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In a model-driven design process the interaction between application parts can be described at 
various levels of platform-independence. At the lowest level of platform-independence, interaction is 
realized by interaction mechanisms provided by specific middleware platforms. At higher levels of 
platform-independence, interaction must be described in such a way that it can be further refined and 
realized onto a number of different middleware platforms, each with its particular interaction 
mechanisms and implementation constraints. In this paper we investigate concepts that support 
interaction design at various levels of middleware-platform-independence. In addition, we propose 
design operations for interaction refinement. The application of these operations to source designs 
results in target designs that take into account implementation constraints imposed by platforms, 
while preserving characteristics prescribed in source designs. Target designs are related to source 
designs by conformance. We discuss how transformation and conformance can be related, such that 
transformations indeed preserve the characteristics prescribed by a source design. 

Keywords: Model-driven design; abstract interactions; interaction refinement. 

1.   Introduction 

In our previous work [2, 3], we have argued that the design of a system can be considered 
at various levels of platform-independence in a model-driven design process. An initial 
design in a model-driven design process is given at a high level of platform-
independence, meaning that it considers little or none of the constraints that a platform 
imposes on the way in which that design can be implemented. Examples of such platform 
constraints are prescriptions of mechanisms that must be used to realize interactions 
between system parts in a design (e.g., operation invocation, message passing or publish-
subscribe queues). During the design process, a designer must gradually consider these 
constraints, and the means to incorporate them into designs. Eventually, this should lead 
to a design at a sufficiently low level of platform-independence such that the realization 
of the design becomes straightforward.  

 
* This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl), which is sponsored by the 
Dutch government under contract BSIK 03025. 
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For these reasons, a model-driven design process requires design concepts and 
supporting modelling languages that are abstract enough to construct designs in which no 
specific platform constraints are imposed. At the same time, such concepts should be 
expressive enough to allow the construction of designs at a sufficiently detailed level to 
describe how the design can be realized. 

The first goal of this paper is to identify and motivate concepts that support 
interaction design at various levels of platform independence. In order to abstract from 
particular interaction mechanisms at a high level of platform-independence, we consider 
that application parts interact through abstract interactions. Designers relate abstract 
interactions to their realizations in middleware platforms by applying design operations.  

The second goal of this paper is to introduce design operations that can be used to 
transform a source design at a certain level of platform-independence into a target design 
at a lower level of platform-independence. These design operations preserve the 
characteristics prescribed by a source design and gradually incorporate platform 
constraints into target designs. We focus on constraints and concepts that address the 
communication aspects of middleware platforms. 

We aim at capturing both structural and behavioural aspects of distributed 
applications in platform-independent models. This is in contrast with many approaches in 
the literature (e.g., [20, 24]), which focus on structural platform-independent models, 
addressing behavioural aspects only at platform-specific realization level. In these 
approaches, the effort invested on capturing the behaviour of an application (which 
amount to a large part of the distributed application effort) cannot be reused for 
realizations on different target platforms.  

The remainder of this paper is structured as follows: Section 2 characterizes the 
model-driven design process. Section 3 presents an instance of the design process that we 
use as example throughout the paper. This example consists of alternative 
transformations for the same platform-independent design. Section 4 proposes candidate 
design concepts. Section 5 proposes design operations, using these to transform designs 
in our example. Section 6 revisits the example, exploring the transformations not worked 
out in section 5. This serves to show the variety of platform constraints that can be 
accommodated in the design process. Section 7 discusses limitations of our approach. 
Section 8 discusses how transformation and conformance can be related, such that 
transformations indeed preserve the characteristics prescribed by a source design. Section 
9 positions our work with respect to related work, including a comparison of the 
proposed design concepts with those concepts underlying UML and SDL. Finally, section 
10 provides our conclusions and identifies some future work. 

2.   Model-Driven Design 

In this section we characterize the model-driven design process, emphasizing the role of 
conformance and platform-independence in such a process. We present the notion of 
platform adopted in this paper and discuss how the choice of design concepts influences 
the level of platform-independence that can be achieved. 
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2.1.   Model-driven design process 

We characterize a model-driven design process as a series of design steps, each of which 
results in a design of the system. Designs are represented in a symbolic artefact called a 
model. For each design step, design activities are executed, which consist of 
transformation and assessment activities [23]. A transformation activity is a generic 
design activity that entails the production of a target design on basis of a source design 
and requirements. An assessment activity is a generic design activity that comprises the 
evaluation of the target design as outcome of the transformation activity.  

During the design process, transformation activities incorporate a number of design 
decisions to a design, which add characteristics that will eventually be assigned to the 
realization of a design. Different design decisions lead to different alternative 
realizations. The reduction of the realization space imposed by successive design 
decisions is depicted in Figure 1 (inspired by [23]).  
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Figure 1. Reduction of realization space for designs at different levels of abstraction 

Design decisions taken in a design step should meet two requirements for the design 
process to make progress [14]: (i) they must contribute to satisfying requirements that 
have not yet been fulfilled, and (ii) they must preserve the characteristics present in the 
source design, i.e., the target design should conform to the source design. The latter 
requirement reveals the importance of conformance assessment in a design step. This is 
reflected in our approach in the use of design operations that result in conformant 
refinements of designs (see sections 5 and 8). Design decisions should eventually lead to 
a design that defines all relevant characteristics of an acceptable realization of the system. 
The platform on which the design will be realized partly determines which design 
decisions can be made. Similarly, design decisions determine possible platforms on 
which the design can be realized. 
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2.2.   Platforms and platform-independence 

For the purpose of this paper, we assume that distributed applications are ultimately 
realized in some object- or component-middleware platform that supports basic 
interconnection between distributed application parts. Examples of such platforms are 
CORBA/CCM [19] and Web Services [30]. We call the middleware platform on which 
the design will be implemented the realization platform (or platform for short). 

A platform provides reusable constructs for an application designer, who does not 
have to be concerned about the implementation of these constructs. For example, a 
designer of CORBA objects does not have to be concerned about the GIOP protocol and 
the marshalling and demarshalling of invocations. By providing particular realization 
constructs, a realization platform imposes a number of constraints on designs. These 
constraints may apply to the (types of) entities that can be used in a design, the way they 
interact with each other, their life-cycle, structure, behaviour, etc. The constraints 
imposed by the realization platform must be incorporated in designs (through design 
steps). This leads to (platform-specific) designs that can be implemented in the 
realization platform with relatively little effort. These designs are such that each concept 
in the design either corresponds to a construct that is provided by the realization platform, 
or is part of a pattern of concepts that corresponds to a construct that is provided by the 
realization platform.  

Designs at a high-level of abstraction that can be realized onto different platforms are 
called platform-independent designs. The corresponding models are called platform-
independent models (PIMs) in the Model-Driven Architecture (MDA) [17]. The level of 
platform-independence of a design depends on the sets of design concepts, combinations 
of concepts or patterns used, which constitute what we call an abstract platform. An 
abstract platform is an abstraction of infrastructure characteristics assumed for models of 
an application at a certain level of platform-independence [2]. For example, if a platform-
independent design contains application parts that interact through operation invocations 
(e.g., in a UML [18] model), then operation invocation is a characteristic of the abstract 
platform. Capabilities of a realization platform are used during platform-specific 
realization to support this characteristic of the abstract platform. For example, if CORBA 
[19] is selected as a target platform, this characteristic can be mapped onto CORBA 
operation invocations. Similarly, if JMS [25] is chosen as a target platform, this 
characteristic can be mapped onto a pair of message exchanges [3]. 

2.3.   Design concepts and middleware-platform-independence 

The design concepts that a designer uses to describe an application model affect the level 
of platform-independence of that model. This is because each design concept represents 
certain design characteristics, which correspond to design decisions made (implicitly) 
when the concept is used.  

For example, if a designer chooses to define the behaviour of each application part 
using a non-concurrent state-machine, then an application part can only process a single 
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interaction at a time. As a result, the application model excludes platform-specific 
implementations in which interactions may occur concurrently. This example shows that 
careful consideration is necessary when choosing design concepts, such that we can 
obtain the level of platform-independence we aim for. 

The set of design concepts we require should allow the designer to exploit the 
spectrum of levels of platform-independence which is required to balance between two 
goals [2]: (i) accommodating as many target middleware platforms as possible; and (ii) 
defining models that can be straightforwardly implemented on concrete platforms. Goal 
(i) calls for highly abstract models that cannot be directly implemented on any platform, 
and, therefore, have to be systematically refined so that goal (ii) can be accomplished. In 
this paper, we discuss the concepts necessary for describing interactions at various levels 
of middleware platform-independence, ranging from relatively abstract (PIM) levels to 
more concrete ones. 

3.   Running Example: The Design of a Conferencing Application 

We introduce a running example in the context of which the design concepts and design 
operations we propose can be illustrated. It consists of the design of a conferencing 
application, which facilitates the interaction of users residing in different hosts.  

We suppose initially that the designer describes the application as a composition of 
conference participants: a conference manager and a conference service provider. The 
service provider is described solely from its external perspective, revealing only its 
interfaces and relating interactions that occur at these interfaces. At this point in the 
design process, the characteristics of the internal design of the conference service 
provider are not revealed. In addition, we assume that the interfaces are described in 
terms of abstract interactions and interaction relations, which do not prescribe any 
particular interaction mechanism. The abstract platform at this level of abstraction 
supports the interactions between application parts and the conference service provider. 
Figure 2 shows how a snapshot of this design (D0) could be visualized. It distinguishes 
three conference participants and one conference manager.  
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Figure 2. A snapshot of design D0 

We distinguish two basic approaches to further refine design D0: 
(1) interaction refinement [10], in which case a designer refines the interactions between 

the application parts and their environment without changing the granularity of the 
parts, i.e., without decomposing the parts into smaller parts, or; 

(2) entity refinement (called interaction allocation and flowdown in [29]), in which case 
the designer decomposes the application parts into smaller parts and allocates the 
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existing interactions to these parts. In this case, the interactions remain unchanged, 
except for the introduction of new (internal) interactions between the smaller parts. 

Figure 3 depicts these approaches schematically. It also shows that interaction refinement 
and entity refinement can be applied in combination. 
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Figure 3. Approaches to system refinement [10] 

We consider several alternative transformations of design D0, according to the interaction 
refinement approach. We do not discuss entity refinement further in this paper, since this 
has been the subject of our previous work [3]. The following alternatives show how 
different platform characteristics influence the refinement process: 
(1) We refine D0 into a design D1 that uses an abstract platform that supports operation 

invocation between objects and supports multiple operation interfaces per object. 
The conference service provider is not decomposed, and is directly implemented as a 
single object in the realization. 

(2) We refine D1 into a design D2, and as in design step (1) described above, we use an 
abstract platform that supports operation invocation. In this case, however, we add 
the platform-imposed constraint that the abstract platform supports only a single 
operation interface per object.  

(3) We refine D0 into a design D3, and as in design step (1) described above, we use an 
abstract platform that supports operation invocation between objects. The abstract 
platform supports a single operation interface per object. In this case, however, we 
add a platform-imposed constraint that participants and managers are located in so-
called ‘thin clients’, which cannot be used as targets for operation invocation.  

(4) We refine D0 into a design D4 that uses an abstract platform that supports 
asynchronous messaging between objects. The abstract platform supports multiple 
messaging queues. The conference service provider is not further decomposed.  

The abstract platform used in design D2 facilitates the realization of this design in a 
CORBA platform (which offers only a single operation interface per CORBA object). 
The abstract platform used in design D3 facilitates the realization of this design in a Web 
Services platform, e.g. with the conference service provider hosted in a J2EE platform, 
with ‘thin clients’ running in Mobile Information Device Profile (MIDP) devices [26]. 
The abstract platform used in D4 facilitates the realization of this design using the Java 
Message Service (JMS) [25] or the CORBA Notification Service.  
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Figure 4 depicts these alternative transformations steps and the resulting designs. 
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Figure 4. Alternative design steps 

By applying interaction refinement, the alternative transformations presented in this 
section consider the use of different abstract platforms for distributing the interactions 
between participants, managers and the conference service provider.  

4.   Concepts for Abstract Platform Design 

In this section we generalize the alternative design steps of section 3 to derive 
requirements for design concepts at various levels of platform-independence. We also 
propose some basic design concepts that fulfil the requirements.  

4.1.   Requirements 

We claim that the example from section 3 motivates requirements for design concepts 
that are not considered in current state-of-the-art modelling languages. 

Requirements for interactions. An abstract interaction concept should abstract from 
details of interaction mechanisms and allow the designer to use any mechanism for the 
realization of a design (such as operation invocation and asynchronous messaging). 
Therefore, we propose an interaction concept that only represents: (i) the identity of the 
interaction; the successful occurrence of the interaction; (ii) the information that is 
available to the interacting parties as a result of the interaction and the location at which 
this information is available; and, optionally, (iii) the direction in which the information 
flows. Such a concept abstracts from the roles that the interacting parties play in the 
interaction (e.g., initiator or responder) and other aspects of interaction mechanisms that 
are deferred to a later stage of the design process (e.g., whether an interaction 
corresponds to an operation invocation or a message being passed, whether queues are 
used to temporarily store messages, or whether an operation is blocking or non-blocking). 

Requirements for interfaces. The example also motivates the need for abstract 
interfaces that abstract from a particular interaction mechanism through which 



8     João Paulo A. Almeida, Remco Dijkman, Luís Ferreira Pires, Dick Quartel, Marten van Sinderen 
 

 

communication takes place. An abstract interface abstracts from any constraints that an 
interaction mechanism may impose on the way in which that interface can be used. An 
example of such a constraint is that, at an interface, only remote procedure calls can be 
responded to, while no remote procedure calls can be invoked. A CORBA interface is an 
example of a mechanism that imposes these constraints. We propose an abstract interface 
concept that only represents: (i) the identity of the interface; (ii) the interactions that are 
supported by the interface, as well as the relations between these interactions; and (iii) the 
party that interacts via the interface. Such a concept abstracts from: (i) any constraints on 
the interaction mechanisms that are available at the interface (e.g., only remote procedure 
calls can occur at this interface); (ii) any constraints on the role that the owner of the 
interface may play in interactions that occur at that interface (e.g., the entity that owns the 
interface can only play the role of responder in interactions that occur at this interface); 
and, (iii) the addressing scheme that is used to identify the interface (e.g. whether the 
interface is identified by a URI or a CORBA object reference). 

4.2.   Basic design concepts 

The basic design concepts presented in Figure 5 satisfy the requirements defined in 
section 4.1, by defining abstract interaction and interface concepts. These concepts are 
adapted versions of the RM-ODP basic modelling concepts [13] as explained in [9].  
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Figure 5. Conceptual model 

An entity is a logical or physical carrier of behaviour. It is uniquely identified by a name. 
Entities can contain other entities to represent how they are composed. Entities also 
contain interfaces that represent parts of the mechanisms that they use to interact with 
other entities. Interfaces can be connected by a binding, which represents a shared 
mechanism for interaction. The parts of this shared mechanism correspond to the 
interfaces that the binding connects. A binding does not represent something in between 
the interfaces. The bound interfaces themselves constitute the mechanism†. 
 
† In this paper, we consider a system given a certain configuration of entities, interfaces and bindings, and we do 
not address modification of the system structure. 
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Entities have a behaviour according to which they perform actions. Interfaces also 
have behaviours, which partially determine the behaviour of an entity and represent the 
actions that entities perform in the context of a binding. We call an action that is 
performed by a single entity an internal action. We call an action that is performed by 
multiple entities in collaboration an interaction.  

If an interaction occurs, its results are available to all its participants. If an interaction 
does not occur, no result is established. Hence, none of the participants can refer to any 
(intermediate) result. The possible results of an interaction are represented by information 
attributes. If an interaction occurs, the values of its information attributes represent the 
result of the interaction. An interaction can also be associated with a location attribute 
that represents the possible locations at which it can occur. If an interaction occurs, the 
value of its location attribute represents the location at which its results are available. 
This location identifies a binding. 

Constraints on actions determine when these actions are allowed to occur (causality 
conditions) and what kinds of results are possible as the outcome of an action (attribute 
constraints). Each behaviour that participates in an interaction can define its own 
constraint on the occurrence of that interaction. We call that constraint an interaction 
contribution.  

Each interacting entity constrains the attributes established as result of an interaction: 
a party may offer a set of values, accept a set of values, or both. These constraints on 
values supply different ways of cooperation, namely, value passing, value checking and 
value generation [22]. Value passing occurs when an interacting party offers a value and 
the other parties accept this value. Value checking occurs when all interacting parties 
offer the same value. In value generation, the interacting parties offer a range of 
acceptable values and the interaction happens if it is possible to establish a value that 
matches all requirements. 

4.3.   Application of design concepts to D0 

Figure 2 presents a snapshot of the structural aspects of D0 in terms of the basic concepts 
described above. An entity has been represented by a rectangle with cut-off corners that 
contains the entity’s name. An interface is represented by a “T” connected to its owning 
entity. A binding is represented by a dashed line that connects the bound interfaces. 
Bindings are annotated with their location. 

We identify the following (value passing) interactions: 
• sendmsg interactions, which occur at the bindings between participants and the 

conference service provider (λpn,c in Figure 2). These interactions result in the 
establishment of a message to be sent (the information attribute imsg). In this 
interaction, information flows from participants to the conference service provider; 

• receivemsg interactions, which occur at the bindings between participants and the 
conference service provider (λpn,c). These interactions result in the establishment of 
the message received. In the receivemsg interaction, information flows from the 
conference service provider to a participant; 
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• the include interaction, which occurs at the binding between the manager and the 
conference service provider (λc,m). This interaction establishes the identification of a 
participant (the information attribute iparticip) that is to be included in the conference. In 
this interaction, information flows from the manager to the conference service 
provider; 

• the exclude interaction, which occurs at the binding between the manager and the 
conference service provider (λc,m). This interaction establishes the identification of a 
participant (the information attribute iparticip) that is to be excluded from the 
conference. In this interaction, information flows from the manager to the conference 
service provider. 

The following causality conditions apply to the interactions: 
• the occurrence of receivemsg interactions follows the occurrence of a sendmsg 

interaction; receivemsg interactions occur at the bindings between participants 
currently included in the conference and the conference service provider; 

• the occurrence of include eventually leads to a participant being included in the 
conference, and; 

• the occurrence of exclude eventually leads to a participant being excluded from the 
conference. 

Figure 6 represents part of the interactions and constraints of D0 graphically. For 
simplicity, it only shows two participants and only the interactions necessary for one 
participant p1 to send a message to the conference. Furthermore, it only shows the include 
interaction with the conference manager. For the sake of conciseness the figure only 
represents one instance of occurrence of these interactions. 
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sendmsg

receivemsg
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receivemsg
imsg: Message | imsg= sendmsg.imsg
λ: LocationType = λp1,c, 
  participantAt(λ) in participantSet

sendmsg
imsg: Message
λ: LocationType 
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imsg: Message | imsg= sendmsg.imsg

λ: LocationType = λp2,c, 
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Manager Behaviour m
include
iparticip: Participant 
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addparticipant

imsg: Message
λ: LocationType = λp1,c
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Participant Behaviour pb1
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Figure 6. Conference system behaviour 

A behaviour is represented by a rounded rectangle that carries the name of its 
corresponding entity or interface. An internal action is represented by a circle drawn 
inside a behaviour. An interaction contribution is represented by a semi-circle drawn on 
the border of a behaviour. An interaction is represented as dashed lines that connect the 
interaction contributions that form the interaction. Attributes are drawn inside a box, 
along with the name of the action to which they belong. Constraints are drawn inside the 
box that is attached to the action (for attribute constraints), or they are represented by an 
arrow that means that the action can only occur after the action at the origin of the arrow 
has occurred (for causality conditions). In this paper we do not discuss the precise way to 
represent constraints. We refer to [22] for more information about this aspect. 
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5.   Design Operations 

A design that does not correspond directly to a realization in a selected target platform 
can be further transformed using the following design operations: (inter)action 
refinement, binding and interface decomposition, binding and interface merging, and 
entity merging. We present each of these operations below, by motivating and illustrating 
them with the conference application and using the concepts presented in section 4.2. 

5.1.   Action refinement 

If an action (i.e., either an interaction of internal action) cannot be supported by a 
construct from the realization platform, we must refine that action into multiple actions 
that can be directly supported by the realization platform. 

An action cannot be refined into an arbitrary set of actions and constraints, because 
the refined behaviour must preserve the characteristics that the original behaviour 
prescribes. [21] explains how designs, constructed with an extension of the concepts from 
section 4.2, can be refined correctly. Basically, each action is refined into a group of final 
actions that correspond to the completion of that action and inserted actions that do not. 
Since the final actions correspond to the original action, they must together enforce the 
same constraints and deliver the same results as the original action. 

5.2.   Action refinement example 

In our conference example, none of the realization platforms support the abstract 
interaction concept directly through the supported interaction mechanisms. All the 
mechanisms in the considered platforms require additional design decisions, such as, 
defining the party responsible for initiating interaction. Therefore, the behaviour of a 
platform’s interaction mechanism is often defined at a level of abstraction at which 
multiple lower level actions are executed by the interacting parties. For example, 
asynchronous messaging mechanisms identify an interaction for a party to send a 
message and an interaction for a party to receive a message. A remote procedure 
invocation mechanism identifies an interaction for a client to issue a request, an 
interaction for a server to receive a request, an interaction for a server to respond to a 
request and an interaction for a client to receive the response to the request. Table 1 
shows a transformation that refines an interaction into multiple interactions forming a 
remote invocation. 

Table 1. Action refinement: transformation 

Input Any interaction i in which a value is passed from one party to another. 

Design 
decisions 

Operation invocation is used to realize interaction. The entity that passes value in the interaction 
initiates communication. 

Output The interaction i is refined into: a invocation_req interaction, a invocation_ind  interaction, a 

invocation_rsp interaction and a invocation_cnf interaction. invocation_ind is a final 
interaction, all others are inserted interactions. 
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5.3.   Binding and interface decomposition 

The consideration of platform characteristics in a design may require bindings and 
interfaces to be decomposed into multiple bindings and interfaces. This operation must be 
applied to a binding and its interfaces in a source design, if the interaction mechanisms 
that a realization platform provides cannot directly support the binding. The entities and 
bindings by which a binding is replaced in the refined design must connect the entities 
that correspond to the original entities of the abstract design. Otherwise, the refinement 
does not preserve the connectivity of the original design. Binding decomposition and 
action refinement are often coupled, because, if a binding is refined, interactions that 
occurred at that binding must be refined into actions that can be assigned to the 
refinement of that binding. Interactions that occur at a certain binding should occur at 
locations introduced by bindings or entities that replace it. 

5.4.   Binding decomposition example 

We obtain design D1 from D0 in two steps. Table 2 shows the transformation used in the 
first step, in which the bindings from D0 are decomposed into multiple entities. 

Table 2. Binding decomposition: transformation 

Input Any binding λ  (and interfaces associated with it) between two entities e1 and e2. 

Design decisions Operation invocation is used. 

Output An entity eπ that supports operation invocation is introduced. This entity is connected to 
e1 through a binding λπ1 and connected to e2 through a λπ2. 

Implications for 
behaviour  

(Inter)actions that replace original interactions that occur at binding λ should occur at 
λπ1 or λπ2 or eπ. 

 
Figure 7 illustrates this decomposition step graphically. 
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Figure 7. Action refinement and binding decomposition applied to D0 

The interactions that occurred at the original binding are refined according to the rule 
from Table 1. The sendmsg interactions which occur at bindings λpn,c are refined into: 
• a invocation_req interaction, which occurs at binding λpn,Πpn between a participant and 

an entity that is part of the abstract platform (see Figure 7). This interaction results in 
the establishment of the name of an operation to be invoked, arguments for the 
invocation, and an identifier for the invocation iid. This identifier is unique in the 
context of the binding and is used to distinguish between multiple simultaneous 
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invocations‡. In this refinement, the name of the operation is sendmsg (not to be 
confused with the sendmsg interaction from Figure 6) and the argument is the value 
of information attribute iarg. In our case this argument will carry a more concrete 
representation of the message that is sent; 

• a invocation_ind interaction, which follows the occurrence of invocation_req; requesting 
the operation to be invoked. The invocation_ind interaction occurs at binding λΠpn,c 
between an entity that is part of the abstract platform and the conference service 
provider (see Figure 7). The results of this interaction are the same as the results of 
the invocation_req interaction; 

• a invocation_rsp interaction, which occurs at the same binding at which the 
invocation_ind interaction occurs. Since the sendmsg interaction only consists of an 
information flow from a participant to the conference service provider, the response 
does not have to carry any information; 

• a invocation_cnf interaction, which occurs at the same binding at which the 
invocation_req interaction occurs. This interaction follows the occurrence of the 
invocation_rsp interaction.  

The include and exclude interactions are refined in a similar way. The receivemsg operation 
differs in that it is targeted at participants. Because of space restrictions we omit the 
discussion of this refinement. 

Figure 8 represents part of the refined behaviour. However, it only shows one 
participant. The behaviour of the abstract platform is such that it can accept invocation_req 
interactions at both the binding with the participant and the binding with the conference 
service provider. This is because it does not restrict the location λ at which this 
interaction can take place (i.e., there is no constraint for the location attribute of 
invocation_req). This means that the invocation_req interaction contribution in fact is part of 
two interactions: one interaction between the abstract platform and the conference service 
provider, and one interaction between the abstract platform and the participant. Upon 
engaging in a invocation_req in a certain binding, the abstract platform causes an 
invocation_ind to occur at the other (“opposite”) binding. The behaviour of the conference 
service provider ensures that after engaging in a invocation_ind interaction in which the 
sendmsg operation is invoked, the conference service provider enables an invocation_req, in 
which the receivemsg operation is invoked. 

In Figure 8, invocation_ind with a value of sendmsg for iop is a final action for sendmsg 
from Figure 6. Similarly, invocation_ind with a value of receivemsg for iop is a final action 
for receivemsg from Figure 6. Now we can verify that, after abstracting from inserted 
actions invocation_req, invocation_rsp and invocation_cnf, the final actions enforce the same 
constraints as the actions for which they are final actions. For example, the constraint 
from Figure 6 that receivemsg is caused by sendmsg is also enforced by the final actions 
for receivemsg and sendmsg from Figure 8. 

 
‡ This identifier is either implicit or explicit in realization platforms. For example, a CORBA client using the 
Dynamic Invocation Interface (DII) manipulates the identifier of a request explicitly. In contrast, for a client 
using compiled stubs the identifier of a request is implicit and corresponds to the thread in which the local stub 
method is invoked. 
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Figure 8. Refined behaviour 

In the design depicted in Figure 7 and Figure 8 the targets of operation invocation are 
implied by bindings in which an invocation_req occur. For example, if a invocation_req 
occurs at binding λp1,Πp1, the invocation is targeted at the conference service provider. We 
can further transform this design by generalizing the behaviour of the entities that make 
up the abstract platform so that they support operation invocations between two arbitrary 
entities. This results in a better matching between this behaviour and the behaviour of 
realization platforms (such as, CORBA, Web Services, Java RMI). This generalization is 
accomplished by adding an information attribute (idst) to invocation_req, which identifies 
the binding at which a corresponding invocation_ind should occur. This attribute is defined 
by the entity that initiates an invocation. Figure 9 illustrates this. 

invocation_ind
iop: Operation = invocation_req.iop
iarg: Arguments = invocation_req.iarg
iid: Identifier = invocation_req.iid
λ: LocationType = invocation_req.idst

Abstract Platform Behaviour Π1'

invocation_req
iop: Operation
idst: LocationType
iarg: Arguments
iid: Identifier
λ: LocationType

invocation_rsp
iop: Operation = invocation_req.iop
iarg: Arguments
iid: Identifier = invocation_req.iid
λ: LocationType = request_req.idst

invocation_cnf
iop: Operation = invocation_req.iop
iarg: Arguments = invocation_rsp.iarg
iid: Identifier = invocation_req.iid
λ: LocationType = invocation_req.λ

 

Figure 9. Invocation target as attribute idst 

5.5.   Entity merging 

The consideration of platform characteristics to a design may require entities to be 
merged into a single entity. This operation must be applied, if a realization platform 
supports multiple entities in a design as a single entity. The resulting entity has all the 
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bindings that the original entities had. Similarly, the resulting entity carries all the 
behaviours of the original entities.  

5.6.   Entity merging example 

Figure 10 shows the application of entity merging in our example. Entities Πp1, Πp2, Πp3 
and Πp4 are merged into an entity Π1’. Entity merging does not affect the behaviour 
domain. The behaviour of the original entities is carried by the merged entity. 
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Figure 10. Entity merging to obtain D1 

5.7.   Binding and interface merging 

The consideration of platform characteristics to a design may require interfaces to be 
merged into a single interface. This operation must be applied to some interfaces and 
their bindings, if a realization platform imposes constraints on the number of interfaces 
that can be attached to an entity and the design violates these constraints. Merging of 
interfaces may require the interactions that occur at these interfaces to be refined, because 
interactions with the same name could originally be distinguished by the interface names. 
However, if the interfaces are merged, they cannot be distinguished anymore. For 
example, if a binding λ replaces a set of bindings λi, information attributes can be used to 
distinguish interactions that occur at different original bindings λi. 

5.8.   Binding and interface merging example 

We use binding and interface merging to obtain D2 from D1. In platform Π2, an entity is 
not allowed to have more than one interface through which it plays the responding role in 
invocations. Therefore, multiple interfaces through which an entity plays a responding 
role must be merged into a single interface (the corresponding bindings are also merged). 
This step is depicted in Figure 11.  
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Figure 11. Binding and interface merging applied to D1, resulting in D2 
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The application of the binding merging operation consists of replacing bindings λΠp1,c, 
λΠp2,c, λΠp3,c, and λc,Πm by λΠ,c and should be reflected in the behaviour of entity Π1’ by 
replacing the bindings being merged by λΠ,c. In addition, invocation_req interactions that 
occur at bindings λΠp1,c, λΠp2,c, λΠp3,c, and λc,Πm (in D1) are replaced by interactions at 
binding λΠ,c that have an additional information attribute idst that can have the values 
λp1,Πp1, λ p2,Πp2, λp3,Πp3, and λΠm,m. respectively. This ensures that the interactions can still 
be distinguished as belonging to different original bindings. For example, an 
invocation_req interaction that originally occurred at binding λΠp1,c is replaced by an 
invocation_req interaction that occurs at binding λΠ,c and has the value λp1,Πp1 for idst. We say 
that in this way the topology of the original structure is preserved. 

5.9.   Realization of abstract platforms  

By applying the design operations we have presented, a designer gradually refines a 
design into a design whose implementation onto a realization platform is straightforward, 
i.e., each pattern of concepts in the design corresponds to a construct that is provided 
directly by the platform. For example, the implementation of platform D2 on a CORBA 
platform is straightforward, because we can apply the following transformation: each 
abstract platform entity from D2 is implemented as a remote procedure invocation 
mechanism that is supported by CORBA; each interface is implemented as a CORBA 
operation interface on the client or on the server side, as it is specified in IDL; and each 
interaction is implemented as an interaction in the remote procedure invocation 
mechanism (invocation request, indication, response or confirmation).  

6.   The Example Revisited 

In section 5, we have discussed how the design operations can be applied to obtain 
designs D1 and D2. In this section, we show how designs D3 and D4 can be obtained from 
the same platform-independent design D0. In D3 and D4 participants and managers are 
located in so-called ‘thin clients’, which cannot be used as targets for operation 
invocation. 

The refinement of interactions sendmsg, include and exclude is identical to the 
refinement we have presented earlier for D2. The refinement of receivemsg differs 
significantly, since this interaction is realized through a polling scheme. The receivemsg 
interaction is refined into the following interactions: 
• an invocation_req interaction, which occurs at binding λpn,Πpn between a participant and 

an entity that represents the abstract platform. This interaction results in the 
establishment of the name of an operation to be invoked, in this case receivemsg_poll, 
and an identifier for the invocation, with the same role as the identifier used in 
section 5.4; 

• an invocation_ind interaction, which follows the occurrence of invocation_req. The 
invocation_ind interaction occurs at binding λΠpn,c between an entity that represents the 
abstract platform and the conference service provider; 

• an invocation_rsp interaction, which occurs at the same binding at which the 
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invocation_ind interaction occurs. The information attribute consists of a Boolean 
value (iisavailable), which indicates whether a message is available, and the message (iarg), 
if available;  

• an invocation_cnf interaction, which occurs at the same binding at which the 
invocation_req interaction occur. This interaction follows the occurrence of the 
invocation_rsp interaction.  

A recursion in the refined behaviour is necessary, when the value of the iisavailable 
information attribute of invocation_cnf is false. The final action that corresponds to the 
original interaction is invocation_cnf with iisavailable equals true. Similarly to the case of design 
D2, we can further transform this design by generalizing the behaviour of the entities 
representing the abstract platform so that they support operation invocations between two 
arbitrary entities. 

For D4, we use an abstract platform that supports asynchronous messaging between 
objects. The abstract platform supports multiple messaging queues. The sendmsg 
interaction is refined into the following interactions: 
• a data_req interaction, which occurs at binding λpn,Πpn between a participant and an 

entity that represents the abstract platform. This interaction results in the 
establishment of the message to be sent;  

• a data_ind interaction, which follows the occurrence of data_req. The data_ind 
interaction occurs at binding λΠpn,c between an entity that represents the abstract 
platform and the conference service provider.  

Similar refinements apply to the other interactions, with the exception of receivemsg, in 
which case the data_req is directed from the conference service provider to the abstract 
platform and the data_ind is directed from the abstract platform to a conference 
participant. Each pair of participant and service provider shares a message queue. 

The data_ind interaction is the final interaction in the refinements. Depending on the 
constraints on the original interaction, it may be necessary to insert additional interactions 
to preserve the constraints in the source design. For example, if a participant performs an 
action that follows the occurrence of the sendmsg interaction, it is necessary to insert 
interactions in the target design to inform the participant that data_ind has occurred. This 
can actually be seen in the refinement framework as a refinement of the causality relation 
between sendmsg and the actions that depend on its occurrence [21]. 

7.   Discussion 

In this section, we discuss some issues related to the use of the design concepts proposed 
in section 4. 

Modelling failure. In our approach, an interaction represents the successful 
completion of a shared activity. When the activity being modelled fails to complete, we 
say that the abstract interaction does not occur. If it is necessary to represent the failure of 
an activity explicitly, the failure should be modelled as an interaction, which can only 
occur if the interaction that models the successful completion of the activity does not 
occur. A consequence of this modelling choice is that failure is perceived by all 
interacting entities. Therefore, it is not possible to model partial failures of a shared 
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activity in this way. If it is necessary to model partial failure explicitly, the designer must 
model the shared activity at a lower level of abstraction, e.g., by modelling an entity 
between interacting entities and describing partial failure through the behaviour of this 
entity. 

Value generation. As discussed in section 4.2, the notion of interaction we adopt can 
be used to model value generation. Value generation can be used to describe complex 
shared activities at a high-level of abstraction. For example, it is possible to model the 
negotiation of quality-of-service contracts between parties with their own requirements 
using a single interaction. However, value generation should not be used 
indiscriminately, since it may require sophisticated mechanisms for its reliable realization 
when distribution must be considered. 

8.   Conformance and Transformation 

In this section we explain the relation between conformance and transformation. We also 
show an example that illustrates this relation. 

8.1.   Relation between conformance and transformation 

Conformance rules and (non-parameterized) transformation specifications can be 
regarded as two extreme approaches in relating source and target designs from the 
perspective of design freedom for the target design. Conformance rules determine the 
minimum to be preserved in a design step (hence maximum freedom for target design 
without losing design decisions in the source design) and transformation specifications 
determine the maximum that can be prescribed in a design step (hence resulting in a 
specific target design, minimum freedom). This is illustrated in Figure 12.  
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Figure 12. Conformance and transformation 
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Conformance rules determine implicitly the set of target designs which conform to a 
source design. These rules are depicted as a “spotlight”; a source design “illuminates” a 
target area in the target design level. In contrast, a (non-parameterized and deterministic) 
transformation specification is depicted as an arrow from a source to a target design. 

In order to ensure that the characteristics that the source design prescribes are 
preserved in the target design conformance assessment should be conducted. This is 
illustrated by the arrows pointing towards the source design in Figure 12. 
Conformance assessment can be carried out as illustrated in Figure 13.i. This figure 
illustrates that during the construction of a target design Dt from a source design Ds, 
characteristics c are inserted as a consequence of design decisions that are made. To 
check the conformance of the target design to the source design, we have to abstract from 
these characteristics, resulting in an abstracted target design Dt’. Subsequently, we must 
check if the abstracted target design is equivalent (~) to the source design, according to a 
chosen notion of equivalence. To abstract from inserted characteristics c, we do not 
necessarily need to know the details of these characteristics. Therefore, the ‘abstract’ 
operator refers to a set of characteristics c’. For example, if, during the construction of a 
target design, an interaction is inserted, we only need to know which interaction we must 
abstract from during the conformance assessment. We do not need to know details about 
this interaction. 

Ds

Dt

Dt’
c

~
Ds

Dt

Dt’
~

abstract(c’, Dt)
transform(Ds)

abstract(c’, Dt)
where 
  c’ = ftransform(Ds)

Ds

Dt

Dt’
~

transform(Ds, p)
abstract(c’, Dt)
where 
  c’ = ftransform(Ds, p)

i. Refinement and conformance ii. Transformation and conformance iii. Parameterized transformation and conformance 

Figure 13. Conformance and transformation 

A transformation from a source design Ds into a target design Dt is a special case of 
constructing a target model. In this case the target model and the inserted characteristics 
are completely determined by the transformation rules and the source design Ds. Hence, 
the characteristics c’ that we must abstract from during the conformance assessment can 
be automatically determined by a function ftransform on the source design Ds. This function 
must be defined as a complement of the transformation. If such a function exists, we can 
automatically check the conformance of the target model to the source model. Figure 
13.ii illustrates this case.  Figure 13.iii illustrates the case in which the transformation is 
parameterized. For parameterized transformations, design decisions taken in the design 
step are determined by the transformation rules, the source design and the values of the 
parameters. Hence, c’ can be determined by a function ftransform on the source design Ds 
and the parameter values p. 

An approach to handle conformance assessment is to define transformations that 
always produce conformant target designs. The benefit of this approach is that 
conformance assessment activities do not have be performed (manually) for each 
application of the transformation. This is particularly beneficial in iterative design 



20     João Paulo A. Almeida, Remco Dijkman, Luís Ferreira Pires, Dick Quartel, Marten van Sinderen 
 

 

approaches in which transformations are re-applied frequently to cope with changes in 
source models. 

To show that a model transformation guarantees conformance, we must prove that for 
each source design Ds: 

abstract(transform(Ds), ftransform(Ds)) ~ Ds. 

For a parameterized transformation, we must prove that for each source design Ds and 
each admissible parameter value for Ds: 

abstract(transform(Ds), ftransform(Ds, p)) ~ Ds. 

8.2.   Example 

In this section, we illustrate the approaches to conformance assessment discussed above. 
As an example of assessing conformance of a transformed design, we consider the source 
design Ds from Figure 14.i as a starting point. To this design, we apply the transformation 
described in Table 1. This results in a target design Dt in which application parts interact 
through a request/response pattern, as depicted in Figure 14.ii. The source and target 
designs are adapted versions of the designs presented in Figure 6 and Figure 8. 

ii. Design after transformation

Participant Send Component Behaviour pc Conference Service Provider Behaviour cb
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imsg: Message

initiate_send

/\

sendmsg
imsg: Message |
imsg = typemsg.imsg
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imsg: Message | 
imsg = sendmsg.imsg
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imsg: Message | 
imsg = sendmsg.imsg
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iop: Operation | iop = sendmsg
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recvmsg
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imsg = invocation_ind.iarg
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imsg = invocation_ind.iarg

Abstract Platform Behaviour Πp1

invocation_rsp

invocation_cnf

invocation_ind
iop: Operation | iop = invocation_req.iop
iarg: Arguments | iarg = invocation_req.iarg
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iop: Operation | iop = invocation_req.iop
iarg: Arguments | iarg = invocation_req.iarg

i. Design before transformation

iop: Operation
iarg: Arguments

invocation_req
invocation_ind
iop: Operation
iarg: Arguments

 

Figure 14. Example of conformance and transformation 

To assess the conformance of Dt to Ds, we apply the conformance assessment approach 
from Figure 13.ii.  

During the transformation, the sendmsg interaction is refined by the invocation_req, 
invocation_ind, invocation_rsp and invocation_cnf interactions and the abstract platform 
behaviour Πp1. To perform conformance assessment, we must construct a function 
ftransform that yields the characteristics c’ that are inserted into the source design. We can 
do that by observing that the invocation_ind interaction is the final action, the completion 
of which corresponds to the completion of the sendmsg interaction. The other interactions 
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are considered inserted interactions. invocation_ind establishes two results, iop and iarg, where 
iarg corresponds to the result imsg of sendmsg and iop is inserted. Finally, the behaviour Πp1 
of the abstract platform is inserted. Hence: 

ftransform (Ds) = { invocation_req, invocation_rsp, invocation_cnf, iop, Πp1} 

When abstracting from invocation_req, invocation_rsp and invocation_cnf, we must rewrite 
the relations that invocation_ind has with these actions. Also, we must rewrite the 
constraints on invocation_ind’s attributes that refer to attributes of inserted interactions. To 
rewrite the relations, note that the occurrence of invocation_ind is caused by the occurrence 
of invocation_req, while the occurrence of invocation_req is caused by the occurrence of 
composemsg and initiate_send. Hence, when we abstract from invocation_req, the occurrence 
of invocation_ind is caused by the occurrence of composemsg and initiate_send. Similarly, to 
rewrite the constraints on the attributes of invocation_ind, note that invocation_ind.iarg = 
invocation_req.imsg and invocation_req.iarg = composemsg.imsg. Hence, after abstracting from 
invocation_req, invocation_ind must enforce that invocation_ind.iarg = composemsg.imsg. 

When abstracting from Πp1, we must re-assign invocation_ind to some behaviour other 
than Πp1. We assign an abstraction of Participant Send Component Behaviour pc’ (pc’’) with 
the responsibility of enforcing that invocation_ind only occurs after composemsg and 
initiate_send have occurred. We do that, because originally Πp1 and pc’ enforced that 
condition. Hence, when we abstract from Πp1 only pc” enforces it. Similarly, we assign 
pc” the responsibility of enforcing that iarg = composemsg.imsg. Abstracting from the inserted 
characteristics yields an interaction invocation_ind that establishes the information value 
iarg, for which invocation_ind.iarg = composemsg.imsg. This interaction is equivalent to the 
sendmsg interaction from Figure 14.i minus naming differences. Hence, the behaviour 
after abstracting from inserted characteristics is equivalent to the behaviour shown in 
Figure 14.i. Therefore, the transformation yields a behaviour that conforms to Ds.  

Our approach to verify conformance of behaviours is described precisely in [8, 21]. 
As an example of proving that a transformation always yields a target design that 
conforms to the source design, we prove that the transformation from Table 1 has this 
property under certain conditions. The proof focuses on conformance with respect to 
relations between actions. 

To construct the proof, we argue that, in any source design Ds, we can group the 
relations that an interaction i can have into four groups, as illustrated by Figure 15.i: 
• A1 is the group of actions on which the occurrence of i depends in b1, including actions 

that have a choice relation with i (an action has a choice relation with i, if either that 
action or i can occur, but not both); 

• A2 is the group of actions on which the occurrence of i depends in b2; 
• A3 is the group of actions that depend on the occurrence of i in b1, excluding actions 

that have a choice relation with i; 
• A4 is the group of actions that depend on the occurrence of i in b2. 
Figure 15.ii illustrates the transformation transform_table_2(Ds) that transforms a source 
design Ds, using the rules from Table 1. The transformation is undefined for disabling 
relations in b1. Therefore, the transformation can only be applied if the condition is 
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satisfied that b1 does not contain any disabling relation. An action a1 disables another 
action a2, if after a1’s occurrence, a2 can not occur anymore. For example, the occurrence 
of a ‘cancel’ action, disables the occurrence of all actions in a ‘sales’ process. 

In Figure 15.ii, i1, i3 and i4 are inserted interactions and ib is an inserted behaviour. i2 
is the final interaction for i. Hence: 

ftransform_table2(Ds) = {i1, i3, i4, ib }. 

To prove that the transformation always yields a conformant target design, we prove that, 
after abstraction from these inserted characteristics, the transformed design is equivalent 
to the source design. The inserted interactions do not affect the relations that i2 has with 
actions in A2 and A3. Hence, after abstraction from the inserted interactions, these 
relations do not change. The occurrence i2 depends on the occurrence of i1, which 
depends on the occurrence of actions in A1. Hence, after abstracting from i1, the 
occurrence of i2 depends on the occurrence of actions in A1. The occurrence of actions in 
A4 depends on the occurrence of i4, which depends on the occurrence of i3, which depends 
on the occurrence of i2. Hence, after abstracting from i3 and i4, the occurrence of actions 
in A4 depends on the occurrence of i2. Based on these observations, Figure 15.iii shows 
the transformed design after abstracting from the inserted interactions and the inserted 
behaviour. In terms of Figure 13.ii: 

abstract(transform_table_2(Ds), ftransform_table_2(Ds)). 

The behaviour from Figure 15.iii is equivalent with the source behaviour. Hence, the 
transformation from Table 1 always yields a target design that conforms to the source 
design with respect to relations between actions. However, the condition applies that the 
source design can not contain actions, of which the occurrence disables the occurrence of 
i on the ‘client-side’ of the RPC. In terms of Figure 13.ii, for any source design Ds for 
which this condition holds: 

abstract(transform_table_2(Ds), ftransform_table_2(Ds)) ~ Ds. 
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Figure 15. Conformant transformation of causal relations 

9.   Related Work 

In this section we compare the abstract interaction concept we adopt with the interaction 
concepts underlying UML [18] and SDL [12] and discuss how our work on design 
operations and transformations is related to previous efforts documented in the literature. 
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9.1.   Interaction concepts underlying UML and SDL 

Popular modelling languages, such as UML and SDL use basic interaction concepts that 
are derived from operation invocation and message passing mechanisms. These concepts 
limit the level of platform independence that can be achieved, because of certain design 
characteristics they represent and the design decisions that these characteristics imply. 
We explain three such implicit design decisions and discuss their limiting effect on the 
level of platform independence. 

Firstly, the use of message passing and remote procedure call concepts in platform-
independent designs hinders the use of interaction patterns that deviate from message 
passing and remote procedure call, such as, e.g., interactions with transactional properties 
or interactions for group communication. This is because such interactions have to be 
represented by a particular composition of messages or remote procedure calls. An 
example that illustrates this problem is the use of remote procedure calls to define a 
notification service to support multicast interactions (similarly to the notification service 
which is defined in CORBA using remote procedure calls in IDL). In this case, multicast 
interactions are represented as multiple remote procedure calls to the notification service. 
This (i) unnecessarily expands a design, and (ii) favours implementation of the 
(multicast-) interaction in terms of the particular composition of procedure calls used in 
the design. An abstract interaction with the participation of multiple parties is, in this 
case, a more adequate abstraction to preserve freedom of implementation. 

Secondly, operation invocation and message passing concepts represent both the 
direction in which information flows and the initiating and responding roles for an 
interaction. Therefore, they force a designer to prescribe the direction of an interaction 
and roles in an interaction at all levels of platform-independence. This, for example, does 
not allow a designer to defer the decision of whether information is obtained by an entity 
using a callback or a polling mechanism. For both mechanisms, information flows in the 
same direction, but in one the sender of the information takes the initiative, while in the 
other the recipient takes initiative. We have observed that such a decision often depends 
on characteristics of the realization platform, which a designer should not be forced to 
consider at a high level of platform-independence. For example, a designer may choose 
between a callback and a polling mechanism for performance reasons. If CORBA is used 
as a realization platform, using a callback mechanism requires the server-side part of an 
ORB to be installed on the side of the recipient of the information. This may be 
problematic, e.g. for mobile devices with few processing and memory resources. 
Installing the server-side part of an ORB is not required when the designer chooses for a 
polling mechanism. An abstract interaction such as the one proposed in this paper allows 
a higher level of platform-independence by supporting the designer in deferring design 
decisions that are platform-specific such as the choice of a callback and polling 
mechanism as discussed in the example above. 

Thirdly, languages that use operation invocation and message passing concepts often 
define some details of the mechanisms that realize operation invocation and message 
passing. For example, in SDL, interacting parties exchange messages through queues of 
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infinite length. Messages exchanged are always delivered unaltered and in sequence. 
These assumptions may not match the characteristics of a target platform, forcing a 
designer to bridge a large gap between the design and its realization. This significantly 
decreases the benefit of a model-driven design approach. 

An attempt to mitigate this third issue is the use of semantic variation points in UML. 
The UML specification defines that “The means by which requests are transported to 
their target depend on the type of requesting action, the target, the properties of the 
communication medium, and numerous other factors. In some cases, this is instantaneous 
and completely reliable while in others it may involve transmission delays of variable 
duration, loss of requests, reordering, or duplication.” [18] Such variation points must be 
decided upon by the application designer (or tool designer), even at a high-level of 
platform-independence. This is because different decisions for these aspects would result 
in application models that behave differently. For example, a design in which requests are 
re-ordered during transportation is different from a design in which they are not. If a 
designer does not make this choice explicit other designers and simulation, verification 
and validation tools may draw the wrong conclusions about the design. On the other 
hand, is a designer does make a choice this has consequences for choices later on in the 
process. Strictly speaking, this may even lead to situations in which the designer would 
have to implement a mechanism to re-order requests during transportation. We can 
conclude that semantic variation points allow designers to select between alternative 
semantics for some of its constructs, but does not allow designers to abstract from the 
alternatives, e.g., at a high-level of platform-independence (ambiguity and compulsory 
choice should not be confused with abstraction). 

Another attempt to mitigate some of the limitations we have discussed in this section 
(other than changing the set of design concepts) is to interpret behavioural specifications 
loosely. In this case, designers choose to ignore certain characteristics that are implied by 
(platform-independent) models to be able to use the models as a starting point for 
realizations in different platforms. We do not consider this approach since it relies on the 
lack of precision for source models, which severely restricts their usefulness for model 
transformation, automated testing, validation and simulation. 

9.2.   Design operations and transformation 

Design transformations in which implementation constraints are incorporated have been 
proposed earlier, for example, in the LOTOSphere [5] project. Some of the design 
operations we have presented here have been inspired by the transformations described in 
[23]. These transformations have been developed to bridge the abstraction gap between 
formal languages and implementation environments, which is in some aspects similar to 
the gaps between platform-independent models and platform-specific models that have to 
be bridged by transformations in MDA. The difference between the transformations in 
[23] and the design operations proposed here is that the former transformations do not 
consider middleware technologies as implementation environments (platforms) and 
therefore they cannot be directly applied to our situation. 
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Some model-driven approaches simplify the issues of transformation and 
conformance by restricting the use of the modelling language at the source level in such a 
way that only combinations of concepts that can be directly mapped into concepts at the 
target level can be used (e.g., [11]). While these approaches guarantee the feasibility of 
the realization in a particular platform, this comes at the cost of introducing platform 
constraints at the source level, reducing the level of platform-independence that can be 
achieved. We believe these approaches are only suitable for models at relatively low 
levels of platform-independence. 

We approach interaction refinement from the perspective of architectural design. 
Several authors have approached interaction refinement from a pure formal perspective 
(e.g., [6, 7]). We believe that, in many cases, these approaches make simplifications at 
the cost of the usefulness of the formal model for pragmatic engineering purposes (as 
argued in [28]). For example, in [7] interactive systems communicate asynchronously via 
unbounded FIFO channels. 

In [15], a methodology is proposed for the step-wise refinement of heterogeneous 
software architectures. Refinement patterns are used that represent solutions to standard 
architectural design problems. These refinement patterns are compositional and can be 
proved correct in isolation. A small number of patterns for refining components, 
interfaces and connectors are defined.  

Most efforts related to transformations in model-driven design and MDA focus on the 
languages, methods and tools for the specification of model transformation. These 
techniques are neutral with respect to the abstraction criteria and design concepts used for 
platform-independent design. Such work is complementary to the work presented in this 
paper, since the design concepts and operations we have defined can be used to derive 
model transformation specifications that could be implemented by tools. 

10.   Conclusions 

This paper contributes to the understanding of the design operations that are applied by 
transformation in a model-driven design approach. Furthermore, we argue that suitable 
notions of conformance between source and target designs are necessary if we want to 
reach a mature model-driven design process. This paper gives some ideas on how these 
notions of conformance can be defined and enforced. 

Many model-driven design approaches address solely the structural aspects of an 
application’s design. In these cases, model transformations often consist of isomorphic 
relations between source and target structural models. For these kinds of relations 
between source and target models, conformance can be guaranteed by construction. 
However, this comes at the cost of abstraction and platform-independence, with 
application models serving the purpose of visualizing a (platform-specific) realization. As 
we have shown in this paper, the incorporation of platform constraints in a design step 
requires a transformation of both behavioural and structural aspects of the design. These 
transformations are rarely isomorphic and therefore, more attention is required to ensure 
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that properties defined at a particular level of abstraction are preserved during 
transformation. 

We have shown that the interaction concept and interaction refinement design 
operations can be used to realize a platform-independent design in multiple realization 
platforms. This is possible because interactions can be modelled at a high level of 
abstraction with the design concepts proposed here. This level of abstraction is higher 
than the level of abstraction that can be obtained with concepts that correspond closely to 
operation invocation and asynchronous messaging mechanisms, such as those underlying 
UML and SDL. This implies that proper language support for these abstract concepts has 
to be provided. In this paper we have applied the notation of the Interaction Systems 
Design Language (ISDL) [27] to represent these abstract concepts and have shown that 
this notation copes with our modelling requirements.  

The design concepts we have described in this paper represent the behaviour of the 
system given a certain system configuration of entities, interfaces and bindings, i.e., 
ignoring the actions that modify the system structure during execution. The application of 
the interaction refinement operations presented here when considering the dynamic 
creation and destruction of entities, interfaces and bindings remains to be investigated.  

We have implemented tool support for a specific transformation that applies 
(inter)action refinement as presented in this paper. This tool is integrated with an ISDL 
simulator developed at the University of Twente. This experience has been reported in 
[4], which also reports on the use of the design concepts discussed here for the design of 
context-aware services. We intend to develop tool support that implements the design 
operations presented in this paper in terms of (semi-) automated model transformations, 
which would contribute for a broader application and validation of our approach. 

Further work should investigate both conformance and transformation within the 
same transformation framework, possibly using the same techniques and tools for model 
transformation and for capturing and enforcing conformance rules. We believe this is 
feasible by regarding both transformation and conformance as relations ([1, 16]). 

References 

1. D. Akehurst, S. Kent, O. Patrascoiu, A relational approach to defining and implementing 
transformations between metamodels, Software and Systems Modeling, vol. 2. no. 4 (Springer-
Verlag, 2003), pp. 215–239.  

2. J.P.A. Almeida, R. Dijkman, M. van Sinderen and L. Ferreira Pires, On the Notion of Abstract 
Platform in MDA Development, in Proc. 8th IEEE Int’l Conf. on Enterprise Distributed Object 
Computing (EDOC 2004) (IEEE CS Press, 2004), pp. 253–263. 

3. J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires and D. Quartel, A systematic approach to 
platform-independent design based on the service concept, in Proc. 7th IEEE Int’l Conf. on 
Enterprise Distributed Object Computing (EDOC 2003) (IEEE CS Press, 2003), pp. 112–134. 

4. J.P.A. Almeida, Model-Driven Design of Distributed Applications, CTIT Ph.D.-Thesis Series, 
No. 06-85, Telematica Instituut Fundamental Research Series, No. 018 (2006). 

5. T. Bolognesi, J. van de Lagemaat, and C. Vissers, eds., LOTOSphere: Software Development 
with LOTOS (Kluwer Academic Publishers, 1995). 



 Model-Driven Design, Refinement and Transformation of Abstract Interactions     27 
 

 

6. E. Brinksma, B. Jonsson, and F. Orava, Refining Interfaces of Communicating Systems, in 
Proc. of the Int’l Joint Conf. on Theory and Practice of Software Development (TAPSOFT'91), 
Lecture Notes in Computer Science, Vol. 494 (Springer-Verlag, 1991), pp. 297–312. 

7. M. Broy, (Inter-)action refinement: The easy way, Program Design Calculi, Springer NATO 
ASI Series, Series F: Computer and System Sci. 118 (Springer-Verlag, 1993), pp. 121–158. 

8. R.M. Dijkman, Consistency in Multi-Viewpoint Architectural Design, CTIT Ph.D.-Thesis 
Series, No. 06-80, Telematica Instituut Fundamental Research Series, No. 017 (2006). 

9. R.M. Dijkman, D. Quartel, L. Ferreira Pires, M. van Sinderen, A Rigorous Approach to Relate 
the RM-ODP Enterprise and Computational Viewpoint, in Proc. 8th IEEE Int’l Conf. on 
Enterprise Distributed Object Computing (EDOC 2004) (IEEE CS Press, 2004), pp. 187–200. 

10. C.R.G. de Farias, Architectural design of groupware systems: a component-based approach, 
Ph.D. thesis, (University of Twente, The Netherlands, 2002). 

11. IBM, Draft UML 1.4 Profile for Automated Business Processes with a mapping to BPEL 1.0, 
Version 1.1 (2003), http://ibm.com/developerworks/rational/library/4593.html  

12. ITU-T, Recommendation Z.100 – CCITT Specification and Description Language (2002). 
13. ITU-T / ISO, Open Distributed Processing - Reference Model – All Parts, ITU-T X.901-4 | 

ISO/IEC 10746-1 to 10746-4 (1995). 
14. H. Kremer, Protocol Implementation: Bridging the gap between Architecture and Realization, 

Ph.D. thesis (University of Twente, The Netherlands, 1995). 
15. M. Moriconi, X. Qian, and R.A. Riemenschneider, Correct Architecture Refinement, IEEE 

Transactions on Software Engineering, 21(4) (IEEE CS Press,  2005). 
16. Object Management Group, MOF QVT Final Adopted Specification, ptc/05-11-01 (2005). 
17. Object Management Group, MDA-Guide, V1.0.1, omg/03-06-01 (2003). 
18. Object Management Group, UML 2.0 Superstructure, ptc/03-08-02 (2003). 
19. Object Management Group, Common Object Request Broker Architecture: Core Specification, 

Version 3.0, formal/02-12-06 (2002). 
20. O. Patrascoiu, Mapping EDOC to Web Services using YATL, in Proc. 8th IEEE Int’l Conf. on 

Enterprise Distributed Object Computing (EDOC 2004) (IEEE CS Press, 2004) pp. 286– 297. 
21. D. Quartel, L. Ferreira Pires and M. van Sinderen, On Architectural Support for Behaviour 

Refinement in Distributed Systems Design, Journal of Integrated Design and Process Science, 
6 (1) (Society for Design and Process Science, 2002). 

22. D. Quartel, L. Ferreira Pires, M. van Sinderen, H. Franken and C. Vissers, “On the role of basic 
design concepts in behaviour structuring,” Computer Networks and ISDN Systems, 29 (4) 
(Elsevier Science Publishers, 1997) pp. 413–436. 

23. J. Schot, The role of Architectural Semantics in the formal approach of Distributed Systems 
design, Ph.D. thesis (University of Twente, The Netherlands, 1992). 

24. R. Silaghi, F. Fondement, and A. Strohmeier, Towards an MDA-Oriented UML Profile for 
Distribution, in Proc. 8th IEEE Int’l Conf. on Enterprise Distributed Object Computing 
(EDOC 2004) (IEEE CS Press, 2004) pp.227–239. 

25. Sun Microsystems, Inc., Java (TM) Message Service (JMS Specification Final Release 1.1), 
(2002),  http://java.sun.com/products/jms/  

26. Sun Microsystems, Inc., JSR-000037 Mobile Information Device Profile (MIDP), (2000), 
http://jcp.org/aboutJava/communityprocess/final/jsr037/  

27. The Interaction Systems Design Language (ISDL), http://isdl.ctit.utwente.nl/ 
28. C.A. Vissers, M. van Sinderen, and L. Ferreira Pires, What makes industries believe in formal 

methods, in Proc. of the 13th Int’l Symp. on Protocol Specification, Testing, and Verification 
(PSTV XIII) (Elsevier Science Publishers, 1993) pp. 3–26. 

29. R. Wieringa, A survey of structured and object-oriented software specification methods and 
techniques, ACM Computing Surveys, 30 (4) (ACM Press, 1998). 

30. World Wide Web Consortium, Web Services Architecture, http://www.w3.org/TR/ws-arch/ 


