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Abstract. Several efforts that leverage the tools of formal ontology (such as Onto-
Clean, OntoUML, and UFO) have demonstrated the fruitfulness of considering key
metaproperties of classes in ontology engineering. These metaproperties include
sortality, rigidity, and external dependence, and give rise to many fine-grained onto-
logical categories for classes, including, among others, kinds, phases, roles, mixins,
etc. Despite that, it is still common practice to apply representation schemes and
approaches—such as OWL—that do not benefit from identifying these ontological
categories, and simplistically treat all classes in the same manner. In this paper,
we propose an approach to support the automated classification of classes into the
ontological categories underlying the (g)UFO foundational ontology. We propose
a set of inference rules derived from (g)UFO’s axiomatization that, given an initial
classification of the classes in an OWL ontology, can support the inference of the
classification for the remaining classes in the ontology. We formalize these rules,
implement them in a computational tool and assess them against a catalog of on-
tologies designed by a variety of users for a number of domains.
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Introduction

One of the key motivations behind the original idea of the Semantic Web was to provide
assistance for a sort of Semantic Interoperability. The idea was to offer support for com-
plex information services by combining information sources that have been designed in
a concurrent and distributed manner. In this context, ontologies—which had been since
the ’90s used for this purpose in the Knowledge Exchange Community [1]—were im-
mediately identified as one of the enabling technologies.

1Corresponding Author: Pedro Paulo F. Barcelos, Piazza Università, 1, 39100, Bolzano, Italy; E-mail:
pfavatobarcelos@unibz.it.



Over the years, ontologies have been promoted both as a (purpose 1) reference
model of consensus to support reuse and interoperability of domain conceptualizations
or as an (purpose 2) explicit, declarative, and machine-processable artifact coding a
domain model to enable automated reasoning. This duality, however, points to different
(and even conflicting) sets of quality criteria and requirements that these artifacts and the
representation languages in which they are expressed should meet.

To serve purpose 1, ontologies should be constructed in ways that maximize the
expressivity in capturing fundamental aspects of the underlying domain and in making
explicit the underlying ontological commitments. In contrast, to support purpose 2, they
should be built in a way that supports decidable and computationally tractable automated
reasoning. As it is well known, there is a trade-off between expressivity and maintain-
ing these desirable computational properties [2]. In the context of the Semantic Web,
the Web Ontology Language (OWL) was designed to maximize the latter side of this
trade-off and, despite its limited expressivity (when compared to the First Order [3] or
Higher Order Logics [4] that have been used in ontology representation), OWL has been
very successful in giving rise to a plethora of specifications (often called lightweight
ontologies) in a large variety of domains.

As shown by several authors, these OWL ontologies do not always live up to
the promise of promoting either interoperability or reuse in complex and critical do-
mains [5–9]. The reason for that goes beyond mere logical expressivity. As beautifully
expressed by Varzi’s dictum: “No ontology without Ontology” [10], to support pur-
pose 1 ontologies should be constructed with a fuller consideration of (the discipline of)
Ontology, i.e., with the explicit support of true ontological theories.

To offer that kind of foundational support for the construction of OWL ontologies,
some of us have proposed gUFO [11]. Standing for gentle UFO, gUFO is an OWL super-
structure implementing the Unified Foundational Ontology (UFO) [12]. By partially in-
corporating UFO’s ontological distinctions and regulating logical constraints (the ones
that can be expressed in OWL), gUFO can support the systematic alignment of classes in
OWL ontologies to its foundational categories, increasing the quality of these ontologies
(in the sense of purpose 1) by design.

However, there is a vast amount of OWL ontologies that have been built without
such support, and expecting the ontologies to be manually re-engineered is unrealistic.
This is the exact problem we address in this paper. We propose a set of inference rules de-
rived from UFO’s and gUFO’s axiomatization that, given an initial seeding, i.e., an initial
classification of the classes in an OWL ontology into gUFO’s foundational categories,
are triggered to infer the gUFO classification for the remainder of the classes. Further,
we implement these rules in a computational tool that operates in an automatic or semi-
automatic manner, i.e., automatic whenever possible and by interacting with the ontol-
ogist when not. Finally, we test this tool against a catalog of (g)UFO-based ontologies
that collects models designed by a variety of users and domains.

The remainder of the paper is structured as follows: section 1 briefly presents the
background of the paper, namely, UFO and gUFO; section 2 introduces our inference
rules; section 3 discusses the proposed computational tool; section 4 presents and dis-
cusses our empirical work, validating the rules and tool; section 5 discusses related work;
section 6 presents some final considerations.



1. Background: UFO and gUFO

1.1. The Unified Foundational Ontology (UFO)

The Unified Foundational Ontology (UFO) [12] is an axiomatic domain-independent for-
mal theory that builds on contributions from analytic metaphysics, cognitive sciences,
linguistics, and philosophical logic. It results from the integration and re-visitation of
previous foundational approaches, such as OntoClean [13], DOLCE [14], and GFO [15].
UFO addresses fundamental ontological notions via a set of micro-theories addressing
types and taxonomic structures, part-whole relations, relations, events, dependence, and
multilevel modeling, among others. Over the years, it has been successfully used to
model a wide range of domains [12], including risk, services, legal relations, telecom-
munications, trust, petroleum and gas, genomics, and many more. According to a recent
study [16], it is the second most used foundational ontology in conceptual modeling and
the one with the fastest adoption rate.

As a 3D ontology, UFO accounts for the existence of both endurants and perdurants.
Endurants are object-like individuals. They endure in time and are able to qualitatively
change while maintaining their identities [3]. Examples include ordinary objects of ev-
eryday life, such as a person, a house, and a car; particularized relational properties, such
as a marriage, a rental contract, and one’s love for another; and existentially dependent
aspects of objects, such as the weight of a car, the language skills of a person, and the
color of a house. Endurants are sometimes called continuants or simply objects. In con-
trast, perdurants are entities that unfold in time, accumulating temporal parts. Examples
include actions, such as walking and taking a photo, but also natural occurrences, such
as rain and the fall of a meteor.

Endurant types in UFO can be of different sorts, distinguished by formal metaprop-
erties such as rigidity and sortality. Rigidity is a property of a type that describes the
dynamics of how it may be instantiated. From this perspective, types may be classified
as rigid, anti-rigid, and semi-rigid. Rigid types are those that classify their instances nec-
essarily (in the modal sense). Stating that the type “Person” is rigid means that no person
may cease to be a person and still exist. Anti-rigid types are those that classify their in-
stances contingently, i.e., their instances can move in and out of their extension without
altering their identity. Examples include the types “Child”, “Student”, and “Customer”.
Lastly, semi-rigid types are those that classify some of their instances necessarily and
some of their instances contingently. For example, the type “Female Animal” is semi-
rigid because it applies necessarily to some animals, e.g., lionesses and cows, and contin-
gently to others, such as clownfishes and starfishes of certain species (which may change
sex given certain conditions). Given the formalization of these notions in UFO, it follows
that: (i) every type is either rigid, anti-rigid, or semi-rigid (cf. theorem t5 of [3]); (ii) no
type is both rigid and anti-rigid, rigid and semi-rigid, and anti-rigid and semi-rigid (cf.
theorem t6 of [3]); (iii) there is no rigid type that specializes an anti-rigid type (cf. theo-
rem t7 of [3]); and (iv) there is no semi-rigid type that specializes an anti-rigid type (cf.
theorem t8 of [3]).

To explain sortality, we must first introduce the notion of a principle of identity.
A principle of identity makes explicit the properties that no two individuals can have
in common, since such properties uniquely identify them. In particular, it also informs
which changes an individual can undergo without changing its identity. The relation be-



tween a type and the principles of identity of its instances is defined by its sortality. A
type is a sortal if all of its instances follow the same identity principle. Examples include
the types “Person”, “Woman”, and “Child”. If a sortal type supplies an identity principle
to its instances, it is deemed an ultimate sortal—or simply a kind. Everyday examples of
kinds are the types “Person” and “Organization”. As a complement to sortals, we have
non-sortal types. A non-sortal type aggregates properties that are common to different
sortals and, thus, can be instantiated by individuals that follow different identity prin-
ciples. An example of such a type is “Work of Art”, which applies to paintings, music
compositions, and statues.

In terms of sortality, the UFO adopts the following axioms. Every individual must
follow a unique identity principle and thus instantiate exactly one kind (cf. axioms a9
and a10 of [3]). For every sortal type T , there is one kind K such that all instances of
T instantiate K (cf. axiom a11 of [3]). No type is both a sortal and a non-sortal (cf.
axiom 12 of [3]). Some useful theorems in this respect for our purpose in this paper are:
(i) every sortal specializes a unique kind (cf. theorem t13 and t14 of [3]); (ii) a non-
sortal cannot specialize a sortal (cf. theorem t15 of [3]); and (iii) non-sortals do not have
direct instances, their instances are also instances of a sortal that either specializes the
non-sortal, or that specializes a common non-sortal supertype (cf. theorem t16 of [3]).

By combining the sortality and rigidity aspects, we obtain the leaf categories of
endurant types, namely:

• kind: a rigid sortal that supplies an identity principle to its instances. For example,
“Dog”, “Car”, “Person”, and “Organization”;

• subkind: a rigid sortal that is not a kind. For example, “Sedan” is a subkind of
“Car”, “Bulldog” is a subkind of “Dog”;

• phase: an anti-rigid sortal whose dynamic instantiation condition depends on an
intrinsic property, e.g., a “Dog” instantiates the phase “Puppy” if it is at most 2
years old;

• role: an anti-rigid sortal whose dynamic instantiation condition depends on a rela-
tional property, e.g., a “Person” instantiates the role “Student” when enrolled in at
least one educational institution;

• category: a rigid non-sortal type. For example, “Furniture”, “Agent”, “Vehicle”;
• phase mixin: an anti-rigid non-sortal whose dynamic instantiation condition de-

pends on an intrinsic property, e.g., “Infant Animal”;
• role mixin: an anti-rigid non-sortal whose dynamic instantiation condition de-

pends on a relational property, e.g., “Customer”, “Insured Item”, “Service
Provider”;

• mixin: a semi-rigid non-sortal type. For example, “Music Artist”, a type that
rigidly characterizes bands and contingently characterizes people.

1.2. gUFO (gentle UFO): A Lightweight Implementation of UFO in OWL

gUFO is a lightweight implementation of UFO designed for the Semantic Web [11]. The
term lightweight is used for three reasons. First, because of the limited expressivity of
OWL, gUFO does not contain the complete axiomatization of UFO. For instance, we
cannot formally define a class as being anti-rigid, as there is no alethic modality in OWL.
Second, gUFO does not completely implement all the micro-theories defined in UFO. In



particular, the theory of perdurants is only minimally implemented to support the repre-
sentation of part-whole relations between events, the participation of objects in events,
and the historical dependence between events. Third, given its application-oriented fo-
cus, some pragmatic implementations were made, such as terminology simplification
(e.g., perdurants are called events instead).

gUFO was designed to offer a conceptual base on which ontologists can build their
ontologies, offering several patterns to cope with recurrent conceptual issues (e.g., the
modeling of roles with multiple disjoint allowed types). In addition, it also provides pat-
terns that support the working ontologist to cope with recurrent implementation chal-
lenges, such as the representation of temporal data (e.g., the fact that Jeff Bezos used to
be the CEO of Amazon, but is not anymore) and the representation of property values in
multiple scales (e.g., a dog’s weight in pounds and kilograms).

To reuse gUFO, one may instantiate and/or specialize the various classes, object
properties, and data properties it provides. A key feature of gUFO is that it includes
two class taxonomies: one with classes whose instances are individuals, such as gufo:

Endurant and gufo:Object; and another with classes whose instances are types, such as
gufo:Kind, gufo:Phase, and gufo:Category. Considering these two taxonomies, gUFO may
be reused in the four ways shown in Listing 1 (using Turtle as notation).

# 1. By instantiating classes in the taxonomy of individuals
:John rdf:type gufo:Object .
:JohnAndMaryMarriage rdf:type gufo:Relator.

# 2. By specializing classes in the taxonomy of individuals
:Person rdfs:subClassOf gufo:Object .
:Marriage rdfs:subClassOf gufo:Relator .

# 3. By instantiating classes in the taxonomy of types
:Person rdf:type gufo:Kind .
:Child rdf:type gufo:Phase .

# 4. By specializing classes in the taxonomy of types
:PersonPhase rdfs:subClassOf gufo:Phase .
:AcademicRank rdfs:subClassOf gufo:Role .

# Combining strategies 2 and 3
:Person rdf:type owl:Class , gufo:Kind ;

rdfs:subClassOf gufo:Object .

Listing 1: The four ways in which ontologies can reuse the classes defined in gUFO.

Note that these four representation strategies are not mutually exclusive, but comple-
mentary. For example, as shown in the last lines of Listing 1, ontologies can use strategies
2 and 3 in combination. This particular representation strategy employs OWL 2 punning,
allowing the interpretation of the same identifier as two different model entities, such as
classes, object properties, or individuals. In our example, we state that the class :Person

instantiates the class gufo:Kind.



2. Inference Rules to Categorize Endurant Types

Our objective in this paper is to develop a system to infer the UFO meta-categories of
classes in an OWL ontology given an initial seeding. More precisely, consider ET as
the set of leaf classes defined in gUFO’s taxonomy of endurant types, namely gufo:Kind,
gufo:Subkind, gufo:Role, gufo:Phase, gufo:Category, gufo:RoleMixin, gufo:PhaseMixin, and
gufo:Mixin. Given an OWL ontology O containing a set of classes C and an initial map-
ping M (seeding) between classes in C and classes in ET using rdf:type, what additional
rdf:type mappings between classes of C and ET can we infer?

Naturally, this task would be significantly facilitated if the complete axiomatization
of UFO was implemented in gUFO. Since this is not the case, we propose a set of rules
based on UFO’s [3] and gUFO’s axiomatizations [11]. In the following, we specify our
inference rules in First Order Logic (FOL). Consider that all free variables are universally
quantified, having all their occurring formulas as their scope. Moreover, we assume that
our domain of quantification only includes types.

We start by declaring our subClassO f relation, which is reflexive (R01) and transi-
tive (R02), directly corresponding to the rdfs:subClassOf property and compatible with
the UFO’s specialization relation.

R01: subClassO f (x,x)
R02: subClassO f (x,y)∧ subClassO f (y,z)→ subClassO f (x,z)

Rules R03–R16 were mapped from gUFO’s taxonomy of endurant types. Capi-
talized unary predicates (e.g., Sortal, Kind, Category) directly correspond to gUFO’s
classes in its taxonomy of types, implications correspond to specialization relations, and
equivalence and exclusive disjunctions are used to map disjoint unions.

R03: EndurantType(x)↔ RigidType(x)⊕NonRigidType(x)2

R04: NonRigidType(x)↔ AntiRigidType(x)⊕SemiRigidType(x)
R05: EndurantType(x)↔ Sortal(x)⊕NonSortal(x)
R06: Kind(x)→ RigidType(x)∧Sortal(x)
R07: SubKind(x)→ RigidType(x)∧Sortal(x)
R08: ∄x(Kind(x)∧SubKind(x))
R09: Role(x)→ AntiRigidType(x)∧Sortal(x)
R10: Phase(x)→ AntiRigidType(x)∧Sortal(x)
R11: ∄x(Phase(x)∧Role(x))
R12: Category(x)→ NonSortal(x)∧RigidType(x)
R13: RoleMixin(x)→ NonSortal(x)∧AntiRigidType(x)
R14: PhaseMixin(x)→ NonSortal(x)∧AntiRigidType(x)
R15: ∄x(PhaseMixin(x)∧RoleMixin(x))
R16: Mixin(x)→ NonSortal(x)∧SemiRigidType(x)

For our purpose, we need to complement these rules with R17–R21, which require
endurant types to instantiate at least one of the leaf types in gUFO’s taxonomy of types.
This is consistent with what is achieved by axioms a13–a21 in the original theory [3],
except for R19, which is more restrictive than in the source formalization. In R19, we
equate semi-rigid types with mixins, which are non-sortal semi-rigid types. We do that
because gUFO does not explicitly account for the existence of semi-rigid sortals.

R17: RigidType(x)→Category(x)∨Kind(x)∨SubKind(x)

2The symbol ⊕ is used here to represent an exclusive or operator and ∄ as a shorthand for ¬∃.



R18: AntiRigidType(x)→ Role(x)∨Phase(x)∨RoleMixin(x)∨PhaseMixin(x)
R19: SemiRigidType(x)→ Mixin(x)
R20: Sortal(x)→ Kind(x)∨Phase(x)∨Role(x)∨SubKind(x)
R21: NonSortal(x)→Category(x)∨PhaseMixin(x)∨RoleMixin(x)∨Mixin(x)

As gUFO does not implement any restrictions regarding the rigidity of an endurant
type and of the types it specializes and generalizes, we implement rules R22–R25 based
on UFO’s original formalization of [3]. R22 is based on UFO’s theorem t7, which states
that no rigid type can specialize an anti-rigid type. R23 is based on theorem t8, a similar
theorem for semi-rigid types. R24 and R25 are not explicitly formalized in UFO but are
implied by it. R24 states that for every anti-rigid sortal type x that specializes a category
y, a rigid non-sortal type, there is at least a rigid sortal type z of which x is a subclass and
which is a subclass of y. R25 states that for every mixin, there is at least one rigid type
and one anti-rigid type that specialize it.

R22: RigidType(x)∧ subClassO f (x,y)→¬AntiRigidType(y)
R23: SemiRigidType(x)∧ subClassO f (x,y)→¬AntiRigidType(y)
R24: subClassO f (x,y)∧AntiRigidType(x)∧ Sortal(x)∧Category(y) → ∃z(subClassO f (x,z)∧

subClassO f (z,y)∧RigidType(z)∧Sortal(z))
R25: Mixin(x)→∃y,z(subClassO f (y,x)∧RigidType(y)∧subClassO f (z,x)∧AntiRigidType(z))

gUFO also does not formalize any constraints regarding sortality and taxonomic
structures. Based on UFO’s formalization, we implement those on rules R26–R28.
R26 states that every type that a kind specializes (which is not itself) is a non-sortal.
R27 states that non-sortal types can only specialize non-sortal types (based on UFO’s
theorem t15 [3]). R28 states that every sortal must specialize a unique kind (based on
UFO’s theorems t13 and t14).

R26: x ̸= y∧Kind(x)∧ subClassO f (x,y)→ NonSortal(y)
R27: NonSortal(x)∧ subClassO f (x,y)→ NonSortal(y)
R28: Sortal(x)→∃!y(subClassO f (x,y)∧Kind(y))

To implement UFO’s theorem t16 [3], which states that non-sortals do not have
direct instances and classify individuals of at least two different kinds, we need a rule
stating that every non-sortal must be a superclass (or a sibling) of at least two sortals
that specialize different kinds. To do that, we first define the relations shareKind and
shareSuperClass. R29 states that the types x and y share a kind if and only if there is
a single kind z such that both x and y specialize it. R30 states that the type x shares a
same superclass with the type y if and only if there is at least one type that both x and y
specialize. Then, using R29 and R30, R31 implements our version of theorem t16.

R29: shareKind(x,y)↔∃!z(Kind(z)∧ subClassO f (x,z)∧ subClassO f (y,z))
R30: shareSuperClass(x,y)↔∃z(subClassO f (x,z)∧ subClassO f (y,z))
R31: NonSortal(x)→∃y,z(y ̸= z∧Sortal(y)∧Sortal(z)∧¬shareKind(y,z)∧(subClassO f (y,x)∨

shareSuperClass(x,y))∧ (subClassO f (z,x)∨ shareSuperClass(x,z)))

Rules R32–R34 stem from the constraint that specializations of roles and role mixins
always inhere their parent’s relational dependency. So, phases cannot specialize roles and
role mixins (R32) (otherwise they would be relationally dependent), and, likewise, that
phase mixins cannot specialize role mixins (R33). Further, whenever a role specializes a
phase mixin, it does that by specializing a phase that specializes that phase mixin (R34).



R32: Phase(x)∧ subClassO f (x,y)→¬Role(y)∧¬RoleMixin(y)
R33: PhaseMixin(x)∧ subClassO f (x,y)→¬RoleMixin(y)
R34: Role(x)∧PhaseMixin(y)∧ subClassO f (x,y)→

∃z(Phase(z)∧ subClassO f (x,z)∧ subClassO f (z,y))

Finally, rule R35 specifies that phases must always have at least one sibling class
sharing a common kind, while rules R36 and R37 state that phase mixins must always
have at least one sibling sharing a common category. Note, that these are weaker con-
straints than those of the original theory, which require phases and phase mixins to occur
in partitions of kinds and categories respectively. (A set of types S is a partition of type
T if all types in S are pairwise disjoint and specialize T, and every instance of T is an
instance of a type in S.)
R35: Phase(x)→∃y(Phase(y)∧ shareKind(x,y)∧¬subClassO f (x,y)∧¬subClassO f (y,x))
R36: PhaseMixin(x)→∃y(Category(y)∧ subClassO f (x,y))
R37: PhaseMixin(x)∧Category(y)∧subClassO f (x,y)→∃z(PhaseMixin(z)∧¬subClassO f (x,z)∧

¬subClassO f (z,x)∧ subClassO f (z,y))

To verify the consistency and validate if the rules were sufficient for our inference
needs (i.e., the completeness of the rule set), we implemented the specified rules in Al-
loy [17], a logic language that supports bounded verification. The language is accom-
panied by a solver tool, called Alloy Analyzer, which allowed us to, in a fixed scope,
generate instances that comply with our rule set and to seek counter-examples that would
invalidate expected theorems from it. The implementation of our inference rules in Alloy
is available in a git repository (https://purl.org/scior/alloy).

3. Tool Support

To assess the effectiveness of our inference rules in practice and make them available
to working ontologists, we implemented them in an open-source command-line Python
tool called Scior (see https://purl.org/scior for the source code repository).
Two main requirements guided the design of Scior. First, users should pick whether
Scior should reason with a closed-world assumption (CWA) or an open-world assump-
tion (OWA) [18]. When it reasons with a close-world assumption, it presumes that all
classes and properties of an ontology have been declared. So, if a class has no subclass,
this means that there is not one. Conversely, when it reasons with an open-world assump-
tion, it presupposes that not all classes and properties of an ontology have been declared.
So, for any class in the ontology, there might be a class that specializes it (or which it
specializes) that just has not been declared.

Second, Scior should support the alignment of an ontology to gUFO in a semi-
automated way. This means that, whenever the rules and the declared alignments are suf-
ficient to infer a new alignment, Scior should make it. Otherwise, Scior should provide
users with options to manually declare an alignment themselves, but discard possibilities
that were rejected by the inference rules. For instance, we only know that a class C spe-
cializes a class K that instantiates gufo:Kind, Scior should conclude that C is either an in-
stance of gufo:Role, gufo:Phase, or gufo:SubKind, and only offer the user these options. It
must be highlighted that when Scior is in an OWA context and operating in its automatic
mode, if it identifies a single declared class that can fulfill one of its rules, it shall assign
the rule’s required classification to that class, even though the OWA may consider that
other non-declared classes could be possible.

https://purl.org/scior/alloy
https://purl.org/scior


4. Evaluation

We evaluate Scior from two perspectives, correctness and effectiveness, which are de-
scribed in subsections 4.2 and 4.3 respectively.

4.1. Materials

To conduct our evaluation, we needed a set of taxonomies for which the ontological
categorization of its classes was known in advance. Since no such dataset existed, we
built one from the models available in the FAIR Model Catalog for Ontology-Driven
Conceptual Modeling Research, short-named OntoUML/UFO Catalog [19]. This open-
source catalog contains ontology models grounded in UFO and in its derived conceptual
modeling language, OntoUML. Its purpose is to support empirical research by providing
high-quality, curated, structured, and machine-processable data on UFO-based models. It
offers a diverse collection of models, created by modelers with varying modeling skills,
for a range of domains, and for different purposes. The catalog provides a serialization
of these models in Turtle, allowing them to be handled by Semantic Web manipulation
libraries and frameworks.

To assemble our test dataset of taxonomies, we collected 140 models that compose
the catalog. We mapped each OntoUML model into an OWL ontology, keeping only their
classes and generalizations. Each class in the source model was mapped into an owl:Class
and each generalization was mapped into an rdfs:subClassOf statement. In a separate file,
we also mapped OntoUML’s stereotypes into gUFO types, focusing on endurant types.
This mapping is described as follows.

• Classes with the following OntoUML stereotypes receive the gUFO homonym
classifications: gufo:Category, gufo:Mixin, gufo:Phase, gufo:PhaseMixin, gufo:Kind,
gufo:SubKind, gufo:Role, and gufo:RoleMixin.

• Classes with OntoUML stereotypes that represent ultimate sortals, namely Collec-
tive, Quality, Quantity, Mode, and Relator, are mapped to gufo:Kind.

• The OntoUML stereotype HistoricalRole is mapped to gufo:Role, and Historical-
RoleMixin is mapped to gufo:RoleMixin.

• Finally, classes without OntoUML stereotypes or with stereotypes not cited here
receive the string “other”, labeling that they are out of scope for future exclusion
from our test dataset.

In these OWL ontologies, we performed a procedure named taxonomical graphs
separation. In this procedure, the composing taxonomies of each ontology were separated
into different graphs, here called taxonomical graphs. The algorithm for this procedure
is as follows.

1. A list of root nodes is generated.
2. For the first element of that list, all other nodes that are reachable from it (i.e.,

nodes that can be accessed via the specialization/generalization relations) are sep-
arated into a new taxonomical graph, and their information is isolated in a new file.
The root node selected as a pivot is removed from the root list. All its reachable
nodes are also removed from there.

3. Step 3 is repeated until the root list is empty.



Applying the taxonomical graph separation procedure to the previously selected
models from the OntoUML/UFO catalog and excluding the results that contained out-
of-scope classes resulted in 656 taxonomies containing a sum of 5108 classes.

4.2. Correctness Evaluation

We qualitatively evaluated the correctness of the rules implemented in Scior in three
steps. First, during development, we performed a series of manual tests using toy exam-
ples. For each implemented rule, we created several positive and negative tests to verify
if Scior inferred the expected category when it was supposed to and that it did not infer
when it was not supposed to.

The second step consisted of running Scior on all of our taxonomies and assessing
if the inferred categories matched the ones provided in the dataset. For this, we executed
Scior once per class in each taxonomy in the dataset, providing this class as the single
seed. Then, we randomly selected a sample of these executions and manually assessed
if the inferred knowledge was consistent with the original data, even if a definite catego-
rization was not possible. Additionally, we verified a sample of executions for which we
knew the inferred classes did not match the original ones. This was done independently
by two authors of this paper. For both, all the outputs matched the expected behavior.

The last and third evaluation step comprised executing Scior again over all 656 tax-
onomies and checking to which ones it reported inconsistencies. The list of inconsistent
taxonomies must match the one detected when using the queries presented by Guizzardi
et al. [3]. They provided seven different SPARQL queries to detect violations of the rules
imposed by the UFO’s types formal theory, more specifically, regarding entities’ sortality
and rigidity. As their rules do not cover relational dependency (rules R32–R34) and the
necessity of partition sets for phases and phase mixins (rules R35 and R37), we created
additional SPARQL queries for these specific verifications. For a CWA context, all rules
must not report violations, while for OWA the models do not need to comply with the
sortalMustSpecializeUltimateSortal constraint and with the queries that verify
this work’s rules R35 and R37.

Performing the evaluation, we found that a single taxonomy (0.15%) did not match
the expected behavior for OWA models, while 23 (3.51%) did not match for CWA mod-
els. Analyzing the results, we concluded that the OWA divergence happened because the
queries presented by Guizzardi et al. could not capture the invalid situation (according to
R26) of a kind specializing a subkind that does not have another kind as its superclass.
For the CWA models, all unexpected results were caused by the query that verifies the
nonSortalMustHaveSortalSpecialization constraint, which is less restrictive than
this work’s rule R31. Here, we require non-sortals to be specialized by at least two sortals
carrying different principles of identity. We could then conclude that Scior presented the
expected results for all 656 tested taxonomies.

4.3. Effectiveness Evaluation

We quantitatively evaluate the effectiveness of our inference rules by measuring the de-
gree to which Scior can infer, given an initial seeding, the categories of the remaining
classes in a taxonomy specified in OWL.3 We do that by running Scior on different tax-

3The tested dataset and resulting data are available at https://purl.org/scior/fois2023.

https://purl.org/scior/fois2023


onomies, with varying levels of seedings, and under both open and closed-world assump-
tion modes.

4.3.1. Methods

More precisely, for each taxonomy, we repeatedly test Scior by providing increasing
levels of seeding, starting at 10% of the classes and making increments of 10% until
we seeded 90% of the taxonomy. For each percentage level, we run Scior 10 times,
each time providing a different randomly selected subset of categorized classes as the
seeding. We run these tests first with Scior on open-world assumption and then on closed-
world assumption. We executed our tests in this way to minimize the possibility that any
taxonomy or seed would affect our results, as well as to observe how the tool behaves
when the level of seeding changes.

For each execution of Scior, we registered how many endurant types’ leaf categories
could be excluded from the list of classifications a class may receive; i.e., we measured
which classifications from the following list could be automatically discarded: kind, sub-
kind, role, phase, category, role mixin, phase mixin, or mixin. Hence, results vary from
zero, indicating that no information could be inferred, to seven, representing that Scior
could determine the exact classification of the evaluated class.

As we wanted to execute Scior multiple times over numerous taxonomies, we de-
veloped a testing software to help us, dubbed Scior-Tester.4 We configured this tester to
always execute Scior in its automatic mode, thus avoiding any user interaction. As Scior
must be applied to unclassified classes, the tester removes every gUFO classification
from the taxonomies, preserving them elsewhere for later use.

We executed this procedure over a subset of the 656 taxonomies, excluding those
that had fewer than 10 classes with their ontological categories mapped and that vio-
lated UFO’s axiomatization. These violations were caused, for instance, by syntactical
errors in the source OntoUML models or because the models were developed in a previ-
ous version of OntoUML. Because of these two filters, we reached a dataset of 85 tax-
onomies (with 1624 classes). Note, however, that we could only use all 85 taxonomies
when evaluating Scior running with an open-world assumption. That is because several
OntoUML models we reused were not built assuming a closed-world scenario. Exclud-
ing taxonomies originating from such ontologies led us to a second dataset of 67 tax-
onomies (with 1234 classes) to be used when evaluating Scior running with a closed-
world assumption.

The taxonomy sets used for testing OWA and CWA models share many similarities
concerning their measures, with the former having approximately 19 classes on average
and the former having approximately 18 classes on average. Figure 1 depicts the distri-
bution of these taxonomies in terms of their numbers of classes. The taxonomies selected
for open-world testing are represented in blue and termed “OWA Models” and those
suitable for closed-world testing are represented in orange and termed “CWA Models”.
Notice that there are significantly more values on the left-hand side of the chart, that is,
with 30 or fewer classes.

4https://purl.org/scior/tester

https://purl.org/scior/tester


Figure 1. Distribution of the taxonomies used in the evaluation according to their number of classes (left) and
their corresponding dispersion measures (right).

4.4. Results and Discussion

The results obtained for OWA and CWA models are summarized in Figure 2 and Fig-
ure 3, respectively. For each level of initial seeding (from 10% to 90%, laid out horizon-
tally), we show the portion of classes (i) that did not have classifications excluded (in
red), (ii) that had at least one and at most four classifications excluded (in gray), (iii) that
had exactly five (in blue) and (iv) exactly six categories excluded (in yellow), and, fi-
nally, (v) the classes for which Scior could determine the applicable leaf category (in
green). Results are averages for 10 executions of Scior with a randomly selected subset
of categorized classes for seeding.

The more classes excluded, the more effective is our proposed set of rules. Results
in which no classification could be excluded indicate that Scior could not infer any onto-
logical property for a class and that no new knowledge was added to it, while results that
exclude seven categories determine the final classification of a class. Intermediate results,
where at least one and at most six categories were excluded, contribute to the overall
increase of knowledge as they reduce the number of possibilities users have when man-
ually deciding the final classification for a class, leading to an easier and less error-prone
decision-making process.

Figure 2. Results of the effectiveness evaluation performed on OWA Models.



Figure 3. Results of the effectiveness evaluation performed on CWA Models.

These results reveal a clear correlation between the amount of input provided and
the higher number of excluded categories for both CWA and OWA models. The charts
exhibit (as expected) better classification results for CWA models than for OWA ones.
Even though the total exclusion of possibilities is just slightly higher for the former, the
higher percentages of exclusion of intermediate numbers of categories are noteworthy.
Another interesting result is the expressive portion of cases that lead to the exclusion
of five categories. Such a situation occurs when Scior identifies that a class must be a
non-kind sortal (i.e., must be a role, phase, or subkind).

By presenting and analyzing the results of the test, we could evidence the effec-
tiveness of Scior and, therefore, of the proposed inference rules for ontological catego-
rization in both open and closed-world assumption situations. When considering closed-
world applications, Scior presented stronger results, always excluding some categories
when more than 50% of classes are provided as seeds. Although OWA models had on av-
erage 20.0% of their classes fully classified for a seeding level of 90%, they still present
a percentage of zero exclusions for this amount of input (6.7%). In both assumptions,
the percentage of models with at least five categories excluded is higher than 50% for
a seeding level of 20%. Note that these results refer to the fully automated application
of Scior, without prompting the user for additional classification information beyond the
original seeding. In its semi-automated mode, partial classifications also support the user
by narrowing the number of alternatives for manual classification.

5. Related Work

We focus here on works that define a mapping between OWL and foundational ontolo-
gies. An example is the work by Krasnoperova [20], which uses Bunge’s ontology to
develop modeling rules and guidelines on how to better represent real-world domains
in OWL. Different from our work, the author proposed specific rules on how to model
real-world domain elements in OWL ontologies.

In a nonsystematic literature review, we could find examples of alignments to foun-
dational ontologies different from UFO. For instance, Keet et al. [21] proposed a method



leveraging a decision tree for DOLCE categories and an automated reasoner to simplify
the challenge that ontology developers face regarding the selection of the ontological
category for their models. Another work that tries to bridge this gap between OWL and
foundational ontology concepts is the BFO Classifier [22]. This software contains a de-
cision diagram for BFO and offers modelers a series of questions regarding identifying
the suitable BFO entity to align with the proper domain entity. In any case, both DOLCE
and BFO do not address sortality and rigidity of classes.

Some works rely on OntoClean [13] to formally evaluate taxonomic relations in
OWL ontologies. A work with similarities to ours that uses OntoClean is AEON [23],
a software that automatically tags domain concepts according to metaproperties, check-
ing to satisfy the predefined constraints for discovering taxonomic errors. Different from
Scior—which does not consider domain information for categorizing ontology classes—
AEON uses the Web as a source of knowledge, searching for patterns that indicate how
to tag concepts properly. Hence, the proposals differ in the sense that the mapping we
propose is done through inferences provided by (g)UFO, while AEON uses OntoClean’s
rules for constraint checking. We should also highlight that UFO’s metaproperties re-
garding endurant types extend the original one proposed by OntoClean, providing a for-
malization that deals with a richer system of meta-categories [3, 24].

Finally, we mention that the rules we defined in this paper were inspired by the con-
version of the UFO axioms and theorems to OntoUML, especially by the ones specified
in Guizzardi et al. [3], which define constraints for taxonomical structures of endurant
types. Besides the different scope—they create a set of rules for a conceptual modeling
language and not for a computational ontology—our set of rules is broader, containing
rules generated from these axioms and from others that are associated with relational
dependency and with the necessity of partition sets. The authors also provided SPARQL
queries based on the original formalization of the rules. However, their intention differs
from ours, as the queries are designed to detect anti-patterns in the user’s ontologies
caused by violation of the rules (and are not aimed at inferring ontological categories).

6. Final Remarks

In this paper, we presented a set of inference rules that (semi-)automatically support users
in grounding their existing OWL ontologies in terms of the categories provided by the
foundational ontology UFO as implemented in the gUFO OWL super-structure. We have
tested these rules for consistency using the formal language Alloy and its model-finding
computational support. The rules were then implemented in a free open-source software
named Scior. We evidenced the efficiency of the inference rules and Scior in both open
and closed-world assumption scenarios by testing them in an empirical evaluation. The
experiment used diverse models from a catalog created by different modelers, for a wide
range of domains and purposes, and having different quantities of classes. The evalua-
tion results showed that, on average, Scior could automatically exclude at least five leaf
classifications (from eight possibilities) with only 20% of the classes provided as seeds.

In the future, we intend to perform additional user studies. We are particularly inter-
ested in assessing Scior’s ease of use and effectiveness in a human-in-the-loop interactive
model. Further, we intend to study the application of Scior with ontologies outside the
repository we have employed for testing here. This should rule out any potential effects



of recurrent patterns of taxonomic structures present in the repository. Finally, we will
investigate how this rule-based approach can be combined with other ongoing initiatives
in which some of us are involved and that employ Graph Neural Networks to address the
grounding of ontologically neutral models into UFO foundational categories [25].
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