
Handling QoS in MDA: a discussion on availability and
dynamic reconfiguration1

João Paulo Almeidaa, Marten van Sinderena, Luís Ferreira Piresa and Maarten Wegdama, b
aCentre for Telematics and Information Technology, University of Twente

PO Box 217, 7500 AE, Enschede, The Netherlands
bLucent Technologies, Bell Labs Advanced Technologies EMEA Twente

Capitool 5, 7521 PL, Enschede, The Netherlands

Abstract. In this paper, we discuss how Quality-of-Service (QoS) can be handled in the Model-Driven
Architecture (MDA) approach. In order to illustrate our discussion, we consider the introduction of
availability and dynamic reconfiguration QoS concepts at platform-independent level. We discuss the
consequences of the introduction of these concepts in terms of the realizations of platform-
independent models in different platforms. The platforms considered provide varying level of support
for the QoS concepts introduced at the platform-independent level.

1 Introduction
There is a general agreement that distributed applications and services only achieve their desired

impact if they properly cope with Quality-of-Service (QoS) issues such as performance and
availability. In order to enable that, QoS issues should be addressed throughout a service’s
development life cycle. In this paper, we discuss how QoS can be handled in the Model-Driven
Architecture (MDA) approach [9].

The concept of platform-independence plays a central role in MDA development. Platform-
independence is a quality of a model that indicates the extent to which the model relies on
characteristics of a particular platform. A consequence of the use of platform-independent models
(PIMs) to specify a design is the ability to refine or implement a design on a number of target
platforms. Platform-specific designs are specified through platform-specific models (PSMs).

For the purpose of this paper, we assume that services are ultimately realized in some specific
object- or component-middleware technology, such as CORBA/CCM [10], .NET, and Web Services.
Ideally one could strive for PIMs that are absolutely neutral with respect to all different classes of
middleware technologies. However, at a certain point in the development trajectory, different sets of
platform-independent modelling concepts may be used, each of which is needed only with respect to
specific classes of target middleware platforms.

In this paper, we motivate the introduction of QoS concepts at the platform-independent level; we
present availability as a QoS characteristic to be considered at the platform-independent level, as well
as dynamic reconfiguration as a means to satisfy availability QoS constraints. We present some
consequences of the introduction of these concepts in terms of the realizations of platform-
independent models in different middleware platforms. For that, we consider platforms that provide
varying levels of support for dynamic reconfiguration.

2 The Need for QoS Concepts for Platform-independent Design
Awareness of the qualitative aspects of a service starts in the initial phases of its design, when the

service designer states the qualitative properties required from the service, e.g., that the service should
support a certain level of availability and should perform according to certain temporal constraints.
Since services should be specified at a level of abstraction at which the supporting infrastructure is not
considered, service specifications are middleware-platform-independent by definition.

In order to illustrate our discussion, let us consider a groupware service that facilitates the
interaction of users residing in different hosts. Initially, the service designer states QoS properties that
are to be satisfied by the service. At subsequent stages of the design trajectory, the designer is
confronted with design decisions. In the design of the groupware service, we consider the following

1 This work is partly supported by the European Commission in context of the MODA-TEL IST project

(http://www.modatel.org) and the Telematica Instituut in the context of the ArCo project
(http://arco.ctit.utwente.nl/).

91

alternatives: (i) a centralized (server-based) design, and (ii) a distributed (peer-to-peer) design. Figure
1 depicts these two solutions. In solution (i), a server facilitates the interaction between users. In
solution (ii), symmetric components facilitate the interaction without a centralized application-level
component.

(i) centralised server-
based solution

(ii) distributed peer-to-
peer solution

Server

Users

Users

Users

Client
Comp1

Client
Comp2

Client
Comp3

Users

Users

Users

Client
Comp1

Client
Comp2

Client
Comp3

Figure 1 Alternative designs for the groupware service

Ideally, it should be possible to capture stable aspects of a system’s architecture in a platform-
independent manner. Therefore, it would be desirable to select between alternative designs (i) and (ii)
during platform-independent design. Nevertheless, platform-specific aspects such as the supported
distribution transparencies (as defined in the Reference Model for Open Distributed Processing (RM-
ODP) [6]) play an important role in the selection of an adequate architecture. For example, in case the
platform provides support for replication transparency, solution (i) would not introduce a single point
of failure in the architecture, and therefore would be acceptable as an alternative for the
implementation of a highly available service.

Apparently, this places the designer in a dilemma, since platform selection would affect platform-
independent design for the qualitative aspects. In order to solve this dilemma, QoS-aware MDA
should allow the designer to express, at platform-independent level, (QoS) requirements on platform-
specific realizations. These requirements should guide and justify design decisions at a platform-
independent-level and provide input for platform selection.

3 Selection of Concepts for Platform-independent Design
QoS constraints may be satisfied by QoS mechanisms that may be implemented in the application

and in target middleware platforms. Ideally, application developers should profit from the provision of
distribution transparencies as a means to satisfy QoS constraints, shifting complexity from the
application design to the platform.

This applies both at the platform-specific and platform-independent levels. At platform-
independent level, these transparencies apply to what we call an abstract platform. The choice of
abstract platform defines which (platform-independent) properties or aspects are actually considered
and which (platform-specific) properties or aspects are abstracted from in a platform-independent
design.

A platform-independent design relies on the (platform-independent) concepts provided by an
abstract platform in an analogous way as a platform-specific design relies on platform concepts. In
order to expose this relative notion of platform, we prefer the term abstract platform rather than the
more general terms “meta-model” or “concept space”, as adopted in [4]. In order to define an abstract
platform, one must carefully observe:
1. Portability requirements for the platform-independent design. The abstract platform should be

generic enough to allow a mapping to different target platforms.
2. The needs of application designers. The abstract platform should provide concepts and facilities that

ease platform-independent design, e.g., by providing required or desirable distribution
transparencies at platform-independent level.

3. The extent to which abstract platform and concrete target platforms differ. The gap between
abstract platform and concrete platforms has direct consequences for the mappings between
platform-independent and platform-specific design.

92

Figure 2 illustrates the factors that influence the choice of abstract platform.

Abstract -
Platform

Definition

(2) needs of designers

Concrete-
Platform

Definition
Concrete-
Platform

Definition

(3) divergence between
abstract platform and

concrete platforms
(1) portability
requirements

Concrete-
Platform

Definition

Figure 2 Forces in the choice of abstract platform

The forces exercised by factors (2) and (3) are often contradictory:
• Raising the provided support to observe the needs of designers may increase the gap between the

abstract platform and concrete platforms. This is the case, for example, for the support of
replication transparency [6] in the abstract platform, when a target platform has no support for the
replication of components. By introducing replication transparency at platform-independent level,
dealing with replication is deferred to platform-specific realization.

• Reducing the gap between support provided by the abstract platform and concrete platforms may
lead to an abstract platform that handicaps the designer. This is the case, for example, for a
“minimal” abstract platform that supports a common denominator of a broad class of middleware
platforms such as point-to-point one-way message exchange. Patterns such as request/response and
multicast message exchange, when necessary, are expected to be addressed by application
developers in the platform-independent design of the application.
Differences in the architectural concepts used to build platform-independent designs and those

concepts supported by the target platform may result in the use of intricate combinations of constructs
in the platform-specific design. This may have an impact on the complexity of the mapping between
platform-independent and platform-specific design and on some quality attributes of platform-specific
design. It is questionable whether in case of really disparate abstract and concrete platforms, mappings
are even feasible or can provide platform-specific designs with appropriate quality properties. For
example, these mappings may sacrifice traceability from corresponding platform-independent designs,
as well as intuitiveness for developers that are accustomed to a particular concrete platform.
Narrowing the gap between an abstract platform and concrete platforms is a challenging activity.
Introducing new concrete platforms because of (unpredicted) changes in portability requirements may
mean that the gap between the abstract platform and the newly introduced concrete platform is large.
Besides that, narrowing the gap between an abstract platform and a particular concrete platform may
enlarge the gap between the abstract platform and other concrete platforms.

4 Availability and Dynamic Reconfiguration
In the following, we consider availability as an example QoS characteristic, defined as the

percentage of time that the system under consideration functions without disruptions (due to, e.g.,
faults or planned upgrades), the mean time between disruptions and the mean time to repair [14]. We
also consider dynamic configuration as a means to satisfy availability QoS constraints. .

The aim of dynamic reconfiguration [3, 7, 8, 14] is to allow a system to evolve incrementally from
one configuration to another at run-time. Dynamic reconfiguration exploits parallelism to improve a
system’s overall availability. While certain activities of a system are affected during reconfiguration,
other activities are left unaffected. Developing systems that can be dynamically reconfigured is a
complex task, since a developer must ensure that dynamic reconfiguration results in a correct and
useful system.

93

Reconfiguration is specified in terms of entities and operations on these entities. In this paper, we
focus our attention on component replacement and migration. Component replacement allows one
version of a component to be replaced by another version, while preserving component identity. We
use the term version of a component to denote a set of implementation constructs that realizes the
component. The new version of a component may have functional and QoS properties that differ from
the old version. Nevertheless, the new version of the component should satisfy both the functional and
QoS requirements of the environment in which the component is inserted. Component migration
means that a component is moved from its current node to a destination node. Migrations of
components can, e.g., be necessary when a certain node has to be taken offline.

A system evolves incrementally from its current configuration to a resulting configuration in a
reconfiguration step. A reconfiguration step is perceived as an atomic action from the perspective of
the application. We distinguish between simple and composite reconfiguration steps. A simple
reconfiguration step consists of the execution of a reconfiguration operation that involves a single
component. A composite reconfiguration step consists of the execution of reconfiguration operations
involving several components. Composite steps are often required for reconfiguration of sets of related
components. In a set of related components, a change to a component A may require changes to other
components that depend on A’s behavior or other characteristics.

Support for dynamic reconfiguration can be clearly related to availability requirements when we
consider disruptions (downtimes) due to upgrades of a system. A system without support for dynamic
reconfiguration would typically be taken off-line a number of times during its lifetime for upgrades,
causing downtimes. These downtimes could be avoided with dynamic reconfiguration.

4.1 Reconfiguration Transparency
Dynamic reconfiguration interferes with system activities and, therefore, requires special attention

from the perspective of run-time reconfiguration management [7]. A system can become useless in
case the preservation of consistency is ignored. The system under reconfiguration must be left in a
“correct” state after reconfiguration. In order to support the notion of correctness of a distributed
system, three aspects of correctness requirements are identified [8]. This notion of correctness is
addressed in several dynamic reconfiguration approaches described in the literature (e.g., [7, 8, 14]).

From the perspective of application developers, platforms should ideally provide reconfiguration
transparency [14]. The objective of reconfiguration transparency is to mask, from an application
component and from its environment, the ability of a system to execute reconfiguration steps
involving the component. Reconfiguration transparency hides from application developers the details
and differences in mechanisms used to overcome the difficulties introduced by reconfiguration.

4.2 Dynamic Reconfiguration Concepts for Platform-independent Design
We introduce dynamic reconfiguration concepts in a platform-independent design by specializing

the notion of a component to include the distinction between reconfigurable and non-reconfigurable
components. Reconfigurable components can be migrateable, replaceable or both migrateable and
replaceable. This allows a designer to establish these distinctions at a platform-independent level,
specifying which components may be manipulated by reconfiguration operations in reconfiguration
steps.

A (composite) reconfiguration step is specified by a set of simple reconfiguration steps. The
definition of a replacement reconfiguration step identifies a component to be replaced and establishes
its new version. The definition of a migration reconfiguration step identifies a component to be
migrated and establishes its new location. Reconfiguration steps are committed to and handled by a
reconfiguration manager component entailed by the abstract platform.

5 Platform-specific Realization
Platform-specific realization may be straightforward when the selected concrete platform

corresponds (directly) to the abstract platform. When this is not the case, more effort has to be
invested in platform-specific realization. In general, we distinguish two contrasting extreme
approaches to proceeding with platform-specific realization:
1. Adjust the concrete platform, so that it corresponds directly to the abstract platform. This may

imply the introduction of platform-specific (QoS) mechanisms, possibly defined in terms of

94

internal components of the concrete platform. Since modifying a concrete platform is typically not
feasible (e.g., re-implementing the CORBA ORB to match the abstract platform would be too
expensive), extension of this platform in a non-intrusive manner is often the preferred way to adjust
the concrete platform. In this approach, the boundary between abstract platform and platform-
independent design is preserved in platform-specific design.

2. Adjust the platform-specific design of the application, to preserve requirements specified at
platform-independent level. This may imply the introduction of (QoS) mechanisms in the platform-
specific design of the application. This approach may be suitable in case it is impossible to adjust
the concrete platform, e.g., due to the lack of extension mechanisms and/or the cost implications of
these adjustments.
Approaches to realization that adjust both concrete platform and the platform-specific design of the

application are positioned somewhere between these two extreme approaches.
Different middleware platforms provide varying levels of support for dynamic reconfiguration with

varying levels of transparency. In order to discuss the consequences of the introduction of
reconfiguration transparency at the platform-independent level for platform-specific realization, we
consider the following platforms: CORBA enhanced by portable extensions with the Dynamic
Reconfiguration Service (DRS) [1, 14]; and, CORBA with compliance to the Online Upgrades (Draft
Adopted) Specification [11].

5.1 CORBA + DRS
The Dynamic Reconfiguration Service we have proposed in [1, 14] provides reconfiguration

transparency for CORBA application objects, supporting both simple and composite reconfiguration
steps. The DRS has been implemented by extending CORBA implementations through the use of
portable interceptors, which are standardized extension mechanisms for CORBA ORB
implementations [10]. In this realization, there is a direct correspondence between the DRS-enabled
CORBA platform and the abstract platform, illustrating approach 1 to realization.

5.2 CORBA with compliance to the Online Upgrades
The Draft Adopted Specification for Online Upgrades [11] provides interfaces to manage the

upgrading of the implementation of a single CORBA object instance. The specification allows these
interfaces to be used to upgrade multiple CORBA object instances, but provides minimal mechanisms
to coordinate the upgrading of multiple CORBA object instances.

This means that there is a compromise to be made with respect to support for composite
reconfiguration steps. If composite reconfiguration steps are supported by the abstract platform, then
realization on top of CORBA with online-upgrades is impaired. Nevertheless, a subset of the platform-
independent designs can be mapped directly, namely the ones that do not use composite
reconfiguration steps. Therefore, we could have considered an alternative abstract platform that
provides support for simple reconfiguration steps only. This abstract platform would be defined as a
“subset” of the platform that supports composite reconfiguration steps. This latter realization illustrates
again approach 1.

The differences between the platforms could be reconciled by following approach 2, where
transformations would introduce mechanisms at the application-level to coordinate the upgrading of
multiple CORBA object instances. This would, however, sacrifice reconfiguration transparency at
platform-specific level.

6 Conclusions
Since platform selection would affect platform-independent design for the qualitative aspects, QoS-

aware MDA should allow designers to express, at platform-independent level, QoS requirements on
platform-specific realizations. This is done through the definition of an abstract platform, which
determines which (QoS) properties or aspects are actually considered and which are abstracted from in
a platform-independent design.

Differently from the “traditional” discussion that couples levels of transparency to the support
provided by middleware platforms, in MDA, platform-independent models are “decoupled” from their
corresponding platform-specific counterparts by mappings. This adds a new dimension to the
discussion on the level of support provided by a platform or located in the application. There is some

95

degree of freedom between the selection of transparencies for the abstract platform and the provision
of transparency for the concrete platform. In this paper, we identify three factors that should be
observed when defining an abstract platform. We also discuss, in a general sense, the implications of
choosing the level of transparency of the abstract platform for the mapping on the concrete target
platforms.

As an example, we have considered availability as QoS characteristic, and dynamic reconfiguration
as a means to satisfy availability QoS constraints. Dynamic reconfiguration concepts have been
introduced in a platform-independent design and two contrasting approaches to platform-specific
realization have been considered. These approaches are further illustrated using two target platforms
(CORBA + DRS, CORBA + Online Upgrades) with different levels of reconfiguration transparency.

The work presented in this paper is related to the OMG-promoted work on MDA core technologies,
such as UML and extensions, MOF, etc. These technologies include, more recently, QoS meta-
modelling techniques and UML language extensions, such as in [5], QML and responses to OMG RFP
on Modeling QoS and FT Characteristics and Mechanisms [12]. In this paper we have addressed the
conceptual aspects, abstracting from language aspects. Platform-independent designs must be
specified in suitable modelling languages, therefore these efforts are complementary to the conceptual
discussion presented in this paper.

References
[1] J. P. A. Almeida, M. Wegdam, M. van Sinderen, L. Nieuwenhuis. Transparent Dynamic

Reconfiguration for CORBA, Proc. 3rd Intl. Symposium on Distributed Objects & Applications
(DOA 2001), Rome, Italy, Sept. 2001.

[2] J. P. Almeida, M. van Sinderen, L. Ferreira Pires, D. Quartel, “A systematic approach to
platform-independent design based on the service concept”, Proc. 7th Intl. Conf. on Enterprise
Distributed Object Computing (EDOC 2003), Brisbane, Australia, Sept. 2003, to appear.

[3] C. Bidan, V. Issarny, T. Saridakis, A. Zarras. A dynamic reconfiguration service for CORBA,
Proc. IEEE Intl. Conf. on Configurable Distributed Systems, May 1998.

[4] D. Exertier, O. Kath and B. Langois. PIMs Definition and Description to Model a Domain.
MASTER IST-project D2.1, Dec. 2002.

[5] A.T. van Halteren, Towards an adaptable QoS aware middleware for distributed objects, Ph.D.
Thesis, University of Twente, Enschede, The Netherlands, 2003.

[6] ITU-T / ISO, Open Distributed Processing - Reference Model - Part 3: Architecture, ITU-T
X.903 | ISO/IEC 10746-3, Nov. 1995.

[7] J. Kramer, J. Magee. Dynamic configuration for distributed systems. IEEE Trans. on Software
Engineering 11(4), April 1985, pp. 424-436.

[8] K. Moazami-Goudarzi. Consistency preserving dynamic reconfiguration of distributed systems.
Ph.D. thesis, Imperial College, London, UK, March 1999.

[9] Object Management Group, Model driven architecture (MDA), ormsc/01-07-01, July 2001.
[10] Object Management Group, Common Object Request Broker Architecture: Core Specification,

Version 3.0, formal/02-12-06, Dec. 2002.
[11] Object Management Group, Online Upgrades Draft Adopted Specification, ptc/02-07-01, Jul.

2002.
[12] Object Management Group. UML Profile for Modeling QoS and FT Characteristics and

Mechanisms RFP, ad/02-01-07, February 2002.
[13] L. A. Tewksbury, L. E. Moser, P. M. Melliar-Smith, Coordinating the Simultaneous Upgrade of

Multiple CORBA Objects, Proc. 3rd Intl. Symp. on Distributed Objects and Applications (DOA
2001), Rome, Italy, Sept., 2001.

[14] M. Wegdam, Dynamic Reconfiguration and Load Distribution in Component Middleware, Ph.D.
Thesis, University of Twente, The Netherlands, 2003.

96

