

Knowledge Management in Software Engineering Environments

 Ana Candida Cruz Natali
Ricardo de Almeida Falbo

Computer Science Department, Federal University of Espírito Santo

Fernando Ferrari Avenue, CEP 29060-900, Vitória - ES - Brazil
{anatali, falbo}@inf.ufes.br

Abstract

Knowledge is one of the organization’s most important value, influencing its competitiveness. One way to
capture organization’s knowledge and make it available to all their members is through the use of knowledge
management systems. In this paper we discuss the importance of knowledge management in software
development and we present an infrastructure to deal with knowledge management in software engineering
environments (SEEs). This infrastructure is applied to manage product software quality knowledge in ODE, an
ontology-based SEE.

Keywords: knowledge management, software engineering environments, ontologies,
software quality.

1. Introduction

The demands on software development are increasing. Shorter time-to-market, better
quality and better productivity are more and more goals to be achieved. To meet these
requirements, software organizations have tried to better use one of its most important
resource: the organizational software engineering knowledge. Historically, this knowledge has
been stored on paper or in people’s mind. Unfortunately, paper has limited accessibility and it
is difficult to update [1]. Knowledge in people’s mind is lost when individuals leave the
company. Furthermore, in a large organization, it can be difficult to localize who knows some
matter. So, knowledge has to be systematically collected, stored in a corporate memory, and
shared across the organization [2]. To put knowledge sharing in practice, organizations should
acquire knowledge from their members and formalize it to make it available on an
organizational level. In this context, knowledge management systems can be very useful.

Knowledge management (KM) involves human resource, enterprise organization and
culture, as well as the information technology, methods and tools that support and enable it
[3]. A knowledge management system facilitates creation, access and reuse of knowledge, and
its main goals are to promote knowledge growth, communication, preservation and sharing.

In the context of software development, KM can be used to capture the knowledge and
experience generated during the software process. Although every software development
project is unique in some sense, similar experiences can help developers to perform their
activities. Reusing knowledge can prevent the repetition of past failures and guide the solution
of recurrent problems. So, to be effective, a knowledge management system should be
integrated to the software process. Since Software Engineering Environments (SEEs)
integrate collections of tools supporting software engineering activities across the software
lifecycle [3], it is natural to integrate KM facilities in a SEE.

In this paper, we propose a knowledge management infrastructure to enable KM in SEEs,
which considers knowledge capture, store, retrieval, dissemination, reuse and maintenance.
Section 2 discusses knowledge management, and why it can be better addressed in SEEs. In
section 3, we present the KM infrastructure proposed. Section 4 shows how this infrastructure
was developed in ODE, an ontology-based SEE. A case study using this infrastructure in the
software quality domain is presented in section 5. Section 6 discusses related works. Finally,
in section 7, we report our conclusions.

2. Knowledge Management and Software Engineering Environments

Success in an increasingly competitive marketplace depends critically on the quality of the

knowledge, which organizations apply to their business processes. The challenge of using
knowledge to create competitive advantage becomes more crucial as [1]:

• The rate of innovation is rising, so that knowledge must evolve and be assimilated at
an ever faster rate;

• There is a need to replace the informal knowledge with formal methods aligned to
organization processes;

• Competitive pressures are reducing the size of the workforce which holds this
knowledge;

• Knowledge takes time to experience and acquire. Employees have less time for this;
In response to these needs, knowledge management (KM) has been used. There is not a

unique definition for knowledge management, but according to Benjamins et al. [4],
knowledge management is not a product in itself, nor a solution that organizations can buy
off-the-shelf. It is a process implemented over a period of time, which has much to do with
human relationships as it does with business practices and information technology. Thus, KM
combines tools and technologies to provide support to the capture, access, reuse and
dissemination of knowledge, generating benefits for the organization and their members.

Before deciding how to manage knowledge, it is essential to understand what knowledge
is. According to Markkula [5], knowledge is information combined with experience, context
interpretation and reflection. It is a high-value form of information that is ready to apply in
decisions and actions.

Knowledge can be viewed as formal and informal knowledge [2]. Formal knowledge can
be expressed in a structured form, and easily communicated and shared. Formal knowledge
includes software engineering methods, document templates, components, software artifacts,
and so on. Informal knowledge is highly personal and hard to formalize, making it difficult to
share with others. It is embedded in an individual experience and involves intangible factors
such as personal belief, perspective and value. Examples of informal knowledge are
discussions and lessons learned.

In the context of software development, lessons learned are one of the most important
informal knowledge. Lessons learned are gained as a result of the work of the organization
itself. They may describe both successful reports and problems. Successful lessons capture
positive responses to crisis. Problem lessons address things that went wrong, and potential
ways to solve the problem [1]. Reuse of lessons learned from past software projects promotes
good software development practices and prevents the repetition of mistakes.

An efficient knowledge management approach must be able to model, capture and support
the creation and use of all types of knowledge described above. One of the problems to be
addressed is the fact that no software project is like another. Experience items matching the
reuse needs are rarely found. Therefore, a good reuse approach must find similar experience
items and let modifications on selected items.

2.1 Knowledge Management Process and Technologies

A knowledge management system should support the activities that comprise a knowledge

process. According to Staab et al. [6], a knowledge process involves the following steps:
• Creation: The contents need to be created or converted, so that they fit the

conventions of the company. Creation of computer-accessible knowledge typically
moves between the formal and informal knowledge. It is also possible to import
knowledge. Importing knowledge items into the KM system has the same or more
importance than creating them. For imported knowledge, accurate access to relevant
items plays an even more important role than for homemade knowledge. For
homemade knowledge items, people might act as a backup index, but it is not the case
for recently imported knowledge that no one has yet seen.

• Capture: Once you create knowledge items, the next step is to capture their essential
contents. Knowledge items have to be captured in order to determine their importance
and how they mesh with the company’s vocabulary conventions.

• Retrieval and access: This step satisfies the searches and queries for knowledge by the
knowledge worker and dissemination of knowledge in a proactive manner.

• Use: The knowledge worker will not only recall knowledge items, but will process
them for further use. Many KM systems assume that once some relevant document is
found, everything is done. Eventually, however, the way to use knowledge from the
organization’s collective memory becomes quite involved. Topics such as proactive
access, personalization, and in particular, tight integration with user task play a crucial
role for the effective reuse of knowledge.

To support the KM process, knowledge management systems should facilitate knowledge
access and reuse. To do that, several emerging technologies, such as ontologies, XML and
software agents, have been applied.

In order to facilitate communication and information exchange, a community may define a
standard domain-oriented vocabulary using ontologies [7]. According to Uschold [8], an
ontology may take a variety of forms, but necessarily it will include a vocabulary of terms,
and some specification of their meaning. This includes definitions and indications of how
concepts are inter-related, which collectively impose a structure on the domain and constrain
the possible interpretations of the terms. Ontologies are particularly important for KM. They
constitute the glue that binds KM activities together, allowing a content-oriented view of KM
[6]. Ontologies define the shared vocabulary used in the KM system to facilitate
communication, integration, search, storage and representation of knowledge [4]. Typical
utilization scenarios comprise discussion groups, search engines, information filtering, access
to non–textual information objects, and expert–user communication [9]. In these applications
ontologies serve as “specifications of discourse in the form of a shared vocabulary” [9]. This
“shared understanding” seems to be particularly important for knowledge management which
typically deals with multi–actor scenarios.

Another interest of ontologies is their exploitation for guiding search of knowledge items.
First, we have to consider that organizational knowledge must be annotated with information
related to the particular ontology. Using XML (eXtensible Markeable Languague), it is
possible to annotate a knowledge item with metadata, which describe it according to
predefined organization’s ontologies [7]. With annotated knowledge, searching for a specific
knowledge item is made easier.

Software agents can be used to connect organizations’ members to knowledge available
[1]. Agents can help not only on knowledge search, but also on knowledge filtering and
dissemination. If a software process is defined, agents can act in a proactive manner,
searching and offering knowledge items that may be relevant for the developer’s current task.

However, we must enhance that these new technologies do not create knowledge and
cannot guarantee or even promote knowledge sharing in an organization which culture does
not favor those activities [10]. A “knowledge-friendly” culture is one of the most important
factors for the success of knowledge management [5].

2.2 KM in Software Engineering Environments

Software development is a collective, complex, and creative effort. As such, the quality of

a software product heavily depends on the people, organization, and procedures used to create
and deliver it. In other words, there is a direct correlation between the quality of the software
process and the quality of the software developed [11]. Based on that, researchers and
practitioners have been paying increasing attention to understand and improve the quality of
the software process. But, to deal with complex software processes, it becomes essential to
provide computer-based tools to support software engineers to perform their tasks.

Although benefits can be derived from individual CASE tools addressing separate software
engineering activities, the real power of CASE can be achieved only through integration [12].
The identification of the need for integrated support for these activities throughout the
software lifecycle represents the genesis of Software Engineering Environments (SEEs) [13].
Thus, SEEs can be defined as integrated collections of tools that facilitate software
engineering activities across the software lifecycle [13].

But knowledge management can also be used to support developers during the software
process. Using a KM approach, knowledge created during software process can be captured,
stored, disseminated, and reused, so that better quality and productivity can be achieved. KM
can be used to better support management activities, such as software process definition [2],
people allocation and estimation, construction activities, such as requirement analysis and test
case design, and quality assurance activities, such quality planning and control. Consequently,
SEEs and knowledge management complements each other in supporting developers during
the software process to produce better quality software.

3. An Infrastructure for Knowledge Management

To support the knowledge management process in a SEE, a KM infrastructure should be
provided. The corporate or organizational memory (OM) must be at the core of this
infrastructure, supporting knowledge sharing and reuse. Arranged around the OM, knowledge
management services shall actively provide useful information to users working on
knowledge-intensive tasks [14]. These knowledge management services correspond to the
activities of the knowledge management process: creation, capture, retrieval, access,
dissemination, use, and preservation of the organization’s knowledge, as shown in Figure 1.

The primary requirement for an OM is to prevent the loss and enhance the accessibility to
organizational knowledge by providing a centralized, well-structured knowledge repository.
Since workers are often too busy to look for information or do not even know that relevant
information exists, proactive services must be provided, actively reminding workers of helpful
knowledge. Thus, knowledge distribution may be passive or active, as either the user can
search for the required information, or the KM system itself can offer knowledge that seems
relevant to the user’s task [14].

To gain user acceptance, a KM system must be integrated into the organization’s process,
allowing to collect and store relevant knowledge as they are generated in the work.
Consequently, it should be also integrated to the existing work environment [14].

Figure 1 - Knowledge management infrastructure.

The KM system is to be an assistant to the user, supplying him with relevant
organizational knowledge, but leaving him the responsibility of a contextual interpretation
and evaluation of this information. In this context, to keep an OM up to date, it is important to
get feedback from its users, who must be enabled to point out deficiencies and suggest
improvements without significantly disrupting their usual workflow. Therefore, user feedback
is essential for OM maintenance and evolution [14].

Even though the advantages of having an OM are generally recognized, organizations are
reluctant to invest time and money into a novel technology whose benefits are distant and
uncertain. Thus, a KM system must exploit readily available knowledge, provide benefits
quickly, and be adaptable to newly arising requirements.

4. Knowledge Management in ODE

As pointed above, a KM system should be integrated into the organization’s process and
into its work environment. In the context of software development, this environment is a
Software Engineering Environment (SEE). The main advantage of integrating knowledge
management into a SEE is that KM is put into software engineers’ workflow, since software
development activities occur inside the computational environment rather than in the external
world.

We have tried this integrated approach to KM in ODE (Ontology-based Development
Environment) [15], a Process-Centered Software Engineering Environment that integrates
CASE tools into a cohesive environment, each one supporting a software process activity, and
working together to build the product during the entire software process.

ODE is being developed at LabES/UFES. Its main feature that distinguishes it from other
SEEs is that ODE is developed based on ontologies. ODE uses some defined ontologies, such
as a software process ontology [16] and a software quality ontology [17, 18], as its basis for
integration. In its current stage, ODE has several integrated tools and its integration approach
considers the following issues:

• data integration: the way tools share data;
• process integration: linkage between the tools and the software development process;
• control integration: the ability for one tool to notify and initiate actions in another;
• presentation integration: commonality of user interface;
ODE’s design premise is based on the following argument: if the tools in a SEE are built

based on ontologies, tool integration can be improved. The same ontology can be used for
building different tools supporting correlated software engineering activities. Moreover, if the
ontologies are integrated, integration of tools built based on them can be highly facilitated.
However, the integration problem is not solved yet. Knowledge integration should be

Organizational
Memory

Knowledge
Dissemination

Knowledge
Use

Knowledge
Maintenance

Knowledge
Creation and

Capture

Knowledge
Retrieval and

Access

considered to provide knowledge management support and to evolve ODE to what we are
calling a Semantic SEE [15].

A Semantic SEE can be viewed as a SEE in which part of the information handled has a
formal meaning (semantics) associated, augmenting its tools’ ability to work in cooperation
with each other and with human developers. Tools committed themselves with an ontology
can share knowledge, since the ontology defines the common meaning. The term “Semantic
SEE” was coined using an analogy with Semantic Web [19]. Semantic Web aims to organize
Web information, adding meaning to them, and allowing machines to process and analyze
Web contents. The main goal of a Semantic SEE is analogous: to organize software
engineering information, adding meaning to them, and allowing tools to share information. In
a Semantic SEE, software engineering knowledge is accessible not only to human developers,
but also to automated tools. Adapting the discourse of Bechhofer et al. [19] to our context, the
key idea is to have software engineering data on the SEE defined and linked in such a way
that its meaning is explicitly interpretable by software tools rather than just being implicitly
interpretable by human developers.

ODE’s architectural style reflects its basis on ontologies. It has two levels. The base or
application level concerns application classes, which model the objects that address some
software engineering activity. The meta-level (or knowledge level) defines classes that
describe knowledge about objects at the base level. Figure 2 shows these two levels
concerning software process integration and quality control [15].

Figure 2 - ODE’s two-layered architecture.

The classes at the meta-level are derived directly from the ontologies, using the systematic
approach to derive object frameworks from ontologies described in [20]. All classes derived
directly from the ontology are prefixed by the character “K”, indicating that they constitute
the knowledge in ODE. We can view the meta-level objects as items of an ontology
instantiation [15].

The classes in the base level are also built based on the ontologies. The main classes and
associations are derived from the ontology, preserving the same constraints as Knowledge’s
model. Also several classes at the base level have a corresponding Knowledge class in the
Knowledge package. In this way, the meta-level can be used to describe base-level objects’
characteristics. However, since an ontology does not intend to describe all the knowledge
involved in a domain, but only that one that is essential to conceptualize the domain (minimal
ontological commitment [21]), new classes, associations, attributes and operations are defined
to deal with specific design decisions made in the application level. In fact, the ontology is a
general, common sense model, and thus it does not contain all necessary modeling elements
to treat applications’ requirements [15].

In the context of the knowledge management, ontologies define the shared vocabulary
used in the KM system to facilitate communication, search, storage, and representation.
Ontologies constitute the glue that binds knowledge subprocesses together. Ontologies open
the way to move from a document-oriented view of KM to a content-oriented view, where
knowledge items are interlinked, combined, and used [6]. In ODE’s knowledge management

Base Level

Meta-Level

Knowledge

Process
Control

Quality
Control

approach, ontologies are used to structure the OM, as well as to support the main knowledge
services, such as search and reuse of knowledge items.

ODE’s organizational memory contains three types of knowledge: artifacts, instances of
ontologies and lessons learned. Artifacts and instances of ontologies correspond to the formal
knowledge. Lessons learned are the informal knowledge. The OM holds information from
previous projects so that users can use them to solve similar problems and to perform similar
tasks.

The knowledge management approach adopted in ODE follows the one described in
section 3. At the core of the knowledge infrastructure, there is an OM, supporting knowledge
sharing and reuse. As shown in Figure 1, arranged around the OM, there are services
supporting the following knowledge management activities:

• Knowledge Capture: Since ODE deals with three kinds of knowledge, it must offer
facilities to capture each one of these type:
 When dealing with lessons learned, we have to consider that project-level

knowledge can be useful, but it is not always the case. Generally, project-level
knowledge must be handled to become an organizational knowledge. A tool
supporting a workflow for approving a lesson learned was developed in ODE.
First, a developer inputs a lesson learned in the OM. At this moment, this
knowledge is not available for other developers. The knowledge manager must
evaluate and adapt the lesson learned so that it can be considered knowledge at the
organizational level. Once approved, the lesson learned is made available.

 The knowledge manager is responsible for creating the instances of the ontologies
that are useful to the organization. In ODE, for each ontology, there is a tool
supporting its instantiation.

 Finally, artifacts created during the software process must also be available as
knowledge items. Artifacts must be submitted to configuration management. ODE
has a prototypical configuration management system that controls not only
artifacts produced by ODE’s internal tools but also artifacts from external tools
that are put under version control. So, in the current stage, the ODE’s
configuration management system is the base for dealing with artifacts as
knowledge items.

• Knowledge Search: Knowledge management in ODE supports information access
through searching. An ODE user can search for any kind of knowledge in the OM:
formal knowledge (artifacts and ontology instances) or informal (lessons learned).

• Knowledge Dissemination: While knowledge search is a user-initiated search,
knowledge dissemination is initiated by the system, without requiring the user to
explicitly formulate a query. Software agents monitor the users’ actions as they work
and inform them about potential relevant knowledge. Users can browse the various
knowledge items and then select and reuse one of them. Knowledge dissemination is
particularly important when users are not motivated to look for information or when
they are not aware of the need for information in the first place.

• Knowledge Use: Once a knowledge item is selected for use, the user can identify what
part he/she wants to use and a new knowledge item is created based on the previous
one. Some reuse information is shown, including when and how often this item has
been used and who used it. Finally, the user must evaluate the reused item to help
knowledge maintenance. It includes evaluation information about if the item was
useful, problems that appeared when reusing it, and solutions which have been
applied.

• Knowledge Maintenance: For maintenance and evolution of the OM, it is necessary to
take into account users’ feedback. Based on the user feedback, the knowledge
manager can decide what knowledge item is obsolete or which one had never been

used. The knowledge manager can exclude knowledge items by himself or can require
the support of a software agent. To realize theses tasks, the knowledge manager has an
interface to search for knowledge items, to exclude them, and to configure a software
knowledge maintenance agent. The software agent can be set to alert the knowledge
manager to realize an OM’s maintenance at defined time intervals or when the OM
has reached a defined size. The software agent can also suggest some knowledge items
to be excluded based on knowledge manager criteria.

The knowledge management approach proposed is to be applied to the entire SEE, and not
only to one of its tools. But to illustrate our approach, in the next section, we focus on
ControlQ, a tool that supports software quality planning and tracking. So, we discuss software
quality knowledge management. We should emphasize, however, that this does not mean that
we are restricted to this scenario. We are also using this approach, for example, to treat
software process definition, resource allocation and estimation in ODE. Thus, not only
software quality knowledge can be managed in ODE, but all the knowledge created by an
ODE’s tool.

5. Software Quality Knowledge Management in ODE

To support software quality planning and tracking in ODE, we developed ControlQ.

ControlQ’s functionalities include:
• quality characteristic and metric knowledge management;
• quality planning, allowing to define quality evaluation activities that will be carried

along the project. The quality manager defines for each one of these activities: when
and what will be evaluated, which quality characteristics will be evaluated and from
which metrics these characteristics will be computed;

• quality control, allowing to register the measurement results.
 ControlQ was developed based on ODE’s architectural style, which reflects its basis on

ontologies. Based on ODE’s two-layered architecture, the tool architecture was composed of
two packages: Knowledge package, shown in Figure 3, and Quality Control package, shown
in Figure 4.

Figure 3 - Part of the Knowledge Package.

The Knowledge package directly reflects the concepts of the ontology, representing the

common knowledge of this domain. Its classes were derived from the software quality
ontology developed in [17], using a systematic approach to derive object frameworks from

KMetric

 0..*

1

Knowledge
name
description

relevance()

KArtifact

0..*

1..*

0.. *

0..* 0..* KQualityCharacteristic
isProductQC : boolean

 +subcharacteristic

KNonMeasurableQC

KMeasurableQC

ontologies. However, to support quality planning and control, other classes are necessary
beyond those shaped. To address the specific ControlQ’s requirements, we developed the
Quality Control package. The classes of this package represent specific concepts of the
application, necessary to accomplish its goals.

As shown in Figure 4, a quality control plan defines all quality evaluation activities of a
project. Theses activities define not only what will be evaluated (an artifact), but also how this
evaluation will occur, i.e. which quality characteristics will be used to evaluate the artifact.

A non measurable characteristic must be decomposed into subcharacteristics to be
computed by the aggregation of their subcharacteristic measures. For each one of these
subcharacteristics, it is necessary to define its weight in the measurement. A measurable
characteristic can be directly measured choosing a metric to quantify it. For each choice,
indicating which metric will be used to quantify each measurable characteristic, the
corresponding measure value is stored.

We can notice that the Quality Control Package requests services from the Knowledge
Package. It is not only an incident. In fact, this two-layered architectural style is the basis of
ODE architecture. The application level concerns application classes, which address the
application requirements. The knowledge level defines domain knowledge, which can be used
by several applications.

Figure 4 - Part of the Quality Control Package.

 Quality planning in ControlQ involves the following steps:
1. Select a project to which a quality plan will be created and define the project’s

software artifacts that will be evaluated;
2. For each artifact, identify which quality characteristics will be used to evaluate it.
3. For each non measurable quality characteristic, define how it is decomposed into

subcharacteristics;
4. Define how to measure the identified measurable characteristics, choosing adequate

metrics.
5. Define quality evaluation activities, integrating them into the software process. For

each artifact defined in step 1, a set of quality evaluation activities is defined.
After defining a quality control plan, we can go to the next step: evaluation, that is,

measurement. In the measurement phase, the selected metrics will be applied and, for each
one of them, values are informed and registered. Measurement phase is followed by result

QualityControlPlan

QualityEvaluationActivity1
0..*

+evaluatedArtifact1

0..*

Artifact

Choice
measure

1

0..*

KMetric
(from Knowledge)

1 0..*

Weight
value

KQualityCharacteristic
(from Knowledge)

KNonMeasurableQC
(from Knowledge)

KMeasurableQC
(from Knowledge)

0..*

1

0..*

1

1

0..*

0..* 1

presentation, showing a report of obtained results. The analysis of these results aids the
definition of corrective actions to achieve the desired quality.

5.1 Knowledge Management in ControlQ

Software quality knowledge management can aid quality managers to perform similar

quality planning activities. Reuse of past experience may avoid the repetition of mistakes in
those activities. So, ODE’s KM approach should be used to support quality control. Next, we
present how this approach, described in section 4, was applied in ControlQ.

Software Quality Knowledge Capture

As mentioned earlier, ODE’s organizational memory manages three types of knowledge:

instances of an ontology, artifacts, and lessons learned. In the case of quality control, ODE’s
OM stores instances of a software quality ontology [18], the artifacts managed are quality
control plans, and lessons learned considered are those gained during quality planning and
evaluation. Consequently, ODE’s KM system must support the capture of each one of these
knowledge types.

Software Quality Knowledge Search

As a project manager performs a quality planning or evaluation, he/she can search for any

kind of knowledge existing in the organizational memory. This search is a user-initiated
search, since he/she has to define his/her needs (what knowledge he/she wants). These needs
become a query, and knowledge items retrieved are presented. For example, a project
manager can search for a lesson learned involving the choice of a quality characteristic to
evaluate a kind of artifact. The retrieval machine will search lessons learned which refer to
user’s specified characteristic and artifact. Users can also search, for ontology instances or
quality control plans.

Software Quality Knowledge Dissemination

Since ControlQ is defined based on a software quality ontology [17], ontology instances

are used to support quality planning activities. A Knowledge manager is responsible for
instantiating the ontology. These instances are stored in ODE’s organizational memory, and
they are used to support some steps of ControlQ’s quality planning, such as:

• Defining which quality characteristic can be used to evaluate a specific artifact (step
2): as shown in Figure 5, based on the predefined ontology instances, ControlQ
presents only those quality characteristics that are considered to be useful to evaluate
an artifact;

• Decomposing a non measurable quality characteristic into subcharacteristics (step 3):
again, based on OM’s knowledge, ControlQ presents only those quality characteristics
that can compose a specific non measurable characteristic;

• Defining which metric is to be used to quantify a measurable quality characteristic
(step 4): as Figure 6 shows, ControlQ presents only those metrics that can be used to
evaluate a specific measurable quality characteristic.

For these steps (2-4), ODE’s knowledge management system can also play an active role
in knowledge dissemination. Software agents monitor users actions as they work in ControlQ.
When the user is working in one of those steps, specific software agents act, identifying user’s
knowledge needs, and retrieving past and similar experiences. These agents disseminate
lessons learned that relate to success or failure. Also, they disseminate other quality control

plans already defined and evaluated. So, based on similar experiences, users can make
decisions based not only on their own knowledge but also on organizational knowledge.

Figure 5 – Choosing quality characteristics to evaluate an artifact.

Software Quality Knowledge Use

Knowledge items retrieved are presented to the project manager. He/she can browse

through this set of knowledge items and choose a knowledge item to reuse. If a quality control
plan is selected for reuse, he/she must identify which part he/she wants to use in his/her own
artifact. From a quality control plan, a project manager can reuse one of its defined evaluation
activities or a choice made of characteristics and metrics to evaluate a project’s artifact. If a
software quality knowledge item is reused, the user must evaluate its content, creating a
lesson learned related to this knowledge item.

Software Quality Knowledge Maintenance

The maintenance of software quality knowledge is performed in the same way of

maintaining other kind of knowledge, since all of them are stored in the same organizational
memory. So, based on user feedback, the knowledge manager can decide what knowledge
item is obsolete or which one has never been used. These knowledge items are excluded, as
previously described.

Figure 6 - Choosing metrics to quantify each measurable quality characteristics.

ControlQ is a good choice to exemplify our knowledge management approach, because
this tool has an ontology defined to support their activities, representing the common
knowledge of this domain. Another benefit of using ControlQ as our example is the fact that it
automates a knowledge intensive task (quality control). Finally, the main output of this task is
a quality control plan, which parts can be considered knowledge items in organizational
memory, and then can be reused and disseminated.

We presented the benefits of a KM-based approach to support quality planning in
ControlQ. In the other hand, if ControlQ was not supported by knowledge management, some
drawbacks would occur. Without knowledge management, lessons learned during software
quality planning in ControlQ would be missed or stored in people’s mind. For instance, in
software quality plan definition, the choice of the same metric to quantify a software quality
characteristic is not always the better choice. Depending on the artifact to be evaluated and
the quality characteristic, a different metric would be more appropriated to quantify this
characteristic. In addition, defining which quality characteristics are to be used to evaluate an
artifact and also, in which subcharacteristics they should be decomposed, are not simple tasks.
Executing these tasks would be harder if ControlQ’s user would have to choose by himself,
without any support provided by the tool.

Experience in quality planning and tracking can only be achieve in practice, that is,
defining quality plans and evaluating them. Offering KM-based support to those activities is a
way to improve learning. For this reason, ControlQ captures knowledge created in software
quality planning, stores and disseminated it, even in a proactive manner, offering similar
experiences and knowledge that can be reused. When knowledge is available, it is not
necessary to construct this knowledge again, trying a solution for a problem that has already
been solved. Consequently, reusing knowledge helps to prevent the repetition of past failures
and guide the solution of recurrent problems.

6. Related Work

Most organizations agree that knowledge is an essential asset for success and survival in

an increasingly competitive and global market. This awareness is one of the main reasons for
the exponential growth of knowledge management research.

Several works have exploited the use of KM systems to support software engineering
tasks, such as [2, 5, 19]. Borges et al. [2] store and share the experience obtained in software
process definition. To share this knowledge, an experience repository was built, containing
the organizational standard process as well as the artifacts and informal knowledge obtained
throughout the projects. In order to facilitate the storage and sharing of the experience, they
built ProKnowHow, a tool that supports the standard software process tailoring procedure for
each project, providing KM support.

Markulla [5] describes an initiative at ICL Finland to promote software engineering
knowledge sharing and reuse. The focus is on supporting development tasks, such as
planning, design and coding. A framework has been developed for creating, capturing,
storing, sharing and applying tacit and explicit knowledge in project and organizational levels.

Althoff et al. [22] defend that continuous reuse of software engineering experience can be
supported by an organizational memory that is capable to manage all kinds of software
engineering experiences. They propose a generic, scalable architecture and an underlying
methodology for reuse of all kinds of software engineering experience.

In [23], a system for supporting experience management in a multinational software
improvement consultancy called Q-Labs is presented. The objective is to provide a “virtual
office” for Q-Labs, and to allow Q-Labs consultant to benefit from the experience of every
other Q-Labs consultants.

Looking to these works, we can find many common points. All of them, including ours,
are based on the concept of Experience Factory [24]. An experience factory is an
organizational unit that supports reuse of experience and collective learning by developing,
updating and providing, on request, past experiences to be used by project organizations.
However, none of them is integrated to a Software Engineering Environment (SEE), and none
offers support for quality planning. Thus, it is worth to remember that this work was
developed in the context of ODE, an ontology-based SEE. The remarkable feature of our
work is proposing a KM approach actively integrated into the work process and social
practices of a SEE. So, a major concern is to capture information from the work process
without extra effort for developers who can receive knowledge from an active OM.

Observing structural aspects of a KM system, we also find many related works in the
literature. Abecker et al. [14] defined a knowledge management approach with an
organizational memory at the core of the KM system. Arranged around such an organizational
memory, knowledge-management services provide actively knowledge to users. Our approach
shares many of the definitions proposed by them. Thus, the KM system developed also has
the organizational memory acting like a central knowledge repository and around this, there
are services for capturing, searching, disseminating, using and maintaining knowledge.

Ontologies have been pointed as crucial for KM systems [4, 6, 7]. Benjamins et al. [4], for
example, present a knowledge management approach based on ontologies and use ontological
engineering to knowledge organization and structuring. Ontologies also play an important role
in our approach, since they are used to structure ODE’s organizational memory. But in our
approach ontologies also give rise to knowledge items, since ontologies can be instantiated.

Finally, several researches pointed out the benefits of software agents for several purposes
in knowledge management. Rabarijoana et al. [25] suggest the use of agents for knowledge
retrieval. Staab et al. [26] presented an approach for intelligent proactive knowledge
dissemination. Agents work on knowledge created through the usual work tasks of the user
and offer knowledge to the user that may be relevant for his currently task. In our approach,

agents also disseminate knowledge according to users’ needs. But in contrast, we embed our
agent support in specific steps of an activity, based on its ontological distinctions. So, we use
semantic information to guide knowledge dissemination.

7. Conclusions

Knowledge management systems facilitate access and reuse of knowledge typically by

using several emerging technologies, such as ontologies, and software agents. In this paper we
presented an infrastructure for managing knowledge in a software engineering environment.
At the core of this infrastructure there is an organizational memory. Around it, there are
knowledge management services supporting KM activities, such as knowledge capture,
retrieval, search, dissemination, maintenance and reuse. We also presented how this
infrastructure is being used to support software quality knowledge management in ODE, an
ontology-based SEE.

Knowledge management integrated to ODE reflects a design perspective of knowledge
management [27]. In this perspective, knowledge workers constantly create new knowledge
as they work. Some benefits of this approach can be pointed out:

• With KM integrated to a SEE, it is easier for developers to create new knowledge. In
this way, the organizational memory is not closed. It is always evolving.

• A major concern for knowledge management in ODE is to capture information during
the software process without developers’ extra effort. Thus, the KM system is actively
integrated into the work process. An isolated KM system, on the other hand, can be a
barrier to innovation, because it does not let workers share new ideas with their peers.
Closed systems do not give organizations control over their own knowledge, since
there is a gap between knowledge creation and integration. Innovations happen outside
the KM system, and then it contains information that is chronically out of date and that
reflects an outsider’s view of work.

• Knowledge management users are no longer passive receivers of knowledge, but are
active researchers, constructors, and communicators of knowledge. Knowledge can be
constructed collaboratively in the context of the work. Attention to knowledge
requires attention to people, including their tasks, motivation, and interests in
collaboration. The heart of intelligent human performance is not the individual human
mind but groups of minds interacting with each other and with tools and artifacts.

• A KM system must provide the information workers need, when they need it. ODE’s
KM system can play an active role in knowledge dissemination. Software agents
monitor the actions of users as they work, and inform them about potentially relevant
knowledge for the task at hand.

Currently, knowledge management has been integrated into ODE environment and firstly,
its aim is to support software quality knowledge management in ControlQ. The ControlQ tool
was build previously and successfully integrated into ODE, so software quality can be planed
and tracked over ODE’s projects. We are now working to extend our approach to other
ODE’s tools.

Acknowledgments
The authors acknowledge CAPES for the financial support to this work.

References

[1] O’Leary, D.E., “Enterprise Knowledge Management”, IEEE Computer Magazine,

March, 1998.
[2] Borges, L.M.S., Falbo, R.A., “Managing Software Process Knowledge”, Proc. of the

CSITeA’2002, June 2002.
[3] O’Leary, D.E., Studer, R., “Knowledge Management: An Interdisciplinary Approach”,

IEEE Intelligent Systems, January/February, Vol. 16, No. 1, 2001.
[4] Benjamins, V. R., Fensel, D., Pérez, A. G., “Knowledge Management through

Ontologies”, Proc. of the 2nd International Conference on Practical Aspects of
Knowledge Management (PAKM98), Switzerland, 1998.

[5] Markkula, M., “Knowledge Management in Software Engineering Projects”, In: Proc. of
the 11th International Conference on Software Engineering and Knowledge
Engineering, Kaiserslautern, Germany, June,1999.

[6] Staab, S., Studer, R., Schurr, H. P., Sure, Y., “Knowledge Processes and Ontologies”,
IEEE Intelligent Systems, January/February, Vol. 16, No. 1, 2001.

[7] Rabarijoana, A., Dieng, R., Corby, O., “Exploitation of XML for Corporate Knowledge
Management”, Knowledge Acquisition, Modeling, and Management, Proc. of the
European Knowledge Acquisition Workshop (EKAW`99), Lecture Notes in Artificial
Intelligence, LNAI 1621, Springer-Verlag, 1999.

[8] Uschold, M., “Knowledge level modelling: concepts and terminology”, Knowledge
Engineering Review, vol. 13, no. 1, 1998.

[9] O’Leary, D., “Using AI in knowledge management: Knowledge bases and ontologies”.
IEEE Intelligent Systems, May/June, 1998.

[10] Davenport, T., Laurence, P., “Working Knowledge: How Organizations Manage What
They Know”, Harward Business School Press, Boston, Massachusetts, 1998.

[11] Fuggetta, A., “Software Process: A Roadmap”, in Proc. of The Future of Software
Engineering, ICSE’2000, Limerick, Ireland, 2000.

[12] Pressman, R.S., "Software Engineering: A Practitioner's Approach", 5th Edition, New
York: McGraw-Hill, 2000.

[13] Harrison, W., Ossher, H., Tarr, P., “Software Engineering Tools and Environments: A
Roadmap”, in Proc. of The Future of Software Engineering, ICSE’2000, Ireland, 2000.

[14] Abecker, A., Bernardi, A., Hinkelman, K., “Toward a Technology for Organizational
Memories”, IEEE Intelligent Systems, Vol. 13., No. 3, pp. 40-48, May/Jun, 1998.

[15] Falbo, R.A, Guizzardi, G., Natali, A.C.C., Bertollo, G., Ruy, F.B., Mian, P.G.,
“Towards Semantic Software Engineering Environments”, in Proc. of the 14th Int.
Conference on Software Engineering and Knowledge Engineering, SEKE’02, Ischia,
Italy, 2002 (to appear).

[16] Falbo, R. A., Menezes, C. S., Rocha, A.R.C.; “Using Ontologies to Improve Knowledge
Integration in Software Engineering Environments”, Proc. of SCI’98/ISAS’98, USA,
July, 1998.

[17] Falbo, R.A, Guizzardi, G., Duarte, K.C., “An Ontological Approach to Domain
Engineering”, in Proc. of the 14th Int. Conference on Software Engineering and
Knowledge Engineering, SEKE’02, Ischia, Italy, 2002 (to appear).

[18] Duarte, K.C., Falbo, R.A., “Uma Ontologia de Qualidade de Software”, Anais do VII
Workshop de Qualidade de Software, WQS’2000, João Pessoa, Brasil, Outubro 2000.

[19] Bechhofer S., Horrocks, I., Goble, C., Stevens R., “OilEd: a Reason-able Ontology
Editor for the Semantic Web”, Proc. of KI2001, Joint German/Austrian conference on
Artificial Intelligence, Vienna. Springer-Verlag LNAI Vol. 2174, pp 396--408. 2001.

[20] Guizzardi, G., Falbo, R.A., Pereira Filho, J.G., “Using Objects and Patterns to
Implement Domain Ontologies”, in Proc. of the 15th Brazilian Symposium on Software
Engineering, Rio de Janeiro, Brazil, 2001.

[21] Gruber, T., “Toward principles for the design of ontologies used for knowledge
sharing”, International Journal of Human-Computer Studies, 43(5,6), pp.907–928, 1995.

[22] Althoff, K., Birk, A., Hartkopf, S., Muller, W., Nick, M., Surmann, D., Tautz. C.,
“Managing Software Engineering Experience for Comprehensive Reuse”. In: Proc. of
the 11th International Conference on Software Engineering and Knowledge
Engineering, Kaiserslautern, Germany, Jun, 1999.

[23] M.G. Mendonça Neto, V. Basili, C.B. Seaman, and Y-M Kim, “A Prototype Experience
Management System for a Software Consulting Organization”, in Proc. of the 13th Int.
Conference on Software Engineering and Knowledge Engineering, SEKE’01, Buenos
Aires, Argentina, 2001.

[24] Basili, V., Caldiera, G., Rombach, H. “The Experience Factory”, Vol. 1 of Encyclopedia
of Software Engineering, Chapter X, John Wiley & Sons. 1994.

[25] Rabarijoana, A., Dieng, R., Corby, O., “Building a XML-based Corporate Memory”,
Workshop on Knowledge Management and Organizational Memories In the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI99), Sweden, July 1999.

[26] Staab, S., Schurr, H. P., “Smart Task Support through Proactive Access to
Organizational Memory”. Knowledge-based Systems, 13(5): 251-260. Elsevier, 2000.

[27] Fischer, G., Ostwald, J., “Knowledge Management: Problems, Promises, Realities and
Challenges”, IEEE Intelligent Systems, Vol. 16, No. 1, January/February, 2001.

