
Model-driven Design of Distributed Applications

João Paulo A. Almeida

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

almeida@cs.utwente.nl

Abstract. The objective of the Ph.D. work discussed in this paper is to define a
methodology for the design of distributed applications, in line with the Model-
Driven Architecture (MDA). An important characteristic of this methodology is
that it leads to models of distributed applications that withstand the impact of
change in (middleware) platform technologies. These models are organized into
different levels of platform-independence that are defined using the notion of
abstract platform. An abstract platform is an abstraction of infrastructure
characteristics assumed for models of an application at some point of (the
platform-independent phase of) the design process. We aim at providing
methodological guidelines for the definition of abstract platforms and their
representations in modelling languages.

1 Introduction

The timely development of distributed applications is a costly effort. Therefore, an
important quality of these applications is their ability to withstand the impact of
change, both with respect to changes in application requirements and with respect to
changes in the technologies used to build the application.

In the last decades, the development of distributed applications has been facilitated
to some extent by the introduction of middleware platforms (e.g., CORBA/CCM [20],
.NET [17], JMS [29], and Web Services [30, 31]). These platforms offer generic
(distribution) support for distributed applications, masking from applications some
details and differences in the support offered by programming languages, operating
systems and network protocols. Since a significant amount of development effort is
spent on overcoming problems related to distribution (e.g., remoteness, partial
failures, heterogeneity) and in exploiting distribution beneficially (e.g., to achieve
performance and dependability), the reuse of middleware platforms significantly
increases the efficiency of application development.

Different middleware platforms have been developed, to satisfy a variety of needs.
The current distributed application scenario is populated by multiple platform
standards, implementations from different vendors, proprietary platforms and ad hoc
infrastructures, standard and proprietary extensions to platforms, etc. These
infrastructures provide different constructs from which applications can be built, and
exhibit different quality characteristics. Recently, it has become clear that different
parts of a distributed application may be built using various middleware platforms,
and that the set of platforms used may change over time. In addition, it has also

become clear that middleware platforms may evolve during the lifetime of
applications. The use of a single immutable distribution infrastructure is therefore not
envisioned as a long term solution for the support of distributed applications.

The Object Management Group (OMG) has identified the need to address some of
these issues in its Model Driven Architecture (MDA) [19], [21]. This architecture
proposes the separation of platform-independent and platform-specific aspects of
distributed applications into platform-independent models (PIMs) and platform-
specific models (PSMs). A common pattern of MDA development is to define a
platform-independent model (PIM) of an application, and to apply (parameterised)
transformations to this PIM to obtain one or more platform-specific models (PSMs).

The potential benefits of this approach stem from the possibility to derive different
PSMs from the same PIM, and to partially automate the model transformation process
and the realization of the distributed application on specific target platforms. While
this may reduce development costs and improve software quality, it also forms the
basis for facilitating the evolution of software solutions, hence contributing to the
containment of maintenance costs for distributed applications.

Nevertheless, the appropriateness of MDA as an approach for the development of
distributed applications can be criticized on a number of points:
− there is a lack of guidelines to select abstraction criteria and modelling concepts for

platform-independent models;
− there is little methodological support to distinguish between platform-independent

and platform-specific concerns, which is detrimental to the beneficial exploitation
of the PIM-PSM separation of concerns;

− the distinction between platform-independent and platform-specific models is
coarse and insufficient to cope with the diversity of application requirements and
infrastructure characteristics;

− little attention is given to the role of platform characteristics throughout the
development trajectory, possibly leading to models with unacceptable levels of
platform-independence and applications with unacceptable quality attributes;

− design operations are not clearly defined, thus inhibiting their effective application
along a design trajectory; and

− the focus on a particular design language (UML) constrains the designer in some
respects. Currently, it is unclear when and where such constraints apply.
In order to obtain the potential benefits of the model-driven approach to the

development of distributed applications, we aim at addressing the issues above in an
effective model-driven design methodology. The objective of our work is to propose
such a methodology for the design of distributed applications so that:
− available and future distribution infrastructures can be (re-)used, improving the

efficiency of the design process;
− the knowledge used to perform various design operations can be captured and re-

used to improve the overall efficiency of the design process;
− designs of distributed applications remain stable in face of changes in platform

technologies; and,
− designs can be reused to target different middleware platforms.
The methodology is defined so as to be generic with respect to application domains
and platform characteristics.

This paper is further structured as follows: section 2 introduces the role of models
and discusses the concept of abstract platform; section 3 discusses important activities
of the proposed methodology, including abstract platform definition, abstract platform
representation and transformation definition; section 4 discusses some work-in-
progress; section 5 reviews related work; and, finally, section 6 presents concluding
remarks.

2 The Role of Models

2.1 Platform-Independent Models

The development of a distributed application can be regarded as the process of
building a realization of the application that satisfies user requirements. In most
traditional development cultures, application developers are instructed to produce
intermediate models to facilitate bridging the gap between requirements and
realization. These intermediate models are mainly regarded as a means to obtain a
realization of the system, with different models addressing different design concerns.
The ultimate product of the development process is the realization, which can be
deployed on available implementation technologies (platforms). Any intermediate
models produced during the development processes are considered means and not
ends.

In the case of Model-Driven Architecture (MDA) development [21], however,
intermediate models that are used to produce the final realization are also considered
final products of the development process. These models are carefully defined so as to
remain stable in face of changes in platform technologies, and are therefore called
platform-independent models (PIMs).

A platform-independent model can be refined or implemented into a number of
technology platforms. For the purpose of our work, we assume that a platform
corresponds ultimately to some specific middleware technology, such as
CORBA/CCM [20], .NET [17], and Web Services [30, 31].

When pursuing platform-independence, one could strive for PIMs that are
absolutely neutral with respect to all different classes of middleware platforms. This is
possible for models in which the characteristics of supporting infrastructure are
irrelevant, such as, e.g., conceptual domain models [7] and RM-ODP Enterprise
Viewpoint models [13] (which can be considered Computation Independent Models
[21]). However, when the application is described as a decomposition of interacting
application parts, different sets of modelling concepts may be used, each of which is
better suited for specific classes of target middleware platforms. For example, a
designer may describe the interaction between application parts using either request-
response invocations or event queues.

The implicit assumption of platform characteristics may result in models that
cannot be reused for different platforms. Furthermore, it may lead to models of
different applications that cannot be directly compared and integrated. We conclude
that platform characteristics assumed in platform-independent models are better

understood and controlled by designers if they are explicitly represented. In our
design approach, these characteristics are embodied in an abstract platform.

2.2 Abstract Platforms

The notion of abstract platform, as we have proposed initially in [2], supports a
designer in defining levels of platform-independence explicitly. An abstract platform
is an abstraction of infrastructure characteristics assumed in the construction of PIMs
of an application. Alternatively, an abstract platform defines characteristics that must
have proper mappings onto the set of concrete target platforms that are considered for
a design.

For example, if a platform-independent design contains application parts that
interact through operation invocations, then operation invocation is a characteristic of
the abstract platform. Capabilities of a (concrete) platform are used during platform-
specific realization to support this characteristic of the abstract platform. For example,
if CORBA is selected as a target platform, this characteristic can be mapped onto
CORBA operation invocations.

The use of the abstract platform concept may be reflected in an abstract platform
model, as depicted in the in Figure 1. The PIM of a distributed application depends on
an abstract platform model, in the same way as the PSM depends on a (concrete)
platform model.

Application
(PIM)

Abstract
Platform

Model

Fig. 1. PIM depends on abstract platform model

3 Methodological Aspects of Model-Driven Design

3.1 Abstract Platform Definition

The number of levels of platform-independence and the characteristics of the models
at each level depend on a number of design goals to be balanced, including those of
maximizing the efficiency of the design process and maximizing the reusability of
models. Different application domain requirements and platform characteristics may
also lead to the definition of different levels of platform-independence. We propose
the levels of platform-independence should be identified explicitly in an early stage of
the design process, which we call preparation phase [10]. In the preparation phase,
(MDA) experts define the required levels of models as well as define the modelling
language(s) to be used in the execution phase.

The definition of an abstract platform is supported by two observations [3]:
1. platform characteristics may play a role in early (platform-independent) designs,

and;
2. platform-independence must be balanced against platform-specific realization

The first observation leads us to the conclusion that platform characteristics that
play a role in platform-independent designs should be reflected in the abstract
platform.

The second observation recognizes that achieving platform-independence is a
requirement that must be considered in a larger context, where other relevant design
goals play an important role. An MDA design process should lead efficiently to a
(platform-specific) application running on a concrete platform.

The next subsections examine these observations and their implications.

Role of Platform Characteristics
Defining an abstract platform requires the ability to identify what abstract platform
characteristics are relevant at a platform-independent level. Some platform
characteristics become relevant when identifying application parts and their
interactions. This is the case for the characteristics of the support for interactions
between system parts. Some other platform characteristics play a more subtle, but not
necessarily negligible, role. Platform characteristics that may have impact in early
stages of the definition of a distributed application’s architecture are likely to qualify
as abstract platform characteristics.

This is best illustrated by an example, in which the design of a groupware service
is considered. This service facilitates the interaction of users residing in different
hosts. Initially, the service designer describes the groupware service solely from its
external perspective, possibly stating quality-of-service requirements on the service,
e.g., that the service should have high availability. At subsequent stages of
development, the designer is confronted with design decisions. In this example, we
consider the following alternatives: (i) a centralized (server-based) design, and (ii) a
distributed (peer-to-peer) design.

Figure 2 depicts these two solutions. In solution (i), a server facilitates the
interaction between users. In solution (ii), symmetric components facilitate the
interaction without the support of a centralized application-level component.

(i) centralised server-
based solution

(ii) distributed peer-to-
peer solution

Server

User

Client
Comp1

interactionsapplication partsdesired groupware service

User

User

Client
Comp2

Client
Comp3

User

Client
Comp1

User

User

Client
Comp2

Client
Comp3

Fig. 2. Alternative designs for the groupware service

In order to improve the reusability of platform-independent models, stable aspects of
a system’s architecture should be captured in platform-independent models.
Therefore, it would be desirable to select between alternative models (i) and (ii)
during platform-independent modelling. Nevertheless, some platform-specific aspects
play an important role in the selection of an adequate architecture. For example,
solution (i) would introduce a single point of failure in the architecture, unless the
platform provides support for replication transparency (as defined in the Reference
Model for Open Distributed Processing (RM-ODP) [12]).

Apparently, this places the designer in a dilemma, since platform selection would
affect platform-independent design. In order to solve this, a designer should be able to
express, at a platform-independent level, requirements on platform-specific
realizations that would allow all design decisions that are relevant for platform-
independent modelling to be captured. In our groupware service example, this would
mean that requirements on the reliability of individual components should be stated at
the platform-independent level, justifying the selection of a centralized or a
distributed design (possibly through application of aspect-oriented modelling [11]).

Requirements expressed at a platform-independent level should justify design
decisions for the design at that level and provide input for platform-specific
realization. If these requirements invalidate portability requirements for platform-
independent designs, then it is impossible to consider the design at the current level of
platform-independence. In this case, we envision two different contrasting solutions:
1. to consider the design at a higher level of abstraction, at which the platform

characteristics are no longer relevant for design decisions taken at that level; or,
2. to relax portability requirements, lowering the degree of platform-independence for

the design. This solution reflects on the characteristics of the abstract platform
being defined.

For our groupware service example, possible applications of these solutions would be:
1. to describe the groupware service solely from its external perspective. At this level

of abstraction, the reliability characteristics of the supporting infrastructure are
irrelevant. Details on the service’s internal design are only addressed at platform-
specific modelling, and hence cannot be re-used for different target platforms; and,

2. to restrict the set of potential target platforms, e.g., to include only platforms that
provide support for highly available components. In this case, it is possible to
describe the groupware service’s internal design at the newly defined level of
platform-independence, while still guaranteeing the satisfaction of the service
requirements. The abstract platform considered provides support for highly
available components.

In [6], we have presented thoroughly an example of solution (2), where an abstract
platform that supports dynamic reconfiguration of components is used at some point
of the design process in order to satisfy availability requirements.

Platform-independence Balanced with Platform-Specific Realization
Defining an abstract platform brings attention to balancing between two conflicting
goals: (i) platform-independent modelling, and (ii) platform-specific realization. On
the one hand, an abstract platform indicates directly the support available for
designers during platform-independent modelling, and therefore, reflects the needs of
application designers, including the needs to handle complexity in application design

and portability requirements. On the other hand, an abstract platform is established by
considering the set of potential target platforms and their (common and diverging)
characteristics [2]; this bottom-up knowledge is useful to reduce the design space to
be explored for platform-specific realization. Large design spaces are less amenable
to automatic exploration, and require more intervention of designer, e.g., through
extensive parameterization of transformations. Reducing the design space contributes
to increasing the efficiency of the design process.

3.2 Abstract Platform Representation

Designs must be represented using suitable design languages. In a model-driven
design process, several design languages may be used, e.g., to produce models at
different levels of abstraction and platform-independence. Alternatively, a single
“broad spectrum” design language [9] may be used. The design language adopted for
a design has an important role in defining characteristics of an abstract platform
assumed for the design.

In the implicit abstract platform definition approach characteristics of an abstract
platform are implied by the set of design concepts used for describing the platform-
independent model of a distributed application. These concepts are often inherited
from the adopted modelling language. For example, the exchange of “signals”
between “agents” in SDL [14] may be considered to define an abstract platform that
supports reliable asynchronous message exchange. The restricted use of particular
constructs in a design language or the use of certain modelling styles or design
patterns can serve as a means to select subsets of a language’s design concepts.

Instead of implying an abstract platform definition from the adopted set of design
concepts for platform-independent modelling, it may be useful or even necessary to
define the characteristics of an abstract platform explicitly, resulting in one or more
separate and reusable design artefacts. We call this approach explicit abstract
platform definition. During platform-independent modelling, parts of a pre-defined
abstract platform model may be composed with the model of the distributed
application. For example, although group communication is not a primitive design
concept of UML 2.0, it is possible to specify the behaviour of a group communication
sub-system using UML2.0. This sub-system is then re-used in the design of a
distributed application. Other examples of pre-defined artefacts that may be included
in abstract platforms are the ODP trader [12] and the OMG pervasive services [21]
(yet to be defined). The set of design concepts of a design language is still relevant in
this approach, since the distributed application and the abstract platform model are
described in the language.

In both the implicit and explicit abstract platform definition approaches, there is
some overlap between language characteristics and abstract platform characteristics.
This leads to the formulation of an important requirement for a design language to
support platform-independent design: the concepts underlying the design language
should be precisely defined, so that the characteristics of the abstract platform can be
unambiguously derived from these concepts. This is important for at least two
reasons: (1) designers need to know the characteristics of the abstract platform when

defining platform-independent models of an application; and (2) abstract platforms
are a starting point for platform-specific realization.

Furthermore, a comprehensive MDA design approach should allow designers to
select or define suitable abstract platforms for their platform-independent designs.
This leads to the formulation of a second requirement for design languages suitable
for MDA: a design language should enable the definition of appropriate levels of
platform-independence.

In [5], we have discussed how the two approaches to the definition of abstract
platforms can be supported using MDA standards, namely UML 2.0 [26] and MOF
2.0 [22].

3.2 Transformation Definition

When multiple levels of platform-independence are adopted, successive (automated)
transformations may be used that lead to models at lower levels of platform-
independence and, ultimately to platform-specific models (i.e., models at the lowest
level of platform-independence with respect to a particular definition of platform).

A transformation is straightforward when the selected target platform (either a
concrete or an abstract platform) corresponds (directly) to the source abstract
platform. When this is not the case, more effort has to be invested in the
transformation.

In general, we distinguish two contrasting extreme approaches to proceed with the
design step:

1. Adjust the target platform, so that it corresponds directly to the abstract platform.

2. Adjust the (scope of the) application model during transformation, such that the
requirements specified at source platform-independent level are satisfied by the
composition of the application model and target platform model.

In approach 1, the boundary between abstract platform and platform-independent
application model is preserved during the transformation step. This implies the
introduction of some platform-specific abstract platform logic to be composed with
the target platform. The nature of this composition depends on the particular
requirements for the abstract platform. For example, it may be possible to implement
abstract platform logic on top of a concrete platform. Nevertheless, this composition
may also imply the introduction of platform-specific (e.g., quality-of-service)
mechanisms, possibly defined in terms of internal components of the concrete
platform. Extension in a non-intrusive manner is often the preferred way to adjust a
concrete platform. Techniques that can be used for non-intrusive extension include
interceptors [20], aspect-oriented programming and composition filters [8]. In [6], we
have presented an example this approach, using CORBA portable interceptors to
extend the CORBA platform with dynamic reconfiguration functionality.

Approach 2 may imply the introduction of (e.g., quality-of-service) mechanisms in
the model of the application. This approach may be suitable in case it is impossible to
adjust the target platform, e.g., due to the cost implications of these adjustments or the
lack of extension mechanisms in a concrete platform.

Figure 3 illustrates these approaches to transformation. We consider a
transformation from platform-independent models to platform-specific models.

(1) (2) Abstract –
Platform

Model

Application
(PIM)

Application
(PSM)

Concrete
Platform

Model

Application
(PSM)

trivial

Abstract-Plat.
Logic (PSM)

Concrete
Platform

Model

Fig. 3. Alternative approaches to platform-specific realization

Both approaches allow us to target different concrete platforms from the same
platform-independent model, with different quality characteristics [2]. Approach 1
can be generalized as a recursive application of service definition (external
perspective) and the service’s internal design, resulting in a hierarchy of abstract
platforms and a concrete target platform. At each step of the recursion, both
approaches to transformation can be chosen.

4 Towards a Reference Architecture for Abstract Platform
Definition

In MDA development, opportunities for reuse of transformations play an important
role in deciding the organization of the execution phase in terms of levels of models
and transformations. A single transformation from high-level models to
implementations may be costly to develop and is rendered useless in the face of
technology platform changes. Given that technology platforms are generally regarded
as unstable, it is important to attempt to recognize (intermediate) stable abstract
platforms that can be used for a large number of applications. This allows
transformations to and from this intermediate abstract platform to be reused.

The proliferation of different abstract platforms reduces the opportunities for large-
scale reuse of intermediate models and transformations to and from intermediate
models. This calls for the agreement on a small number of abstract platforms that are,
to a great extent, application-domain-neutral and platform-independent.

Ideally, a reference architecture with a small set of canonical abstract-platform-
elements should be used to compose abstract platforms that suit the needs of
particular projects. We intend to define such a reference architecture, based on
concepts of the computational viewpoint of the RM-ODP [12]. We believe that using
a well-founded reference model (RM-ODP) to refer to abstract platform enables
agreement on the concepts for the description of abstract platforms, and may prove to

be an initial step towards a comprehensive framework for the definition of abstract
platforms. An initial discussion on the relation between the RM-ODP concepts and
the notion of abstract platform can be found in [4].

An example of the composition of abstract platforms can be found in [5], where we
have used UML to combine a number of abstract platforms defined both through the
implicit and the explicit abstract platform definition approaches.

5 Related Work

The MDA Guide [21] provides some examples of “generic platform types” and
mentions briefly the need for a “generic platform model”, which “can amount to a
specification of a particular architectural style.” Nevertheless, the introduction of
these concepts is superficial: for example, the term “generic platform” is not even
defined explicitly. In our interpretation of that documentation, we position our notion
of abstract platform as subsuming that of generic platform. Abstract platforms can
have other relevant characteristics in addition to defining a “particular architectural
style”, as we have shown in section 3.1. Furthermore, we have focussed on providing
guidelines for a designer to define and represent these abstract platforms. The MDA
Guide also states that a PIM “exhibits a specified degree of platform independence so
as to be suitable for use with a number of different platforms of similar type.” Our
concept of abstract platform defines the degrees of platform independence for a PIM.

Explicit abstract platform definition is comparable to the definition of (the
behaviour of) connectors in Architecture Description Languages (ADLs), such as
Rapide [15], [16] and Wright [1], when considering exclusively the characteristics of
interaction support. While the role of middleware platform characteristics in ADLs
have been recognized in [18], approaches to systematically separate and relate
platform-independent and platform-specific descriptions have not been proposed in
the scope of the work on Software Architecture.

6 Concluding Remarks

While, in the context of MDA, much effort has been invested in meta-modelling [22,
23], language definition [26, 28], model transformation specification [24], and tool
support, the methodological implications of platform-independence have been largely
overlooked. The objective of the Ph.D. work discussed in this paper is to fill this gap
by defining a methodology for model-driven design of distributed applications.

We have argued that the architectural concept of abstract platform should have a
prominent role in this design methodology. An abstract platform defines platform
characteristics that are considered at the particular level of platform-independence,
and may also serve as starting point for platform-specific realization.

Design language concepts and characteristics of abstract platforms are interrelated.
Therefore, careful selection of a design language is indispensable for the beneficial
exploitation of the PIM/PSM separation and the definition of abstract platforms.

Often, some platform characteristics are assumed implicitly in platform-
independent designs. This may lead to PIMs that cannot be reused for different
platforms or it may lead to PIMs that cannot be directly compared and integrated. It
may also lead to transformations that cannot be reused. Platform characteristics
assumed in platform-independent designs are better understood and controlled by
designers if the characteristics of the abstract platform are explicitly represented in
abstract platform definitions.

Work-in-progress includes the elaboration of a reference architecture for abstract
platform definition and the application of the proposed methodology and reference
architecture in a case study. In this case study, we will define a number of related
levels of platform-independence and their abstract platforms, as well as the
representation of these abstract platforms in UML. In addition, we will define
transformations from the abstract platforms to different concrete platforms.

Acknowledgements

Luís Ferreira Pires, Marten van Sinderen and Chris Vissers should be acknowledged
for their invaluable contribution to the Ph.D. work described in this paper. This work
is part of the Freeband A-MUSE project. Freeband (http://www.freeband.nl) is
sponsored by the Dutch government under contract BSIK 03025. This work is also
partly supported by the European Commission within the MODA-TEL IST project
(http://www.modatel.org).

References

1. Allen, R.J., Garlan, D.: A Formal Basis for Architectural Connection. ACM Transactions on
Software Engineering and Methodology, Vol. 6, No. 3 (1997) 213−219

2. Almeida, J. P. A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach to
platform-independent design based on the service concept. In: Proceedings 7th IEEE Intl.
Enterprise Distributed Object Computing Conference (EDOC 2003). IEEE Computer
Society, Los Alamitos, CA (2003) 112−123

3. Almeida, J.P.A., Dijkman, R., van Sinderen, M., Ferreira Pires, L.: On the Notion of Abstract
Platform in MDA Development. In: Proc. 8th IEEE Intl. Enterprise Distributed Object
Computing Conference (EDOC 2004), IEEE Computer Society, Los Alamitos, CA (2004)

4. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L.: The role of the RM-ODP
Computational Viewpoint Concepts in the MDA approach. In: Proceedings of the 1st
European Workshop on Model-Driven Architecture with Emphasis on Industrial
Applications (MDA-IA 2004), University of Twente, The Netherlands (2004) 43−51

5. Almeida, J.P.A., Dijkman, R., van Sinderen, M., Ferreira Pires, L.: Platform-independent
modelling in MDA: supporting abstract platforms. In: Proceedings Model-Driven
Architecture: Foundations and Applications 2004 (MDAFA 2004), Linköping University,
Linköping, Sweden (June 2004) 219−233

6. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L., Wegdam, M.: Platform-independent
Dynamic Reconfiguration of Distributed Applications. In: Proceedings IEEE 10th
International Workshop on Future Trends in Distributed Computing Systems (FTDCS 2004),
Suzhou, China, (May 2004) 286−291

7. Arango, G.: Domain Analysis: from Art Form to Engineering Discipline. ACM SIGSOFT
Software Engineering Notes, Vol. 14, No. 3 (1989) 152−159

8. Elrad, T., Filman, R. E., Bader, A. (eds.), Communications of the ACM, Special Section on
Aspect-Oriented Programming, Vol. 44, No.10 (2001) 29−97

9. Ferreira Pires, L.: Architectural Notes: a framework for distributed systems development,
Ph.D. Thesis. University of Twente, Enschede, the Netherlands (1994)

10. Gavras, A., Belaunde, M., Ferreira Pires, L., Almeida, J.P.A.: Towards an MDA-based
development methodology for distributed applications. In: Proceedings of the 1st European
Workshop on Model-Driven Architecture with Emphasis on Industrial Applications (MDA-
IA 2004), University of Twente, Enschede, The Netherlands (March 2004) 43–51

11. Gray, J., Bapty, T., Neema, S., Schmidt, D.C., Gokhale, A., Natarajan, B.: An Approach for
Supporting Aspect-Oriented Domain Modeling. In: Proceedings Generative Programming
and Component Engineering (GPCE 2003), Lecture Notes in Computer Science, Vol. 2830,
Springer-Verlag (Sept. 2003) 151−168

12. ITU-T / ISO: Open Distributed Processing - Reference Model – All Parts, ITU-T
Recommendations X.901, X902, X903, X.904 | ISO/IEC 10746-1, 2, 3, 4 (1995)

13. ITU-T / ISO: Open Distributed Processing - Reference Model - Enterprise Language, ITU-T
X.911 | ISO/IEC 15414 (2001)

14. ITU-T: Recommendation Z.100 - CCITT Specification and Description Language.
International Telecommunications Union (2002)

15. Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., Mann, W.: Specification and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software
Engineering, Vol. 21, No. 4 (1995) 336−355

16. Luckham D., Vera, J.: An Event-Based Architecture Definition Language. IEEE
Transactions on Software Engineering Vol. 21, No. 9 (1995) 717−734

17. Microsoft Corporation: Microsoft .NET Remoting: A Technical Overview (2001), available
at http://msdn.microsoft.com/library/en-us/dndotnet/html/hawkremoting.asp

18. Di Nitto, E., Rosenblum D.: Exploiting ADLs to Specify Architectural Styles Induced by
Middleware Infrastructures. In: Proceedings of the 21st International Conference on
Software Engineering (ICSE’99). Los Angeles, CA (1999)

19. Object Management Group: Model driven architecture (MDA), ormsc/01-07-01 (2001)
20. Object Management Group: Common Object Request Broker Architecture: Core

Specification, Version 3.0, formal/02-12-06 (2002)
21. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
22. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification, ptc/03-10-

04 (2003)
23. Object Management Group: Meta Object Facility (MOF) Specification, Version 1.4,

formal/02-04-03 (2002)
24. Object Management Group: MOF 2.0 Query / Views / Transformations RFP, ad/2002-04-10

(2002)
25. Object Management Group: Unified Modelling Language: Object Constraint Language

Version 2.0, Draft Adopted Specification, ptc/03-08-08 (2003)
26. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
27. Object Management Group: UML Profile for Enterprise Distributed Object Computing

Specification, ptc/02-02-05 (2002)
28. Object Management Group: Unified Modelling Language (UML) Specification:

Infrastructure, Version 2.0, ptc/03-09-15 (2003)
29. Sun Microsystems: Java(TM) Message Service Specification Final Release 1.1 (2002)
30. World Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework, W3C

Proposed Recommendation (2003), available at http://www.w3.org/TR/soap12-part1
31. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1, W3C

Note (2001), available at http://www.w3.org/TR/wsdl

