
Law and Adaptivity in Requirements Engineering
Silvia Ingolfo

Department of Information Engineering and Computer Science,
University of Trento, Italy

ingolfo@disi.unitn.it

Vı́tor E. Silva Souza?
Computer Science Department,

Federal University of Espı́rito Santo (Ufes), Brazil
vitorsouza@inf.ufes.br

Abstract—The great impact that law has on the design of
software systems has been widely recognized in past years.
However, little attention has been paid to the challenge of coping
with variability characterizing the legal domain (e.g., multiple
ways to comply with a given law, frequent updates to regulations,
different jurisdictions, etc.) on the design of software systems.
This position paper advocates the use of adaptation mechanisms
in order to support regulatory compliance for software systems.
First we show an example of how Zanshin, a requirements-based
adaptation framework, can be used to design a system that
adapts to legal requirements to accommodate legal variability.
Then we examine how legal texts can be analyzed as sources
for parameters and indicators needed to support adaptation.
As motivating running example we consider legal situations
concerning the Google driverless car and its recent legalization
in the highways of Nevada and soon also in California.

Index Terms—Legal variability, Regulatory compliance, Adap-
tation framework, Requirements engineering

I. INTRODUCTION

The influence of law on the design of software is growing as
new legislations around the world attempt to control its impact
on social and private life: tablet application for doctors to share
a patient’s record in accordance with privacy policies, on-line
systems to pay taxes obeying fiscal laws, and even driverless
cars respecting traffic law. All software systems need to be
designed from the beginning in a law-aware fashion to make
sure they comply with applicable laws.

Ensuring compliance of a software is a very expensive
proposition. For example, in the Healthcare domain alone,
it has been estimated that organizations have spent US$17.6
billion over a number of years to align their systems and proce-
dures with the Health Insurance Portability and Accountability
Act (HIPAA). Non-compliance costs (fines, prosecutions, etc.)
are generally almost three times higher than the costs of
ensuring compliance [1]. As a result of this great impact
that regulations have on requirements, new techniques have
been developed to allow organizations to align their software
requirements with the law [2], [3], [4].

The variability characterizing the space of compliance so-
lutions affects software in different ways. Introducing a new
requirement or an amendment to an existing one could make
a new set of norms applicable or trigger a particular exception
for which a norm is no longer applicable. Amendments to a
law often introduce new rules but also new ways to comply.
For example a little over a year ago some changes were

? Work done while in Trento as PhD student/post-doc.

proposed to the HIPAA Privacy Rules:1 as these changes come
into force, the software systems where the HIPAA Section was
applicable need to be realigned to meet these new provisions.
Software systems need therefore to be designed so that they
adjust and adapt gracefully to such changes.

Moreover, legal variability comes also from differences
in legislations. This issue is very prominent in the case of
traffic laws and regulations. Recently, the American Insurance
Institute for Highway Safety (IIHS) launched an initiative to
promote awareness of existing differences in state traffic laws.
For example, even though in most states the minimum age
for unsupervised driving is 16, across the US this age ranges
from 14 to 17.2 It becomes evident that any system supporting
a human driver needs to be aware and adapt depending on the
legal context.

Uncertainty from the environment and variability of solu-
tions are amongst the topics of study in the research area of
adaptive software system design [5]. Adaptive systems treat
this uncertainty in a dynamic way, changing the system’s
behavior to a different variant when needed. Likewise, the law
needs to be handled dynamically in order to accommodate
differences in legislation and changes in regulations. For
instance, in an autonomous car, drivers could indicate the
maximum amount of dollars they are willing to spend for
speeding tickets, and then driving across different states the
car settings adapt according to applicable limits and fines.

In this paper we report on very early work, on the ap-
plication of adaptive software system design techniques to
the problem of designing compliant software. As in our
earlier work, our approach is founded on concepts adopted
from Requirements Engineering (RE). On one side existing
adaptation techniques can be tailored to accommodate legal
compliance requirements. “Legal requirement” is a type of
software requirement that reflects the need for the software
to comply with applicable laws.3 We illustrate this with an
RE-based approach for the design of adaptive systems called
Zanshin [7], [8]. On the other side, we illustrate how legal
texts can be useful sources for adaptation rules, and sketch a
preliminary methodology to deal with this issue.

1http://www.hhs.gov/news/press/2011pres/05/20110531c.html.
2http://www.iihs.org/laws/mapunsuperviseddrivingage.aspx.
3For example, “The software [in charge of driving a driverless vehicle]

should respect a stop sign”, or “The software [managing patients record in
a hospital] should not disclose Patient Health Information to third parties”.
Once identified, these legal requirements can be added to other elicited
requirements [6].

978-1-4673-4401-2/13 c© 2013 IEEE SEAMS 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

163

Our focus on RE is motivated by the role requirements play
both in law compliance and adaptation. In the former, applica-
ble laws have a great impact in the system’s requirements and,
as such, should be analyzed in combination [9], [2]. As for the
latter, adaptation takes place when the system is not fulfilling
requirements, and constitute the most important element of
any feedback loop [10].

The rest of the paper is structured as follows. Section II
introduces the running example of a driverless car. In sec-
tion III we apply the Zanshin adaptivity framework to the
running example, while in section IV we propose a high-level
methodology for extracting useful information from legal texts.
Finally section V concludes.

II. THE GOOGLE DRIVERLESS CAR EXAMPLE

A driverless car — also self-driven car, robotic car or
autonomous car — is “an autonomous vehicle capable of
fulfilling the human transportation capabilities of a traditional
car. As an autonomous vehicle, it is capable of sensing its
environment and navigating on its own. A human may choose
a destination, but is not required to perform any mechanical
operation of the vehicle” [11]. Many car companies are
working on this type of projects,4 however it is thanks to
Google that a new prototype was recently put on the streets.

In June 2011 in fact, the US state of Nevada passed a law
concerning the operation of driverless cars in its highways
and less than a year later the DMV of Nevada issued the first
license for a “self-driven car”. In the following year, a bill
was proposed in California to “establish rules and regulations
covering the safe operation of driverless cars on the state’s
highways” [12].

The Google project is at the moment still in testing phase
and the car never operates unmanned [13]. These vehicles are
equipped with radars, cameras and lasers, and are programmed
to drive autonomously in traffic. According to the New York
Times [14], the Google driverless car drove at the speed limit
along the highways of Nevada, left the freeway, drove through
the city traffic of Mountain View (stopping at stop signs and
for red lights), and a voice even announced the directions the
car was following (like “turning left ahead”).

For purposes of this paper, we consider that the software
system that manages the car is composed of three main parts:5

1) A monitoring system: a part of the software that is in
charge of managing the special equipment needed to
sense the environment (cameras, sensors, lasers, etc.);

2) A navigation system: a part of the software that manages
the geo-localization of the car and chooses the directions
to the destination (usually performed by a GPS system);

3) A vehicle operator: a piece of software that manages
the car in all its basic features (drive in the traffic, obey
traffic rules, etc.) and takes care of the user request.

4E.g., GM: http://www.wired.com/autopia/2008/01/gm-says-driverl/.
5Given the limited scope of the example, we will focus on the requirements

of the software parts related to the operation of the car. We will skip the
requirements of the passenger, who is nonetheless an important actor in the
driverless car software system.

In the running example we focus on the requirements of the
software that takes care of the operation of the vehicle (the
element ‘vehicle operator’). First when a software operates a
vehicle, it needs to be able to manage the mechanic compo-
nents (engine, break, clutch, etc.) in order to actually have the
vehicle respond to basic commands (like stopping, moving,
accelerating, etc.). Then, the software should provide some
basic features allowing the car to operate in an environment
with other elements (like avoiding collision with other vehi-
cles). Also, the software operating the vehicle has to manage
user requests, providing the passenger with the possibility to
decide/change the destination, and other operations regarding
the possible configuration of the car (e.g. driving mode).
Furthermore when operating the vehicle on the streets, this
task needs to be performed in accordance with the traffic law,
so it must be aware of the rules and limitation that are given by
the State/Country where it operates. These four basic features
are the top requirements of this software component, and an
example of a high-level goal model of these requirements is
illustrated in Fig. 1.

III. ADAPTATION OF LEGAL REQUIREMENTS

Requirements-based approaches for the design of adaptive
systems are concerned with, among other things, the elicitation
of requirements for adaptation. Going through the literature
in this area of research (e.g., [15], [16]), one can find many
different proposals for adaptive systems design, many of which
focus on requirements.

As previously introduced, laws can have a big impact in
many kinds of software systems, some of which might also
require adaptation features to deal with its own complexity or
the uncertainty of its surrounding environment. In this section,
we show that existing techniques for the design of adaptive
systems can be used to accommodate the need to adapt to
legal requirements. In particular, we will use the Zanshin
framework [7], [8] to illustrate examples of this need.

Zanshin is based on the idea that adaptivity is implemented
by a monitor-adapt feedback loop that reads from the system’s
requirements model what should be monitored and what to do
in case monitoring indicates failures. These are represented
in the model by Awareness Requirements (AwReqs) [7] and
Evolution Requirements (EvoReqs) [8], respectively.

On the monitoring side, AwReqs represent constraints on
the states that other requirements can assume during their
execution at runtime. Back to the vehicle operator component
of the driverless car shown in Fig. 1, examples of AwReqs
could be “goal Avoid collision should never fail” or “task
Use GPS to locate (a parking spot) should have 75% success
rate”. These AwReqs could be elicited, for instance, by asking
stakeholders about features that are essential to guarantee the
quality of the service provided by the system.

The vehicle operator of the driverless car has to obey the
traffic laws and, consequently, its specifications also include
legal requirements such as the goal Obey traffic law and its
refinements. The feedback loop mechanism applies to both
types of requirement as we need to be sure that also the

164

Operate the
vehicle

VEHICLE
OPERATOR

Allow car to
park

Avoid other
vehicles

Stop vehicle Decrease
 speed

Avoid
pedestrians

Avoid cyclists

Respect speed
limits

All passenger
wear seat-belt

Find parking
spot

Perform
parking

use GPS to
locate

use cameras to
find a free parking

place

Parallel
parking

Angle
parking

or

Change lane

Start the
vehicle Stop the

vehicle Adjust
speed

or

Check if lane on
left is free Use the

turn signal Move car in
left lane

Increase
speed

Return to lane
on right

Drive to
default speed

Manual
operation

Respect following
distance

and

or

and

Manage
mechanics

and

Pass the vehicle
in front

and

Avoid collision

Turn according
to street curves

Stop if street
ends

and

Car remains
on street

Coordinates of
arrival coincides
with destination

and

Reach
Destination

Obtain
destination

Obtain user
destination

Convert
destination in GPS

coordinates

and

Manage general
request

Allow to chose
driving mode

Allow to change
driving mode

and

Manage user
requests

Parking is
allowed

and

Respect MAX
allowed speed

Respect MIN
allowed speedand

Manage
environment

and

Car is parked

Allow to change
destination

and

Manage
Destinations

and

and

Automatic
operation

Respect
stop sign

Stop car in case
of collision

and

Obey traffic law

Fig. 1. A goal model representing requirements of the vehicle operator software component.

Respect speed
limits

All passenger
wear seat-belt

Respect following
distance

and

Manage user
requests

Respect MAX
allowed speed

Respect MIN
allowed speed

and

Manage
Destinations

Respect
stop sign

Stop car in case
of collision

and

Obey traffic law

NeverFail SuccessRate
(90%)

SuccessRate
(90%,trip)

SuccessRate
(85%)

NeverFail

NeverFail

Legend
and

or
goal and/or

refinement
LAwReq

Fig. 2. LAwReq examples elicited based on the Driverless Car model.

legal prescriptions that apply to our system are respected. In
this spirit, we categorize these AwReqs as Legal Awareness
Requirements (LAwReqs): the class of legal requirements that
lead to feedback loop functionalities. In other words, LAwReqs
will talk about the states that legal requirements can assume
at runtime. This distinction, however, is for categorization
purposes only, and does not affect the Zanshin framework.

Fig. 2 shows a few examples of LAwReqs, represented using
the same syntax as regular AwReqs (cf. [7]). Regulations that
are identified as being more critical — such as stopping in
case of collision, wearing seat-belts and respecting stop signs
— are associated with “never fail” constraints, whereas less
critical parts of the law have their deniability (failure) tolerated
up to certain points: the car should respect both the following
distance and the speed limits 90% of the time. For more details
on how Zanshin operationalizes monitoring, refer to [7].

On the adaptation side, EvoReqs prescribe what to do in case
an AwReq fails, in order to adapt the system. As before, this

component of the feedback loop could be applied to LAwReqs
as well, specifying counter-measures whenever the system has
reached a level of noncompliance with the law that should
not be tolerated. Adaptation strategies can consist of precise
actions, including changes in the model itself. For example, if
a passenger is not wearing her seat-belt, the driverless car first
issues a warning, then, if the problem persists, it can decrease
its speed and ultimately park itself, resuming the trip only
when the situation is resolved.

Another strategy for adaptation is to look for a system
parameter that can be reconfigured the same way a control sys-
tem (e.g., a thermostat) tunes its variables (the heating/cooling
power) to keep its output (the room temperature) as close as
possible to a desired value. The speed of the car, the driving
style (e.g., conservative, aggressive), preferable routes (e.g.,
highway, in the city), etc. are examples of possible parameters
for the driverless car.

In the above, we have seen legal requirements as targets
for monitoring and adaptation. However, the law can also be
used as a source in the elicitation of these requirements for
adaptation. In the next section, we discuss this issue, sketching
an approach for the design of adaptation requirements based
on legal documents.

IV. LAW AS SOURCE OF ADAPTATION

An important aspect of software adaptation comes from
the identification of information representing the relationship
among the parameters of the system and indicators that it
is operating properly (in Zanshin, for example, AwReqs rep-
resent such indicators). The inclusion of these elements in
the requirements model provides an essential link between

165

the possible system configurations and its measured output,
supporting the design of adaptation features.

In this section we claim that legal texts can be useful
sources for identifying new indicators of requirements
convergence and parameters that can be tuned at runtime
to help maintain such indicators close to desired reference
values. In other words, the law can be the source of
requirements for adaptation. The support of legal variability
(e.g., difference in legislation, changes in regulations) can
then be supported by dynamically configuring and managing
these indicators and parameters.

Existing solutions for text-based analysis of legal documents
are generally aimed at identifying the rules/norms6 (i.e., rights,
obligations, permissions, etc.) the system should comply with.
In RE for example, Maxwell et al. [4] show how production
rule models can be used to extract software requirements from
regulatory texts. Breaux et al. [3] propose a methodology to
extract rights and obligations from legal texts using semantic
models in order to help the analysts establish compliance
of a set of requirements. In the well established field of
AI&Law for example, Agnologni et al. [19] adopt an ontology-
based approach in order to support both the formalization of
normative rules, and the link between these rules and the
corresponding part in a business model. Wyner et al. [18]
show how a linguistically-oriented approach can identify and
extract high-level elements of normative rules from regulations
(e.g., agents, deontic modals, exception clauses, etc.). Biagioli
et al. [17] explore automatic methodologies for helping the
manual identification of the type of normative rule and its
elements. Palmirani et al. [20] propose a model for recogniz-
ing, understanding and normalizing the normative references
of legal texts and standardize such references to increase
interoperability of information systems.

All these techniques and methodologies provide an impor-
tant basis for the textual analysis of legal documents. AI&Law
techniques generally focus on the identification of the legal el-
ements and components of the normative rules in the legal text,
while RE approaches look for a methodological link between
legal texts and a compliant set of software requirements. The
idea of this paper is that legal texts can be a useful source for
enriching the requirements model of an adaptive system, and
a specific solution is missing to combine existing techniques
to provide effective support in the enrichment of such models.
Despite the fact that compliance with laws is not necessarily
the main goal of an adaptive system, it is still very important
that it follows and respects the applying regulations. This is
especially the case, for instance, of driverless cars.

The enrichment of a model of requirements with elements
helpful for adaptation (e.g., parameters and indicators) is a
key and non-trivial task [21], [22], [23]. Automatic text-based
techniques can be envisaged to identify these elements in legal
texts, however, requiring these elements to be ‘measurable’
may greatly increase the complexity of this automatic task.

6In the field of AI&Law the term ‘rule’ or ‘provision’ [17], [18] is generally
used to identify what in RE is called ‘norm’ [3], [6].

Analysts — who are not necessarily familiar with the legal
domain at hand or its details — may need guidance to struc-
turally enrich these models. Thus, we need a methodology for
augmenting a goal model of the requirements of an adaptive
system with parameters and indicators coming from the law.

As mentioned earlier, the differences between traffic laws
in the US is an evident example of legal variability. The
software running on a driverless car (or a hypothetical ‘smart’
car equipped with a software to detect and limit the speed
according to the type of road) must be able to adapt to the
different rules and limitations across the states the vehicle is
running. The use of parameters and indicators can be indeed
of great help to bridge these differences. The single parameter
would remain the same in the model (e.g., speedOfCar,
representing the speed the car should be currently running, or
numberOfDrinks representing the max number of drinks
the car would allow a driver to have) while the official legal
value (e.g., speedOfCar < 50 Mph, numberOfDrinks <
2) would be dynamically configured and evaluated according
to the location of the vehicle (e.g., California with maximum
speed 50 Mph, while Nevada 55 Mph).

In the following we will sketch a preliminary methodology
that takes as input a goal model of the requirements of the
system (e.g., Fig. 1) and a piece of law. As output it returns the
requirements model expanded with parameters and indicators
coming from the legal text. As an example of legal text, we
will use an extract of the article of the California Vehicle Code
regulating the driving hours:7

§21702.(a) No person shall drive [. . .] for more than 10
consecutive hours nor for more than 10 hours spread over
a total of 15 consecutive hours. Such person shall not
drive any such vehicle until eight consecutive hours have
elapsed. Regardless of aggregate driving time, no driver
shall drive for more than 10 hours in any 24-hour period
unless eight consecutive hours off duty have elapsed.

Step 1. The first step of the methodology is to identify the
object regulated in the analyzed piece of law at hand. We
call object the element that the law is regulating and for
which rules and limitations are in place, e.g., the driver’s blood
alcohol content (BAC), the number of passengers, the speed
of the car, the distance of the car from an object, the way
a car can/cannot be operated, etc. In the example above, the
object regulated is the amount of hours a vehicle is driven by
the same person. As mentioned earlier, this step could benefit
from automatic text-based techniques to help identifying or
suggesting possible regulated objects in the legal text.
Step 2. As second step we need to evaluate if the object is
measurable and quantifiable (in general), and if it can be mea-
sured by the system. Once again, specific automatic techniques
could be of help and support this task with suggestion to the
analysts. In the example above, the amount of hours can be
measured by a piece of software and no special equipment
would be needed in a car in order to quantify the number

7As stated in Section II, currently these types of car cannot be operated
unmanned so all rules are still in force for the person on board. For the
complete text of the law, see http://www.dmv.ca.gov/pubs/vctop/d11/vc21702.
htm.

166

of driving hours. On the other hand, for example, the BAC
is a measurable and quantifiable object but cars are usually
not equipped with devices for its testing. Should the designed
system be aimed at making drivers more aware of this very
important issue, it could be arranged to equip the vehicle with
a breathalyzer and evaluate to include this device in the design
of the system. An example of a regulated object that cannot be
measured/quantified is the way a car can/cannot be operated
(e.g., §21712(d) “A person shall not ride in the trunk of a
motor vehicle”).

Step 3. As third and last step we need to evaluate, for each
object analyzed in the previous step, if and which adaptation-
related elements to include in the requirements model. As
briefly introduced in Section III, in Zanshin such elements
could be LAwReqs, EvoReqs or system parameters.
Measurable objects: if the object is measurable by the system
and is relevant enough to be used as an indicator, a LAwReq
can be added to the model. For example, in Fig. 2, LAwReqs
are associated with goals such as All passengers wear seat-
belts and Respect speed limits presumably because different
pieces of the law indicated these behaviors as mandatory.
In the case of article §21702.(a) shown earlier, a new goal
Respect limitations on driving hours should be added to the
model with an associated LAwReq, as shown in Fig. 3. The
way the goal is operationalized depends on whether the object
is controllable or not by the system. When not controllable,
we refine the goal into a domain assumption and monitor
the information from the environment. As can be seen in the
figure, this is the case of the driving hours object.
When an object is controllable by the system, the latter can
take a more proactive approach into satisfying the goal. Take,
for instance, the BAC example previously mentioned. To sat-
isfy goal BAC within limit we could install a breathalyzer and
not start the car until the driver has blown in it and the BAC
has been verified. In these cases, we refine goals into tasks.
Non-measurable objects: if an object cannot be directly mea-
sured by the system or a solution to do it is not feasible, then
a proxy solution could be envisaged by the analyst in order
to evaluate the legal object. This is actually the case shown in
Fig. 3 for goal BAC within limit, which is operationalized by
task Ask user for number of drinks.
System parameters: controllable objects, regardless if relevant
enough to lead to indicators, can become system parameters
if they have an effect on the success rate of an AwReq.8

For instance, other articles from the California Vehicle Code
mention the car’s current speed. Clearly, the value of this
particular element affects the satisfiability of goal Respect
speed limits and, thus, the LAwReq associated to it.
As shown in Fig. 3, parameters are represented in the model
by diamonds connected to the elements on which they have
an effect (e.g., speedOfCar in Fig. 3).
Counter-measures: finally, the analysis of legal text can also
lead to the precise adaptation strategy to be used in case a

8The cross-effect analysis of parameters and indicators is a task addressed
by a dedicated process in the Zanshin framework.

Respect speed
limits

All passenger
wear seat-belt

Respect following
distance

and
and

Manage user
requests

and

Manage
Destinations

Respect
stop sign

Stop car in case
of collision

and

Obey traffic law

Respect limitations
on driving hours

speedOfCar

BAC within limit

Continuous driving
hours are less than 10

ask user for
number of drinks

speedOfCar

Respect MAX
allowed speed

Respect MIN
allowed speed

Legend
and

or

task

goal

domain assumption

and/or
refinement

parameter

LAwReq

Fig. 3. An example of how new goals and indicators coming from the law
can be included in the Driverless Car model.

LAwReq is not satisfied, leading to the inclusion of EvoReqs
in the requirements model. In the case of article §21702.(a),
for instance, parking the car and not allowing the same driver
to drive it for the next eight hours is a possible response to the
failure of the LAwReq associated with goal Respect limitations
on driving hours.
LAwReqs can also be set up in order to prevent the system from
breaking the law instead of just remedying the situation. For
instance, a different domain assumption considering not 10,
but 8 or 9 driving hours could be elicited with an associated
LAwReq that, when not satisfied, would configure the car
with a more cautious setting (e.g., using lower speeds) and
periodically notify the driver until it reaches the limit of hours.

In this preliminary methodology we have shown how a
legal text can be used as source to elicit parameters and
indicators for adaptation. The enrichment of a requirements
model with these elements can provide an important support
in dealing with the problem of legal variability caused by
differences in the legislations. Future work will be dedicated
to the investigation of a more complete methodology, in order
to provide thorough support to the analyst. Moreover, in order
to deal with the more complex problem of applicability of
norms — related to the variability caused by elements such as
exceptions and derogations in legal texts — we will investigate
the possibility of linking the requirements model directly with
a model of the law that can deal this issue (e.g., Nòmos 2 [9]).

V. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this position paper we have presented and characterized
the important relationship between law and adaptation in
requirements engineering. In the Zanshin framework [7], [8],
adaptation is founded on the idea that if in a current con-
figuration the system is not satisfying its requirements, a new
configuration is found that resolves the failure. However when
the law comes into play, you look for an alternative way to
comply with it, thereby changing the space of alternatives that
is available for adaptation. When a system is not compliant,

167

it can either change its behavior or you look for a different
part of the law that you can comply with. The variability
characterizing the legal domain creates the need for software
systems to adapt and respect legal rules. At the same time,
this variability creates an important new space of alternatives
for adaptation.

We have shown how Zanshin can accommodate legal
requirements making the system adapt and reconfigure
according to the rules specified in the law. Furthermore,
legal texts can be a source for identifying new information
useful for the adaptation of a software. We have sketched a
preliminary methodology that takes as input a requirements
model and a law fragment, and returns the model enriched
with parameters and indicators coming from legal texts.

We acknowledge that many limitations and challenges re-
main open in this exploratory study, and need to be addressed
in our future work. First, our motivational and running ex-
ample of the driverless car system has mainly risen from
the recent news related to the regulation and legalization of
this type of vehicle in two US states. We recognize that this
example belongs to a safety-critical type of systems where the
use of a more formal approach might be more appropriate.
In our future work we plan to identify and experiment with
a system that is more suitable to the level of (in)formality
associated with our approach.

Secondly, the use of legal texts in our methodology could
suffer from the many challenges and difficulties characterizing
this type of text. For example, vague and fuzzy words —
“driving too slow” or “follow closely another vehicle” —
can be rationalized and operationalized in different ways by
analysts. Ambiguous terms typical of legal texts may need
to be interpreted and disambiguated for the legislation to be
correctly implemented. In our future work we will consider
specific techniques and methodologies that could be integrated
to help the analyst deal with these particular traits of legal
texts. Also we will investigate the possibility to exploit models
of law (e.g., Nòmos 2 [9]) that could help clarifying and
modeling complicated regulations (e.g., legislation with many
exceptions, derogations, or conflicting rules).

Moreover, in this exploratory paper we have seen how
the Zanshin framework can be deployed to accommodate
legal requirements. It would be interesting to try out other
approaches from the literature [10].

Lastly, the scalability of the overall approach and method-
ology needs to be evaluated for a more accurate assessment
of the feasibility of our proposal.

ACKNOWLEDGMENT

This work has been supported by the ERC advanced
grant 267856 “Lucretius: Foundations for Software Evolution”
(April 2011 – March 2016, http://www.lucretius.eu) as well
as Brazilian foundation FAPES (http://www.fapes.es.gov.br)
through the PRONEX grant #52272362.

REFERENCES

[1] Ponemon, “The true cost of compliance. research report,”
2011, accessed on September 21, 2011. [Online]. Avail-
able: http://www.tripwire.com/ponemon-cost-of-compliance/pressKit/
True Cost of Compliance Report.pdf

[2] S. Ingolfo, A. Siena, and J. Mylopoulos, “Establishing regulatory
compliance for software requirements,” in Conceptual Modeling - ER
2011, ser. Lecture Notes in Computer Science, 2011, vol. 6998, pp.
47–61.

[3] T. D. Breaux, M. W. Vail, and A. I. Antón, “Towards Regulatory
Compliance: Extracting Rights and Obligations to Align Requirements
with Regulations,” in 14th IEEE International Requirements Engineering
Conference (RE’06), 2006.

[4] J. C. Maxwell and A. I. Anton, “Developing Production Rule Models
to Aid in Acquiring Requirements from Legal Texts,” in RE’09, 2009,
pp. 101–110.

[5] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems. Springer, 2009, pp. 1–26.

[6] A. Siena, S. Ingolfo, A. Susi, I. Jureta, A. Perini, and J. Mylopoulos,
“Requirements, intentions, goals and applicable norms,” in ER Work-
shops, 2012, pp. 195–200.

[7] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos,
“Awareness Requirements for Adaptive Systems,” in Proc. of the 6th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2011, pp. 60–69.

[8] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “(Requirement)
Evolution Requirements for Adaptive Systems,” in Proc. of the 7th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. IEEE, 2012, pp. 155–164.

[9] A. Siena, I. Jureta, S. Ingolfo, A. Susi, A. Perini, and J. Mylopoulos,
“Capturing variability of law with Nòmos 2,” in Conceptual Modeling -
ER 2012, ser. Lecture Notes in Computer Science, 2012, vol. 7532, pp.
383–396.

[10] Y. Brun et al., “Engineering Self-Adaptive Systems through Feedback
Loops,” in Software Engineering for Self-Adaptive Systems, 2009, pp.
48–70.

[11] Wikipedia, “Autonomous car,” 2010. [Online]. Available: http:
//en.wikipedia.org/wiki/Driverless car

[12] M. Williams, “Driverless cars move closer in California,” 2012.
[Online]. Available: http://www.computerworld.com/s/article/9228756/
Driverless cars move closer in California?taxonomyId=144

[13] G. O. Blog, “What we’re driving at,” 2010. [Online]. Available:
http://googleblog.blogspot.it/2010/10/what-were-driving-at.html

[14] J. Markoff, “Google cars drive themselves, in traffic,” 2010. [Online].
Available: http://www.nytimes.com/2010/10/10/science/10google.html?
r=1

[15] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds.,
Software Engineering for Self-Adaptive Systems, ser. Lecture Notes in
Computer Science. Springer, 2009, vol. 5525.

[16] R. de Lemos et al., Ed., Software Engineering for Self-Adaptive Systems
II, ser. Lecture Notes in Computer Science. Springer, 2013, vol. 7475.

[17] C. Biagioli, E. Francesconi, A. Passerini, S. Montemagni, and C. Soria,
“Automatic semantics extraction in law documents,” ser. ICAIL ’05,
2005, pp. 133–140.

[18] A. Wyner and W. Peters, “On rule extraction from regulations,” in
JURIX, 2011, pp. 113–122.

[19] T. Agnoloni and D. Tiscornia, “Extracting normative content from legal
texts,” in MCIS, 2010, p. 4.

[20] M. Palmirani, R. Brighi, and M. Massini, “Automated extraction of
normative references in legal texts,” ser. ICAIL ’03, 2003, pp. 105–106.

[21] S. Fickas and M. S. Feather, “Requirements Monitoring in Dynamic
Environments,” in Proc. of the 2nd IEEE International Symposium on
Requirements Engineering. IEEE, 1995, pp. 140–147.

[22] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive
System with Environmental Uncertainty,” in Model Driven Engineering
Languages and Systems, 2009, pp. 468–483.

[23] W. N. Robinson and S. Purao, “Monitoring Service Systems from a
Language-Action Perspective,” IEEE Transactions on Services Comput-
ing, vol. 4, no. 1, pp. 17–30, 2011.

168

