
GORO 2.0: Evolving an Ontology for
Goal-Oriented Requirements Engineering

César Henrique Bernabé1, Vı́tor E. Silva Souza1, Ricardo de Almeida Falbo1,
Renata S. S. Guizzardi1, and Carla Silva2

1 Ontology and Conceptual Modeling Research Group (NEMO)
Department of Computer Science, Federal University of Esṕırito Santo (UFES), Brazil

{chbernabe,vitorsouza,falbo,rguizzardi}@inf.ufes.br
2 Centro de Informática, Universidade Federal de Pernambuco (UFPE), Brazil,

ctlls@cin.ufpe.br

Abstract. Goal-Oriented Requirements Engineering (GORE) gained
prominence by covering some of the limitations of traditional Require-
ments Engineering (RE). As a result, many GORE modeling languages
have been proposed since this field emerged. Aiming at providing formal
semantics to the concepts of GORE, the Goal-Oriented Requirements
Ontology (GORO) was proposed as a common vocabulary for this do-
main. However, the first version of GORO lacks important concepts and
its applicability was not demonstrated in practice. In this paper, we
present GORO 2.0, an evolution of the first version of GORO that over-
comes several limitations of its first version, presenting new concepts
such as obstacles, conflicts and contributions.

Keywords: Goal-Oriented Requirements Engineering · Goal Modeling
· Ontology.

1 Introduction

Goal-Oriented Requirements Engineering (GORE) emerged in the mid-1990s
and became popular for overcoming some of the limitations of traditional Re-
quirements Engineering (RE). For example, goals provide precise criteria for
requirements completeness and adequate rationale and justification for a re-
quirement’s existence [15]. They are also an efficient tool for identification and
negotiation of conflicts [16]. As a result, many GORE modeling languages have
been proposed since this field emerged [12].

The multitude of languages and their constructs motivated the creation of
the Goal-Oriented Requirements Ontology (GORO), which was proposed with
the aim of providing formal semantics to the concepts of GORE [20]. As a con-
sequence, GORO can be used to enable interoperability between models from
different GORE languages as it provides a common vocabulary about the GORE
domain (and, therefore, improves the communication between stakeholders).
Moreover, GORO allows previous and new modeling languages to clearly spec-
ify their semantics by grounding their concepts in a formal reference ontology.



2 C. Bernabé et al.

By providing a common vocabulary, the ontology can also support modelers to
create ontologically correct models.

The first version of GORO, however, suffers from some limitations, namely:
(i) the ontology was captured from and had its concepts mapped to only three
GORE languages (i* [24], KAOS [7] and Techne [3]) and considered only a subset
of concepts of these languages; (ii) it lacks integration with other ontologies on
the Software Engineering (SE) domain to strengthen its semantic foundations;
and (iii) its applicability was not properly demonstrated as, for example, using
a model conversion tool. Hence, we evolved GORO into a new version, hereafter
GORO 2.0, in order to overcome the aforementioned limitations.

This paper presents GORO 2.0 and is organized as follows: Section 2 briefly
summarizes the GORE domain; Section 3 presents the method used to build
GORO 2.0; Section 4 presents GORO 2.0; Section 5 compares our ontology with
related work; and Section 6 concludes the paper.

2 GORE Modeling Languages

NFR [19] was the first GORE language proposed (1992) and brought the con-
cept of goals as desirable qualities in a system. It introduced the concept of
contribution between Softgoals (goals without clear criteria of satisfaction). In
1993, KAOS was proposed and redefined goals as states of affairs desired by
stakeholders, categorizing them as Goal (not sufficiently refined to be assigned
to a stakeholder), Expectation (under the responsibility of a human agent) and
Requirement (under the responsibility of a software agent). It also introduced
the concepts of Operation (a task/plan that can be performed to achieve a goal),
Domain Property (a presupposition about the system context considered to be
true in certain situations) and Obstacle (an undesired behavior in the context).

In 1995, Yu formalized the specification of i*, which focuses on the represen-
tation of stakeholders’ interests within the organizational context. The i* core
concept is the Actor, which depends on others to accomplish goals and perform
tasks. The language also highlighted the differentiation between Goal and Soft-
goal: the former would have a clear satisfaction criteria, while the latter did
not. In the following year, GBRAM [2] emerged and defined a method for goal
analysis in which the concept of Scenarios, a description of a system and its
environment, is used to identify Goals and Obstacles.

In 2004, GSN [14] was proposed with focus on security systems, such as
information security, air traffic control and safety systems. In the same year,
Tropos [4], a variation of i*, emerged and brought the concept of Capability
as the “ability of an actor of defining, choosing and executing a plan for the
fulfillment of a goal”. In 2009, the first version of Techne was presented. Based
on an ontology, Techne made a more precise differentiation between Hard and
Softgoals, as the latter can be restricted through Quality Constraints.

In 2010, GRL [1], a variation of i*, introduced a differentiation of the OR-
Decomposition relation (exclusive and inclusive) and the concept of Correlation
(a relation of side effects rather than desired impacts as in the contribution rela-



GORO 2.0 3

tion). Finally, in 2016, i* was revised and its second version, now spelled iStar,
had some elements and relationships removed, and new elements that were pop-
ularly used by the community were added. For instance, Softgoal was renamed
as Quality; and the means-end and task-decomposition links were grouped in the
Refinement Link.

3 Method

GORO 2.0 was built using the Systematic Approach to Building Ontologies
(SABiO) [8], an Ontology Engineering method, successful in the development
of domain ontologies, particularly in SE. To provide a solid semantic founda-
tion, GORO 2.0 is based on the Unified Foundational Ontology (UFO) [10],
and reuses existing ontologies, such as the Common Ontology for Value and
Risk (COVR) [23] and the Reference Software Requirements Ontology (RSRO),
which is part of the Software Engineering Ontology Network (SEON) [22].

In order to improve domain coverage, GORO 2.0 was created based on the
modeling languages mentioned in Section 2, which were studied and analyzed to
extract concepts that, in fact, belong to the GORE domain. GBRAM, GRL, i*,
KAOS, Techne and Tropos were first selected based on a literature review [12].
NFR was added to the list as it is cited in Van Lamsweerde’s guided tour on
GORE [15]. Finally, when searching for related works (cf. Section 5), we also
identified GSN. The selected languages were validated with domain experts who
advised us to consider i* and iStar as different languages, given the perceptible
differences between them. GORO, as its name states, is focused on Requirements.
Hence, we do not consider other languages that use goal related constructs but
are not specifically GORE modeling languages.

Regarding scope, we have applied two criteria for the inclusion of a con-
struct: it must I1: appear in more than two GORE modeling languages; and I2:
be considered a GORE concept by domain experts — a group of five academic
professionals with more than ten years of experience. We applied I1 in order to
exclude constructs that were not GORE, but actually extra features of specific
languages. In order to verify if different languages’ elements shared the same
meaning, we also consulted the group of experts. It is worth to highlight that
GORO 2.0 is concerned with the part of the GORE domain that is covered by
the languages selected according to the described heuristics. This decision has
been made because one of the purposes of this work is to provide interoper-
ability among the selected GORE languages. As a consequence, other concepts
pertaining to GORE domain, but not covered in the selected languages, were
not considered to be part of GORO 2.0.

To evaluate GORO, we conducted three activities: verification, validation
and an application-based evaluation. To check whether GORO satisfies its own
requirements, we verified if its conceptual model can answer all of the pro-
posed Competency Questions (CQs). To validate GORO’s domain coverage, we
mapped concepts of the GORE modeling languages listed in Section 2 to the
concepts of the ontology. Finally, to assess the feasibility of GORO in enabling



4 C. Bernabé et al.

Fig. 1. GORO 2.0’s first module: mental moments, goals and assumptions.

interoperability between GORE languages, we implemented a model conversion
tool that uses the ontology as an interlanguage. The CQs, the concepts mapping
and the conversion tool source code (and conversion examples) are available at
https://nemo.inf.ufes.br/projects/rose/.

4 GORO 2.0

Figure 1 presents the module of GORO 2.0 that defines concepts related to
mental moments existentially dependent on a single individual, which can be
classified as Beliefs, Desires and Intentions. Agent’s beliefs are assumed to be
true in a given set of situations. Given that desires and intentions are both
related to agents’ goals, the difference between them is actually related to the
fact that the former is only a will of an agent towards a state of affairs (situation)
in reality, whereas the latter is an intended state of affair (situation) for which
the agent commits to pursuing, causing the agent to perform actions [10].

GORO 2.0 inherits the Stakeholder definition from RSRO: a Stakeholder can
be a Requirements Stakeholder, when in the role of the person that provides needs
and expectations for the product, or a Requirements Engineer, when in the role
of conducting the requirements development activities.



GORO 2.0 5

Fig. 2. GORO 2.0’s second module: tasks, goals and relations.

A Goal is the propositional content of an Intention/Desire, which inheres in
an Agent, supertype of Stakeholder. Therefore, a Requirement is a goal elicited
from a stakeholder’s intention/desire. A Requirement can be a Non-functional
Requirement or a Functional Requirement. When applying a GORE approach to
a Requirements Engineering process, a traditional Requirement becomes a Goal-
Based Requirement, which can be a Hardgoal or a Softgoal. Both definitions are
extracted from [17] and represented in GORO 2.0 with the NFRO prefix.

By combining two perspectives, we end up with four different classifications
for a goal-based requirement [17]: Functional Requirement & Hardgoal, Func-
tional Requirement & Softgoal, Non-functional Requirement & Hardgoal and Non-
functional Requirement & Softgoal, implicitly represented in Figure 1. Hence,
GORO 2.0 is compatible with NFRO, making adaptations where necessary. We
highlight that such adaptations are now incorporated in NFRO. A Goal-Based
Requirement Artifact describes a Goal-Based Requirement in the same way that
a Requirement Artifact describes a Requirement, differentiating a documented re-
quirement from a requirement that exists only in the stakeholder’s mind. It is
important to note that, in GORO 2.0, an Assumption still has the same classi-
fications proposed in GORO 1.0 [20], not shown here due to space limitations
and for not being a contribution of this paper.

Figure 2 shows GORO 2.0 second module. A Task intends to operationalize a
Goal-Based Requirement. Tasks can be Complex Tasks, when composed of two or
more Tasks, or Atomic Tasks otherwise. A Task can require or produce a Resource.
As with Tasks, a Goal-Based Requirement Artifact can also be complex or atomic.
Complex Goal-Based Requirement Artifact (or Complex GBRA) is further refined
into Or/And-Complex GBRA, which are satisfied when at least one/all of their
components are satisfied. GORO does not allow tasks to be refined into goals.
Yu [24] argues that the refinement between goals and tasks is a way to capture the
transition between the problem domain (goal) and the solution domain (task).
In addition, according to him, refining a task into a goal would be natural in the
analysis and modeling cycle, which generally iterates between these two domains.
However, by ontologically analyzing these concepts, the relationship between a
task and a goal is not a “refinement”. Rather, the task analysis shows that
new goals should be considered in the model. In other words, task analysis may
motivate the “emergence” of new goals, possibly better characterized if different



6 C. Bernabé et al.

Fig. 3. GORO 2.0’s third module: obstacles, conflicts and contribution.

models are created for the different analysis cycles. This is an example of how the
ontological analysis performed with GORO may have methodological impact.

Figure 3 introduces concepts not previously considered in GORO 1.0, namely:
obstacle, conflict and contribution. Van Lamsweerde [16] defines obstacle as a
dual notion of goals: “while goals capture desired conditions, obstacles capture
undesirable (but nevertheless possible) ones”. We argue that obstacles can be
equated, here, to the definition used by the Common Ontology for Value and
Risk (COVR) [23], i.e., a condition that may be satisfied in certain situations
in which something of human value has been put at stake and the outcome is
uncertain. Thus, an Obstacle is seen as a Threatening Proposition, which satisfies
a Threatening Situation and obstructs a Goal-Based Requirement satisfaction.

An Obstacle, according to Van Lamsweerde [16], can be mitigated by an
agent’s goal. We consider that what mitigates or contingencies a risk is an action
(task) and not a goal. Although KAOS uses goals to mitigate obstacles, the task
that intends to operationalize this goal is indirectly mitigating the obstacle. We
also argue that this task definition is overloaded and, thus, propose two distinct



GORO 2.0 7

types of actions (tasks): contingency (action taken after a Threatening Situation
to decrease damage) and mitigation (can reduce or prevent the risk rate of an
event to happen). A Threatening Proposition satisfies a Threatening Situation in
the same way as a Proposition satisfies a Situation, hence, the former relation is
derived from the latter (denoted by a / symbol). Like goals, an Obstacle can be
decomposed in complex/atomic ones, and Complex Obstacles are further refined
in Or/And Complex Obstacles, with analogous satisfaction rules.

A conflict happens when two or more goals cannot be achieved in the same
solution set of a domain problem [16]. In other words, given goals G1 and G2

and a model M , there is no solution set S of M that contains both G1 and G2.
In GORO, Conflicts are modeled as a relator between Goal-based Requirement
Artifacts, which potentially conflicts with another. It is important to emphasize
the difference between conflict and obstacle: the former describes situations in
which two goals cannot be achieved in the same solution, although both are
desired by stakeholders, whereas the latter describes an undesired state of affairs.

In GORO 2.0, contributions are represented by a Contribution relator that
stands between a Goal-Based Requirement Artifact or a Task and a Non-functional
Goal-Based Requirement Artifact, which is a non-functional requirement used in a
GORE approach. We argue that contributions should only have non-functional
requirements as targets because: (i) in the case of total contributions, a nega-
tive contribution to a functional requirement would be semantically similar to
a Conflict, while a positive contribution would have the same meaning of Com-
plex GBRA or operationalization (intends to operationalize); (ii) in the case of
partial contributions, it does not make sense to partially satisfy/deny a GBRA
which, in turn, has a precise satisfaction criteria. Several GORE languages have
certain types of contribution relations: i*, iStar and the NFR Framework, for
instance, have some types of contributions, e.g. make, help, hurt and break [24,
6, 19]. Make and Break are positive and negative contributions that sufficiently
satisfy a non-functional requirement, respectively, whereas Help and Hurt are
partial positive and negative contributions.

5 Related Works

The initial set of related work was raised based on relevant references of the
area, such as Horkoff et al. [12] and Guizzardi et al. [11]. We consider as related
works: (i) the ones that use ontologies as basis for analysis or construction of
GORE languages, (ii) the ones that proposed metamodels with the purpose of
unifying concepts of goal modeling languages.

Regarding the use of ontologies: the Core Ontology for Requirements
Engineering (CORE) [13] has as main objective to review the conceptualization
of several RE elements and is the foundation of Techne. However, it is based on
a foundational ontology in which essential aspects of conceptual modeling (e.g.,
material relations and relational properties) have not received sufficiently de-
tailed attention [20]. Guizzardi et al. [11], in turn, use UFO as a reference model



8 C. Bernabé et al.

to analyze i* and its many variants, therefore aiming to promote interoperability
between them, but the work is constrained to the i* family of languages.

Regarding the use of metamodels: in the work of Fayoumi et al. [9], the
concepts of eight modeling languages are raised and organized in a metamodel,
in which the main objective is the interoperability between GORE models. The
work of Lucena et al. [18] presents a metamodel created to unify two variants of i*
(its original version and Tropos), considering similarities and differences between
them. The work of Cares & Franch [5] defines a supermetamodel created on the
basis of different variations of i* (GRL and Tropos), which is validated through
a translation algorithm that uses the XML-based iStarML format to depict the
relation between tools. Patricio et al. [21] propose a unified GORE language
called Unified Goal-oriented Language (UGL), which incorporates concepts of
i*, GRL and KAOS and whose metamodel is based on existing metamodels
of i* and KAOS. We argue that, unlike ontologies, metamodels do not provide
sufficient semantic foundation to explain complex domain concepts. Metamodels
are not efficient enough to promote interoperability between languages because,
although they are powerful structures for defining the syntax of a language, they
suffer for several limitations in relation to semantic clarifications [11].

6 Conclusions

In this paper, we defined GORO 2.0, a domain reference ontology about Goal-
Oriented Requirement Engineering, built based on GORO 1.0, by including con-
cepts related to GORE that had not yet been covered in its previous version.
Nine goal modeling languages were chosen based on both literature review and
experts’ opinion. Their concepts were analyzed and those considered GORE con-
cepts were included. Then, these same concepts were mapped to GORO 2.0 in
order to verify and validate the new ontology. Further, a GORO-based tool that
converts between two GORE languages (iStar and KAOS), was developed as a
proof-of-concept. Evaluation results were not presented here due to space con-
straints, but are available at https://nemo.inf.ufes.br/projects/rose/. GORO 2.0
was built with a strong foundation as it was based on both relevant literature on
GORE and on UFO [10]. It also reuses concepts from other ontologies, namely
COVR [23] and RSRO. As the latter is part of SEON [22], GORO 2.0 becomes
part of this ontology network as well.

By performing validation on GORO, in addition to verifying domain cover-
age, we were able to notice a few issues in the design of the analyzed languages.
Regarding the relations between elements defined in each language, for instance,
we could identify that some of them are overloaded. GORO defines decompo-
sition of Goal-Based Requirement Artifacts (GBRA) (Fig. 2), Tasks (Fig. 2) and
Obstacles (Fig. 3); the Conflict relator between GBRA (Fig. 3); Contribution re-
lation between a GBRA and a Non-functional GBRA (Fig. 3); and finally, an
Operationalization relation between a Task and a GBRA (Fig. 2). It was identi-
fied that some elements were, at the same time, both an And-Complex GBRA
aggregation (when a GBRA is AND decomposed into other GBRAs) and an



GORO 2.0 9

operationalization relation (when a GBRA is operationalized into Tasks) or both
an Or-Complex GBRA aggregation and an operationalization relation. This is the
case, for instance, of Techne’s Inference relation.

In terms of interoperability, it is important to mention that, in some cases, el-
ements of a given language cannot be directly converted into elements of another.
In this case, we plan to propose conversion patterns as future work. Currently,
the tool proposed in this paper creates a log with the elements that were not
converted, leaving the user to make the best decision regarding the new model.

In future works, we also intend to: (a) extend the model conversion tool,
adding support for more GORE languages and improving its user interface;
(b) use GORO 2.0 to make a systematic ontological analysis of GORE languages,
verifying possible inconsistencies, construct overload, and other opportunities of
improvement in such languages; (c) through the activities performed in (b),
propose ontology-based modeling patterns to ensure consistency in the creation
of GORE models; (d) use the ontology to identify and incorporate other GORE
concepts that the current modeling languages do not cover; (e) use GORO as
base for the abstract syntax of a more complete GORE language; and (f) improve
the validity of GORE language constructs definition (which was interpreted by
our domain experts group), by analysing models on the same subject with the
help of GORO.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. NEMO(.inf.ufes.br)
is currently supported by CNPq (processes 407235/2017-5, 433844/2018-3), CAPES
(process 23038.028816/2016-41), and FAPES (process 69382549/2015).

References

1. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. International
Journal of Intelligent Systems 25(8), 841–877 (2010)

2. Anton, A.: Goal-based requirements analysis. In: Proc. of the 2nd Intl. Conference
on Requirements Engineering (RE). pp. 136–144. IEEE Comput. Soc. Press (1996)

3. Borgida, A., Lapouchnian, A., Ernst, N., Liaskos, S., Jureta, I., Mylopoulos, J.,
Lapouchnian, A., Liaskos, S., Mylopoulos, J.: Techne : A(nother) Requirements
Modeling Language. Tech. rep., Dept. Comput. Sci., University of Toronto (2010),
ftp://www.cs.toronto.edu/dist/reports/csri/593/techne-techrep-v1.pdf

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (may 2004)

5. Cares, C., Franch, X.: A metamodelling approach for i* model translations. In:
International Conference on Advanced Information Systems Engineering. Springer
(2011)



10 C. Bernabé et al.

6. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. CoRR
abs/1605.07767 (2016)

7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20(1-2), 3–50 (apr 1993)

8. Falbo, R.A.: SABiO: Systematic approach for building ontologies. In: Proc. of the
1st Joint Ws. on Ontologies in Conceptual Modeling and Inf. Systems Engineering.
vol. 1201. CEUR (2014)

9. Fayoumi, A., Kavakli, E., Loucopoulos, P.: Towards a Unified Meta-Model for
Goal Oriented Modelling. In: Proc. of the 12th European, Mediterranean & Middle
Eastern Conf. on Information Systems (EMCIS). pp. 1–10 (2015)

10. Guizzardi, G., Falbo, R., Guizzardi, R.S.S.: Grounding software domain ontologies
in the Unified Foundational Ontology (UFO): The case of the ODE software process
ontology. In: Proc. of the 11th IberoAmerican Conf. on Software Eng. (CIbSE)
(2008)

11. Guizzardi, R., Franch, X., Guizzardi, G., Wieringa, R.: Using a foundational ontol-
ogy to investigate the semantics behind the concepts of the i* language. In: Proc.
of the 6th Intl. i* Workshop (iStar). vol. 978, pp. 13–18. CEUR (2013)

12. Horkoff, J., Aydemir, F.B., Cardoso, E., Li, T., Maté, A., Paja, E., Salnitri, M.,
Piras, L., Mylopoulos, J., Giorgini, P.: Goal-oriented requirements engineering: an
extended systematic mapping study. pp. 1–28. Springer (2017)

13. Jureta, I.J., Mylopoulos, J., Faulkner, S.: A core ontology for requirements. Applied
Ontology 4(3-4), 169–244 (2009)

14. Kelly, T., Weaver, R.: The goal structuring notation—a safety argument notation.
In: Proc. of Dependable Systems and Networks 2004 Ws on Assurance Cases (2004)

15. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proc. of the 5th IEEE Intl. Symposium on Requirements Engineering. pp. 249–
262. IEEE Comput. Soc (2001)

16. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Transactions on Software Engineering 26(10), 978–1005 (2000)

17. Li, F.L., Horkoff, J., Mylopoulos, J., Guizzardi, R.S., Guizzardi, G., Borgida, A.,
Liu, L.: Non-functional requirements as qualities, with a spice of ontology. In: 2014
IEEE 22nd Int. Requirements Engineering Conf. (RE). pp. 293–302. IEEE (2014)

18. Lucena, M., Santos, E., Silva, C., Alencar, F., Silva, M.J., Castro, J.: Towards a
unified metamodel for i (2008)

19. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional Re-
quirements: A Process-Oriented Approach. IEEE Transactions on Software Engi-
neering 18(6), 483–497 (jun 1992)

20. Negri, P., Souza, V., Leal, A., Falbo, R., Guizzardi, G.: Towards an ontology of
goal-oriented requirements. In: Proc. of the 20th Ibero-American Conf. on Software
Engineering (CIbSE) (2017)

21. Patricio, P., Amaral, V., Araujo, J., Monteiro, R.: Towards a Unified Goal-Oriented
Language. In: Proc. of the 35th Annual Computer Software and Applications Conf.
pp. 596–601. IEEE (2011)

22. Ruy, F.B., Falbo, R.A., Barcellos, M.P., Costa, S.D., Guizzardi, G.: SEON: A Soft-
ware Engineering Ontology Network. In: Knowledge Engineering and Knowledge
Management. LNCS. vol. 10024, pp. 527–542. Springer (2016)

23. Sales, T.P., Baião, F., Guizzardi, G., Almeida, J.P.A., Guarino, N., Mylopoulos,
J.: The Common Ontology of Value and Risk. In: Proc. of the 37th International
Conference on Conceptual Modeling (ER). LNCS. vol. 11157, pp. 121–135 (2018)

24. Yu, E.S.K.: Modelling strategic relationships for process reengineering. Ph.D. the-
sis, PhD thesis, University of Toronto (1996)


