

Integrating Tools to Support Software Measurement
Vinícius Soares Fonseca, Monalessa Perini Barcellos, Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO), Department of
Computer Science, Federal University of Espírito Santo – Vitória – ES – Brazil

{vsfonseca, monalessa, falbo}@inf.ufes.br

Abstract. Software measurement is a key practice to process improvement and project
management. Given the nature of measurement activities, supporting tools are essential.
Different tools can be combined to support the measurement process and provide necessary
information for decision making. However, these tools are usually developed by different
developers, at different points in time and without concern for integration. As a result,
organizations have to deal with integration issues to allow tools communication and properly
support the measurement process. In this paper we present a tool integration initiative
performed following the Ontology-Based Approach for Measurement Systems Integration
(OBA-MSI) aiming to support the measurement process in a software development
organization. The integration involved three tools: Taiga, SonarQube and SoMeSPC.

1. Introduction
Software measurement involves defining measures, collecting data for these measures
and analyzing data aiming to support decision making [McGarry et al. 2002]. There are
several standards (such as ISO/IEC 12207 [ISO/IEC 2008] and maturity models (such
as CMMI [SEI 2010]) that address software process improvement and include
measurement as an essential process. Although standards and maturity models are very
important to help organizations by indicating what should be done to implement
software measurement, due to the nature of measurement activities, supporting tools are
also necessary to successfully implement that process [Maretto and Barcellos 2013].
 Typically, organizations adopt different tools to support different processes. For
example, schedule and budget tools are used to support project management, and
development environments and version control systems are used to support coding and
source code management. Despite these tools are not usually conceived to support
software measurement, many times they store useful data related to the supported
processes (e.g., number of defects, time and cost spent on activities, etc.).
 To support properly the software measurement process, tools must be integrated,
but this is not an easy task. The heterogeneity between systems is the major difficulty.
In general, each tool runs independently and implements its own data and behavioral
models, which are not shared between different tools, leading to conflicts [Izza 2009].
Semantic conflicts occur when applications use different meanings to the same
information item, i.e., when information items seem to have the same meaning, but they
do not. To reduce these conflicts, integration initiatives should address semantic issues.
Ontologies can be used as an interlingua to map the concepts used by different
applications, enabling data and services understanding [Calhau and Falbo 2010].
 Considering that, we developed the Ontology-Based Approach for Measurement
Systems Integration (OBA-MSI) [Fonseca et al. 2016], a systematic approach that uses
the Reference Software Measurement Ontology (RSMO) [Barcellos et al. 2013] and the
Software Measurement Task Ontology (SMTO) [Barcellos and Falbo 2013] to guide

tool integration to support the software measurement process. In this paper we report
the use of OBA-MSI in a tool integration initiative to support the measurement process
in a software development organization. This paper is organized as follows: Section 2
addresses aspects related to software measurement and integration and introduces OBA-
MSI; Section 3 describes the use of OBA-MSI in a tool integration initiative; Section 4
covers related works; and Section 5 presents our final considerations.

2. Background
Software measurement is the continuous process of defining, collecting, and analyzing
data regarding software processes and products to understand and control them, as well
as supply meaningful information to their improvement [Solingen and Berghout 1999].
It is a primary support process for managing projects, and it is also a key discipline in
evaluating the quality of software products and the performance and capability of
software processes [ISO/IEC 2007].

 For performing software measurement, initially, an organization must plan it.
Based on its goals, the organization has to define which entities (processes, products
and so on) are to be considered for software measurement, and which of their properties
(size, cost, time, etc.) are to be measured. The organization has also to define which
measures are to be used to quantify those properties. For each measure, an operational
definition should be specified, indicating, among others, how the measure must be
collected and analyzed. Once planned, measurement can start. Measurement execution
involves collecting data for the defined measures, storing and analyzing them. Data
analysis provides information to decision making, supporting the identification of
appropriate actions. Finally, the measurement process and its products should be
evaluated to identify potential improvements [Barcellos et al. 2013].
 The measurement process is complex, and we need tools to support it.
Moreover, ideally, these tools must be integrated. However, integrating tools is not an
easy task. Integration involves several dimensions [Izza 2009], among which we
highlight two: layer and level. As for layers, integration can address one or several
information system layers. Data integration deals with moving or federating data
between multiple data stores. Integration at this layer assumes bypassing the application
logic and manipulating data directly in the database, through its native interface.
Message or service integration addresses messages exchange between the integrated
applications. Process integration views enterprises as a set of interrelated processes and
it is responsible for handling message flows, implementing rules and defining the
overall process execution. It constitutes the most complex integration approach.

 Regarding integration levels, four main levels can be distinguished: hardware,
platform, syntactical and semantic levels. Hardware level covers differences in
computer hardware, networks, etc. Platform level encompasses differences in operating
system, database platform, etc. Syntactical level addresses the way the data model and
operation signatures are written down. Semantic level deals with the intended meaning
of the concepts in a data schema or operation signature. Each level depends on the
previous one, so it is not possible to consider semantics if syntax is not considered yet.
 In this paper, for semantically integrating measurement-related tools, we used an
ontology-based approach called OBA-MSI (Ontology-Based Approach for
Measurement System Integration) [Fonseca et al. 2016]. OBA-MSI considers a holist

view of the software measurement process and uses software measurement ontologies to
address semantic conflicts while integrating measurement-related tools. OBA-MSI
considers the integration process as a software process and it is centered on the
requirements elicitation and analysis phases. Requirements elicitation is conducted by
using a goal-based approach that follows GQM (Goal Question Metric) [Basili et al.
1994] principles to guide software measurement aligned to organizational goals.
Semantic integration occurs mainly in the analysis phase and it is carried out based on
the Reference Software Measurement Ontology (RSMO) [Barcellos et al. 2013], which
describes the conceptualization of the software measurement domain, and on the
Software Measurement Task Ontology (SMTO) [Barcellos and Falbo 2013], which
describes the main activities of the software measurement process, their inputs and
outputs, being consistent with RSMO. Besides supporting tools integration, OBA-MSI
helps organizations to define an appropriate measurement process or to improve an
existing one. Figure 1 presents OBA-MSI process.

 Figure 1. OBA-MSI process.

 The OBA-MSI process starts with the Integration Requirements Elicitation
phase, when the integration scenario is produced, indicating, among others, the
measurement activities to be supported by the integration initiative and he tools to be
integrated. OBA-MSI advocates that, to be properly supported by the integrated
solution, the measurement process should be appropriately defined. Thus, it should be
aligned to the measurement process established in SMTO. Figure 2 details this phase.

Figure 2. OBA-MSI – Integration Requirements Elicitation phase.

 The Identify and Align Software Measurement Process activity deals with the
alignment of the organizational software measurement process to SMTO to ensure that
it includes all activities necessary for measurement to be properly carried out and that
they are properly defined. For aligning the organizational software measurement
process to SMTO, it is necessary to verify the existence of organizational software
measurement process. Some organizations have a defined measurement process, while
others carry out measurement activities implicitly during their development process.
There are also organizations that do not perform software measurement and will start

the practice from the tool integration initiative. An organization with a defined
measurement process should align it to SMTO. If the organization does not have a
defined measurement process, but performs measurement along its development
process, the activities in which measurement takes place must be identified and, then,
the measurement process must be defined and aligned to SMTO. Finally, if the
organization does not have a defined measurement process and does not perform
software measurement, it should define the software measurement process from SMTO,
i.e., SMTO must be used as a basis to establish the organizational software
measurement process.
 Once the software measurement process is consistent with SMTO, it is
necessary to Identify Goals, Information Needs and Measures relevant to the
Organization to ensure the alignment between measurement and organization’s goals
for providing useful information. In this sense, in order to integrate tools and aggregate
value to the organization, the goals should be established before starting measure. For
this, organization's business goals relevant to measurement must be identified. From
them, measurement goals may be derived, determining which information needs must
be attained and the necessary measures for it. Since in OBA-MSI the identification of
goals, information needs and measures should be aligned to the tools to be integrated,
the established goals must be liable from measures that can be obtained from the tools.
Therefore, this activity should be performed iteratively with the next one.
 Identify Tools to provide Data and Services for Software Measurement is the
activity in which the tools to be integrated are selected. Tools must be analyzed aiming
at supporting goal monitoring by providing the required measures. Tools that the
organization already uses, as well as others unused until then, should be considered.
Among the tools used by the organization, it should be considered the ones that support
measurement-related activities, even if they are not tools dedicated for this purpose.

Record the Integration Scenario consists in recording the results of the previous
activities in the integration scenario, including: goals, information needs and measures
to be addressed by the integration initiative, tools to be integrated, domains involved in
the integration initiative (domains in which measurement will be applied), and activities
of the measurement process that will be supported by the integrated solution.

 Once defined the integration scenario, the Integration Analysis phase can start.
In this phase, integration models modeling structural and behavioral aspects of the
integration at conceptual level should be established considering semantic aspects and
taking the integration scenario into account. Structural models are used to address data
integration. Behavioral models, in turn, support service and process integration. First,
the tools’ conceptual models relevant to the integration must be retrieved, as well as the
RSMO e STMO fragments to be used. Then, the ontologies are used as basis to vertical
mappings (VMs), which relate tools’ elements (e.g., concepts and relations) and
ontologies’ elements to assign meaning to the tools’ elements. Once VMs are
established, the integration model is built based on the ontologies and the tools’ models
in a way that each element of the integration model has a meaning. Next, horizontal
mappings (HMs) between the elements of the tools and of the integration model are
established to define how the tools will be seen in the integration solution and how the
interaction between them will occur.

 Finally, the Integration Design, Implementation, Tests and Deployment
activities should be performed. There are several ways of building an integration
solution, but OBA-MSI does not commit to any specific one.

3. Applying OBA-MSI in a Software Organization
OBA-MSI was used in an integration initiative to support the software measurement
process at the Software Development Extension Laboratory (LEDS) [LEDS 2016], a
software development organizational unit of a Brazilian Federal Institute. LEDS has 20
members and develops software to Government and Industry. It follows Scrum
principles and adopts tools to support project management and software development.
The LEDS’ software manager reported the need of obtaining data for monitoring
software projects and product quality. According to him, required data were scattered
among tools, hindering access to them. Besides, getting additional data derived from
data provided by the tools would be useful to support decision making.
 As described in the previous section, the first OBA-MSI activity (Identify and
Align Software Measurement Process) concerns the alignment of the organizational
measurement process with SMTO. At the time OBA-MSI was applied, the organization
did not have a measurement process formally defined. Thus, following OBA-MSI, we
analyzed the organization’s development process in order to identify measurement-
related activities and we found some related to data collection. For instance, the
development process had the Estimate Project activity, wherein values are estimated to
team velocity, user stories size and number of story points. The process had also the
Perform Continuous Integration activity, in which source code is integrated and data
regarding the source code is collected and stored. In order to make the measurement
activity explicit, we split the last activity into Perform Continuous Integration, which
deals with the continuous integration itself, and Measure Source Code, being devoted to
perform measurements regarding source code. Figure 3 presents a fragment of the
development process with measurement related activities identified (in grey).

Figure 3. Fragment of the Development Process with measurement activities identified.

After identifying the measurement-related activities, we defined the
organizational measurement process considering the identified activities and SMTO. As
defined by OBA-MSI, we started by mapping the measurement-related activities with

the SMTO activities. For instance, Estimate Project from the development process was
mapped to Perform Measurement, since during project estimation, estimated values are
attributed to team velocity, user stories size and number of story points. The mapping
revealed that only activities related to the Perform Measurements SMTO activity were
clearly identified in the LEDS’ development process. However, although not defined in
the development process, activities related to the other SMTO activities (Plan
Measurement and Analyze Measurements) were also performed at LEDS. For instance,
when starting a project, the manager planned targets to be achieved, such as the desired
value interval to source code duplications rate in the project. At the end of a sprint or of
the project, he checked if the established targets were achieved. Thus, taking the three
main SMTO activities as basis, we detailed each one of them considering the identified
measurement-related activities or SMTO sub-activities. Figure 4 shows the
measurement process defined for LEDS. Activities from the development process are in
grey; the ones from SMTO are in white.

Figure 4. Measurement Process defined from the LEDS Development Process and SMTO.

Although the defined measurement process is not the same as the process
established by SMTO, they are aligned. Since there were not explicitly defined
activities related to Plan Measurement, we defined them considering the SMTO Plan
Measurement sub-activities. To address the Perform Measurements activity, the
measurement activities identified from the LEDS’ development process were used. In
Figure 4, each activity in the Perform Measurements partition is a representation of the
Perform Measurements SMTO activity considering a specific set of measures. To
address Analyze Measurements, analogous to Perform Measurements, we included
different activities to different set of measures. Thus, each activity in Analyze
Measurements partition is a representation of the Analyze Measurements SMTO
activity, dealing with measurements related to a sprint or to the project as a whole. It is
worth noticing that the measurement-related activities identified from the development
process and included in the measurement process contributes to establish a direct
connection between the LEDS’ measurement and development processes, making
explicit in which points of the development process measurements should occur.

Aiming to establish the goals to be monitored and the measures to be addressed
by the integration solution, the Identify Goals, Information Needs and Measures
relevant to the Organization activity was performed. As defined in OBA-MSI, it was

performed iteratively with the selection of the tools to be integrated, aiming to ensure
that the identified measures could be obtained from the selected tools. Two business
goals (BG) were identified: Improve software project management and Improve source
code quality. From them, 7 measurement goals (MG), 34 information needs (IN) and 34
measures (ME) were identified. Figure 5 presents some of them.

Figure 5. Some of the identified Goals, Information Needs and Measures.

 In the Identify Tools to provide Data and Services for Software Measurement
activity, we followed guidelines provided by OBA-MSI to select the tools to be
integrated. We identified the tools used by LEDS for supporting the measurement-
related activities. Taiga (http://taiga.io/), a tool supporting agile project management, and
SonarQube (http://www.sonarqube.org/), which supports source code quality evaluation,
were selected. Since none of these tools was developed to support the measurement
process, a specific software measurement tool had to be selected. We chose SoMeSPC
(http://github.com/nemo-ufes/SoMeSPC), a tool supporting software measurement and
statistical process control, as the specific measurement tool to be integrated. SoMeSPC
was developed by using a Reference Software Measurement Architecture based on
RSMO [Maretto and Barcellos 2013]. After selecting the tools, the integration scenario
was established from the results of the activities performed so far and considering as
integration domains measurement applied to agile project management and coding.
 Next, we performed the Integration Analysis phase. We started by selecting the
RSMO and SMTO fragments to be used. The entire SMTO, which is used in OBA-MSI
to support integration at service and process layers, was selected, because the
integration should address all activities of the software measurement process. As for
RSMO, which is used to support integration at data layer, we selected the fragment
relevant to the integration scenario. RSMO reuses concepts of the Software Process
Ontology (SPO) [Briguente et al. 2011] and of the Software Organization Ontology
(SOO) [Barcellos and Falbo 2009]. Since these ontologies do not address agile software
processes aspects (Scrum), it was necessary to extend them and integrate the concepts
related to agile process (concepts in grey in Figure 6) to the RSMO fragment to be used.
Figure 6 presents part of the RSMO fragment used in the integration initiative.

 Figure 6. Part of the RSMO fragment used in the integration.

 A Measurable Entity is anything that can be measured (e.g., a project) and can
be classified according to types (Measurable Entity Type), such as Project. Measurable
Entities are characterized by Measurable Elements, which are properties that can
measured (e.g., size, cost). Measurable Elements are quantified by Measures (e.g.,
number of function points quantifies size). Measurement is the act of attribute a
Measured Value to a Measure. Considering the integration scenario, some Measurable
Entities are particularly relevant, since they represent the entities that will be measured
in the integration solution. A Scrum Project is composed by Sprints. A Sprint Activity is
a type of Project Activity defined for a Sprint. Sprint Activities can produce User
Stories, a type of Artifact. User Stories produced in Sprint Activities are implemented in
the same Sprint for which the Sprint Activity is defined. A Sprint Activity Occurrence is
a type of Activity Occurrence that occurs in the context of a Sprint and is caused by a
Sprint Activity. A Business Goal is a Goal that expresses the intention for which
strategic actions are planned and performed. Measurement Goals express the intention
for measurement actions and should be defined based on Business Goals. An
Information Need describes the information necessary to monitor Measurement Goals
and is met by Measures.

 After selecting the ontologies fragments, we obtained the relevant fragments of
the tools’ conceptual structural models by analyzing the tools and their documentation.
Figure 7 depicts a fragment of the Taiga's conceptual model used. A Project is
composed by Sprints in which User Stories are implemented. Tasks are defined to
implement User Stories and have Status, which can be new, in progress or closed.
Project Stats Detail and Sprint Stats Detail store consolidated data about a Project and a
Sprint, respectively.

Figure 7. Fragment of Taiga conceptual model.

 Figure 8 shows a fragment of the SonarQube's conceptual model used. A
Resource represents entities that can be submitted to code analysis. A Resource has a
Qualifier that indicates its type, such as Software Project, Software Module and
Developer. A Metric is a measure and has a Domain, which refers to the property that a
metric measures (e.g., complexity, size). A Measure is the measurement of a Resource
by applying a Metric.

Figure 8 – Fragment of SonarQube conceptual model.

 Figure 9 shows a fragment of the SoMeSPC's conceptual model used. For better
visualization, attributes were omitted. Since SoMeSPC was developed from a Software
Measurement Reference Architecture defined based on RSMO, its conceptual model is
consistent with RSMO. In Figure 9, the only concept without a direct matching in

RSMO is Numeric Value, specialized from Measured Value and defined to allow
recording numeric values collected to measures.

Figure 9. Fragment of SoMeSPC conceptual model.

 Once the conceptual models are identified, it is necessary to perform vertical
mappings (VMs) to assign semantics to the tools’ elements by relating them to RSMO
elements. VMs allows assigning semantics and also identifying the semantic
equivalences among the tools’ elements. VMs must be done to concepts and
relationships. Table 1 presents some VMs among concepts.

Table 1. Examples of Vertical Mappings among Concepts.

VMs can be direct, i.e., a concept in the ontology is mapped to a class in the

tools’ conceptual models (e.g., Scrum Project in RSMO is mapped to Project in Taiga).
However, there are situations in which mappings are not direct. For instance, the RSMO
concept Sprint Activity Occurrence is mapped to Task in Taiga only when the Task is in
progress or finished. In Table 1 it is possible to notice that Measure and Measured
Value concepts (RSMO) were not mapped to Taiga concepts. In fact, there are attributes
in some Taiga’s classes that are measures, i.e., the attributes are instances of the
Measure concept. In Figure 7, totalPoints in User Story, and totalUserStories,
completedUserStories, totalTasks, completedTasks, iocaineDoses, totalPoints and
completedPoints in Sprint Stats Detail are examples of attributes mapped as instances of
the Measure concept. Values assigned to these attributes are Measured Values. These
attributes helped us to identify measures possible to be obtained from Taiga. For
instance, from the attributes totalUserStories and completedUserStories in Sprint Stats
Detail we identified the measures Number of User Stories Planned for the Sprint and
Number of Concluded User Stories in the Sprint, and also Sprint User Story Conclusion
Rate, obtained by Number of Concluded User Stories in the Sprint/ Number of User
Stories Planned for the Sprint.

After VMs, we built the integration model. First, we included the RSMO
concepts relevant to integration. Next, concepts and relationships present in the tools'
conceptual models but not present in RSMO were added to the model. Thus, some
multiplicities established in RSMO were adjusted, since they should be more restrictive
in the integration model. Last, concepts and relationships required by the integration
solution and that do not exist neither in RSMO nor in the tools were added. Figure 10
depicts a fragment of the integration structural model. Sprint Stats Detail and Project
Stats Detail were included from Taiga, Numeric Value from SoMeSPC and the others
from RSMO. Ellipses indicate cardinalities changed because Taiga is more restrictive
than RSMO.

Figure 10. Fragment of the Integration Conceptual Model.

 With the integration model in hands, horizontal mappings (HMs) were
performed to address the concepts and relationships absent in the ontology and
introduced in the integration model from the tools. Table 2 presents some of the HMs
among concepts.

Table 2. Examples of Horizontal Mappings among Concepts.

 The integration conceptual model, obtained by using RSMO as interlingua to
interoperability, enables the integration at data layer. However, service and process
layers should also be addressed in an integration initiative [Calhau and Falbo 2010].
Thus, following OBA-MSI guidelines to address integration at service and process
layers, we identified services available in the tools’ APIs able to support SMTO
measurement process activities. Table 3 presents, as examples, the mappings between
sub-activities of Perform Measurements in SMTO and the tools’ services able to
support them. The use of services to tools communication addresses integration at the
service layer, since services are used to exchange data.

Table 3. Mappings between APIs services and SMTO activities.

Considering the mappings between services and SMTO activities and the
alignment of the organizational measurement process with SMTO (established when the
measurement process was defined based on SMTO), the services mapped to SMTO
activities can be mapped to the correspondent LEDS’ measurement process activities,
indicating which activities are supported by the tools’ services. Thus, once tool
integration is performed considering the identified services, an integrated support is
obtained for the measurement process, covering also the integration at the process layer.
 Integration design and implementation were done by the means of a mediator,
which was developed based on the integration model and the identified services. The
mediator consists of a Java web application developed as a SoMeSPC module
extension. It is responsible for coordinating services to support all activities of the
measurement process, considering a holistic view of it. It provides three main features:

(i) A wizard for guiding the definition of Project Measurement Plans, as a result of
the Plan Measurement activity. User is guided step-by-step from goals selection
(each measurement goal is associated to information needs and to measures
identified during Integration Requirements Elicitation phase) to the establishment
of operational definition of measures. For each measure included in the Project
Measurement Plan, a job is created to automatically collect data for the measure,
considering the periodicity indicated in its operational definition.

(ii) A panel to manage (execute, pause or delete) the created jobs to collect data from
the integrated tools. Figure 11(a) illustrates a partial view of the panel.

(iii) A goal-based analysis feature that renders measured values into charts, supporting
measurement analysis by providing useful information to monitor the established
goals and to make decisions. Figure 11(b) illustrates selected data represented in a
chart to support measurements analysis. In the figure, data related to the number
of concluded user stories for sprints of two projects are plotted, providing
information regarding the sprints performance.

Figure 11. (a) Job Management Feature (b) Goal-based analysis feature.

 The integrated solution was deployed and made available for the organization
usage. A training involving software measurement theory and the functionalities
provided by the integrated solution was given to the LEDS members. Some weeks later
we applied a survey in order to collect feedback from the team and the manager. The
survey goal was to evaluate if the integrated set of tools is able to support the software
measurement process and if it added value to the organization. Three indicators were
used to verify the goal achievement: (i) functionalities adequacy; (ii) functionalities
usefulness; (iii) benefits obtained from the use of the integrated solution when
compared to the isolated use of the tools. 7 LEDS members who used the integrated
solution participated in the survey. For each functionality (Measurement Plan
Definition, Job Management, and Goal-based Analysis) the participants were asked to
indicate its usefulness and adequacy. All the functionalities were considered useful and
adequate by the participants. The participants were also asked to indicate if the use of
the integrated solution provides more, much more, the same, less, or much less benefits
when compared to the isolated use of the tools. 4 participants answered that the use of
the integrated solution provides much more benefits than the use of the tools in isolation
and 3 participants answered that it provides more benefits, indicating that the integrated
solution adds value to the organization. Finally, the participants were asked about their
perception regarding the defined measurement process. They stated that make the
measurement process explicit helped understand the process as a whole and measure
what is really important to the organization.

 After the survey, an interview was conducted with the LEDS’ manager. In
summary, the manager stated that the defined measurement process and the adopted
approach are suitable for LEDS. He said that the integrated solution favors daily data
analysis, since it consolidates data and provides information in a single source. Besides,
new measures that are not directly provided by the isolated tools are provided by the
integrated solution. The manager pointed out that, although the use of the integrated
solution is recent, the benefits provided from it have been already perceived. For
instance, according to the manager, by using the integrated solution it is easy to
compare data related to different projects and teams and use them to identify problems
and improve team performance.

5. Related Work
In the literature, there are some tool integration initiatives that support software
measurement. We carried out a systematic investigation and identified 12 integration
initiatives involving tools integration to support software measurement (see [Fonseca et
al. 2015a, 2015b]). Most of the investigated initiatives integrates code-related tools.
Consequently, most of the measures addressed in the initiatives are code-related
measures. None of the found initiatives addresses integration at process layer. Only one
of them ([Ghezzi and Gall 2011]) is concerned with semantic aspects. None of the
investigated initiatives presented the method followed to perform the integration. Thus,
we presumed that they have used ad-hoc approaches for integrating the tools.

 In comparison with these 12 initiatives, the integration initiative carried out at
LEDS presents some differences that must be highlighted: (i) Besides a code-related
tool, tools supporting project management and software measurement were integrated.
Thus, other measures than code-related ones are addressed. (ii) The integration covers
data, service and process layers. (iii) Reference ontologies (i.e., ontologies with the

purpose of making the best possible description of the domain in reality [Guizzardi
2005]) were used to deal with semantic issues. The initiative presented in [Ghezzi and
Gall 2011] also use ontologies, but only lightweight ontologies, limited to
computational properties concerns. (iv) A systematic approach (OBA-MSI) that guides
integration through the use of ontologies to assign semantics to the elements involved in
the integration was followed.

6. Final Considerations
Although organizations use several tools to support their processes, one of the problems
faced by them is the lack of tools suitable for properly supporting their measurement
process. As a consequence, organizations develop their own solutions that can range
from electronic spreadsheets to systems devoted to support software measurement.
However, inappropriate solutions can compromise data quality and usefulness and even
the whole measurement process [Dumke and Ebert, 2007].
 Integrating tools to support the measurement process can be a useful solution for
many organizations, allowing for the integration of data and services from different
sources in order to get useful information to decision making. Integration is a complex
task that involves several concerns. A key factor for integration is the sharing of a
common understanding between the tools regarding the meaning of the exchanged data
and services. In other words, it is important to deal with integration not only at the
syntactic level, but also at the semantic level. Among the instruments used to address
semantics, ontologies have been acknowledged as an important means to address tool
semantic integration. They can be used as an interlingua to map concepts and services
used by the different applications.

Considering that, in this paper, we reported the use of OBA-MSI, an ontology-
based approach for semantically integrating measurement-related tools, to carry out a
tool integration initiative to support the software measurement process at LEDS, aiming
to help software project monitoring and software quality improving. Tools supporting
agile project management (Taiga), code analysis (SonarQube), and software
measurement (SoMeSPC) were integrated by using a mediator.

The main difficulty we faced when applying OBA-MSI in the integration
initiative at LEDS regards recovering Taiga’s and SonarQube’s conceptual models.
Although there is documentation available at tool’s websites, sometimes the available
information was not enough to identify the relevant fragments for the integration.
Software measurement knowledge was needed for us to decide which fragments of the
tool’s conceptual models should be used in the integration. In this sense, it is worth
pointing out that, although OBA-MSI provides the steps and guidelines to be followed
to integrate tools, it is necessary to make some decisions along the OBA-MSI process
that depend on user knowledge of software measurement.

OBA-MSI addresses tool integration considering semantic aspects and
alignment to organizational goals. This contributes to increase quality in tool integration
initiatives. However, the concern with semantics can imply more effort to perform the
integration initial phases than when integrating tools in an ad hoc manner. We advocate
that the benefits provided from using OBA-MSI justify the necessary effort to apply it.
Even so, aiming to decrease the demanded effort and ease the use of OBA-MSI, we
have been working on improving the approach and providing some support to apply it.

 Some learned lessons obtained from the initiative can be pointed out: (i) By
applying OBA-MSI, the organizational measurement process was made explicit and
integrated to the development process. This helped the team to understand the software
measurement process, and also contributed to perform the measurement process as part
of the development process instead of an isolated process. (ii) Measurement-related
tools integration should be guided to organizational and project goals in order to provide
useful information and assure that only what really matters is measured. Even Taiga and
SonarQube being able to provide other measures, focus on the ones related to the LEDS
goals contributed to the success of the initiative. (iii) The use of ontologies as
interlingua to tool integration allowed proper integrating the tools, avoiding conflicts
about the meaning of the integrated elements. (iv) The integrated set of tools provide
more benefits than using them in isolation. The integrated set of tools allows following
the measurement process as a whole, connecting measures to goals and using
information provided from collected data to monitor goals achievement. Besides, new
measures not provide by the tools can be obtained from the integrated solution. (v)
Provide automatic measurements and features that guide the user in a step-by-step
process made the measurement process easier to be understood, performed and
institutionalized.
 Currently, we are evaluating new tools to be added to the integrated set of tools
and planning using it as a tool to aid software measurement teaching. The integration
initiative at LEDS was conducted by one of the researchers involved in the OBA-MSI
development. As future work, we plan to apply OBA-MSI to integrate tools without the
researchers intervention.

Acknowledgement
This research is funded by the Brazilian Research Funding Agency CNPq (Processes
485368/2013-7 and 461777/2014-2). The authors acknowledge the LEDS for the
opportunity of applying OBA-MSI and for the provided feedback.

References
Barcellos, M. P., Falbo, R. A. (2009). Using a Foundational Ontology for

Reengineering a Software Enterprise Ontology. In Joint International Workshop on
Metamodels (MOST 2009), p. 179-188.

Barcellos, M. P., Falbo, R. A. and Rocha, A. R. (2013). A strategy for preparing
software organizations for statistical process control. Journal of the Brazilian
Computer Society, v. 19, n. 4, p. 445–473.

Barcellos, M. P. and Falbo, R. de A. (2013). A software measurement task ontology. In
28th Annual ACM Symposium on Applied Computing (SAC 2013). ACM Press.

Basili, V. R., Caldiera, G. and Rombach, H. D. (1994). Goal Question Metric Approach.
Encyclopedia of Software Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc.

Briguente, A. C. O., Falbo, R. A. and Guizzardi, G. (2011). Using a Foundational
Ontology for Reengineering a Software Process Ontology. In: XXVI Brazilian
Symposium on Data Base.

Calhau, R. F. and Falbo, R. A. (2010). An Ontology-Based Approach for Semantic
Integration. In 2010 14th IEEE International Enterprise Distributed Object
Computing Conference. IEEE.

Dumke, R. and Ebert, C. (2007). Software Measurement: Establish - Extract - Evaluate
- Execute. Berlin, Heidelberg: Springer Berlin Heidelberg.

Florac, W. a. and Carleton, A. D. (1997). Measuring the software process: statistical
process control for software process improvement. Boston, USA: Addison Wesley.

Fonseca, V. S., Barcellos, M. P. and Falbo, R. D. A. (2016). An Ontology-Based
Approach for Integrating Tools Supporting the Software Measurement Process.
Special Issue on Advances in Software Measurement and Measurement Programs of
the Science. Computer Programming Journal (under review).

Fonseca, V. S., Barcellos, M. P. and Falbo, R. de A. (2015a). Tools Integration for
Supporting Software Measurement: A Systematic Literature Review. iSYS -
Information Systems Brazilian Journal, v. 8, n. 4, p. 80–108.

Fonseca, V. S., Barcellos, M. P. and Falbo, R. de A. (2015b). Integration of Software
Measurement Supporting Tools: A Mapping Study. In 27th International
Conf.erence on Software Engineering and Knowledge Engineering (SEKE 2015).

Ghezzi, G. and Gall, H. C. (2011). SOFAS: A Lightweight Architecture for Software
Analysis as a Service. 9th Working IEEE/IFIP Conf on Software Architecture, p. 93–
102.

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models, ISBN
90-75176-81-3, Universal Press, The Netherlands, 2005.

ISO/IEC (2007). IEEE Standard Adoption of ISO/IEC 15939:2007—Systems and
Software Engineering—Measurement Process.

ISO/IEC (2008). IEEE Standard Adoption of ISO/IEC 12207:2008 — Systems and
Software Engineering — Software Life Cycle Processes.

Izza, S. (2009). Integration of industrial information systems: from syntactic to semantic
integration approaches. Enterprise Information Systems, v. 3, n. 1, p. 1–57.

LEDS (2016). Software Development Extension Laboratory. http://leds.sr.ifes.edu.br/
Maretto, C. X. and Barcellos, M. P. (2013). A Levels-based Approach for Defining

Software Measurement Architectures. Clei Electronic Journal, v. 14, n. 3, p. 27.
McGarry, J., Card, D., Jones, C., et al. (2002). Practical Software Measurement:

Objective information for decision makers. Boston, USA: Addison Wesley.
Nardi, J. C., Falbo, R. A. and Almeida, J. P. A. (2013). A Panorama of the Semantic

EAI Initiatives and the Adoption of Ontologies by these Initiatives. In: IWEI 2013,
LNBIP 144. Lecture Notes in Business Information Processing. Berlin, Heidelberg:
Springer Berlin Heidelberg. v. 144p. 198–211.

Pokraev, S. (2009). Model-Driven Semantic Integration of Service-Oriented
Applications. University of Twente.

SEI (2010). CMMI® for Development, Version 1.3.
Solingen, R. and Berghout, E. (1999). The Goal/Question/Metric Method: a practical

guide for quality improvement of software development. A Practical Guide for
Quality Improvement of Software Development. New York, McCraw-Hill Publishers,
p. 216.

