynamic Reconfiguration of Object-Middleware-based Distributed
Systems, M.Sc. thesis, University of Twente, The Netherlands, June 2001.

11. G. Arango, “Domain Analysis: from Art Form to Engineering Discipline,”
ACM SIGSOFT Software Engineering Notes, vol. 14, no. 3, ACM Press, May 1989,
pp. 152-159.

12. C. Atkinson and T. Kühne, “A Generalized Notion of Platforms for Model-
Driven Development”, Model-driven Software Development, S. Beydeda, M. Book,
V. Gruhn, eds., Springer, 2005.

13. C. Atkinson and T. Kuhne, “Aspect-Oriented Development with Stratified
Frameworks”, IEEE Software, vol. 20, no. 1, IEEE Computer Society Press,
2003, pp. 81-89.

14. C.Y. Baldwin and K.B. Clark, Modularity in the Design of Complex Engineering
Systems, Harvard Business School Working Paper Series, no. 04-055, Jan.
2004.

15. C.Y. Baldwin and K.B. Clark, Design Rules, Volume 1, The Power of Modularity,
MIT Press, Cambridge, MA, 2000.

16. C.B. Barbosa, Frameworks for Implementing Protocols: a Model Based Approach,
Ph.D. thesis, University of Twente, The Netherlands, Feb. 2001;
http://purl.org/utwente/36595

17. L. Bergmans and M. Aksit, “Composing Crosscutting Concerns Using Com-
position Filters”, Communications of the ACM, vol. 44, no. 10, pp. 51-57, Oct.
2001.

18. P.A. Bernstein, “Middleware: a model for distributed system services”,
Communications of the ACM, vol. 39, no.2, ACM Press, Feb. 1996, pp. 86-98.

19. G. Blair and J.B. Stefani, Open Distributed Processing and Multimedia, Addison
Wesley, 1997.

20. X. Blanc, ModelBus: A MODELWARE White Paper, April 2005; http://www.
modelware-ist.org/public_documents/ModelBusWhitePaper_MDDI.pdf

21. B. Boehm, “A Spiral Model of Software Development and Enhancement,”
Computer, vol. 21, no. 5, IEEE Computer Society Press, May 1988, pp. 61-72.

22. T. Bolognesi, J. van de Lagemaat, and C. Vissers, eds., LOTOSphere: Software
Development with LOTOS, Kluwer Academic Publishers, 1995.

http://purl.org/utwente/36595
http://www.modelware-ist.org/public_documents/ModelBusWhitePaper_MDDI.pdf
http://www.modelware-ist.org/public_documents/ModelBusWhitePaper_MDDI.pdf

 REFERENCES 203

23. C. Burt et al., “Quality of Service Issues Related to Transforming Platform
Independent Models to Platform Specific Models,” Proceedings Sixth Interna-
tional Conference on Enterprise Distributed Object Computing (EDOC 2002), IEEE
Computer Society Press, Sept. 2002, pp. 212-223.

24. E. Brinksma, B. Jonsson, and F. Orava, “Refining Interfaces of Communicating
Systems”, Proceedings of the International Joint Conf. on Theory and Practice of Soft-
ware Development (TAPSOFT'91), Lecture Notes in Computer Science, vol. 494,
Springer-Verlag, 1991, pp. 297-312.

25. M. Broy, “(Inter-)action refinement: The easy way”, Program Design Calculi,
Springer NATO ASI Series, Series F : Computer and System Sciences, vol.
118, Springer-Verlag, 1993, pp. 121-158.

26. H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive
computing environments”, Knowledge Engineering Review, Special Issue on On-
tologies for Distributed Systems, vol. 18, no. 3, pp. 197-207, 2003.

27. P. Clements and L. M. Northrop, Software Product Lines: Practices and Patterns,
Series: The SEI Series in Software Engineering, Addison Wesley Professional, 2001.

28. K. Czarnecki and S. Helsen, “Classification of Model Transformation Ap-
proaches,” Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
context of Model Driven Architecture, Anaheim, CA, USA, Oct. 2003.

29. A. van Deursen, P. Klint, and J. Visser, “Domain-Specific Languages: An
Annotated Bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6, June 2000, pp.
26-36.

30. R.M. Dijkman, D. Quartel, L. Ferreira Pires, and M. van Sinderen, “A Rigor-
ous Approach to Relate the RM-ODP Enterprise and Computational View-
point,” Proceedings 8th IEEE International Conference on Enterprise Distributed Object
Computing (EDOC 2004), IEEE Computer Science Press, Sept. 2004, pp. 187-
200.

31. R.M. Dijkman, “A Basic Design Model for Service-Oriented Design,” ArCo
Project Deliverable ArCo/WP1/T1/D2/V1.00, University of Twente, The Nether-
lands, November 2003.

32. R.M. Dijkman, J.P.A. Almeida, and D. Quartel, “Verifying the Correctness of
Component-Based Applications that Support Business Processes”, Proceedings
of the 6th ICSE Workshop on Component-Based Software Engineering (CBSE) - Auto-
mated Reasoning and Predication, Portland, OR, USA, May 2003, pp. 43-48.

33. R.M. Dijkman, Consistency in Multi-Viewpoint Architectural Design, Ph.D. thesis,
University of Twente, The Netherlands, Feb. 2006.

34. P. Dockhorn Costa, L. Ferreira Pires, and M. van Sinderen, “Architectural
Support for Mobile Context-Aware Applications” (Chapter XXXI), Handbook
of Research on Mobile Multimedia, Idea Group, 2006, pp. 456-475.

35. P. Dockhorn Costa, L. Ferreira Pires, and M. van Sinderen, “Designing a
Configurable Services Platform for Mobile Context-Aware Applications”, In-
ternational Journal of Pervasive Computing and Communications (JPCC), vol. 1, no. 1,
Troubador Publishing, March 2005.

36. Eclipse Foundation, Eclipse Modeling Framework; http://www.eclipse.org/emf

http://www.eclipse.org/emf

204 REFERENCES

37. T. Elrad, R.E. Filman, and A. Bader, eds., Communications of the ACM, Special
Section on Aspect-Oriented Programming, vol. 44, no.10, ACM Press, Oct. 2001,
pp. 29-97.

38. R. Eshuis, Semantics and Verification of UML Activity Diagrams for Workflow Model-
ling, Ph.D. thesis, University of Twente, The Netherlands, Oct. 2002.

39. C.R.G. de Farias, Architectural design of groupware systems: a component-based
approach, Ph.D. thesis, University of Twente, The Netherlands, May 2002;
http://purl.org/utwente/37999

40. L. Ferreira Pires, Architectural Notes: a framework for distributed systems development,
Ph.D. Thesis, University of Twente, The Netherlands, Sept. 1994.

41. L. Ferreira Pires, J. de Heer, J. Brok, M. Hutschemaekers, M. van Sinderen,
K. Sheikh, High level requirements - Version 2, Freeband/AWARENESS/D1.2v2,
Oct. 2005; https://doc.freeband.nl/dscgi/ds.py/Get/File-60593

42. Freeband A-MUSE, 2004; http://a-muse.freeband.nl

43. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

44. J. Gray, T. Bapty, S. Neema, D.C. Schmidt, A. Gokhale, and B. Natarajan,
“An Approach for Supporting Aspect-Oriented Domain Modeling,” Proceedings
Generative Programming and Component Engineering (GPCE 2003), Lecture Notes
in Computer Science, vol. 2830, Springer-Verlag, Sept. 2003, pp. 151-168.

45. G. Guizzardi, R. Dijkman, J.P.A. Almeida, and P. Dockhorn Costa, “Visserian
Metaphysics”, Architectural Design of Open Distributed Systems: From Interface to
Telematics, Liber Amicorum, dedicated to Chris Vissers, M. van Sinderen and L.
Ferreira Pires (eds.), Telematica Instituut, The Netherlands, 2006, pp. 27-40.

46. G. Guizzardi, L. Ferreira Pires, M. van Sinderen, “An Ontology-Based Ap-
proach for Evaluating the Domain Appropriateness and Comprehensibility
Appropriateness of Modeling Languages”, Proceedings ACM/IEEE 8th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MoDELS
2005), Lecture Notes in Computer Science, vol. 3713, Springer-Verlag, pp.
235-244, Oct. 2005.

47. D. Harel and B. Rumpe, Modelling Languages: Syntax, Semantics and All That Stuff,
technical report MCS00-16, The Weizmann Institute of Science, Rehovot, Is-
rael, 2000.

48. G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.

49. The Institute of Electrical and Electronics Engineers (IEEE) Standards Board,
Recommended Practice for Architectural Description of Software-Intensive Systems (IEEE-
Std-1471- 2000), Sept 2000.

50. IONA Technologies, IONA Products: Orbix; http://www.iona.com/
products/orbix.htm

51. IONA Technologies, Orbacus; http://www.orbacus.com

http://purl.org/utwente/37999
https://doc.freeband.nl/dscgi/ds.py/Get/File-60593
http://a-muse.freeband.nl/
http://www.iona.com/products/orbix.htm
http://www.iona.com/products/orbix.htm
http://www.orbacus.com/

 REFERENCES 205

52. Centre for Telematics and Information Technology, ISDL home;
http://isdl.ctit.utwente.nl/

53. Centre for Telematics and Information Technology, ISDL schema;
http://isdl.ctit.utwente.nl/ISDLSchema/BasicISDL.xsd

54. ITU-T, Recommendation Z.100 – CCITT Specification and Description Language,
International Telecommunications Union (ITU), 2002.

55. ITU-T, Recommendation Z.100, Annex F: SDL Formal Semantics Definition, Inter-
national Telecommunications Union (ITU), Geneva, 2000.

56. ITU-T / ISO, Open Distributed Processing - Reference Model – All Parts, ITU-T
Recommendations X.901, X902, X903, X.904 | ISO/IEC 10746-1, 2, 3, 4,
1995.

57. ITU-T / ISO, Open Distributed Processing - Reference Model - Enterprise Language,
ITU-T Recommendation X.901 | ISO/IEC 15414:2002, Oct. 2001.

58. ITU-T / ISO, Open Distributed Processing - Reference Model - Part 2: Foundations,
ITU-T Recommendation X.902 | ISO/IEC 10746-2, Nov. 1995.

59. ITU-T / ISO, Open Distributed Processing - Reference Model - Part 3: Architecture,
ITU-T Recommendation X.903 | ISO/IEC 10746-3, Nov. 1995.

60. ITU-T / ISO, ODP Trading Function: Specification, ITU-T Recommendation
X.950 | IS 13235-1, 1997.

61. H. Jonkers, M.E. Iacob, M. Lankhorst, P. Strating, “Integration and Analysis
of Functional and Non-Functional Aspects in Model-Driven E-Service Devel-
opment”, Proceedings 9th IEEE International Conference on Enterprise Distributed
Object Computing (EDOC 2005), IEEE Computer Society Press, Sept. 2005, pp.
229-238.

62. J. Jürjens, “A UML statecharts semantics with message-passing,” Proceedings of
the 2002 ACM Symposium on Applied Computing, ACM Press, 2002, pp. 1009-
1013.

63. H. Kremer, Protocol Implementation: Bridging the gap between Architecture and
Realization, Ph.D. thesis, University of Twente, The Netherlands, Oct.1995.

64. I. Kurtev, Adaptability of Model Transformations, Ph.D. thesis, University of
Twente, The Netherlands, May 2005; http://purl.org/utwente/50761

65. I. Kurtev and K. van den Berg, “A Synthesis-Based Approach to Transforma-
tions in an MDA Software Development Process”, Model Driven Architecture:
Foundations and Applications, Technical Report TR-CTIT-03-27, Centre for
Telematics and Information Technology, University of Twente, June 2003.

66. D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann, “Speci-
fication and Analysis of System Architecture Using Rapide,” IEEE Transactions
on Software Engineering, vol. 21, no. 4, IEEE Computer Society Press, Apr.
1995, pp. 336-355.

http://isdl.ctit.utwente.nl/
http://isdl.ctit.utwente.nl/ISDLSchema/BasicISDL.xsd
http://purl.org/utwente/50761

206 REFERENCES

67. D. Luckham and J. Vera, “An Event-Based Architecture Definition Language,”
IEEE Transactions on Software Engineering, vol. 21, no. 9, IEEE Computer Society
Press, Sept. 1995, pp. 717-734.

68. Microsoft Corporation, Microsoft .NET Remoting: A Technical Overview, July 2001;
http://msdn.microsoft.com/library/en-us/dndotnet/html/hawkremoting.asp

69. H.D. Mills, D. O’Neill, R.C. Linger, M. Dyer, and R.E. Quinnan, “The
Management of Software Engineering,” IBM Systems Journal, vol. 19, no. 4,
1980, pp. 414-477.

70. E. Di Nitto and D. Rosenblum, “Exploiting ADLs to Specify Architectural
Styles Induced by Middleware Infrastructures,” Proceedings of the 21st Interna-
tional Conference on Software Engineering (ICSE’99), IEEE Computer Society
Press, May 1999, pp. 13-22.

71. OASIS, OASIS - Committees - OASIS UDDI Specifications TC;
http://oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

72. Object Management Group, Model driven architecture (MDA), ormsc/01-07-01,
July 2001.

73. Object Management Group, Common Object Request Broker Architecture: Core
Specification, Version 3.0, formal/02-12-06, Dec. 2002.

74. Object Management Group, Event Service Specification, Version 1.2, formal/04-
10-02, Oct. 2004.

75. Object Management Group, CORBA Component Model, v3.0, formal/02-06-65,
July 2002.

76. Object Management Group, MDA-Guide, V1.0.1, omg/03-06-01, June 2003.

77. Object Management Group, Meta Object Facility (MOF) 2.0 Core Specification,
ptc/03-10-04, Oct. 2003.

78. Object Management Group, Meta Object Facility (MOF) Specification Version 1.4,
formal/02-04-03, April 2002.

79. Object Management Group, MOF QVT Final Adopted Specification, ptc/05-11-01,
Nov. 2005.

80. Object Management Group, Unified Modelling Language: Object Constraint
Language version 2.0, ptc/03-10-04, Oct. 2003.

81. Object Management Group, UML 2.0 Superstructure, ptc/03-08-02, Aug. 2003.

82. Object Management Group, UML Profile for Enterprise Distributed Object Comput-
ing Specification, ptc/02-02-05, Feb. 2002.

83. Object Management Group, Unified Modelling Language (UML) Specification:
Infrastructure, Version 2.0, ptc/03-09-15, Sept. 2003.

84. Object Management Group, Unified Modelling Language (UML) Specification,
Version 1.5, formal/03-03-01, March 2001.

http://msdn.microsoft.com/library/en-us/dndotnet/html/hawkremoting.asp
http://oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

 REFERENCES 207

85. Object Management Group, Notification Service Specification, v1.0.1, OMG
document formal/02-08-04, Aug. 2002.

86. Object Management Group, IDL to Java Language Mapping, v1.2, formal/02-08-
05, Aug. 2002.

87. Object Management Group, Getting Specs and Products;
http://www.omg.org/gettingstarted/specsandprods.htm#GetProds

88. Object Management Group, Trading Object Service Specification, V1.0, formal/00-
06-27, May 2000.

89. D. Quartel, L. Ferreira Pires, and M. van Sinderen, “On Architectural Support
for Behaviour Refinement in Distributed Systems Design,” Journal of Integrated
Design and Process Science, vol. 6, no. 1, Society for Design and Process Science,
2002.

90. D. Quartel, Action relations Basic design concepts for behaviour modelling and refine-
ment, Ph.D. thesis, University of Twente, The Netherlands, Feb. 1998.

91. D.A.C. Quartel, L. Ferreira Pires, M. van Sinderen, H.M. Franken, and C.A.
Vissers, “On the role of basic design concepts in behaviour structuring”, Com-
puter Networks and ISDN Systems, vol. 29, no. 4, 1997, pp. 413-436.

92. Sun Microsystems, Inc., JSR-000224 Java API for XML-Based RPC 2.0, June
2003; http://www.jcp.org/aboutJava/communityprocess/edr/jsr224/

93. Sun Microsystems, Inc., Java Web Services Developer Pack (Java WSDP);
http://java.sun.com/webservices/jwsdp/index.jsp

94. J. Schot, The role of Architectural Semantics in the formal approach of Distributed
Systems design, Ph.D. thesis, University of Twente, The Netherlands, Feb.
1992; http://purl.org/utwente/17886

95. M. van Setten, S. Pokraev, and J. Koolwaaij, “Context-Aware Recommenda-
tions in the Mobile Tourist Application COMPASS”, Adaptive Hypermedia and
Adaptive Web-Based Systems: Third International Conference (AH 2004), Lecture
Notes in Computer Science, vol. 3137, Springer-Verlag, pp. 235-244, Aug.
2004.

96. R. Silaghi, F. Fondement, and A. Strohmeier, “Towards an MDA-Oriented
UML Profile for Distribution”, Proceedings of the 8th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2004), IEEE Computer Society,
Sept. 2004, pp. 227-239.

97. R. Silaghi, “MDA Refinements along Middleware-Specific Concern-
Dimensions”, Proc. of the 1st Doctoral Symposium at the 5th ACM/IFIP/USENIX In-
ternational Middleware Conference, Middleware 2004 Companion, ACM Press, Oct.
2004, pp. 309-313.

98. M. van Sinderen and L. Ferreira Pires, “Protocols versus objects: can models
for telecommunications and distributed processing coexist?”, Proceedings Sixth
IEEE Computer Society Workshop on Future Trends of Distributed Computing Systems,
IEEE Computer Society Press, October 1997, pp. 8-13.

99. M. van Sinderen, On the Design of Application Protocols, Ph.D. thesis, University
of Twente, The Netherlands, March 1995.

http://www.omg.org/gettingstarted/specsandprods.htm#GetProds
http://www.jcp.org/aboutJava/communityprocess/edr/jsr224/
http://java.sun.com/webservices/jwsdp/index.jsp
http://purl.org/utwente/17886

208 REFERENCES

100. M. van Sinderen, L. Ferreira Pires, C.A. Vissers, and J.-P. Katoen, “A design
model for open distributed processing systems”, Computer Networks and ISDN
Systems, vol. 27, no. 8, 1995, pp. 12631285.

101. D.V. Steward, “The Design Structure System: A Method for Managing the
Design of Complex Systems”, IEEE Transactions on Engineering Management, vol.
28, 1981, pp. 71-74.

102. Sun Microsystems, Inc., Java™ 2 Platform Enterprise Edition Specification, v1.4,
Nov. 2003; http://java.sun.com/j2ee/1.4/docs/index.html

103. Sun Microsystems, Inc., Enterprise JavaBeans Specification 2.1, July 2002;
http://java.sun.com/products/ejb/docs.html

104. Sun Microsystems, Inc., Java(TM) Message Service Specification Final Release 1.1,
2002; http://java.sun.com/products/jms/docs.html

105. Sun Microsystems, Inc., J2ME Mobile Information Device Profile (MIDP);
http://java.sun.com/products/midp/

106. A. Sutcliffe, The Domain Theory: Patterns for Knowledge and Software Reuse, Law-
rence Erlbaum Associates, 2002.

107. C. Szyperski, Component software: beyond object-oriented programming, 2nd ed.,
Addison-Wesley, 2002.

108. B. Tekinerdogan, Synthesis-Based Software Architecture Design, Ph.D. thesis,
University of Twente, The Netherlands, March 2000;
http://purl.org/utwente/17903

109. The Open Group, DCE 1.1: Remote Procedure Call, Catalog number C706, Aug.
1997; http://www.opengroup.org/dce/

110. The Parlay Group, The Parlay Group – Specifications;
http://www.parlay.org/en/specifications

111. D. Varró, “A Formal Semantics of UML Statecharts by Model Transition
Systems”, Proceedings ICGT 2002: International Conference on Graph Transforma-
tion, Lecture Notes in Computer Science, vol. 2505, Springer-Verlag, 2002,
pp. 378-392.

112. C.A. Vissers, L. Ferreira Pires, D. A. Quartel, and M. van Sinderen, The
Architectural Design of Distributed Systems, Lecture Notes, University of Twente,
The Netherlands, Nov. 2002.

113. C.A. Vissers, M. van Sinderen, and L. Ferreira Pires, “What makes industries
believe in formal methods”, Proceedings of the 13th International Symposium on
Protocol Specification, Testing, and Verification (PSTV XIII), Elsevier Science Pub-
lishers, 1993, pp. 3-26.

114. C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma, “Specification
styles in distributed systems design and verification”, Theoretical Computer Sci-
ence, vol. 89, 1991, pp. 179-206.

http://java.sun.com/j2ee/1.4/docs/index.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/midp/
http://purl.org/utwente/17903
http://www.opengroup.org/dce/
http://www.parlay.org/en/specifications

 REFERENCES 209

115. C.A. Vissers and L. Logrippo, “The importance of the service concept in the
design of data communications protocols”, Proceedings Fifth IFIP WG6.1 Inter-
national Conference on Protocol Specification, Testing and Verification (PSTV V), June
1985, pp. 3-17.

116. J.N. Warfield, “Binary Matrices in System Modeling”, IEEE Transactions on
Systems, Man, and Cybernetics, vol. 3, 1973, pp. 441-449.

117. M. Wegdam, Dynamic Reconfiguration and Load Distribution in Component Middle-
ware, Ph.D. thesis, University of Twente, The Netherlands, June 2003;
http://purl.org/utwente/41469

118. M. de Weger, Structuring of Business Processes: An architectural approach to distrib-
uted systems development and its application to business processes, Ph.D. thesis, Uni-
versity of Twente, The Netherlands, 1998; http://purl.org/utwente/17905

119. R. Wieringa, “A survey of structured and object-oriented software specifica-
tion methods and techniques,” ACM Computing Surveys, vol. 30, no. 4, ACM
Press, 1998.

120. World Wide Web Consortium, SOAP Version 1.2 Part 1: Messaging Framework,
W3C Recommendation, June 2003; http://www.w3.org/TR/soap12-part1

121. World Wide Web Consortium, Web Services Description Language (WSDL) 1.1,
W3C Note, March 2001; http://www.w3.org/TR/wsdl

122. A. Yassine and D. Braha, “Complex Concurrent Engineering and the Design
Structure Matrix Method”, Concurrent Engineering, vol. 11, no. 3, 2003, pp
165-176.

http://purl.org/utwente/41469
http://purl.org/utwente/17905
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/wsdl

Index

A
abstract interaction, 80, 102
abstract platform, 26–32, 184

decomposition approaches, 89
definition approaches

language-level, 30, 128
model-level, 31, 130

design quality criteria, 41–47
relation to modelling

languages, 29, 185
abstract platform designer, 44
abstract platform element, 187
abstract platform model, 58,

129, 130
abstraction, 10

level of, 10, 14
action refinement, 105
algorithmic design procedures,

16
application designer, 44
application domain

requirements, 32, 45
application interaction system,

84–86
aspect-oriented programming,

98, 188
assessment activities, 11

B
binding, 116

binding object, 116
bottom-up knowledge, 16, 122
buildability, 43

C
composition filters, 98, 188
computational object, 116
computational viewpoint, 116
concrete platform, 61
conformance, 11, 187, 188

assessment, 11
in the case study, 174

context, 140
context-aware service, 139
CORBA, 91, 94, 96, 101, 112,

120, 144, 176

D
dependencies between models,

59
design, 10
design activities, 10
design approach

iterative, 35
stepwise, 10

design concept, 16
design conceptualization, 16
design decision, 11
design experience, 15
design for reuse, 13

at the preparation phase, 34

212 INDEX

design framework, 79, 186
beyond the scope of the, 188

design goals, 13
design knowledge, 15

and transformation
specifications, 17

reuse, 15
design methodology, 9
design operations, 105–12
design patterns, 15
design process, 9

overview, 32
design quality criteria, 41–47

and the design process, 185
buildability, 43
ease of use, 44
generality, 42
platform-independence, 46
stability, 42

design reuse, 14
design space, 11, 16
design step, 10, 15
Design Structure Matrix (DSM),

60
clustering, 68
reordering, 68

design techniques, 15
design with reuse, 13

at the preparation phase, 34
designer, 44
distribution transparencies, 21,

116
domain analysis, 14
DSM. See Design Structure

Matrix

E
ease of use, 44
ECA-DL. See Events-Conditions-

Actions Domain Language
engineering viewpoint, 116
Enterprise Fondue, 38
entity, 104

merging, 109
Events-Conditions-Actions

Domain Language (ECA-DL),
145–55
metamodel, 149

execution phase, 32, 34

F
Freeband Service, 140–42

G
generality, 14, 42

H
heuristics, 16

I
interaction, 80, 102

integrated perspective, 103
partitioned perspective, 103

interaction contribution, 103
interaction point, 103

decomposition, 106
merging, 110

interaction point part, 103
interaction refinement, 80, 100–

115, 105
interaction system, 80, 82

and abstract platforms, 86
and middleware, 83

Interaction System Design
Language (ISDL), 145
metamodel, 149

interface, 116
ISDL. See Interaction System

Design Language
iterative design approach, 35, 69

J
J2EE, 101
JMS, 91, 93, 96, 101

L
language-level abstract platform

definition approach, 30, 128
levels of models, 50

 INDEX 213

dependencies between, 72
LOTOSphere, 122

M
marked model, 48, 67
markings, 48, 67
marks, 48
MDA. See Model-Driven

Architecture
MDA Guide, 20, 137
Meta Object Facility (MOF),

125, 127, 129
metametamodel, 127
metamodel, 127

ECA-DL, 149
ISDL, 149
UML 2.0, 128

middleware platforms, 2, 20
model, 16

abstract platform, 58
platform, 65
platform-independent model,

3, 19
platform-specific model, 3

model transformation, 3, 17
specification, 17

Model-Driven Architecture
(MDA), 2, 125–38, 185

model-level abstract platform
definition approach, 31, 130

modelling language, 16
modularity, 59
MOF. See Meta Object Facility

O
Object Constraint Language

(OCL), 129, 162
OCL. See Object Constraint

Language
open-endedness, 14

P
PIM. See platform-independent

model

platform, 20
abstract. See abstract platform
concrete, 61
extension mechanisms, 98,

188
middleware, 2
realization, 12

platform model, 65
platform-independence, 19–26,

46, 184
platform-independent model

(PIM), 3, 19
platform-independent

transformation, 65, 188
platform-specific model (PSM),

3
portability requirements, 45
portable interceptors, 98
preparation phase, 32
profiles, 127, 129
PSM. See platform-specific model

Q
quality-of-service, 70, 188

mechanisms, 100

R
realization, 9
Reference Model for Open

Distributed Processing (RM-
ODP), 115

reuse
design for, 13
design with, 13
of design knowledge, 15
of designs, 14
of transformations, 51

RM-ODP. See Reference Model
for Open Distributed
Processing

S
semantic variation points, 128
separation of concerns, 10, 57

214 INDEX

service, 82
decomposition, 80, 87–100
trader, 142, 163–66, 195–99

software product lines, 14
source design, 15
source models, 17
stability, 42
stepwise design approach, 10
stratified frameworks, 37
synthesis-based design, 122

T
target design, 15
target models, 17
transformation, 3

activities, 10
arguments, 48
automation, 48
reuse of, 51
specification, 17

transformation designer, 44

transformation elements, 187
transformation-independent, 76
transformation-specific, 76
transparencies, 21

U
UML. See Unified Modelling

Language
Unified Modelling Language

(UML), 125, 126

V
value checking, 104
value generation, 104, 115
value passing, 104
viewpoints, 115

W
Web Services, 101, 120, 144,

176, 177, 223, 225

Samenvatting

Een recente trend inzake het ontwerpen van gedistribueerde applicaties is
het scheiden platformonafhankelijke en platformspecifieke aspecten in
verschillende modellen volgens een systematische aanpak. De voornaamste
voordelen van deze benadering zijn gelegen in de mogelijkheid om
verschillende platformspecifieke modellen (PSMs) af te leiden van hetzelfde
platformonafhankelijke model (PIM), en om het modeltransformatieproces
en de realisatie van de gedistribueerde applicatie op bepaalde (middleware)
doelplatformen deels te automatiseren. Hiermee kunnen de initiële
ontwikkelkosten gereduceerd en kwaliteit van de resulterende software
verbeterd worden. Daarnaast wordt met deze benadering een basis gelegd
voor het faciliteren van de evolutie en migratie van softwareoplossingen, en
dus voor het beheersbaar maken van de kosten van het onderhoud van
gedistribueerde applicaties.

Een gerelateerde prominente ontwikkeling is Model-Driven
Architecture (MDA). In het kader van MDA wordt hard gewerkt aan
enabling technologieën en technieken voor model-gedreven ontwerp, zoals
metamodellering (MOF), taaldefinitie- en uitbreidingsmechanismes (bijv.
UML en UML profiles), modeltransformatietalen (MOF Query/View/Trans-
formation), ondersteuning met softwaregereedschappen en interoperabiliteit
van gereedschappen. Weinig aandacht is er echter tot nu toe voor de
methodologische en architecturale onderbouwing van platform-
onafhankelijke ontwerpen.

In het bijzonder kan de state-of-the-art in model-gedreven ontwerpen op
de volgende punten bekritiseerd worden:
– er is een gebrek aan richtlijnen voor het kiezen van abstractiecriteria en

modelleerconcepten die toegepast kunnen worden in platform-
onafhankelijke ontwerpen;

– er is weinig methodologische ondersteuning voor het scheiden van
platformonafhankelijke en platformspecifieke zaken, waardoor de
effectieve toepassing van PIMs en PSMs wordt beperkt;

216 SAMENVATTING

– het onderscheid tussen PIM en PSM is grof en niet voldoende om de
diversiteit van applicatieeisen en platformeigenschappen te addresseren;

– er is weinig aandacht voor platformeigenschappen gedurende het
ontwikkeltraject als geheel, wat tot gevolg kan hebben dat modellen
onvoldoende platformonafhankelijk zijn en applicaties geen acceptabele
kwaliteitsattributen hebben;

– de gedragsaspecten van ontwerpen worden grotendeels buiten
beschouwing gelaten; en

– ontwerpoperaties voor het PIM-PSM traject zijn niet precies
gedefinieerd, hetgeen de effectieve toepassing van deze operaties in
modeltransformaties in de weg staat.
Dit proefschrift beschrijft een ontwerpbenadering voor het ontwikkelen

van gedistribueerde applicaties, met inachtneming van bovengenoemde
problemen en vooral gericht op middleware platformonafhankelijkheid. De
voorgestelde benadering bestaat uit:
– een ontwerpproces, dat leidt tot applicatieontwerpen op verschillende

niveaus van abstractie en platformonafhankelijkheid;
– een notie van abstract platform, waarmee de platformeigenschappen die

relevant zijn voor een applicatieontwerp op een gegeven niveau van
platformonafhankelijkheid expliciet gemaakt worden;

– een verzameling ontwerpkwaliteitscriteria voor het definiëren van een abstract
platform; en

– een ontwerpraamwerk, waarmee de ontwerper ondersteund wordt bij het
definiëren van abstracte platformen en platformonafhankelijke
ontwerpen. Dit ontwerpraamwerk bestaat uit twee delen: (1) een
verzameling elementaire ontwerpconcepten die gebruikt wordt om zowel
abstracte platformen als corresponderende platformonafhankelijke
ontwerpen te beschrijven op verschillende niveaus van platform-
onafhankelijkheid, en (2) ontwerpoperaties die gebruikt worden in
transformaties om de verschillende niveaus van platform-
onafhankelijkheid te overbruggen. Het ontwerpraamwerk stelt
ontwerpers in staat om uitspraken te doen over de conformance van
modellen op verschillende niveaus van platformonafhankelijkheid.
Het ontwerpproces is in onze ontwerpbenadering gestructureerd in een

voorbereidingsfase en een uitvoeringsfase. In de voorbereidingsfase identificeren
(en zonodig definiëren) ontwerpers de gewenste abstractieniveaus voor
modellen, hun abstracte platformen en de modelleertalen die gebruikt gaan
worden. Ontwerpers kunnen bovendien transformaties identificeren of
definiëren tussen gewenste modelniveaus. De resultaten van de
voorbereidingsfase worden gebruikt in de uitvoeringsfase, waarin modellen
van een applicatie worden gecreëerd, gebruik makend van de gekozen
modelleertalen en abstracte platformen.

 SAMENVATTING 217

De hoofdonderdelen van onze benadering worden geïllustreerd met een
case study waarin contextbewuste mobiele diensten worden ontworpen. We
definiëren drie modelniveaus: een niveau voor het specificeren van
platformonafhankelijke diensten, een niveau voor het ontwerpen van
platformonafhankelijke diensten en een niveau voor ontwerpen van
platformspecifieke diensten. Speciale aandacht is er voor het representeren
en transformeren van gedragsaspecten van diensten.

Resumo

Nos últimos anos, o desenvolvimento de aplicações distribuídas tem sido
marcado pela separação da descrição dos aspectos dependentes de
plataformas dos aspectos independentes de plataformas em diferentes
modelos. Os principais benefícios desta abordagem devem-se: (i) à
possibilidade de produzir diferentes modelos dependentes de plataformas
(PSMs) a partir de um mesmo modelo independente de plataformas (PIM)
e (ii) à possibilidade de automação parcial do processo de transformação e
realização de uma aplicação distribuída. Desta forma, os custos iniciais de
desenvolvimento podem ser reduzidos, assim como a qualidade das
realizações pode ser melhorada. Além disto, esta abordagem forma uma
base para facilitar a evolução e a migração de soluções de software,
contribuindo então para reduzir os custos de manutenção para aplicações
distribuídas.

Uma importante iniciativa que adota esta abordagem é a Arquitetura
Baseada em Modelos (Model-Driven Architecture) (MDA). No contexto da
iniciativa MDA, muitos trabalhos tratam das tecnologias e técnicas básicas
para o desenvolvimento baseado em modelos, incluindo técnicas para
metamodelagem (MOF), mecanismos de definição e extensão de linguagens
(como, por exemplo, UML e seus profiles), linguagens de especificação de
transformação de modelos (MOF Query/View/Transformation), e suporte para
construção e integração de ferramentas de desenvolvimento. Os
fundamentos metodológicos e arquiteturais do desenvolvimento de
aplicações distribuídas de forma independente de plataformas têm recebido
pouca atenção.

Mais especificamente, as atuais abordagens para desenvolvimento
baseado em modelos podem ser criticadas nos seguintes pontos:
– há poucas diretivas para a seleção de critérios de abstração e conceitos

para a modelagem de aplicações de forma independente de plataformas;

220 RESUMO

– há pouco suporte metodológico para a distinção entre aspectos
dependentes de plataformas e aspectos independentes de plataformas, o
que é prejudicial à exploração benéfica da separação entre PIMs e PSMs;

– a distinção PIM-PSM é insuficiente para lidar com a diversidade de
requisitos de aplicação e características de plataformas;

– pouca atenção é dada para o papel de características de plataformas na
trajetória de desenvolvimento, resultando em modelos com níveis de
independência de plataforma inaceitavelmente baixos ou software com
outras qualidades indesejáveis;

– os aspectos comportamentais de aplicações são frequentemente
ignorados, e;

– manipulações de modelos que levam de PIMs a PSMs não são bem
definidas, o que prejudica o desenvolvimento de transformações entre
estes modelos.
Esta tese propõe uma abordagem para o desenvolvimento de aplicações

distribuídas que ataca os problemas apresentados acima, concentrando-se
na independência de aplicações com relação a plataformas de middleware.
Esta abordagem consiste em:
– um processo de desenvolvimento, que resulta em modelos de uma aplicação

em diferentes níveis de abstração e independência de platafomas;
– o conceito de plataforma abstrata, que define características de

plataformas que são relevantes para a descrição de aplicações em um
certo nível de independência de plataformas;

– critérios de qualidade para a definição de plataformas abstratas; e,
– um framework, que auxilia projetistas na definição de plataformas

abstratas e modelos independentes de plataformas. Este framework é
divido em duas partes: um conjunto de conceitos básicos, que são usados em
diferentes níveis de independência de plataforma para descrever tanto
plataformas abstratas quanto os modelos que dependem destas, e
manipulações de modelos, que são usadas em transformações para
relacionar diferentes níveis de independência de plataforma.
O processo de desenvolvimento é estruturado em uma fase de preparação

e uma fase de execução. Na fase de preparação, os projetistas identificam (e,
quando necessário, definem) os níveis de modelos necessários, assim como
as plataformas abstratas e as linguagens de modelagem a serem usadas. Além
disto, nesta fase, projetistas também podem identificar ou definir
transformações entre níveis de modelos. Os resultados da fase de
preparação são usados na fase de execução, na qual modelos de uma
aplicação são criados usando-se linguages de modelagem específicas e
plataformas abstratas.

Os principais aspectos da abordagem proposta nesta tese são ilustrados
com um estudo de caso que trata o desenvolvimento de serviços móveis

 RESUMO 221

sensíveis ao contexto do usuário. Três níveis de modelos são definidos: um
nível de especificação de serviços independente de plataformas, um nível de
projeto de serviços independente de plataformas, e um nível de projeto de
serviços dependente de plataformas. A representação e a transformação de
aspectos comportamentais dos serviços são enfatizadas neste estudo de caso.

Publications by the author

During the development of this thesis, the author has published various
parts of his work in the following papers (listed in reverse chronological
order):
– J.P.A. Almeida, R. Dijkman, L. Ferreira Pires, D. Quartel, and M. van

Sinderen, “Model Driven Design, Refinement and Transformation of Abstract
Interactions”, International Journal of Cooperative Information Systems (IJCIS),
World Scientific, to appear.

– J.P.A. Almeida, M.-E. Iacob, H. Jonkers, and D. Quartel, “Model-Driven
Development of Context-Aware Services”, 6th IFIP WG 6.1 International Confer-
ence on Distributed Applications and Interoperable Systems (DAIS 2006), Lecture
Notes in Computer Science, vol. 4025, Springer, to appear.

– J.P.A. Almeida, M.-E. Iacob, H. Jonkers, M. Lankhorst, and D. van Leeuwen,
“An Integrated Model-Driven Service Engineering Environment”, 2nd Interna-
tional Conference Interoperability for Enterprise Software and Applications (I-ESA 2006),
Springer, to appear.

– J.P.A. Almeida, L. Ferreira Pires, and M. van Sinderen, “Abstract Platform and
Transformations for Model-Driven Service-Oriented Development”, Proceedings
of the 2nd International Workshop on Model-Driven Enterprise Information Systems
(MDEIS 2006) at ICEIS 2006, INSTICC Press, Portugal, to appear.

– M. van Sinderen, J.P.A. Almeida, L. Ferreira Pires, D. Quartel, “Designing
Enterprise Applications using Model-Driven Service-Oriented Architectures”,
Enterprise Service Computing: From Concept to Deployment, Robin G. Qui, ed., Idea
Group, to appear.

– J.P.A. Almeida, R. Dijkman, L. Ferreira Pires, D. Quartel, and M. van
Sinderen, “Abstract Interactions and Interaction Refinement in Model-Driven
Design”, Proceedings of the 9th IEEE EDOC Conference (EDOC 2005), IEEE Com-
puter Society Press, Sept. 2005, pp. 273-286.

– J.P.A. Almeida, L. Ferreira Pires, M. van Sinderen, “Dependencies between
Models in the Model-driven Design of Distributed Applications”, Proceedings of
the Joint Workshop on Web Services and Model-Driven Enterprise Information Systems
(WSMDEIS 2005), INSTICC Press, Portugal, May 2005, pp. 95-109.

224 PUBLICATION BY THE AUTHOR

– J.P.A. Almeida, M. van Sinderen, D. Quartel, and L. Ferreira Pires, “Designing
Interaction Systems for Distributed Applications”, IEEE Distributed Systems
Online, vol. 6, no. 3, Mar. 2005.

– J.P.A. Almeida, “Model-driven Design of Distributed Applications”, Workshop
Proceedings of the 2004 International On The Move to Meaningful Internet Systems
2004: OTM 2004 Workshops (OTM 2004 Ph.D. Symposium), Lecture Notes in
Computer Science, vol. 3292, Springer, Oct. 2004, pp. 854-865.

– J.P.A. Almeida, R. Dijkman, M. van Sinderen, and L. Ferreira Pires, “On the
Notion of Abstract Platform in MDA Development”, Proceedings Eighth IEEE
International Conference on Enterprise Distributed Object Computing (EDOC 2004),
IEEE Computer Society Press, Sept. 2004, pp. 253-263.

– J.P.A. Almeida, L. Ferreira Pires, and M. van Sinderen, “Costs and Benefits of
Multiple Levels of Models in MDA Development”, Proceedings of the 2nd Euro-
pean Workshop on Model-Driven Architecture with Emphasis on Methodologies and
Transformations, technical report no. 17-04, Computing Laboratory, University
of Kent, Canterbury, UK, Sept. 2004, pp. 12-20.

– J.P.A. Almeida, R. Dijkman, M. van Sinderen, and L. Ferreira Pires, “Platform-
Independent Modelling in MDA: Supporting Abstract Platforms”, Proceedings
Model-Driven Architecture: Foundations and Applications 2004 (MDAFA 2004),
Linköping University, Linköping, Sweden, June 2004, pp. 219-233. Revised
version appeared in Lecture Notes in Computer Science, vol. 3599, Springer,
June 2005, pp. 174-188.

– J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires and M. Wegdam, “Platform-
independent Dynamic Reconfiguration of Distributed Applications”, Proceedings
IEEE 10th International Workshop on Future Trends in Distributed Computing Systems
(FTDCS 2004), IEEE Computer Society Press, May 26-28, 2004, pp. 286-291.

– A. Gavras, M. Belaunde, L. Ferreira Pires and J.P.A. Almeida, “Towards an
MDA-based Development Methodology for Distributed Applications”, Proceed-
ings of the 1st European Workshop on Model-Driven Architecture with Emphasis on In-
dustrial Applications (MDA-IA 2004), CTIT Technical Report TR-CTIT-04-12,
University of Twente, The Netherlands, March 2004, pp. 71-81. Also ap-
peared in Software Architecture: First European Workshop (EWSA2004), Lecture
Notes in Computer Science , vol. 3047, Springer, May 2004, pp. 230-240.

– J.P.A. Almeida, M. van Sinderen and L. Ferreira Pires, “The Role of the RM-
ODP Computational Viewpoint Concepts in the MDA Approach”, Proceedings of
the 1st European Workshop on Model-Driven Architecture with Emphasis on Industrial
Applications (MDA-IA 2004), CTIT Technical Report TR-CTIT-04-12, Univer-
sity of Twente, The Netherlands, March 2004, pp. 43-51. Revised version ap-
peared in Workshop on ODP for Enterprise Computing (WODPEC 2004) Proceedings,
technical report no. ITI-04-07, University of Málaga, Spain, 2004, pp. 28-35.

– L. Ferreira Pires, M. van Sinderen, C.R.G. de Farias and J.P.A. Almeida, “Use
of Models and Modelling Techniques for Service Development”, Digital Com-
munities in a Networked Society: eCommerce, eGovernment and eBusiness, M.J. Mendes,
R. Suomi, and C. Passos, eds., Kluwer Academic Publishers, 2004, pp. 441-
456.

 PUBLICATIONS BY THE AUTHOR 225

– J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires, D. Quartel, “A Systematic
Approach to Platform-Independent Design based on the Service Concept”,
Proceedings Seventh IEEE International Conference on Enterprise Distributed Object Com-
puting (EDOC 2003), IEEE Computer Society Press, Sept. 2003, pp. 112-123.

– J.P.A. Almeida, L. Ferreira Pires, and M. van Sinderen, “Web Services and
Seamless Interoperability”, Proceedings of the First European Workshop on Object-
Orientation and Web Services (held at ECOOP 2003, Darmstadt, Germany), IBM Re-
search Report, RA220 Computer Science, IBM Research Division, July 2003,
pp. 4-9.

– J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires, and D. Quartel, “The Role
of the Service Concept in Model-driven Applications Development”, Middleware
2003 Companion: Proceedings of the Workshop on Model-driven Approaches to Middle-
ware Applications Development (MAMAD 2003) at the ACM/IFIP/USENIX Interna-
tional MIDDLEWARE Conference 2003, Pontifícia Universidade Católica do Rio
de Janeiro (PUC-RJ), Brazil, June 2003, pp. 288-296.

– J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires, and M. Wegdam, “Handling
QoS in MDA: A Discussion on Availability and Dynamic Reconfiguration”, Pro-
ceedings of the Workshop on Model Driven Architecture: Foundations and Application
(MDAFA 2003), CTIT Technical Report TR–CTIT–03–27, University of
Twente, The Netherlands, June 2003, pp. 91-96.

MODEL-DRIVEN
DESIGN OF
DISTRIBUTED
APPLICATIONS

 JO
Ã

O
 P

A
U

L
O

 A
N

D
R

A
D

E
 A

L
M

E
ID

A
M

O
D

E
L

-D
R

IV
E

N
 D

E
S

IG
N

 O
F

 D
IS

T
R

IB
U

T
E

D
 A

P
P

L
IC

A
T

IO
N

S

This publication is a collaborative
result of the Telematica Instituut
and the Centre for Telematics and
Information Technology (CTIT). It is
published as a part of the Telematica
Instituut Fundamental Research Series
and of the CTIT Ph.D. Thesis Series.

Part of the research presented in
this thesis was done in the context of
the A-MUSE (Architectural Modelling
Utility for Service Engineering) project.
A-MUSE is a BSIK Freeband project,
sponsored by the Dutch Government.
It aims at developing an advanced
methodology, comprising architectures,
methods, techniques and tools,
to facilitate the development and
provisioning of services.

Telematica Instituut (www.telin.nl)
is a unique partnership between the
business community, research centres
and government to perform research
in the field of telematics for the public
and private sectors. The emphasis is
on rapidly translating fundamental
knowledge into marked-oriented
applications. The institute’s objective is
to strengthen the competitiveness and
innovative strength of Dutch business,
as well as improving the quality of our
society through the proper application
of telematics. To achieve this, the
institute brings together leading
researchers from various institutions
and disciplines. The Dutch government
supports Telematica Instituut under
its ‘leading technological institutes’
scheme. Participation in the Telematica
Instituut Consortium is open to other
companies and research centres.

The Centre for Telematics and
Information Technology (www.ctit.
utwente.nl) is one of the key research
institutes of the University of Twente
(UT), Enschede, the Netherlands.
It conducts research on the design
of complex ICT systems and their
application in a variety of domains. Over
300 researchers actively participate
in the CTIT research programme. In
addition, CTIT closely co-operates with
many public and private organizations,
including industrial companies.

JOÃO PAULO ANDRADE ALMEIDA

U

IT
N

O
D

IG
IN

G

Hi

er
bi

j n
od

ig
 ik

 u
 u

it
vo

or
 h

et
 b

ijw
on

en
 v

an
 d

e

op

en
ba

re
 v

er
de

di
gi

ng
 v

an
 m

ijn
 p

ro
ef

sc
hr

ift

M

O
D

E
L
-D

R
IV

E
N

D

E
S
IG

N
 O

F

D

IS
T

R
IB

U
T

E
D

A

P
P

L
IC

A
T

IO
N

S

op
 d

on
de

rd
ag

 1
 ju

ni
 2

00
6

om
 1

5.
00

 in
 za

al
 2

va
n

ge
bo

uw
 ‘d

e
Sp

ie
ge

l’
va

n
de

 U
ni

ve
rs

ite
it

Tw
en

te
.

Vo
or

af
ga

an
d

aa
n

de
 v

er
de

di
gi

ng
 za

l i
k

om
 1

4.
45

 u
ur

 e
en

to
el

ich
tin

g
ge

ve
n

op
 d

e
in

ho
ud

 v
an

 h
et

 p
ro

ef
sc

hr
ift

.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

JO

Ã
O

 P
A

UL
O

 A
N

D
RA

D
E

A
LM

EI
D

A

Br

in
kh

ui
sb

ur
g

35

75

11
M

J E
ns

ch
ed

e

E-

m
ai

l:
jo

ao
pa

ul
o.

al
m

ei
da

@
te

lin
.n

l

Te

l.:
+3

1
(0

)6
29

01
88

19

Model-Driven Design of
Distributed Applications
João Paulo Andrade Almeida

The model-driven design approach
described in this thesis aims at supporting
designers in managing the complexity
of distributed application design and
evolution.

In this approach, different aspects of
a distributed application are described
throughout the design process using models.
This thesis proposes a technique that allows
designers to build application models that
are – to a certain extent – independent of
the technologies with which applications
can be implemented. These technologies
include the so-called middleware platforms,
which are used to cope with distribution
and to exploit distribution beneficially.

A cornerstone of the approach is the notion
of abstract platform. An abstract platform
is an abstraction of the characteristics of
potential technology platforms which are
assumed by application designers at a certain
point of the design trajectory. By choosing
abstract platforms carefully, a designer is
able to obtain application models that do
not have to be modified as a consequence
of the evolution of technology platforms,
and that can be used as a starting point for
realizations on different platforms.

We define criteria for abstract platform
definition and propose a design framework
for abstract platforms and platform-
independent application models. This
framework is based on the concepts of
service and abstract interaction, and includes
design operations to transform application
models through the various levels of
abstraction and platform-independence.

The main aspects of the approach are
illustrated with a case study involving the
design of context-aware mobile services.

About the author

João Paulo Andrade Almeida has a
master’s degree (M.Sc.) in Telematics
with honours from the University of
Twente, The Netherlands and a degree
in Computer Engineering from the
Federal University of Espírito Santo,
Brazil.

After completing his master’s thesis
work at Lucent Technologies Bell Labs
in 2001, he joined the Architecture
and Services of Network Applications
Group at the University of Twente to
become a full-time researcher, where
he developed his Ph.D. work. Since
October 2005, he has been working
at the Telematica Instituut, where he
applies the approach proposed in this
thesis to the development of context-
aware mobile services.

During the last six years, he has
participated in a number of European
and Dutch research projects. He
authored several international
publications, including conference
papers, journal and magazine articles
and book contributions. He has
served as reviewer for international
conferences and workshops. In
2005, he served as an organizing
committee member for the 9th IEEE
EDOC conference. Currently, he co-
chairs two international workshops,
namely, WODPEC (at the 10th IEEE
EDOC conference) and 3M4MDA (at
the ECMDA-FA 2006 conference).

In his spare time, he is an enthusiastic
amateur astronomer and rock climber. IS

B
N

:
90

-7
51

76
-4

2-
2

	Title Page
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research objectives
	1.4 Approach
	1.5 Scope and non-objectives
	1.6 Thesis structure

	2 Model-driven design process
	2.1 Basic concepts
	2.1.1 Design process
	2.1.2 Design decisions
	2.1.3 Realization platform
	2.1.4 Reuse
	2.1.5 Design reuse
	2.1.6 Design knowledge reuse
	2.1.7 Models
	2.1.8 Model transformation

	2.2 Platform-independence
	2.2.1 Platforms
	2.2.2 Middleware platforms
	2.2.3 Relative notion of platform-independence
	2.2.4 Levels of platform-independence

	2.3 Abstract platforms
	2.3.1 Definition
	2.3.2 Abstract platforms in the design process
	2.3.3 Abstract platforms and modelling languages

	2.4 Overview of the design process
	2.4.1 Preparation phase
	2.4.2 Execution phase

	2.5 Related work on model-driven design methods
	2.5.1 Stratified frameworks
	2.5.2 Enterprise Fondue method

	2.6 Concluding remarks

	3 Methodological guidelines for the preparation phase
	3.1 Design quality criteria
	3.1.1 Generality
	3.1.2 Stability
	3.1.3 Buildability
	3.1.4 Ease of use
	3.1.5 Balancing design quality criteria
	3.1.6 Concluding remarks

	3.2 Automated transformation
	3.3 Levels of models
	3.3.1 Fully automated transformations
	3.3.2 Partially automated transformations

	3.4 Concluding remarks

	4 Separation of concerns and the dependencies between models
	4.1 Separation of concerns
	4.2 Dependencies between models
	4.2.1 Models as modules
	4.2.2 Two levels of models

	4.3 Dependencies between models and the design process
	4.3.1 Preparation and execution phase concerns
	4.3.2 Platform-independent and platform-specific concerns
	4.3.3 Multiple levels of models

	4.4 Concluding remarks
	4.4.1 Classification of models
	4.4.2 Main conclusions and directives

	5 Design framework
	5.1 Overview
	5.2 Design concepts
	5.2.1 The service concept
	5.2.2 Interaction systems
	5.2.3 Middleware platforms and interaction systems
	5.2.4 Application interaction systems
	5.2.5 Interaction systems provided by abstract platforms

	5.3 Service decomposition
	5.3.1 Application interaction system decomposition
	5.3.2 Abstract platform decomposition
	5.3.3 Example: the service of a floor-control interaction system
	5.3.4 Example: service decomposition and platform-specific realization
	5.3.5 Realization with platform extension mechanisms

	5.4 Interaction refinement
	5.4.1 Interaction refinement in the design process
	5.4.2 Abstract interactions
	5.4.3 Design operations
	5.4.4 The example revisited
	5.4.5 Remaining issues

	5.5 Relation to RM-ODP
	5.5.1 Concepts in the computational viewpoint
	5.5.2 The RM-ODP notion of infrastructure
	5.5.3 RM-ODP infrastructure notion revisited

	5.6 Evaluation
	5.7 Related work and concluding remarks

	6 Support for abstract platforms in MDA
	6.1 Abstract platform definition approaches
	6.2 UML, Profiling and MOF
	6.3 Language-level abstract platform definition
	6.3.1 UML constructs for modelling application parts and their interaction
	6.3.2 Profiles and MOF

	6.4 Model-level abstract platform definition
	6.5 Example
	6.5.1 Reliable signal exchange
	6.5.2 The ConferenceAbstractPlatform
	6.5.3 Realization of the ConferenceAbstractPlatform
	6.5.4 ConferenceAbstractPlatform realized in terms of EventAbstractPlatform

	6.6 Discussion
	6.6.1 Lessons learned
	6.6.2 UML interaction concepts

	6.7 Concluding remarks

	7 Case study: the design of Freeband Services
	7.1 Freeband Services
	7.1.1 Context-awareness
	7.1.2 Mobility
	7.1.3 A-MUSE Service Platform

	7.2 Preparation phase overview
	7.3 Service specification level
	7.3.1 Abstract platform definition
	7.3.2 ECA DL metamodel
	7.3.3 Service specification example

	7.4 Platform-independent service design level
	7.4.1 Abstract platform definition
	7.4.2 Service-oriented abstract platform
	7.4.3 Service discovery abstract platform
	7.4.4 A-MUSE abstract platform

	7.5 Transformations
	7.5.1 From service specification to platform-independent service design
	7.5.2 From platform-independent to platform-specific service design

	7.6 Execution phase
	7.6.1 Service specification
	7.6.2 Platform-independent service design

	7.7 Evaluation

	8 Conclusions
	8.1 General considerations
	8.2 Main contributions
	8.2.1 Platform-independence and the notion of an abstract platform
	8.2.2 Design quality criteria and the design process
	8.2.3 Abstract platforms and modelling languages
	8.2.4 Design framework for platform-independent design

	8.3 Directions for further research
	8.3.1 Reusable elements for abstract platform definition
	8.3.2 Conformance and transformation
	8.3.3 Platform-independent transformations
	8.3.4 Beyond the scope of the design framework

	Appendix A Methodology quick guide
	Appendix B Specification of the trader service
	References
	Index
	Samenvatting
	Resumo
	Publications by the author

