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Abstract. Types are fundamental for conceptual domain modeling 
and knowledge representation in computer science. Frequently, mo-
nadic types used in domain models have as their instances objects 
(endurants, continuants), i.e., entities persisting in time that experi-
ence qualitative changes while keeping their numerical identity. In 
this paper, I revisit a philosophically and cognitively well-founded 
theory of object types and propose a system of modal logics with re-
stricted quantification designed to formally characterize the distinc-
tions and constraints proposed by this theory. The formal system 
proposed also addresses the limitations of classical (unrestricted ex-
tensional) modal logics in differentiating between types that repre-
sent mere properties (or attributions) ascribed to individual objects 
from types that carry a principle of identity for those individuals (the 
so-called sortal types). Finally, I also show here how this proposal 
can complement the theory of conceptual spaces by offering an ac-
count for kind-supplied principles of cross-world identity. The ac-
count addresses an important criticism posed to conceptual spaces in 
the literature and is in line with a number of empirical results in the 
literature of cognitive psychology.   
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9.1 Introduction 

Types are fundamental for conceptual domain modeling and 
knowledge representation in computer science. Frequently, monadic 
types used in domain models have as their instances objects, i.e., en-
tities that persist in time while keeping their identity (as opposed to 
events such as a kiss, a business process or a birthday party). What I 
term here object refers to what is sometimes termed Endurant or 
Continuant in the literature. Examples of objects include physical 
and social persisting entities of everyday experience such as balls, 
rocks, planets, cars, students and Queen Beatrix but also fiat objects 
such as the Dutch part of the North Sea and a non-smoking area of a 
restaurant.  

In this paper, I revisit the philosophically and cognitively well-
founded theory of object types first proposed in Guizzardi et al. 
(2004). The ontological distinctions and postulates proposed by this 
theory are discussed in the next section. In section 9.3, I present the 
main contribution of this paper, namely, a system of modal logics 
with restricted quantification designed to formally characterize the 
distinctions and constraints proposed by this theory. That section al-
so discusses how the proposed formal system addresses the limita-
tions of classical (unrestricted extensional) modal logics in some 
fundamental aspects regarding the notions of object persistence and 
cross-world identity. In section 9.4, the paper elaborates on how this 
theory can be employed to analyze and address some problems faced 
by the theory of conceptual spaces (Gärdenfors, 2000) with respect 
to the issues of identity and persistence. Section 9.5 briefly discusses 
related work. Finally, section 9.6 concludes the paper with final con-
siderations. 

9.2 Ontological Distinctions among Object Types 

Van Leeuwen (1991) presents an important grammatical differ-
ence occurring in natural languages between common nouns (CNs) 
and arbitrary general terms (adjectives, verbs, mass nouns, etc…). 
Common nouns have the singular feature that they can be combined 
with determiners and serve as argument for predication in sentences 
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such as: (i) (exactly) five mice were in the kitchen last night; (ii) the 
mouse that ate the cheese has been in turn eaten by the cat. 

In other words, if we have the patterns (exactly) five X… and the 
Y which is Z…, only the substitution of X, Y, Z by CNs will produce 
sentences that are grammatical. To verify this, we can try substitut-
ing the adjective red in the sentence (i): (exactly) five red were in the 
kitchen last night.  A request to “count the red in this room” cannot 
receive a definite answer: should a red shirt be counted as one or 
should the shirt, the two sleeves, and two pockets be counted sepa-
rately so that we have five reds? The problem here is not that one 
would not know how to complete the count but that one would not 
know how to start, since arbitrarily many subparts of a red thing are 
still red.  

The explanation for this feature, which is unique of CNs, draws 
on the function that determinates (demonstratives and quantifiers) 
play in noun phrases, which is to determine a certain range on indi-
viduals. Both reference and quantification requires that the things 
that are referred or that form the domain of quantification are deter-
minate individuals, i.e., their conditions for individuation and identi-
ty must be determinate.  

According to van Leeuwen (1991), this syntactic distinction be-
tween the two linguistic categories reflects a semantical and ontolog-
ical one, and so the distinction between the grammatical categories 
of CNs and arbitrary general terms can be explained in terms of the 
ontological categories of sortal and characterizing types (Strawson, 
1959), which are roughly their ontological counterparts. Whilst the 
latter supply only a principle of application for the individuals they 
collect, the former supply both a principle of application and a prin-
ciple of identity. A principle of application is one in accordance with 
which we judge whether a general term applies to a particular (e.g., 
whether something is a person, a dog, a chair or a student). A princi-
ple of identity supports the judgment whether two particulars are the 
same, i.e., in which circumstances the identity relation holds.  

Cognitive psychologist John Macnamara (1986, 1994) has in-
vestigated the role of sortal concepts in cognition and provided a 
comprehensive theory for explaining the infant’s process of learning 
proper and common nouns. He proposed the following example: 
suppose a little boy (Tom), who is about to learn the meaning of a 
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proper name for his puppy. When presented with the word “Spot”, 
Tom has to decide what it refers to. A demonstrative such as “that” 
will not suffice to determinate the bearer of the proper name. How to 
decide that the referent of “that”, which changes all its perceptual 
properties, is still Spot? In other words, which changes can Spot suf-
fer and still be the same? As Macnamara (among others) shows, an-
swers to these questions are only possible if Spot is taken to be a 
proper name for an individual, which is an instance of a sortal uni-
versal. The principles of identity supplied by the sortals are essential 
to judge the validity of all identity statements. For example, if for an 
instance of the sortal statue losing one of its pieces will not alter the 
identity of the object, the same does not hold for an instance of lump 
of clay.  

The claim that we can only make identity and quantification 
statements in relation to a sortal amounts to one of the best-
supported hypothesis in the philosophy of language, namely, that the 
identity of an individual can only be traced in connection with a 
sortal universal, which provides a principle of individuation and 
identity to the particulars it collects (Mcnamara, 1986, 1994; Gupta, 
1980; Lowe, 1989; van Leeuwen, 1991).  

As argued by Kripke (1982), a proper name is a rigid designa-
tor, i.e. it refers to the same individual in all possible situations, fac-
tual or counterfactual. For instance, it refers to the individual Mick 
Jagger both now (when he is the lead singer of Rolling Stones and 
71 years old) and in the past (when he was the boy Mike Philip liv-
ing in Kent, England). Moreover, it refers to the same individual in 
counterfactual situations such as the one in which he decided to con-
tinue attending the London School of Economics instead of pursuing 
a musical career. We would like to say that the boy Mike Philip is 
identical with the man Mick Jagger that he later became. However, 
as pointed out by Wiggins (2001) and Perry (1970), statements of 
identity only make sense if both referents are of the same type. Thus, 
we could not say that a certain boy is the same boy as a certain man 
since the latter is not a boy (and vice-versa). However, as Putnam 
put it, when a man x points to a boy in a picture and says “I am that 
boy,” the pronoun “I” in question is typed not by man but by a type 
subsuming both man and boy (namely, person), which embraces x’s 
entire existence (Putnam, 1994). A generalization of this idea is the-
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sis D, proposed by David Wiggins (Wiggins, 2001): if an individual 
falls under two sortals F and F’ in the course of its history there 
must be exactly one ultimate sortal G that subsumes both F and F'. 

A proof of thesis D can be found in Guizzardi (2005). Intuitive-
ly, one can appreciate that it is not the case that two incompatible 
principles of identity could apply to the same individual x, otherwise 
x will not be a viable entity (determinate particular) (van Leeuwen, 
1991). For instance, suppose an individual x that is an instance of 
both statue and lump of clay. Now, the answer to the question 
whether losing one of its pieces will alter the identity of x is inde-
terminate, since each of the two principles of identity that x obeys 
imply a different answer. As a consequence, we can say that if two 
sortals F and F’ intersect (i.e., have common individuals in their ex-
tension), the principles of identity contained in them must be equiva-
lent. Moreover, F and F’ cannot supply a principle of identity for x, 
since both sortals apply to x only contingently, and a principle of 
identity must be used to identify x in all possible worlds. Therefore, 
there must be a sortal G that supplies the principle of identity carried 
by F and F’. The unique ultimate sortal G that supplies the principle 
of identity for its instances is named a substance sortal or a kind 
(Gupta, 1980; Guizzardi et al., 2004). 

In the example above, person can only be the sortal that sup-
ports the proper name Mick Jagger in all possible situations because 
it applies necessarily to the individual referred to by the proper 
name, i.e., instances of person cannot cease to be so without ceasing 
to exist. As a consequence, the extension of a kind is world invari-
ant, i.e., for all x, if x is an instance of a rigid type G then x must be 
an instance of G in all possible worlds. This meta-property of uni-
versals is called modal constancy (Gupta, 1980) or rigidity (Guarino 
& Welty, 2009). Every kind G is a rigid universal. Moreover, a kind 
G can be specialized into other sortals F1,…,Fn that are themselves 
rigid. Take for instance the kind person. This kind can be specialized 
by the sortals male person and female person, which (in the biologi-
cal sense) are themselves rigid sortals. I name the rigid sortals Fi that 
specialize a kind (thus inheriting its principle of identity) subkinds 
(Guizzardi et al., 2004). 

 Examples of non-rigid sortals include universals such as boy 
and adult man in the example previously discussed, but also student, 
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employee, caterpillar and butterfly, philosopher, writer, alive and 
deceased. Actually, these examples of sortals are not only non-rigid, 
but they are anti-rigid. Non-rigidity is the simple logical negation of 
rigidity, i.e., a type is non-rigid if it does not apply necessarily to at 
least one of its instances. In contrast, a type is anti-rigid if it does not 
apply necessarily to all its instances. In other words, if a type F is 
anti-rigid then for all instances x of F there is a possible world in 
which x is not an instance of F. Sortals that possibly apply to an in-
dividual only during a certain phase of its existence are called 
phased-sortals (Wiggins, 2001). As a consequence of thesis D, we 
have that:  for every phased-sortal PS that applies to an individual, 
there is a kind (substance sortal) S of which PS is a specialization.  

Although Frege argued at length that “one cannot count without 
knowing what to count” (Frege, 1934), in artificial logical languages 
inspired by him, natural language general terms such as common 
nouns, adjectives and verbs are treated uniformly as predicates. For 
instance, if we want to represent the sentence “there are tall men,” in 
the Fregean approach of classical logic we would write ∃x (man(x) ∧ 
tall(x)). This reading puts the count noun man (which denotes a sort-
al) on an equal logical footing with the predicate tall. Moreover, in 
this formula, the variable x is interpreted as an alleged universal kind 
thing (or entity). So, the natural language reading of the formula 
should be “there are things that have the property of being a man and 
the property of being tall.” As argued in Hirsch (1982), concepts 
such as thing, (entity, element, among others) are dispersive, i.e., 
they cover many concepts with different principles of identity and 
do not denote sortals. This view is corroborated by many empirical 
studies in cognitive science (Xu et al., 2004). 

The claims presented in this section are represented in a list of 
psychological claims proposed by Mcnamara (1994) and are sup-
ported by a number of empirical studies (Xu et al., 2004; Bonatti et 
al., 2002; Waxman & Markow, 1995; Booth & Waxman, 2003). For 
instance, results from Xu et al. (2004) show that between 9 to 12 
months of age a sortal-based system of individuation and identity 
emerges in infants’ cognition. As remarked by the authors: “during 
this period, infants’ worldview undergoes fundamental changes: 
They begin with a world populated with objects...By the end of the 
first year of life, they begin to conceptualize a world populated with 
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sortal-kinds... In this new world, objects are thought of not as ‘qua 
object’ but rather ‘qua dog’ or ‘qua table’.” 

9.3 A Logical System with Sortal and Characterizing Types 

The formal characterization of the ontological distinctions dis-
cussed in the previous section requires some sort of modal treatment. 
In classical (extensional) modal logics, no distinction is made be-
tween different types of types. Types are represented as predicates in 
the language that divide the world (at each situation) into two classes 
of elements: those that fall under them and those that do not. This 
principle determines the extension of each type at each situation. 
Classical (one-place) predicates, being functions from worlds to sets 
of individuals, properly represent the principles of application that 
are carried by all types but fail to represent the principles of identity, 
which are unique of sortals. Equivalently, they treat all objects as 
obeying the same principle of identity.  

Suppose that there is an individual person referred to by the 
proper name John. As discussed in the previous section, proper 
names for objects refer rigidly and, hence, if we say that John 
weights 80kg at t1 but 68kg at t2 we are in both cases referring to the 
same individual, namely the particular John. Now, let x1 and x2 be 
snapshots representing the projection of John at time boundaries t1 
and t2, respectively. The truth of the statements overweight(John,t1) 
and overweight(John,t2) depends only on whether overweight ap-
plies to the states x1 or x2, respectively. In other words, the judgment 
if an individual i is an instance of a characterizing type G (e.g., 
overweight) in world w depends only whether the principle of appli-
cation carried by G applies to the state of i in w. Now, how can one 
determine that, despite of possibly significant dissimilarities, x1 and 
x2 are states of the same particular John? As previously argued this is 
done via a principle of cross-world identity and supplied by the sub-
stance sortal person, of which John is an instance. 

These differences between sortals and characterizing types are 
made explicit in the formal language Lsortal defined in this section in 
the following way: 
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• The intension of the proper name John is represented by an 
individual concept J, i.e., a function that maps to a snapshop xi 
of John in each possible world w. The notion of individual 
concepts, first introduced by Leibniz, refers to a singleton 
property that only holds for one individual; 
 
• Sortal universals, such as person, are represented as 
intensional properties, which are functions from possible 
worlds to sets of individual concepts. For instance, for the sortal 
person there is a function ℓ that maps every world w to a set of 
individual concepts (including J). An individual x is a person in 
world w iff there is an individual concept k ∈ ℓ(w) such that 
k(w) = x; 
 
• Individual concepts represent the principle of identity 
supplied by the universal person such that if J(w) = x1 and J(w’)  
= x2 then we say that x1 in w is the same person as x2 in w’, or in 
general: for all individuals x,y representing snapshots of an 
individual C of type T we say that x in w is the same T as y in w’ 
iff C is in the extension of T and C(w) = x and C(w’) = y; 
 
• Whilst the principle of identity is represented by sortal 
determined individual concepts that trace individuals from 
world to world, the principle of application considers 
individuals only at a specific world. For instance, John is 
overweight in word w iff overweight(J(w),w) is true. 
 
Due to these considerations, in the language Lsortal presented be-

low, the primitive elements in the domains of quantification are 
momentary states of objects, not the objects themselves. Ordinary 
objects of everyday experience (endurants, continuants) are instead 
represented by individual concepts. In the sequel, I formally define 
the syntax and semantics of Lsortal. 
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9.3.1 Syntax of Lsortal 

Let Lsortal be a language of modal logics with identity with a vo-
cabulary V = (K,B,A,P,T) where: (a) T is a set of individual con-
stants; (b) P is a non-empty set of n-ary predicates; (c) A is a set of 
phased-sortals (anti-rigid sortal types); (d) B is a set of subkinds; (e) 
K is a non-empty set of kinds (substance sortal type); (f) R = K ∪ B 
is named the set of rigid sortal types and the set C = R ∪ A, the set 
of sortal types. The alphabet of Lsortal contains the traditional opera-
tors: = (equality), ¬ (negation), → (implication), ∀(universal quanti-
fication), □ (necessity). The notions of term, sortal and formula are 
define as follows: 

 
Definition 1 
 
(1) All individual constants and variables are terms; 

(2) All sortal types belong to the category of sortal types; 

(3) If s and t are terms, then s = t is an atomic formula; 

(4) If P is a n-place predicate and t1…tn are terms, then P(t1,..,tn) is an 
atomic formula; 

(5) If A and B are formulas, then so are ¬A, �A, (A→B); 

(6) If S is a sortal classifier, x is a variable and A is a formula, then 
(∀S,x)A is a formula.  

■                                                                                    

The symbols ∃ (existential quantification), ∧ (conjunction), ∨ 
(disjunction), ◊ (possibility) and ↔ are defined as usual: 

 
Definition 2 
 
(7) (A ∧ B) =def  ¬( A → ¬B); 

(8) (A ∨ B) =def  ((A → B) → B); 
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(9) (A ↔ B) =def (A → B) ∧ (B → A); 

(10) ◊A =def ¬□¬A 

(11) ((∃S,x) A =def ¬(∀S,x) ¬A 

(12) ((∃!S,x) A =def (∃S,y)(∀S,x) (A ↔ (x = y))                  

■ 
 
In Lsortal, all quantification is restricted by sortals. The quantifi-

cation restricted in this way makes explicit what is only implicit in 
standard predicate logics. As previously discussed, suppose we want 
to state the following proposition: (a) There are red tasty apples. In 
classical predicate logic we would write down a logical formula 
such as (b) ∃x (apple(x) ∧ tasty(x) ∧ red(x)). In an ontological read-
ing, (b) states that “there are things which are red, tasty and apple.” 
The theory presented in the previous section denies that we can con-
ceptually grasp an individual under a general concept such as thing 
or entity or, what is almost the same, that a logic (or a domain repre-
sentation language) should presuppose the notion of a bare particu-
lar. Moreover, it states that only a sortal (e.g., apple) can carry a 
principle of identity for the individuals it collects, a property that is 
absent in characterizing types such as red and tasty.  For this reason, 
a logical system, when used to represent a formalization of concep-
tual models of reality, should not presuppose that the representations 
of natural general terms such as apple, tasty and red stand in the 
same logical footing. For this reason, (a) should be represented as 
(∃Apple,x) (tasty(x) ∧ red(x)) in which the sortal binding the variable 
x is the one responsible for carrying its principle of identity.  

In Lsortal, sortal classifiers are never used in a predicative posi-
tion. Therefore, if S ∈ C is a sortal type, the predicate s(x) (in lower-
case) is a meta-linguistic abbreviation according to the following 
definition. 

 
Definition 3  

s(t) =def (∃S,x) (x = t)                                 

■                                        
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According to this definition, the sentence “John is a man” is bet-
ter rendered as “John is identical to a man”. In opposition, in the 
sentence “John is tall,” the copula represents the “is” of predication, 
which denotes a relation of mere equivalence. 

9.3.2. Semantics of Lsortal 

Definition 4 (model structure):  
 
A model structure for Lsortal is defined as an ordered couple 〈W, D〉 
where: (i) W is a non-empty set of possible worlds; (ii) Lsortal adopts a 
varying domain frame (Fitting & Mendelsonh, 1998) and, thus, in-
stead of a set, D is a function that assigns to each member of W a non-
empty set of elements. In order to avoid issues that are not germane to 
the purposes of this article, we simply assume here a universal acces-
sibility relation between worlds (ibid.).                                           

                                                                                                     ■                                                                               

Given a model structure M (= 〈W, D〉), the intension of an indi-
vidual constant can be represented by an individual concept, i.e., a 
function i that assigns to each world w ∈ W, an individual in D(w). 
Formally, we have that: 

 
Definition 5 (individual concept) 
 
Let M = 〈W, D〉 and U = ∪

Ww

wD
∈

)( . An individual concept i in M is 

function from W into U, such that i(w) ∈ D(w) in all worlds. For a 
given model structure M, we define I as a set of individual concepts 
defined for that structure.                                                                    

                                                                                                     ■                                                                                                                                                 
The intension of an n-place predicate is defined (as usual) as an 

n-ary property, i.e., a function that assigns to each world w ∈ W a set 
of n-tuples. If a tuple 〈d1…dn〉 belongs to the representation of a 
predicate at world w, then d1…dn stand in w in the relation expressed 
by the predicate. 
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Definition 6 (property) 

An n-ary property (n>0) in M is a function P from W into ℘(D(w))n, 
i.e., if 〈d1…dn〉 ∈ P (w), then d1…dn  ∈ D(w).                                                                                              

■ 

The intension of sortal classifiers is defined such that both the 
principles of application and identity are represented. This is done 
by what Gupta (1980) calls sorts, i.e., separated intensional proper-
ties. 

 
Definition 7 (sort) 

Let M = 〈W, D〉 be a model structure. An intensional property in M is 
a function ℓ from W into the powerset of individual concepts in M 
(i.e., ℘(I)).  

An intensional property assigns to each world a set of individual con-
cepts, and it can be used to represent the intension of a sortal type in 
the following way. Suppose that ℓ represents the intension of the sort-
al type S and that the individual concept i belongs to ℓ at world w, 
i.e., i ∈ ℓ(w). Then i(w) is a S in w, and i(w’) is identical to i(w) in w. 

 Let ℓ be an intensional property in M, and let L =∪
Ww∈

ℓ(w). 

 Now, let i,j be two individual concepts such that i,j ∈ L. We say that 
the intensional property ℓ is separated iff: if there is a world w ∈ W 
such that i(w) = j(w) then, for all w’∈ W, i(w’) = j (w’), i.e., i = j.  

Finally, a sort in a model structure M is an intensional property that is 
separated. 

■ 
The requirement of separation proposed in Gupta (1980) states, 

for example, that if two individual concepts for person, say 007 and 
James Bond, apply to the same object in a world w then they apply 
necessarily to the same object. This prevents unlawful conceptuali-
zations in which a substantial individual splits or in which two indi-
viduals can become one while maintaining the same identity. 
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Given a sort ℓ in M, we designate by ℓ[w] the set of objects that 
fall under ℓ in w. Formally, 

 
Definition 8 
ℓ[w] = {d: d ∈ D(w) and there is an individual concept i ∈ ℓ(w) such 
that i(w) = d}.                 

■                                                                

Moreover, we define the set of objects in w that are possibly ℓ, 
i.e., 

 
Definition 9 

 ℓ |[w]| = {d: d∈ D(w) and there is an individual concept i ∈ ℓ(w’) 
such that i(w’) = d}.              

■                                                                                                          

We now are able to define the notion of counterpart relative to a 
sort ℓ.  

 
Definition 10 (counterpart) 
We say that d in world w is the same ℓ as d’ in w’ iff there is an indi-
vidual concept i that belongs to ℓ at some world (i.e., there is a w’’ 
such that i∈ ℓ(w’’)) and i(w)=d and i(w’)=d’. The ℓ counterpart in w’ 
of the individual d in w is the unique individual d’ such that d ’ in 
world w’ is the same ℓ as d  in w.               

■                                                                                                                                                                                                                                                                                        

Finally, we are then able to define a model for Lsortal: 
 
Definition 11 (model) 
A model in Lsortal can be defined as a triple 〈W, D, δ〉 such that: 

1. 〈W, D〉 is a model structure for Lsortal; 

2. δ is an interpretation function assigning values to the non-logical 
constants of the language such that: it assigns an individual concept to 
each individual constant c ∈ T of Lsortal; an n-ary property to each n-
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place predicate p ∈ P of Lsortal; a sort to each sortal type S ∈ C of 
Lsortal. 

The interpretation function δ must also satisfy the following con-
straints: 

3. If S ∈ R then the sort ℓ assigned to S by δ must be such that: for 
all w, w’ ∈ W, ℓ(w) = ℓ(w’), i.e., all rigid sortals are world invariant 
(modally constant); 

4. Let S ∈ (B ∪ A) be a subkind or an anti-rigid sortal type. Then, 
there is a kind S’ ∈ K such that, for all w ∈ W, δ(S)(w) ⊆ δ(S’)(w); 

5. Let S, S’∈ K be two kinds and let ℓ and ℓ’ be the two sorts 
assigned to S and S’ by δ, respectively. Then we have that: there is a 
w ∈ W such that ℓ(w) ∩ ℓ’(w) ≠ ∅ iff ℓ = ℓ’, i.e., sorts representing 
kinds do not intersect unless they are identical. In other words, this 
restriction states that individuals belong to one single substance sortal, 
i.e., they obey one single principle of identity; 

6. Let S ∈ A be a phased (anti-rigid) sortal type. The sort ℓ assigned 
to S by δ must be such that: for all w ∈ W, and for all individual 
concepts i ∈ ℓ(w), there is a world w’ ∈ W such that i ∉ ℓ(w’); 

7. Let S, S’∈ K be two kinds and let ℓ and ℓ’ be the two sorts 
assigned to S and S’ by δ, respectively. Then we have that: there is a 
w ∈ W such that ℓ[w] ∩ ℓ’[w] ≠ ∅ iff ℓ=ℓ’. Differently from (5) 
above, this restriction has it that individual states of objects can only 
be referred to by individual concepts of the same kind.         

■                                                           

We are now able to define an assignment for Lsortal: 
 
Definition 12 (assignment) 
An assignment for Lsortal relative to a model 〈W, D, δ〉 is a function 
that assigns to each variable of Lsortal an ordered pair 〈ℓ,d 〉, where ℓ is 
a sort relative to the modal structure 〈W,D〉 and d ∈ U =∪

Ww

wD
∈

)( .  
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If a is an Lsortal assignment then ao(x) is the object assigned to variable 
x by a and aS(x) is the sortal to which x is bound. Moreover, it is al-
ways the case that ao(x) ∈ aS(x)|[w]| for all variables.                                              

■                                                                                  

Definition 13 
An assignment a’ for Lsortal is an ℓ variant of a at x in w iff:  a' is just 
like a except perhaps at x (abbreviated as a’~X a), 

1. a’s(x) = ℓ, 

2. a’o(x) ∈ ℓ[w].                                                 

■                            

Definition 14 
The w’ variant of an assignment a relative to w (abbreviated as 
f(w’,a,w)) is the unique assignment a’ that meets the following condi-
tions: 

(i) a’S(x) = aS(x) at all variables x,  

(ii) a’o(x) in w’ is the aS(x) counterpart of ao(x) in w relative,  

at all variables x.                         

■                                       

Definition 15 (Truth-theoretical semantics) 

Finally, let α be an expression in Lsortal, and let the semantic value of 
α at world w in model M relative to assignment a be the value of the 

valuation functionvw aM ,
.  

With these definitions, we can define the semantics of Lsortal as fol-
lows: 

(a). If α is an individual constant or a sortal type, then 

vw aM ,
(α) = δ(α)(w). 
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(b). If α is variable, then vw aM ,
(α) = ao(α) 

(c). If α is an atomic formula t1=t2, then vw aM ,
(α) = T if 

vw aM ,
(t1) = vw aM ,

(t2). Otherwise vw aM ,
(α) = F. 

(d). If α is an atomic formula P(t1…tn), then vw aM ,
(α) = T if 

〈vw aM ,
(t1)… vw aM ,

(tn)〉 ∈ δ(P)(w). Otherwise vw aM ,
(α) = F. 

(e). If α is the formula ¬A, then vw aM ,
(α) = T if vw aM ,

(A) = F.                        

Otherwise vw aM ,
(α) = F. 

(f). If α is the formula (A→B), then vw aM ,
(α) = T if vw aM ,

(A) = F or  

  vw aM ,
(B) = T. Otherwise vw aM ,

(α) = F. 

(g). If α is the formula (∀S,x)A, then vw aM ,
(α) = T if vw aM ',

(A) 

= T for all assignments a’ which are δ(S) variants of a at x in w. 

Otherwise vw aM ,
(α) = F. 

(h). If α is the formula □A, then vw aM ,
(α) = T if 

vw wawfM

'

),,'(,
(A) = T for all w’∈ W. Otherwise vw aM ,

(α) = F.                                                                                          

■ 
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9.3.3 Discussion 

The language Lsortal has been proposed based on the first of four 
systems introduced by Anil Gupta in his Logic of Common Nouns 
(Gupta, 1980). Gupta, however, does not elaborate on different types 
of sortals. Consequently, restrictions (3) to (7) on δ in definition 11 
are simply not defined in his system. Restriction (7), in particular, 
would have to be rejected by Gupta, as a consequence of his 
contingent (or relative) view of identity. Note that restriction (7) 
implies (5) but not vice-versa.  

It is widely accepted that any relation of identity must comply 
with Leibniz’s law: if two individuals are identical then they are 
necessarily identical (van Leeuwen, 1991). Relativists, however, 
adopt the thesis that it is possible for two individuals to be identical 
in one circumstance but different in another. A familiar example, 
cited by Gupta, is that of a statue and a lump of clay. The argument 
proceeds as follows: Suppose that in world w we have a statue st of 
the Dalai Lama which is identical to the lump of clay loc that this 
statue is made of. In w, st and loc have exactly the same properties 
(e.g., same shape, weight, color, temperature, etc.). Suppose now 
that in world w’, a piece (e.g., the hand) is subtracted from st. If the 
subtracted piece is an inessential part of a statue then the statue st’ 
that we have in w’ is identical to st. In contrast, the lump of clay loc’ 
which st’ is made of is different from loc. In summary, we have in 
w’ the same statue as in w but a different lump of clay. In Gupta’s 
system, without restriction (7), we have it that for two individual 
concepts i and j such that i(w) = j(w), it remains possible a world w’ 
such that i(w’) ≠ j(w’). In other words, the formula (α) (∃Statue,x (x 
= dl) ∧ ∃LoC,y (y = dl) ∧ ◊(x ≠ y)) is satisfiable.  

I reject this line of reasoning for two reasons. Firstly, I support 
the view that Leibniz’s rule must hold for a relation to be considered 
a relation of identity, otherwise, any equivalence relation such as be-
ing an instance of the same class would have to be considered a rela-
tion of identity. Secondly, if Gupta’s primitive elements are thought 
of as momentary states, then (α) does not in fact qualify as a state-
ment of relative identity. It actually expresses that two objects can 
coincide (i.e., share the same state) in a world w but not in a differ-
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ent world w’ (van Leeuwen, 1991). Notice, however, that if re-
striction (7) is assumed, formula (α) is no longer satisfiable. 

 
Proof: (a) if (x = dl) is true then there is an individual concept st of statue 
that refers in the actual world w to the same entity d as dl; (b) if (y = dl) is 
true then there is an individual concept loc of LoC that refers in the actual 
world w to the same entity d as dl; (c) by transitivity of equality, st and loc 
refer to the same d in world w and, consequently, d is then both of the kind 
Statue and of the kind LoC in w; (e) due to (7), the intensions of Statue and 
LoC are identical; (f) finally, due to separation, st and loc must coincide in 
every world. 

□ 
Now we are in a position to choose between two alternatives re-

lated to the interpretation of momentary states. The first is to assert 
restriction (7) and take a multiplicationist (Guizzardi, 2005) stance 
such that st and loc do not actually share the same state in w in the 
strong sense. Rather, I consider the states st(w) and loc(w) to be nu-
merically different albeit instantiating the same types (properties).  

A second stance is to assume that two continuants (endurants) 
can indeed share a state in the numerical sense. If we accept this, a 
simple way of modifying Lsortal to account for coincidence as mani-
fested in Gupta’s system consists in: 

(a). removing the constraint (7) in definition 11;  

(b). including the operator ≈ for coincidence, with the 
following semantics: If α is an atomic formula t1 ≈ t2, then 

vw aM ,
(α) = T if vw aM ,

(t1) = vw aM ,
(t2). Otherwise vw aM ,

(α) = F; 

(c). defining the identity relation between individual 
constants as  

(t1 = t2) =def □( t1 ≈ t2), i.e., two continuants are identical if they 
coincide in every possible world. 

A version of Lsortal which takes the multiplicationist stance can 
serve in support of two goals: defining the semantics of object-
oriented and database languages in computer science, and to cir-
cumvent some of the limitations in representing modal (temporal) 
information in terminological languages such as OWL (Web Ontol-
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ogy Language)1. In the sequel, I will briefly present an example of 
the first goal. For an example of the latter, I refer readers to Zambor-
lini & Guizzardi (2010). In the next section, I employ the proposed 
framework to address issues of cross-world identity and dynamic 
classification in conceptual spaces.  

For instance, in the Unified Modeling Language (UML)2, a de 
facto standard for conceptual modeling in computer science, types 
are represented in so-called class diagrams3. In contrast, the instanc-
es of these types are represented in object diagrams. See figures 9.1 
and 9.2 below. In figure 9.1, we have a representation of the type 
person characterized by the properties name, social security number, 
age and height, as well as the type car characterized by the proper-
ties chassis number, color, kilometer count and manufacturing date. 
Moreover, the diagram represents a relational property owns, de-
fined between instances of person and instances of car together with 
some integrity constraints on this relational property (while people 
can own zero-to-many cars, we assume that a car must be owned by 
exactly one person). In figure 9.2, we have a representation of an in-
stance of the type person (John) and two instances of the type car 
(car1 and car2), as well as representation of two instances of the rela-
tional property own. Notice that individuals that appear in an UML 
object diagram (such as is given in figure 9.2) are not endurants. 
They are not persons like you and me, or cars like mine or yours. 
These are snapshot entities, momentary states of endurants. Howev-
er, the instances of a UML class diagram (figure 9.1) are not snap-
shot entities; instead they are so-called oid (object identifiers). Alt-
hough this is not made explicit in the definition of the UML 
standard, an oid such as John (or car1 and car2) is supposed to con-
nect the various snapshot entities (representing momentary states of 
John) that appear in different UML instance diagrams (hence, the 
identifier John of type person – symbolized as John:Person -  in the 
header in figure 9.2). In summary, oids can be interpreted in Lsortal as 
individual concepts; entities in an object diagram can be interpreted 

                                                
1www.w3.org/2004/OWL/ 
2 http://www.uml.org/ 
3What are termed classes in UML are akin to what I name types here, not to the well-known 
set-theoretical notion of classes. In other words, classes in UML are intensional not exten-
sional entities. 
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instead as momentary states of objects in the sense discussed in Sec-
tions 9.2 and 9.3. It is important to highlight that, in UML, snapshot 
entities are connected to exactly one oid. So, even if two snapshot 
entities in an instance diagram have the exact same value for all its 
properties, they still represent two numerically different individuals. 
Finally, although UML does not make a distinction between sortals 
and characterizing types, this distinction is available in an evolution 
of UML for the purpose of conceptual modeling called OntoUML 
(Guizzardi, 2005). In OntoUML, oids are defined by classes repre-
senting kinds (substance sortals) in the model.      

 

 

Fig. 9.1. Representation of a Conceptual Schema at the type level in the UML model-
ing language in the so-called Class Diagrams 

 

Fig. 9.2. Representation of a Conceptual Schema at the instance level in the UML 
modeling language in the so-called Instance Diagrams 
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9.4 Cross-World Identity and Classification in Conceptual 
Spaces 

9.4.1. Conceptual Spaces 

A proposal to model the relation between the properties and 
concepts (types) classifying an individual and their representation in 
human cognitive structures is presented in the theory of conceptual 
spaces developed by the Swedish philosopher and cognitive scientist 
Peter Gärdenfors (Gärdenfors, 2000). The theory is based on the 
notion of quality dimension. The idea is that several perceivable or 
conceivable properties are associated to quality dimension in human 
cognition. For example, height and mass are associated with one-
dimensional structures featuring a zero point (i.e., isomorphic to the 
half-line of nonnegative numbers). Other properties such as color 
and taste are represented by several dimensions. For instance, taste 
can be represented as a tetrahedron space comprising the dimensions 
saline, sweet, bitter and sour, and color can be represented in terms 
of the dimensions hue (a polar dimension), saturation and brightness 
(two linear dimensions). An illustration of a color domain is 
depicted in figure 9.3 below. 

 

 
(a) 

 
 

 
 

(b) 
 

Fig. 9.3. Representations of a Color Spindle (Quality Domain for Color) 
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According to Gärdenfors, some quality dimensions (especially 
those related to perceptual qualities) seem to be innate or developed 
very early in life. For instance, the sensory moments of color and 
pitch are strongly connected with the neurophysiology of their per-
ception. Other dimensions are introduced by science or human con-
ventions. For example, the representation of Newton’s distinction 
between mass and weight is not given by the senses but has to be 
learned by adopting the conceptual space of Newtonian mechanics.  

Zenker and Gärdenfors, in this volume, distinguish between in-
tegral and separable quality dimensions: “Dimensions are said to be 
integral if, to describe an object fully, one cannot assign it a value on 
one dimension without giving a value on the other. For example, an 
object cannot be given a hue without giving it a brightness value. Or 
the pitch of a sound always goes along with its loud-
ness…Dimensions that are not integral are said to be separable, as 
for example the size and hue dimensions”.  They then define a quali-
ty domain as “a set of integral dimensions that are separable from all 
other dimensions”. Finally, a conceptual space is defined as “collec-
tion of one or more domains” (Gärdenfors, 2000, p. 26).  

Gärdenfors emphasizes that the notion of conceptual space 
should be understood literally, i.e., quality dimensions, quality do-
mains and conceptual spaces are endowed with certain geometrical 
structures (topological or ordering structures) that constrain the rela-
tions between its constituting dimensions. In particular, Gärdenfors 
uses the notion of a convex region in a metric space to define what 
he calls a quality region. For instance, the different regions in the 
color circle of figure 9.3.b define quality regions in that domain. Ac-
cording to him, only attributes representing genuinely substantial 
properties will form quality regions in a conceptual space. This al-
lows for a geometrical grounding of the difference between what 
David Lewis (1986) called natural attributions, as opposed to abun-
dant attributions. In the conceptual space model, natural attributions 
(e.g., red, person, car) will form convex regions, but abundant at-
tributions will not (e.g., not-red, being-a-car-or-an-apple).  

Finally, Gärdenfors makes the following distinction between 
what he calls concepts and properties (Gärdenfors, 2004, p. 23): 
“Properties…form as special case of concepts. I define this distinc-
tion by saying that a property is based on single domain, while a 
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concept may be based on several domains.” In other words, proper-
ties define regions completely contained in a quality domain while 
concepts define regions that cross over multiple quality domains.  

9.4.2. Individuation, Identity and Dynamic Classification in Con-
ceptual Space 

Regarding the notions of principle of application and principle 
of identity discussed throughout this article, a number of remarks 
can be made regarding the conceptual spaces model.  

9.4.2.1. Principles of Application in Conceptual Spaces 

In the conceptual space model, an individual is identified by a 
point in a conceptual space. An object (continuant, endurant) like 
you and me, my car, your house, Susan´s cat, the planet Mars, and 
the Monalisa are identified by a vector in a multi-dimensional space 
(a hyperspace) so that each component (coordinate) of a vector rep-
resents a value of a property on a given quality dimension (e.g., my 
height, the color of my car, the price of my house). In fact, Gärden-
fors admits to the Leibnizian principle of identity for all individuals, 
i.e., two individuals are the same (in a numerical sense) iff they are 
represented by the same point in a conceptual space. Provided that 
individuals are points in a conceptual space, the principle of applica-
tion of a given type can be represented by the geometrical notion of 
spatial containment in a given region. For instance, we know that my 
car is red because the coordinates that represent the color of my car 
(vector) lie within the red region in the color space.   

9.4.2.2. Comparing the Sortal x Characterizing and the Con-
cepts x Properties distinctions 

Gärdenfors’ distinction between properties and concepts does 
not correspond to that between sortal and characterizing types dis-
cussed in Section 9.2. For once, there are characterizing types that 
will correspond to regions crossing multiple quality domains. Exam-
ples include the types physical object (as a supertype of houses, cars, 
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persons), insurable items (as a supertype of persons, houses, cars, 
works of art, buildings). Moreover, the points (individuals) in a re-
gion defined by a property (e.g., red) in the sense of Gärdenfors are 
exemplars not of objects but of what is termed a quality value (i.e., 
the super-determinate value of a quality, a trope, a property instance, 
an abstract particular) (Guizzardi, 2005). If instead, one is willing to 
conceptualize the object type red (whose instances would include a 
red car, a red flag, a red apple, a red building), then the correspond-
ing region crosses multiple quality domains (e.g., my red car will be 
fully conceptualized on many dimensions that are separable). We 
conclude that, in its present state, the theory of conceptual spaces 
does not make the distinction between sortal and characterizing 
types, i.e., a distinction between types that merely offer a principle 
of application to its instances and types that also offer a principle of 
identity. As previously mentioned, the theory can adequately repre-
sent the former (e.g., my car is an instance of the object type red if it 
lies within the cross-domain Red region) but not the latter. Given the 
purposes of this paper, from now on, I focus on regions of conceptu-
al spaces associated to object types. I assume that ordinary objects 
(in the sense investigated here) will always be associated to concept 
regions, i.e., to regions crossing multiple domains. 

9.4.2.3. Limitations of Conceptual Spaces regarding Cross-
World Identity and Dynamic Classification 

A region in a conceptual space representing a type such as dog 
must represent not only the current dogs that exist now but, as put by 
Gauker (2007), they must “comprise all and only dogs, since the 
concept dog correctly applies to each and every dog (that ever has 
been or ever will be) and to nothing else.” However, as Gauker 
notes, the regions defined in a conceptual space are static (fixed). In 
fact, if an individual is represented by a point in a conceptual space, 
and one adopts a Leibnizian principle of identity (as Gärdenfors 
does), then an entity cannot suffer any change without ceasing to be 
the same. As a consequence, as a representation for types (concepts), 
regions in a conceptual space seem to be only able to represent rigid 
types and immutable individuals. Gauker makes a similar point argu-
ing that similarity spaces theories of concepts, in general, and the 
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theory of conceptual spaces in particular, cannot support the struc-
ture of judgments (Gauker, 2007).  

To illustrate this point, suppose a situation in which an individ-
ual, John, is a college student. According to the conceptual space 
theory, this is represented by having a point x represent John in the 
college student region of a conceptual space. Now, suppose that 
John ceases to be a college student. John must now be represented 
by a new point y outside the college student region in that conceptu-
al space. Notice that by definition the two points x and y (the two 
vectors containing different component values) are different. Quot-
ing Gauker, the following question arises: “in what sense the earlier 
point in college student region represents the same thing as the later 
point outside the college student region?” How can we say that the-
se two points represent the same object?  

Gauker’s example in fact is slightly different. He exposes a situa-
tion in which someone initially judges John to be a college student 
(so her belief that John is a college student is represented by a point 
in the college student region representing John) but later learns that 
John is in fact not one (so her belief that John is not a college student 
is represented by a point outside the college student region repre-
senting John). Although Gauker´s example pertains to belief revision 
(learning about individuals), for the sake of my argument, its point is 
exactly the same. After all, someone´s mistaken belief about John 
can be thought of as a conception of John in a counterfactual situa-
tion, i.e., one in which the very same individual has some properties 
different from those he now has (like the counterfactual situation 
where Mick Jagger never quits the London School of Economics 
and never leads the Rolling Stones). Furthermore, in order to learn 
things about John, one must recognize or conceptualize the same in-
dividual in different (counterfactual) situations as the very same in-
dividual. After all, it is not the case that all properties of an individu-
al are manifested in each of encounters with them (Macnamara, 
1986).  

9.4.2.4. Kind-Dependent Identity 

In our working example, merely including an extra time dimen-
sion to the space of persons (and, hence, to that of college students) 
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will not suffice to address the above issue. Suppose we were to add 
an extra coordinate to all vectors representing individuals in the per-
son space (and all its sub-regions including that of college student). 
John being a college student at time t1 would then be represented by 
the point x (〈x1…xn,t1〉), having values for a number of coordinates 
(including those referring to properties of students); John not being a 
student at time t2 would then be represented by the point y 
(〈y1…yn,t2〉), having values for a number of coordinates but not 
those referring to properties of students. Notice that our original 
question still persists: how can we judge that x and y are the same 
individual in two different situations? Summing up all these differ-
ent points (among possibly others) and deciding that John actually 
represents a sequence of time-indexed vectors does not offer any ex-
planatory power. After all, the problem is exactly one of deciding 
which points should be part of this sequence of vectors. In other 
words, what kind of changes can an individual suffer and still be the 
same individual! There must be something that remains the same in 
all points representing the same individual. Or, using the terminolo-
gy of similarity spaces, there must be a set of non-zero values for all 
points representing John (perhaps some of these values are even 
immutable across these points). The specific set of these values de-
pends on what kind of entity is being represented by these points, 
i.e., it is because John is a person that all points representing John 
must have values representing properties that must be present for in-
stances of the concept person, regardless if he is a college student in 
a particular situation, or not.   

As defended here, to decide which points constitute the sequence 
of points representing an individual in a time-indexed conceptual 
space, we need the support of a kind K. This kind K will supply a 
principle of cross-world identity which reports on the properties that 
must be present in all instances of K (i.e., which dimensions must 
have non-zero values for points in a given region) and the property 
values that must remain the same for an entity to remain the same K 
(i.e., which coordinates must be present for points in a conceptual 
space to represent the same instance of K).  
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9.4.2.5. Relating Lsortal and Conceptual Spaces 

As previously discussed, the conception of object types as re-
gions in a conceptual space can adequately represent the principle of 
application of a given type. However, one should notice that the 
points in these regions should not be interpreted as objects (continu-
ants, endurants) but as momentary states of objects, i.e., the sort of 
individuals pertaining to the domain of quantification of characteriz-
ing types as discussed in Sections 9.2 and 9.3 (i.e., members of the 
set U = ∪

Ww∈

D(w)).  

In other words, points in a cross-domain region of a conceptual 
space corresponding to an object concept should be interpreted as 
qualitative characterizations of states of objects falling under that 
concept. In particular, unary properties standing for characterizing 
types in Lsortal should correspond to cross-domain regions (object 
concept regions) in a conceptual space. 

My example in the previous section is about time. However, to 
address objections such as Gauker’s, we should take a more general 
view on an indexing dimension. In other words, the points on such a 
dimension and the structure of that dimension should correspond ex-
actly to worlds and their accessibility relations, respectively, as dis-
cussed in Section 9.3. However, for the sake of maintaining gener-
ality over the possible interpretations of worlds, I will not assume 
here that world-structures are additional dimensions on conceptual 
spaces. Instead, they will be defined as part of an additional structure 
used for the representation of sortal concepts in the sequel. An addi-
tional reason for not including world structures as dimensions in our 
conceptual spaces is the idea that points, which represent momentary 
states of entities independently of a world structure are sufficient for 
applying a principle of application.  

I hold that enduring objects of everyday experience cannot be 
directly represented by standard conceptual spaces. In other words, 
the instances of sortal types like person, organization, country, car, 
president, child, planet or statue cannot be directly mapped to points 
in a conceptual space. To represent such sortal types, we must define 
associate structures that define suitable projections into conceptual 
spaces. These structures associate to each sortal type a sort ℓ (i.e., a 
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separated intensional property) whose extension contains individual 
concepts. Individual concepts can be thought of as projections into a 
conceptual space defining a suitably constrained set of points that 
represent counterparts in different worlds of the same ordinary ob-
ject. Sorts, in turn, are sets of individual concepts and, hence, can be 
thought as projections into conceptual spaces that define regions 
containing suitably constrained sets of sets of points, representing 
states of ordinary objects of the same sortal type.  

So, whilst a point x in a conceptual space can be directly judged 
to be a red individual, an electrically charged entity or a physical 
object, that point can only be judged to be a state of person in world 
w if x belongs to ℓ[w]. Moreover, whilst regions associated to char-
acterizing types can be defined as similarity regions based uniquely 
on the similarity of basic points, regions associated to sortal types 
are projected into conceptual spaces by the principle of identity car-
ried by that type. To put it in another way, the latter type of similari-
ty regions are defined in terms of sets of points selected by individu-
al concepts, not in terms of basic points. 

In summary, instances of sortals types should be represented by 
individual concepts representing a principle of identity, supplied by 
the kind they instantiate, which can trace the identity of the same in-
dividual by referring to (qualitatively distinct) states in different 
worlds (represented by points in a conceptual space). These individ-
ual concepts are supplied by kinds (substance sortals). However, 
they can also be dynamically classified possibly under a number of 
anti-rigid types representing contingent (accidental) properties that 
can inhere in these individuals. So, returning to our working exam-
ple, the same individual person, John, can fall in the extension of the 
type student in a number of situations (in which the states of John 
will be represented by points in the student region of the person 
space), and it can fall outside this extension in a number of other sit-
uations (in which the states of John will be represented by points 
outside the student region in the person space). Nonetheless, it is the 
very same individual, John, that maintains its numerical identity re-
gardless of these contingent (de)classifications as a student.  

Finally, given the non-multiplicationalist stance adopted here, 
the same point in a conceptual space can belong to regions associat-
ed to different object types (concepts), i.e., the same point can repre-
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sent states of individuals falling under different concepts. Moreover, 
on this stance, two individuals that share a qualitatively indistin-
guishable state in a given world do have the same state in a numeri-
cal sense. In other words, if the statue st and the lump of clay loc co-
incide in world w (i.e., st(w) ≈ loc(w)) then they refer, in that world, 
to the very same point in a conceptual space. 

9.5 Related Work 

Modal notions such as were discussed in this paper have been 
employed by Guarino & Welty (2009) in a number of publications 
as a way to formally characterize the ontological distinctions com-
prising the OntoClean evaluation approach for taxonomic structures. 
OntoClean clearly distinguishes sortal and characterizing types ac-
cording to their ontological status. However, in the formalizations of 
that approach, a classical system of modal logics is employed where 
the focus is on distinguishing between properties w.r.t. to their mod-
al meta-properties (e.g., rigidity versus non-rigidity). As a conse-
quence, these formalizations fail to capture a fundamental distinction 
between sortal and characterizing types and the unique role of the 
former category in providing a principle for trans-world identity for 
objects.   

The idea of representing objects of ordinary experience by indi-
vidual concepts is similar to the solution adopted in the GFO foun-
dational ontology (Heller & Herre, 2004) in which individual con-
cepts for objects are called abstract substances or persistents. The 
notion of a momentary state of objects adopted here is similar to that 
of presentials there. As demonstrated by Heller and Herre, a lan-
guage such like the one proposed here can play an important role in 
relating endurantistic (3D) and perdurantistic (4D) views of entities 
(i.e., views of entities as space-extended objects with those of enti-
ties as spatiotemporal processes). However, in contrast to our ap-
proach, GFO does not elaborate on different categories of types (viz. 
kinds, subkinds, phased-sortals and characterizing types). Conse-
quently, no connection between types and identity is developed, and 
the approach makes no distinction between types that aggregate es-
sential properties (rigid types) and those that aggregate merely con-
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tingent ones.  Accounting for such distinctions is fundamental not 
only from a theoretical point of view but also for a number of appli-
cations in computer science (Guizzardi, 2005). Furthermore, as dis-
cussed in Section 9.4, this distinction also plays an important role in 
addressing a criticism targeted at conceptual spaces by Gaulker 
(2007). 

9.6 Summary 

I presented a system of modal logic with sortal restricted quanti-
fication to suitably capture the intended semantics of a philosophi-
cally and cognitively well-founded theory of object types. The pro-
posed logical system formally characterizes the distinction between 
sortals and general property types where the former exclusively sup-
plies a principle of persistence and cross-world identity to its in-
stances. As a result, we can address the limitations of classical (un-
restricted extensional) modal logics which reduce ontologically very 
different categories to the same logical footing, and advance pro-
posals such as in Gupta (1980) by: (i) refining the notion of sortal 
types, considering the distinction between substance, rigid and 
phased-sortals; and (ii) proposing a system that avoids reducing the 
relation of identity to a mere relation of equivalence. Finally, I also 
showed how this proposal can complement the theory of conceptual 
spaces by offering an account for kind-supplied principles of cross-
world identity. The proposal is in line with a number of empirical re-
sults in cognitive psychology and that can addresses an important 
criticism of the conceptual spaces model regarding object identity. 
As I demonstrate here, without addressing issues related to cross-
world object identity, the conceptual spaces model is not properly 
equipped for serving as a general model for cognitive semantics, as 
it is not properly equipped for defining the semantics of linguistic 
entities as fundamental as proper names. 
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