
From Reference Ontologies to Ontology Patterns and Back 

Fabiano B. Ruy1,2, Giancarlo Guizzardi1,3, Ricardo A. Falbo1, Cássio C. Reginato1, Victor A. Santos1 
1Ontology and Conceptual Modeling Research Group (NEMO), Computer Science Department 

Federal University of Espírito Santo, Vitória, Brazil 
2Informatics Department, Federal Institute of Espírito Santo, Campus Serra, Serra, Brazil 

3Faculty of Computer Science, Free University of Bozen-Bolzano, Italy 
{fabianoruy, gguizzardi, falbo}@inf.ufes.br 

Abstract. Building proper reference ontologies is a hard task. There are a number of methods and 
tools that traditionally have been used to support this task. These include the use of foundational 
theories, the reuse of domain and core ontologies, the adoption of development methods, as well 
as the support of proper software tools. In this context, an approach that has gained increasing at-
tention in recent years is the systematic application of ontology patterns. However, a pattern-
based approach to ontology engineering requires: the existence of a set of suitable patterns that 
can be reused in the construction of new ontologies; a proper methodological support for eliciting 
these patterns, as well as for applying them in the construction of these new models. The goal of 
this paper is twofold: (i) firstly, we present an approach for deriving conceptual ontology patterns 
from ontologies. These patterns are derived from ontologies of different generality levels, ranging 
from foundational to domain ontologies; (ii) secondly, we present guidelines that describe how 
these patterns can be applied in combination for building reference domain ontologies in a reuse-
oriented process. In summary, this paper is about the construction of ontology patterns from on-
tologies, as well as the construction of ontologies from ontology patterns. 

Keywords: Ontology Patterns, Conceptual Ontology Patterns, Ontology Reuse, Ontology Engi-
neering. 

1 Introduction 

Nowadays, we have a wide range of Ontology Engineering (OE) methods and tools to support ontolo-
gy engineers in the development of domain ontologies. Despite of that, building proper reference do-
main ontologies is still a difficult task even for ontology experts [1]. In addition, to properly repre-
senting domain specific knowledge, the ontology engineer needs to comply with domain-independent 
ontological principles in order to develop well-founded ontologies. 

Reuse is pointed out as a promising approach for OE, since it enables speeding up the ontology de-
velopment process. However, ontology reuse, in general, is a hard research issue, and one of the most 
challenging and neglected areas of OE [2]. The problems of selecting the right ontologies to reuse, 
extending them, and composing several ontology fragments have not yet been properly addressed [3]. 

Ontology Patterns (OPs) are an emerging approach that favors reuse of encoded experiences and 
good practices. OPs are modeling solutions to solve recurrent ontology development problems [4]. 
There are many different types of OPs that can be used in different phases of the OE process. In this 
paper, since our focus is on developing the so-called reference ontologies (as opposed to operational 
ontologies) [5], we are interested in Conceptual OPs (henceforth, COPs). COPs are reusable model-
ing fragments extracted from either foundational ontologies (Foundational OPs - FOPs) or core and 
domain ontologies (Domain-Related OPs - DROPs). They are intended for use during the conceptual 
modeling phase of OE and, hence, focus only on conceptual aspects, i.e., without any concern with 
technological or computational issues [6]. 

As demonstrated in the literature, the use of higher-level ontologies can bring several benefits to the 
development of lower-level ontologies [7]. Given this, our basic premise is that, in a reused-oriented 
approach, COPs extracted from higher-level ontologies can also be used to support the development 
of lower-level ontologies. 



The extraction and application of COPs cannot be done in an arbitrary manner. Firstly, COPs do 
not simply exist as freestanding fragments of a higher-level ontology. Typically these patterns form a 
system of interrelated components [8]. So, a proper Pattern-based OE approach should provide meth-
odological support for systematically eliciting patterns from these higher-level ontologies. Secondly, 
it is not enough for us to provide the ontology engineer with a set of patterns and expect her to always 
be able to conduct the combined application of the patterns that is more suitable for a given situation. 
Hence, a proper Pattern-based OE approach should also be accompanied with a methodological sup-
port for guiding the modeler in the correct application of these patterns. In summary, we need a Pat-
tern-based OE approach that supports systematic pattern development for reuse and systematic ontol-
ogy development with reuse. Contributing to the development of such an approach is the goal of this 
paper. In particular, we present an approach for deriving DROPs from core/domain ontologies, and 
guidelines for applying FOPs and DROPs in the development of reference domain ontologies. In the 
approach proposed here, we argue that, if FOPs and DROPs are systematically applied in combina-
tion, reuse is drastically improved, making the OE process more productive, and improving the quali-
ty of the resulting domain ontologies. 

The FOPs presented in this paper have been derived from the Unified Foundational Ontology 
(UFO) [9]. In contrast, the DROPs presented here have been derived from a core ontology in the Ser-
vice Domain, which is itself based on UFO (termed UFO-S) [10]. 

UFO [9] is a foundational ontology that has been developed based on a number of theories from 
Formal Ontology, Philosophical Logics, Philosophy of Language, Linguistics and Cognitive Psychol-
ogy. It has been successfully employed as a basis for analyzing, reengineering and integrating many 
modeling languages and standards in different domains (e.g., UML, TOGAF, ArchiMate, RM-ODP, 
TROPOS/i*, AORML, ARIS, BPMN), as well as for the development of Core and Domain Ontolo-
gies in different areas. Examples of targeted domains include Services, Capabilities, Organizational 
Structures, Communities, Goals and Motivations, Constitutional Law, Business Processes, Discrete 
Event Simulation, Simulation for Land Covering and Use, Measurement, and Software Engineering, 
among many others [11]. Of all applications of UFO, one deserves special attention, namely, the use 
of UFO categories and axiomatization in the design of an ontology-driven conceptual modeling lan-
guage, which later came to be known as OntoUML [9]. 

OntoUML was conceived as an ontologically well-founded version of the UML 2.0 fragment of 
class diagrams. Over the years, it has been adopted by many research, industrial and government insti-
tutions worldwide, in areas ranging from Geology to Organ Donation, from Biodiversity Management 
to Logistics, from Software Engineering to Telecommunications [12]. In particular, it has been con-
sidered as a candidate for addressing the OMG SIMF (Semantic Information Model Federation) Re-
quest for Proposal, after a report of its continuous successful use by a branch of the U.S. Department 
of Defense [12]. The UML-like models shown in the remainder of this paper are OntoUML models. 

This paper is organized as follows. Section 2 introduces the main notions regarding ontology and 
ontology patterns. In particular, it briefly introduces the Unified Foundational Ontology (UFO) and 
the OntoUML language, which are used throughout this work. Section 3 presents the rationale of our 
approach for deriving FOPs from UFO, by using OntoUML as a pattern language. Section 4, in turn, 
presents guidelines for deriving DROPs from core and domain ontologies. Section 5 demonstrates, in 
a comprehensive example in the service domain, how FOPs and DROPs can be used in combination 
for developing a reference domain ontology. General guidelines for applying these patterns in combi-
nation are also provided. Section 6 discusses how the presented approach for extracting DROPs from 
core ontologies has been employed for eliciting patterns for Ontology Pattern Languages (OPLs), as 
well as some results of using them in combination with FOPs to build reference domain ontologies. 
Section 7 presents a computational tool supporting the definition and application of COPs following 
the approach presented here. Section 8 discusses related works. Section 9 presents our final considera-
tions. 

2 Background: Ontologies and Ontology Patterns 

Ontologies have been classified in diverse perspectives in the literature, for example, according to 
their levels of generality, formality, applicability, etc. In this paper, we are mainly interested in the 



classification criterion regarding generality levels, in which ontologies can be classified into Founda-
tional, Core and Domain ontologies [13]. At the highest generality level, Foundational Ontologies 
span across many fields and model the most basic and general concepts and relations that make up the 
world (including domain-independent notions, such as object, event, dependence, classification, par-
thood relation etc.) [14]. Domain Ontologies, in turn, describe the conceptualization related to a spe-
cific domain (such as Requirements and Testing in Software Engineering) [14]. Core Ontologies, lo-
cated between the foundational and domain levels, provide a definition of structural knowledge in a 
specific field but one that still spans across different application areas in this field (such as Service, 
Enterprise and Measurement). These ontologies are typically built based on foundational ontologies 
and provide a refinement to them by adding detailed concepts and relations in their specific fields 
[13]. The different generality levels do not amount to a discrete classification, but to a continuum [8], 
ranging from foundational ontologies that are totally domain-independent (such as DOLCE [14] and 
UFO [9]), to domain ontologies, for a very particular domain. Finally, core ontologies, despite being 
more general than domain ontologies, are also domain-dependent. 

Higher-level ontologies can be used to support the development of lower-level ontologies, e.g., 
foundational ontologies can be used as basis for building core and domain ontologies, and core ontol-
ogies can support the development of domain ontologies. In fact, considering the continuous nature of 
the aforementioned classification, some ontologies can be used for supporting the development of 
more specific ontologies even within the same level of generality. For example, UFO-A (an ontology 
of endurants) [9] and UFO-B (an ontology of events) [15], both of which are foundational ontologies, 
have been used as basis for building UFO-C (an ontology of social entities) [7]. The latter, albeit be-
ing more specific, is still considered to be a foundational ontology. UFO-S (a core ontology on ser-
vices) [10] is grounded in UFO-C, while the Car Rental domain ontology presented in Section 5 of 
this paper is developed by extending UFO-S. The Software Requirements Ontology (SRO), in turn, is 
a domain ontology that is grounded directly in UFO-C. Finally, the Runtime Requirements Ontology 
[16] (RRO), a domain ontology on requirements at runtime, was developed based on SRO. Figure 1 
illustrates the view of ontology generality levels as a continuum using the aforementioned ontologies. 
The dashed arrows show the grounding dependencies between the ontologies in different levels. 

 
Figure 1. Ontology Generality Levels as a Continuum. 

Another relevant classification criterion concerns the intended application of ontologies. Guizzardi [5] 
makes an important distinction between ontologies as conceptual models (termed reference ontolo-
gies) and ontologies as coding artifacts (operational ontologies). A reference domain ontology is con-
structed with the goal of making the best possible description of the domain in reality. It is a special 
kind of conceptual model, an engineering artifact with the additional requirement of representing a 
model of consensus within a community [5]. On the other hand, once users have already agreed on a 
common conceptualization, different operational versions of a reference ontology can be created. 
Contrary to reference ontologies, operational ontologies are designed with the focus on maximizing 
particular non-functional requirements (e.g., the maintainability of certain desirable computational 
properties). In other words, when developing a reference ontology, the focus is on expressivity of the 
representation and truthfulness to the domain being represented (domain appropriateness), even at the 
expenses of computational characteristics such as tractability and decidability [5]. In summary, in the 
view employed here, a reference ontology is a particular kind of conceptual model, namely, a refer-
ence conceptual model capturing the shared consensus of a given community. As such, although our 
discussion is somehow focused on domain reference ontologies (which, again, is a particular kind of 



conceptual model), the approach advanced here should be beneficial to ontology-driven conceptual 
modeling in general [17]. 

2.1 Ontology Patterns 

An Ontology Pattern (OP) describes a particular recurring modeling problem that arises in specific 
ontology development contexts and presents a well-proven solution for the problem [4, 6]. OPs also 
can be classified using different criteria. Falbo and colleagues [6] present a classification (shown in 
Figure 2) considering the ontology development phases where these patterns are applied. 

 
Figure 2. Ontology Pattern Types [6]. 

Given the objectives of this paper, we focus here only on Conceptual Ontology Patterns (COPs), on 
their nature and, more specifically, on how they are extracted and applied. For a detailed discussion 
on the role of Architectural OPs, Ontology Design Patterns and Ontology Idioms, the interested reader 
is referred to [6]. 

COPs are modeling fragments extracted of either foundational ontologies (Foundational OPs, 
henceforth, FOPs) or core/domain reference ontologies (Domain-related OPs, henceforth, DROPs). 
They are intended for use during the ontology conceptual modeling phase, and focus only on concep-
tual aspects, without any concern with technological or computational issues [6]. A COP extracted 
from a higher-level ontology can be used to support the development of lower-level ontologies. FOPs 
are reusable fragments derived from foundational ontologies [6], packaging a small portion of founda-
tional structural knowledge. Since foundational ontologies are in the top-most generality level, FOPs 
can potentially be applied to any domain. An example of a FOP is the pattern for the problem of spec-
ifying roles with multiple disjoint allowed types, which has been extracted from the ontology of sub-
stantial universals of the Unified Foundational Ontology (UFO), as detailed in [9]. DROPs are reusa-
ble fragments extracted from reference core/domain ontologies, packaging the core knowledge related 
to a domain [6]. Thus, DROPs can be seen as fragments of a core/domain ontology that are applicable 
for designing ontologies of a lower generality level. 

There are two main ways of reusing ontology patterns [6]: by analogy and by extension. In reuse 
by analogy, with an ontology modeling problem at hands, we look for OPs that describe knowledge 
related to the type of situation we are facing. Once selected the pattern, we have to identify which 
concepts in our domain correspond to the concepts in the pattern, and we reproduce the structure of 
the pattern in the domain ontology being developed. FOPs are reused by analogy. DROPs, in turn, can 
be reused both by analogy and by extension. In reuse by extension, the DROP is incorporated in the 
domain ontology being developed, and it can be extended by means of specialization of its concepts 
and relations, and also by including new properties and relationships with the extended concepts. 

2.2 The Unified Foundational Ontology - UFO 

UFO consists of three parts: UFO-A, an ontology of endurants (objects) [9], UFO-B, an ontology of 
events (perdurants) [15] and UFO-C, an ontology of social entities [7] built on top of UFO-A and 
UFO-B. In this paper, our discussion is centered in the ontological distinctions comprising UFO-A. 
Thus, we limit our presentation to the aspects that are germane for the purposes of this article. For a 
complete description, formal characterization and empirical support for the distinctions and axiomati-
zation comprising UFO-A, the reader should refer to [9]. 

UFO makes a fundamental distinction between Individuals and Universals. Individuals are entities 
that exist in reality and obey a unique and determinate principle of identity, while Universals are ab-



stract patterns of features that can be realized in a number of different individuals. Figure 3 presents a 
fragment of UFO that focuses on different categories of Individuals. 

  
Figure 3. A UFO-A Fragment (Individuals). 

Endurants are individuals that are wholly present whenever they are present. They can be understood 
in contrast with the category of Perdurants (Processes, Events). The category of endurants can be fur-
ther specialized into Substantials (Objects) and Moments. Substantials are existentially-independent 
Endurants (e.g., a person, a car). Moments, in contrast, are individuals that can only exist by inhering 
in other individuals. In other words, moments are individuals that are existentially-dependent on their 
bearers (e.g., a person’s headache, a covalent bond between atoms). Intrinsic Moments are moments 
that inhere in one single individual (e.g., an apple’s color). An example of an intrinsic moment is a 
Mode (e.g., John’s desires, intentions, perceptions, symptoms, skills) [9]. 

Relators, introduced in [9], are moments that existentially depend on two or more endurants (e.g, 
marriages, service agreements, enrollments, employments, presidential mandates). Relators are con-
sidered to be the truthmakers of domain (material) relationships [18]. For example, assume that John 
and Mary get married. In this case, several externally-dependent (i.e., relational) modes come into 
existence, such as all emotions, commitments and claims towards each other. These co-dependent 
modes are originated from the same foundational event (in this case the wedding event). The relator is 
an endurant that, at each time that marriage relationship exists, it aggregates all the externally-
dependent modes that the two persons acquire in virtue of participating in the corresponding relation. 
In the UFO literature, relator names are commonly nominalizations of the verb that expresses the un-
derlying relation (e.g., married-to/marriage). It is important, nonetheless, to stress that, despite such 
nominalizations are often understood as referring to perdurants (e.g., marriage denotes the life of the 
couple after the wedding), a relator is not a perdurant. Rather, the perdurant referred by this nominali-
zation can be seen as the constitutive subject of the “relator’s life”, whose changes in time account for 
the way the relator evolves [18]. 

Figure 4 depicts the Endurant Universals hierarchy in UFO. Endurant Universals are distin-
guished into Substantial Universals and Moment Universals. Naturally, these are kinds of univer-
sals whose instances are Substantial Individuals and Moments [9], respectively. Concerning the 
Substantial Universal hierarchy, Sortal Universals are the ones that either provide or carry a uniform 
principle of identity for their instances. A principle of identity supports the judgment whether two 
individuals are the same, i.e., in which circumstances the identity relation holds. In particular, it also 
informs which changes an individual can undergo without changing its identity. The Mixin Univer-
sals, or Non-Sortals, are universals that aggregate properties of distinct Sortals, i.e., it can have as 
instances individuals obeying different principles of identity. 



  
Figure 4. A UFO-A Fragment (Endurant Universals). 

Within the category of Sortal Universals, we have the distinction between rigid and anti-rigid univer-
sals. A rigid universal is one that classifies its instances necessarily (in the modal sense), i.e., the in-
stances of that universal cannot cease to be so without ceasing to exist. Anti-rigidity, in contrast, char-
acterizes a universal whose instances can move in and out of its extension without altering their iden-
tity. For instance, contrast the rigid universal Person with the anti-rigid universals Student or Hus-
band. While the same individual John never ceases to be instance of Person, he can move in and out 
of the extension of Student or Husband, depending on whether he enrolls in/finishes college or mar-
ries/divorces, respectively. 

Figure 4 depicts the Sortal distinctions in UFO. Kinds are sortal rigid universals that provide a uni-
form principle of identity for their instances (e.g., Person). Subkinds are sortal rigid universals that 
carry the principle of identity supplied by a unique Kind (e.g., a Kind Person can have the Subkinds 
Man and Woman that carry the principle of identity provided by Person). 

Concerning anti-rigid sortals, we have the distinction between Roles and Phases. Phases are rela-
tionally independent universals defined as a partition of a sortal. This partition is derived based on an 
intrinsic property of that universal (e.g., Child is a phase of Person, instantiated by instances of person 
who are less than 12 years). Roles are relationally dependent universals, capturing relational proper-
ties shared by instances of a given kind, i.e., putting it baldly: entities play roles when related to other 
entities (e.g., Student, Husband). Since the principle of identity is provided by a unique Kind, each 
sortal hierarchy has a unique Kind at the top [9]. 

The relational dependence of Roles is manifested by the presence of a Relator in the model. Rela-
tors are individuals with the power of connecting entities. For example, an Enrollment relator con-
nects a Student role with an Educational Institution. OntoUML has a construct for modeling relator 
universals. Every instance of a relator universal is existentially dependent on at least two distinct enti-
ties. The formal relation that take place between a relator universal and the object classes it connects 
is termed mediation (a particular type of existential dependence relation) [9]. 

Non-Sortals or Mixins are universals that aggregate properties that are common to different Sort-
als, i.e., that ultimately classify entities that are of different Kinds. Non-Sortals do not provide a uni-
form principle of identity for their instances; instead, they just classify things that share common 
properties but which obey different principles of identity. Furniture is an example of Non-Sortal (a 
Category) that aggregates properties of Table, Chair and so on. Other examples include Works of Art 
(including paintings, music compositions, statues), insurable items (including works of arts, buildings, 
cars, body parts, etc.) and social and legal objects (including people, organizations, contracts, legisla-
tions, etc.). 

The meta-properties of rigidity and anti-rigidity can also be applied to distinguish different types of 
Non-Sortals (Mixins). A Category represents a rigid and relationally independent mixin, i.e., a dis-



persive universal that aggregates essential properties that are common to different rigid sortals [9] 
(e.g., Physical Object aggregates essential properties of Table, Car, Glass, etc). A RoleMixin repre-
sents an anti-rigid and externally dependent Non-Sortal, i.e., a dispersive universal that aggregates 
properties that are common to different Roles (e.g., Customer that aggregates properties of Individual 
Customer and Corporate Customer) [9]. 

As discussed in depth in [9], by using the language engineering method proposed in [19], UFO-A 
has been employed in the design of an ontologically well-founded version of UML 2.0 termed On-
toUML. OntoUML has modeling constructs that reflect all the leave categories in the hierarchy of 
Figure 4. Moreover, its metamodel contains a number of formal constraints derived from the axio-
matization of UFO that prescribe that rules that govern the allowed combination of these constructs. 
These rules constrain possible combination of constructs in subsumption hierarchies (e.g., an anti-
rigid universal cannot be a supertype of a rigid universal; a sortal universal cannot be a subtype of a 
mixin universal; every sortal is either a kind or a direct or indirect subtype of a unique kind); reinforce 
the necessary disjointness between instances of certain modeling constructs (e.g., all kinds are mutual-
ly disjoints; all phases of a given kind must appear in a disjoint, complete generalization set specializ-
ing that kind); and reinforce the existence of relators representing the relational dependence of types 
such as Roles and RoleMixins [9]. 

The representation of the axiomatization of UFO-A that gave rise to the OntoUML metamodel was 
firstly presented in [9]. In [20], however, we initiated a trend of looking at OntoUML as a pattern lan-
guage, i.e., we realized that the modeling primitives of the language are actually higher-granularity 
building blocks (ontology patterns) that reflect the different ontological micro-theories in UFO. In that 
initial paper, however, we merely illustrated this approach by recognizing the correspondence be-
tween content patterns in OntoUML and micro-theories in UFO. Moreover, that paper is limited to 
discussing only the sortal fragment of UFO-A. In the next section, as the first contribution of this pa-
per, we present a version of OntoUML in terms of intuitive form of graph grammar that describes 
OntoUML as a pattern language. 

3 Deriving FOPs from the Unified Foundational Ontology 

A Foundational Ontology Pattern (FOP) in OntoUML is a structure that reflects the micro-theories 
[17] put forth by its underlying foundational ontology (UFO). As discussed in [11], UFO is a system 
of micro-theories addressing basically all the classic conceptual modeling concepts including: Types 
and Taxonomic Structures [21], Attributes and Weak Entities [22], Datatypes [23], Relations [20, 24], 
Parthood [25, 26, 27], Events [28], Higher-Order types (Powertypes) [29], among others. For each of 
the ontological distinctions present in UFO and which are reflected as modeling constructs in On-
toUML, we have a corresponding axiomatization. This axiomatization makes that OntoUML con-
structs can only appear in a model forming clusters of constructs with their ties and associated con-
straints. In other words, in general purpose languages such as ER, UML or OWL, the actual modeling 
building blocks of the language are low-granularity modeling primitives such as class, association, 
attribute, etc. In OntoUML, in contrast, the actual modeling primitives are these structures (and their 
corresponding axiomatization) reflecting the underlying ontological micro-theories. As a conse-
quence, OntoUML is a pattern language whose models are constructed via the combined instantiation 
of the foundational patterns. 

We here present a nearly complete fragment of OntoUML, leaving out a few constructs that are not 
germane for the purposes of this paper. Table 1 and 2 present the FOPs comprising this fragment of 
OntoUML. Table 1 presents the language in the form of sort of a “Graphical EBNF1”, while Table 2 
shows the patterns templates with example fragments. The interpretation of this grammar description 
is rather intuitive and shall become clear in its description that follows. We decided to use this intui-
tive representation (as opposed to some existing formal system of graph grammar description, e.g., a 
formal graph-rewriting system) to keep the paper self-contained. 

                                                        
1 EBNF: Extended Backus–Naur Form 



Table 1. A Graph Grammar Description of OntoUML as a Pattern Language. 

Expression Expression Structure 

OntoUML 
Structural Model 

 

  

  

  

  

  

  

  

  

 
 

Table 2. OntoUML Patterns’ Templates and Examples. 

Pattern Pattern Template Application Example 
Fragment 

 

  
(variant 2) 

 
 

 

 
 

 



 

  

 

 

 
(variant 2) 

 

 
or 

 

 
(variant 2) 

 

  

 

 

 
(variant 1) 

 
 
 
 
 

 



 

 

 
(variant 1) 

 
 
 

 
(variant 2) 

 

 
As Table 1 shows, an OntoUML structural model is a non-empty set of Endurant Universal Expres-
sions, each of which is either a Substantial Universal Expression or a Moment Universal Expres-
sion. A Moment Universal Expression is either an occurrence of the Mode Pattern or an occur-
rence of the Relator Pattern. 

The Mode Pattern represents a Mode Universal connected to an Endurant Universal Expression 
via an existential dependence (inherence) relation. This Endurant Universal Expression is then used 
to describe the universals whose instances are the bearers of the instance of this mode universal. Since 
a Mode can be an externally-dependent mode, the Mode Pattern also contains a (possibly empty) set 
of relationships of external dependence connecting the instances of the mode universal at hand with 
their sources of external dependence (e.g., it connects a commitment with the entities which are re-
ferred by this commitment). 

The Relator Pattern has two variants. In the first variant, we have a representation of relators 
connected via mediation relations (i.e., existential dependence relations) to possibly a number of sub-
stantial universals whose instances are entities mediated by this relator. In a second (and more com-
plete) version of this pattern, we also have the description of a material relation derived from this rela-
tor universal and which is established between the relata mediated by the instances of that relator uni-
versal. For instance, we could have the relation of married-with derived from the relator universal 
Marriage and connecting the endurant universals Husband and Wife, whose instances, in turn, are 
mediated by instances of Marriage. As represented in the Relator Pattern, the material relation at 
hand can be of any arity (obviously, higher than two). In both variants of this pattern, we can optional-
ly specify the connection between a relator and the modes that constitute this relator by recursively 
defining them via the Mode Pattern. In Figure 5 below, we show another depiction of the Relator 
Pattern in its second variant. In this case, we have a binary material relation with the two relata uni-
versals involved (F and G). As this figure illustrates, the cardinality constraints of the material relation 
and of the derivation relation are drastically constrained by the cardinality constraints of the mediation 
relations in the pattern (see detailed discussion in [9, 17]). 



 
Figure 5. A representation of the Relator Pattern with dependencies between cardinality constraints. 

A Substantial Universal Expression can be either a Sortal Expression or a Mixin Expression. The 
former can be either a Rigid Sortal Expression or an Anti-Rigid Sortal Expression. 

A Rigid Sortal Expression is either a Substance Sortal Expression or an occurrence of the Sub-
kind Pattern. A Substance Sortal Expression describes the identity provider universals of an On-
toUML model, which can be either a Kind or a Collective (indirectly specified via the Collective 
Pattern). A Kind is the only terminal symbol of this grammar. In other words, a recursive thread of 
definitions of these expressions only stops in an OntoUML model when a Kind construct is reached. 

The Collective Pattern describes a Collective Universal and the universals whose instances are 
members of these collectives. Due to the so-called Weak Supplementation Principle, required for all 
parthood relations [25], the sum of the minimum cardinality constraint on the side of the members 
must be equal or higher than 2. 

The Subkind Pattern appears in two variants. In the first of these, we have simply a subkind spe-
cializing a Rigid Sortal Expression; in the second, we have a subkind generalization set collecting a 
disjoint (and optionally complete) set of subkinds that specialize the same universal, once more, de-
scribed by a Rigid Sortal Expression. A subkind can only specialize a rigid sortal. The recursive 
definition of these patterns guarantees that a subkind either directly or indirectly specialize a sub-
stance sortal that provides a uniform principle of identity for its instances. 

An Anti-Rigid Sortal Expression is either an occurrence of the Phase Pattern or an occurrence 
of the Role Pattern. The Phase Pattern consists of a phase partition, i.e., a disjoint and complete set 
of two or more complementary phases that specialize the same sortal, which is specified by a Sortal 
Expression. Notice that, once more, the recursive definition of this pattern guarantees that a substance 
sortal providing a common principle of identity for the instances of these phases is always specified in 
the model. Analogously, in the Role Pattern, we have a role that specializes a sortal universal (again, 
specified by a Sortal Expression). However, since roles are relationally dependent universals, we 
have here also that a role must be part of an occurrence of the Relational Dependence Pattern. 

The Relational Dependence Pattern is a complex pattern that, on one hand, describes the rela-
tional dependence condition of a relationally dependent universal (i.e., either a Role or a RoleMixin), 
which, in turn, is specified by a Relationally Dependent Universal Expression. This relational de-
pendence conditions is captured either: (i) via a connection to (one of the variants of) the Relator 
Pattern, in which the relationally dependent universal at hand appears as one of the mediated types; 
(ii) via a parthood relation, in which the relationally dependent universal at hand appears either as a 
part of or a whole universal. A Relationally Dependent Universal Expression is either an occur-
rence of the Role Pattern or an occurrence of the RoleMixin Pattern. 

A Mixin Expression can be either an occurrence of the RoleMixin Pattern or an occurrence of 
the Category Pattern. A RoleMixin ultimately captures common contingent and relationally depend-
ent properties of entities of multiple Kinds. In other words, a RoleMixin can be seen as an abstraction 
capturing common characteristics of roles played by entities of different Kinds. The RoleMixin Pat-
tern appears in two variants. One of them (variant 2) defines a RoleMixin by a partition of two or 
more Roles, each of which is connected to a kind (directly or indirectly) via a Sortal Expression. The 
common relational dependence of these roles is captured by connecting the RoleMixin to an occur-
rence of the Relational Dependence Pattern. Finally, a RoleMixin can (optionally) appear in a mod-
el recursively applying the RoleMixin Pattern, i.e., specializing another RoleMixin with its associat-
ed relational dependence (variant 1). 

 

 

constructs of association specialization, subsetting and redefinition. Once more, in 
OntoUML, a material relation appears in a model connected to a relator from which it 
is derived forming the pattern depicted in Figure 3. In this pattern, the dashed relation 
is termed derivation and connects a material relation with the relator from which it is 
derived; the mediation relation is a relation of existential dependence connecting an 
instance of a relator with multiple entities of which a relator depends (e.g., the mar-
riage between Paul and Mary existentially depends on Paul and Mary; the employment 
between John and the UN likewise can only exist whilst John and the UN exist). 
Moreover, the cardinality constraints of the derived material relation and of the deriva-
tion relation are constrained by the cardinality constraints of these (otherwise implicit) 
mediation relations (some of these constraints are illustrated in Figure 3) [10]. 

 
Fig. 3. Relator and Material Relations Pattern. 

Since the formal modeling primitives of this language can only appear following these 
patterns, these patterns end up being the actual modeling primitives of the language. 
As a consequence, modeling in OntoUML is done by the chained application of these 
ontological patterns [19]. This idea is illustrated in Figure 4. We start by modeling the 
type Customer. We first identify that a Customer is a RoleMixin: instances of Custom-
er can be different kinds (people and organizations); Customer is an anti-rigid type (no 
Customer is necessity a Customer); in order for someone to be a Customer, she has to 
purchase something from a Supplier. In applying the RoleMixin pattern of Figure 2.c, 
we identify the presence of two phases (Living Person and Active Organization), a role 
(Supplier, which is assumed to be played by entities of the unique kind Organization) 
and a relation (purchases from). We then expand this model by applying to phases and 
roles the patterns of Figure 2.a and 2.b, respectively. Finally, we apply the pattern of 
Figure 3 to the material relation purchases from. 

This strategy of building models by the successive instantiation of these patterns 
has been implemented in the new version of the OntoUML editor. This approach can 
bring several benefits to conceptual modeling. Firstly, since these patterns are the rep-
resentation of ontological theories, the construction of models by instantiating these 
patterns preserves ontological consistency by construction. This can also facilitate the 
process of model building, especially to novice users. The hypothesis is that in each 
step of the modeling activity, the solution space that characterizes the possible choices 
of modeling primitives to be adopted is reduced. This strategy, in turn, reduces the 
cognitive load of the modeler and, consequently, the complexity of model building 
using this language [19]. Moreover, this strategy also brings more uniformity to the 
models (which become described in terms of known patterns) and provides for a natu-

 CLASSIFIERS AND PROPERTIES 331 

Still on figure 8.10, from the cardinality constraints of the two             
´mediationª relations we can derive the maximum cardinality of the 
derivation relation (on the material relation end) and the cardinality 
constrains on both association ends of the material relation itself. For 

instance, the upper constraint δ on the end connected to G in the H 

relation is the result of (d × h); the upper constraint β in the end connected 

to F is the result of (f × b). The upper constraint φ in the end H of the 

derivation relation is the result of (b × h). Likewise, we can calculate the 

derived minimum cardinality constraints in the following manner: γ = c × 

g; α = e × a, and ε = a × g. 

F G

´mediationª´mediationª ´relatorª
R

´materialª

/H

c..d

a..b

e..f

g..h

 

Two alternative versions of a concrete example of this situation are depicted 
in figures 8.11.a and 8.11.b below. However, due to the lack of expressivity 
of the traditional UML association notation, these two models seem to 
convey the same information (from the perspective of the material relation 
supervised-by), although they describe completely different 
conceptualizations. As discussed in section 6.3.3, the benefits of explicitly 
representing relator universals instead of merely representing material 
relations, becomes even more evident in n-ary relations with n > 2. 

´roleª
GraduateStudent

´kindª
Supervisor

´mediationª´mediationª ´relatorª
Assignment

´materialª

/supervised-by

1..*

1

1..*

1

1..*

1

´roleª
GraduateStudent

´roleª
Supervisor

´mediationª´mediationª ´relatorª
Assignment

1..* 1..*

´materialª

1..*

1..*

1..*

1..*

/supervised-by

(a) (b)  

Once more we should highlight that the relator individual is the actual 
instantiation of the corresponding relational property (the objectified 
relation). Material relations stand merely for the facts derived from the 
relator individual and its mediating entities. Therefore, we claim that the 
representation of the relators of material relations must have primacy over 
the representation of the material relations themselves. In other words, the 
representation of ´materialª relations can be omitted but whenever a               

Figure 8-10  Material 
Relations and their 
founding relators (the 
cardinality constraints of 
the derived relation and 
the derivation relation 
itself can be calculated 
from the corresponding 
mediation relations 
involving the founding 
relators) 

Figure 8-11  
Examplification of how 
relators can 
disambiguate two 
conceptualizations that 
in the standard UML 
notation would have the 
same interpretation 

ε..φ 

α..β γ..δ 

1..* 

1..* 

f x b d x h

b x ha x g

η..λ 



Finally, a Category ultimately captures common essential properties of entities of multiple Kinds. 
The Category Pattern represents this by either: (i) directly having a Category as a common abstrac-
tion of two or more disjoint Rigid Sortal Expressions (variant 2); (ii) indirectly having a Category as 
a common abstraction of another Mixin Expression (either another recursive occurrence of the Cate-
gory Pattern or an occurrence of the RoleMixin Pattern), which will, in turn, eventually be connect-
ed to set of Sortal Expressions. 

In order to briefly illustrate how a valid OntoUML structural model can be built using the grammar 
just described, we use the example of Figure 6. Suppose that a modeler initiates this model by instan-
tiating the RoleMixin Pattern (area 1 in the figure). She then creates the RoleMixin universal Cus-
tomer and a partition of Roles defined by the universals Personal Customer and Corporate Customer. 
Each of these roles is a specialization of a corresponding Sortal Expression (areas 2 and 3 in the fig-
ure). Following the RoleMixin Pattern, Customer must also be connected to an occurrence of the 
Relator Pattern (area 4). In area 2, we have a Sortal Expression that is an occurrence of the Phase 
Pattern. In this occurrence of this pattern, we have a phase partition containing phases Living Person 
and Deceased Person, which in turn specialize another Sortal Expression. This latter Sortal Expres-
sion is the definition of the Kind Person. Analogously, in area 3, we have a Sortal Expression that 
subsumes Corporate Customer, which is again another occurrence of the Phase Pattern. In this case, 
we have a phase partition containing phases Active Organization and Extinct Organization, which in 
turn specialize another Sortal Expression, namely, a Substance Sortal Expression of the Kind Or-
ganization. In area 4, we have the occurrence of variant 2 of the Relator Pattern, in which we have 
the definition of the relator universal Purchase Contract that mediates the RoleMixin Customer as 
another Substantial Sortal Expression, namely, another occurrence of the Role Pattern. In this new 
occurrence of the Role Pattern, we have the definition of the role universal Supplier, whose relational 
conditional is already satisfied by the aforementioned occurrence of the Relator Pattern with Pur-
chase Contract, and whose subsuming type condition (a Sortal Expression) is already satisfied by an 
occurrence of the Phase Pattern containing Active Organization. By applying these patterns in areas 
1-4, we have a grammatically correct OntoUML model and one in which all instances of the model 
have a unique principle of identity that they obey (provided by the object kinds Person and Organiza-
tion and the relator universal Purchase Contract). 

 
Figure 6. An example of an OntoUML model as a combination of FOPs. 



4 Extracting DROPs from Core and Domain Ontologies 

While FOPs are focused on foundational structural aspects, domain aspects are the drivers for deriv-
ing DROPs. The main rule for a DROP is to represent a recurrent modeling fragment in a given do-
main. Thus, DROPs are extracted from core and domain ontologies by packaging the core knowledge 
of a target domain in meaningful reusable fragments. 

4.1 Deriving DROPs from Core Ontologies 

Core ontologies are important sources of DROPs, since they describe the core knowledge of a wide 
domain that spans across different subdomains. Their models contain fragments of knowledge that 
can be reused when modeling more specific domain ontologies. The main issues related to extracting 
DROPs from core ontologies are how to achieve these fragments in a proper way and how to relate 
them. With a core ontology in hands, some of its information can be used for supporting a fragmenta-
tion process for creating DROPs. In particular, competency questions (CQs) [30] can reveal modeling 
needs in small (and still connected) pieces. Therefore, a general process comprising four steps and 
providing some guidelines is presented in the sequel. 

A. Modularize the core ontology. 
If the core ontology to be fragmented in DROPs is a complex one, we should start by splitting it into 
modules (sub-ontologies), for example, using an approach of Ontology Partitioning [31]. As pointed 
out by d'Aquin [31], there is no universal way to modularize an ontology and the choice of a particu-
lar approach should be guided by the ontology requirements. The general approach proposed by 
d'Aquin in [31] can be applied for this purpose. The same can be said for techniques and criteria for 
ontology partitioning, such as the ones proposed in [32]. Regarding the criteria, we suggest consider-
ing at least the following: independence, cohesion, and size. If the core ontology is already modular-
ized, this step can be skipped. 

B. Fragment each sub-ontology model into small pieces still meaningful for the domain. 
Consider splitting a sub-ontology into even smaller fragments suitable to be considered DROPs. By 
looking again at ontology requirements, we can look at each sub-ontology and search from lower-
granularity reusable fragments. A pattern, in general, describes a particular recurring problem that 
arises in specific contexts and presents a well-proven solution for the problem [33]. Thus, the process 
of extracting DROPs from a sub-ontology should start by looking for the problems being addressed by 
fragments of the sub-ontology. If the core ontology is guided by the competency questions (CQs) that 
it aims answering, then these CQs are the natural guide for driving the process of splitting the sub-
ontology into DROPs. As a starting point, we suggest defining one DROP for each CQ. However, it is 
important to keep in mind that CQs and DROPs have different concerns. While CQs aim at defining 
the ontology requirements, DROPs are focused on finding the best configuration for being recurrently 
applied in the domain. Thus, a one-to-one relation (with each CQ attached to a unique DROP and 
vice-versa) could not be the best organization for all the fragments, and should be reviewed as de-
scribed in the next step. Moreover, when the core ontology CQs are not available, some reengineering 
may be needed, for making explicit the ontology requirements before trying to fragment the ontology 
model into DROPs. 

The complexity of the fragments can vary depending on the problem/solution that they are address-
ing. Sometimes, a fragment that is a candidate for becoming a DROP contains only two related con-
cepts; in other situations, it can contain a complex combination of concepts and relations. Sometimes 
the same fragment gives rise to two (or more) variant and alternative patterns; and sometimes a pat-
tern is structurally open (Partial DROP) in order to be completed by another DROP or FOP. Complete 
self-contained fragments are candidates for Complete DROPs; fragments that need to be completed by 
other DROPs or FOPs are said Partial DROPs. 

C. Review the model fragments and select the DROPs 
Fragments too big, addressing more than one modeling problems (for example, connected to unrelated 
CQs), should be analyzed to check if they would be better handled in distinct DROPs. Domain as-
pects, as well as foundational aspects should be taken into account in this analysis. For example, sup-



pose that the problems being addressed by the fragment are too interrelated, so that the resulting 
DROPs should always to be used in conjunction. In this case, it is better to maintain the whole frag-
ment in a single DROP. Otherwise, i.e., if each of the two DROPs can be used independently of each 
other, it is better to break the fragment into two DROPs. 

Fragments too small should also be analyzed to check if they really address relevant problems. If 
not, then the fragment does not deserve to become a DROP. Moreover, if the problem being addressed 
is too interrelated to another problem, then consider merging it with the other DROP on which it de-
pends heavily. 

A complementary approach is to use FOPs for helping to define the boundaries of DROPs. Since a 
FOP is applied to solve general modeling problems, several of the domain problems solved by 
DROPs can be mapped to an underlying FOP structure. Thus, often, a DROP is delimited as the ap-
plication of a FOP for solving a domain-related problem. This is, however, not a strict rule, since a 
DROP can be structurally open in a way that it should be completed by another DROP or FOP (thus 
not directly fitting in any FOP). In other cases, a DROP can apply more than one FOP. 

Alternative and useful variants of the same fragment can also be considered. Frequently, a model-
ing fragment can be represented in different ways, depending on possible variations on what an ontol-
ogy engineer may want to represent in the target domains. The existence of variants for the same on-
tology pattern was already illustrated for FOPs in Section 3. To cite one example, relational properties 
between two entities can be modeled: by simply representing a relator with the associated mediation 
relations connecting the relata; or by a relator, with associated mediation relations and with a derived 
material relation connecting the relata. In an analogous manner, different domain-level modeling 
problems can give rise to different alternative DROPs. 

D. Pack the DROP with its associated useful information. 
Information for locating, understanding and using the DROP needs to be attached to it. This includes: 
name, intent, rationale, CQs addressed by the DROP, the conceptual model fragment, axioms, related 
COPs (mandatory or optional), and definitions of the types of entities considered in the DROP. It is 
useful to create a Pattern Specification as shown in Table 3. 

4.1.1 Engineering for Reuse: Extracting DROPs from a Service Core Ontology 

In order to illustrate this fragmentation process resulting in a set of DROPs, we present an application 
of the proposed approach to a complex reference ontology, namely, the UFO-based Core Ontology for 
Services (UFO-S) [10]. UFO-S was designed for addressing the notion of service broadly, harmoniz-
ing different service perspectives. As a core ontology, it can be reused for representing a variety of 
specific domains concerning services (such as Car Rental, Hostage, Training and Cable TV Services). 
UFO-S is divided into 3 sub-ontologies concerning the domain aspects it represents: Service Offering, 
Service Negotiation and Agreement, and Service Delivery. In the sequel, we present the CQs for the 
Service Offering sub-ontology (CQ01-CQ04) and Service Negotiation and Agreement sub-ontology 
(CQ05-CQ13). Figures 7 and 8 present the corresponding conceptual models of these UFO-S sub-
ontologies. 

CQ01. What is a service offering? 
CQ02. Who is involved in a service offering? 
CQ03. Which are the descriptions of a service offering? 
CQ04. Which are the terms and conditions of a service offering? 
CQ05. What is a service negotiation? 
CQ06. Who is involved in a service negotiation? 
CQ07. To which service offering does a service negotiation regard? 
CQ08. What is a service agreement? 
CQ09. Who is involved in a service agreement? 
CQ10. To which service offering does a service agreement conform? 
CQ11. From which service negotiation did a service agreement result? 
CQ12. Which are the descriptions of a service agreement? 
CQ13. Which are the commitments and claims of the parties involved in a service agreement? 



 
Figure 7. UFO-S Service Offering sub-ontology (adapted from [10]). 

The Service Offering sub-ontology represents how a Service Offering is offered from a Service Pro-
vider to a Target Customer Community. A Target Customer Community has Target Customers 
as members. A Service Offering can be described by Service Offering Descriptions. An offering is 
composed of Service Offering Commitments from the Service Provider towards the Target Cus-
tomer Community and the corresponding Service Offering Claims from the Target Customer 
Community towards the Service Provider. For example, a Taxi Driver offers Taxi Services to a 
Community, and has the Commitment to take a Customer from a place to another receiving a payment 
for that, while the Customers have the complementary Claim of being taken from one place to another 
paying for that. 

 
Figure 8. UFO-S Service Negotiation and Agreement sub-ontology (adapted from [10]). 

The Service Negotiation and Agreement sub-ontology depicts the negotiation of an offering towards a 
possible agreement between the involved parts. A Service Negotiation is an interaction involving the 
participations of a Service Provider and Target Customers. When the negotiation succeeds, it re-
sults in a Service Agreement between the parts, acting as Hired Service Provider and Service Cus-
tomer, respectively. Analogously to the Service Offering, a Service Agreement can have Service 
Agreement Descriptions and is composed of the Hired Provider Commitments and Claims, as 
well as the Service Customer Commitments and Claims. 



Since UFO-S is already modularized into sub-ontologies, and the related CQs are provided, the first 
step for the fragmentation process is dividing its conceptual modules into meaningful fragments. For 
example, by analyzing the Service Offering sub-ontology and how each CQ is solved, we have: 

• CQ01. What is a service offering? This is a general question and its answer is given mainly by 
the Service Offering concept. A Service Offering, as a social relator, cannot be detached from 
the involved parties, and thus we cannot answer this CQ without answering also CQ2. 

• CQ02. Who is involved in a service offering? This question is addressed by a fragment relating 
Service Offering to Service Provider and Target Customer Community and the Target 
Customer members. Agent is included as generalization of provider, community and customer. 
Thus, the model fragment including these five concepts and the relations between them com-
prises a meaningful DROP named SOffering (Figure 9 (a)). SOffering should always be used 
when an ontology engineer is interested in describing a Service Offering. 

• CQ03. Which are the descriptions of a service offering? This question is addressed by a frag-
ment relating Service Offering to Service Offering Description. It is worth noting that there 
are cases in which the ontology engineer may not be interested in representing service offering 
descriptions in her ontology. Thus, it is not recommended to include the Service Offering De-
scription concept in the SOffering pattern. Thus, the model fragment relating a service offering 
to its descriptions is better handled as another DROP, called SODescription (Figure 9 (b)). 

• CQ04. Which are the terms and conditions of a service offering? This question is addressed by 
a fragment defining Service Offering Commitment and Service Offering Claim as parts of 
Service Offering, plus representing Service Provider and Target Customer Community as 
the bears and external dependencies of the commitments and claims. As pointed by Guizzardi 
et al. [7], commitments and claims always form a pair that refers to a unique propositional con-
tent. From a practical point of view, however, the ontology engineer, while modeling a specific 
domain, may want to represent only the commitments, only the claims, both, or none of them. 
Thus, it is better to split the fragment involving these concepts, creating two DROPs, namely 
SOCommitments (Figure 9 (c)) and SOClaims (Figure 9 (d)). 

 
Figure 9. DROPs extracted from the Service Offering sub-ontology (adapted from [34]). 

Concerning the foundations for the SOffering DROP (Figure 9 (a)), we should highlight that this 
DROP contains a complete application of the following FOPs: Relator Pattern, Collective Pattern 
and Category Pattern (see Table 2). It also includes two rolemixins without any specialization, gen-
eralized into a category. One should notice that the specification of these rolemixins does not fully 
comply with the RoleMixin Pattern in Table 2. This, however, does not constitute a problem at this 
stage, since the idea is to let these fragments be completed only in the specific domain ontology. For 
this reason, this DROP is said a Partial DROP, i.e., the Rolemixin FOP should be applied in its integ-



rity to achieve a complete and well-founded domain ontology. On the other hand, by not committing 
to a full specification of this DROP at this stage, this approach gains in flexibility by allowing diverse 
types of service providers and target customers to be specified when the DROP is reused in specific 
domain ontologies. 

Regarding the SODescription DROP (Figure 9 (b)), we should point out that, although it involves 
only two concepts linked by a formal relation, it depicts a useful model fragment of the domain, being 
thus a good choice for a DROP. 

Finally, the last two DROPs (SOCommitments (Figure 9 (c)) and SOClaims (Figure 9 (d))) are, in 
fact, derived from the Social Relator FOP, extracted from UFO-C. This pattern is a combined applica-
tion of the Relator Pattern and the Mode Pattern (see Table 2) for describing commitments and 
claims that comprise a social relator. A Social Relator involves at least two agents and it is composed 
of pairs of commitments and claims. These, in turn, are social moments that inhere in an agent and are 
externally dependent on the other agent involved in the social relator. We should highlight that, as 
previously mentioned, we decided to split the manifestation of this FOP in UFO-S in two DROPs, 
since the ontology engineer, while modeling a specific service domain, may want to represent only the 
commitments, only the claims, both, or none of them. 

Although each DROP represents a distinct aspect of the core domain knowledge, there are a num-
ber of possible relations that can occur between them. For instance, some DROPs partially overlap. 
This is the case of the Service Offering concept, which is shared by all the presented DROPs, as well 
as the concepts of Service Provider and Target Customer Community, which are part of three of 
the four DROPs in Figure 9. Another situation is illustrated by the SODescription DROP, which aims 
at describing a service offering, typically including information about the service provider and cus-
tomers. Thus, this DROP should be dependent on the SOffering DROP (SOffering should be applied 
before SODescription). Similar rationale applies to the SOCommitments and SOClaims DROPs, 
which are typically used in consequence of establishing a service offering (SOffering DROP). These 
characteristics show that DROPs typically bear strict relations to each other and, thus, are very often 
applied in combination or even in sequence. Considering the Service Negotiation and Agreement sub-
ontology, the model presented in Figure 8 has nine related CQs (CQ05 – CQ13). Performing the 
fragmentation process, we have followed a similar rationale of the work done in the case of the Ser-
vice Offering sub-ontology in order to derive DROPs. The results and complementary rationale are 
discussed in a brief manner in the sequel. Some of the DROPs extracted from this sub-ontology are 
presented in Figure 10. 

The SNegotiation pattern (Figure 10 (a)) comes from three CQs: CQ5 (What is a service negotia-
tion?), CQ6 (Who are involved in a service negotiation?) and CQ7 (To which service offering does a 
service negotiation regard?). CQ5 is general, and it is answered in tandem with CQ6 and CQ7. It is 
important to keep the Service Offering concept in the same fragment of Service Negotiation concept. 
This is because there is no negotiation disconnected from an offering, i.e., the subject of a service 
negotiation in this domain is always a service offering. 

The SAgreement DROP (Figure 10 (b)) comes from CQ8 (What is a service agreement?) and CQ9 
(Who are involved in a service agreement?). It models the provider and customers involved in a Ser-
vice Agreement, despite of any previous offering or negotiation. From this fragment, some variations 
are created, taking other CQs into account. For considering CQ10 (To which service offering does a 
service agreement conform?), the SOfferAgree pattern (Figure 10 (c)) is proposed as a variation of 
SAgreement. SOfferAgree also considers the Service Offering to which the agreement conforms (not 
taking any negotiation into account). Finally, for considering also CQ11 (From which service negotia-
tion did a service agreement result?), the SNegAgree pattern is created, representing the whole situa-
tion where both the negotiation and agreement are important for the ontology being developed. 

Besides the patterns discussed above, other five patterns were extracted from the Service Negotia-
tion and Agreement sub-ontology, namely: SADescription, which is analogous to SODescription, but 
describing an agreement (CQ12); and HPCommitments, SCCommitments, HPClaims and SCClaims, 
which are analogous to SOCommitments and SOClaims, but addressing commitments and claims 
from the hired provider and the service customer (CQ13). Since these patterns are analogous to others 
already discussed in this paper, we do not elaborate further on them here. Their full description can be 
found in [34]. 



 
Figure 10. DROPs extracted from the Service Negotiation and Agreement sub-ontology (adapted from [34]). 

Besides extracting these patterns from the core ontology, we have to develop a specification for each 
DROP. The DROP specification should include the following information: 
• Name: the name of the DROP (complete and acronym). 
• Intent: describes the pattern purpose. 
• Rationale: describes the rationale underlying the pattern. 
• Competency Questions: describes the CQs that the pattern aims to address. These CQs point 

out the modeling problem that is solved by the pattern. 
• Conceptual Model: depicts the conceptual model representing the pattern elements. The con-

ceptual model plus the concept definitions and axioms described in the next items capture the so-
lution for the problem posed as CQs. 

• Concept Definitions: definitions of the ontology concepts in natural language. 
• Axiomatization: presents complementary formal axioms related to the DROP conceptual model. 

These axioms typically capture constraints and other aspects of the pattern that cannot be directly 
represented by the diagram depicting the conceptual model. We should mention that the axioms 
constraining the interpretation of the elements of the DROP come directly from the axiomatiza-
tion of the corresponding elements in the core ontology from which the pattern has been extract-
ed. We advocate that, in any case, they should be explicitly represented as part of the DROP’s 
documentation. 

• Force: indications regarding when to use or not use the pattern. 
• Related Patterns: list other COPs (DROPs or FOPs) related to the pattern being presented, 

specifying the corresponding relation between these patterns (e.g., if the occurrence of the asso-
ciated pattern is optional or mandatory). 

As an example, Table 3 shows the specification of the SOfferAgree pattern. In this table, axioms are 
written in First Order Logics. Additional examples of DROPs extracted from UFO-S and possible 
combinations between them can be found in [34]. 



Table 3. The Specification of the SOfferAgree DROP. 

Service Offering and Agreement 
Name: Service Offering and Agreement (SOfferAgree) 

Intent: Representing a Service Agreement in conformance with a Service Offering, without addressing service negotia-
tion aspects. 

Rationale: A Service Agreement is established between a Hired Service Provider and a Service Customer. The terms and 
conditions that may take part of a Service Agreement must be in conformance to those of the correspondent Service Offer-
ing. 

Competency Questions: 
• Which are the parties involved in a service agreement? 
• To which service offering does a service agreement conform to? 

Conceptual Model 

 

Concept Definitions: 
• Service Offering: A promise of the Service Provider to provide a service under certain conditions to a Target Cus-

tomer Community. 
• Service Provider: The role played by agents when these agents commit themselves to a Target Customer Communi-

ty by means of a Service Offering. 
• Target Customer: The role played by agents that are members of a Target Customer Community. 
• Service Agreement: An agreement established between a Hired Service Provider and Service Customers, regarding 

a Service Offering. 
• Hired Service Provider: The role played by a Service Provider, when the Service Provider commits itself to a Ser-

vice Customer to perform actions or to achieve the results determined in the Service Agreement. 
• Service Customer: The role played by a Target Customer that hires a service in the context of a Service Agreement. 

(Partial) Axiomatization 
A1: ∀ sa:ServiceAgreement, hsp, sc (isBoundTo(sa, hsp, HiredServiceProvider) ˄ 

isBoundTo(sa, sc, ServiceCustomer) ! (hsp≠sc)) 
 An agent cannot simultaneously play the roles of Hired Service Provider and Service Customer in the same Service 

Agreement. 
A2: ∀ sa:ServiceAgreement, hsp (isBoundTo(sa, hsp, HiredServiceProvider) ! 

(∃so: ServiceOffering (offers(hsp,so) ˄ conformsTo(sa,so))) 
 The Service Provider that is bound to a Service Agreement offers the Service Offering to which the agreement con-

forms. 

Forces 
• This pattern should be used if you need to model an agreement established between a Service Provider (who 

starts to play the role of Hired Service Provider) and a Target Customer (who starts to play the role of Ser-
vice Customer) in conformance with a previously modeled Service Offering. 

• If besides modeling the agreement and its conformance to a previously established offering, you need to model 
the negotiation between Service Provider and Target Customer, then you should not use this pattern, but the 
SNegAgree pattern. 

• If you are interested only in modeling an agreement, disregarding the offering, then you should not use this pat-
tern, but the SAgreement pattern. 

Related Patterns 
• The SOffering DROP should be applied before this for properly defining the involved offering. 

• In a refinement specification for this DROP, the RoleMixin FOP should be fully applied for defining the al-
lowed types of Hired Service Providers and Service Customers (e.g. Person, Organization etc.). 

  



4.2 Deriving DROPs from Domain Ontologies 

DROPs can also be extracted from Domain Ontologies. Although these ontologies are in the lower 
generality level, it is possible to observe very similar modeling problems in related domains. The 
modeling solutions for these problems, even containing domain peculiarities, can be analyzed to 
check if a pattern is manifested in them. If this is the case, the modeling solutions can be generalized 
as a DROP. Of course the identification of a potentially reusable fragment in a single domain ontolo-
gy is not enough to make it a pattern. However, once assured that this pattern is indeed recurrent in 
ontologies of related domains, this fragment can be generalized and packaged as a new DROP. 

Hence, in a nutshell, is the following: we first identify a model fragment that is significantly similar 
to other fragments already used to solve the same problem in other domains (in particular, the struc-
ture of the model fragments in the corresponding domain ontologies should be the same); then this 
fragment must be generalized in order to become applicable in similar situations in which it is useful. 
Finally, this general fragment can be packaged as a DROP, gathering all associated information, as 
explained in Subsection 4.1. 

In order to show the extraction of DROPs from domain ontologies, let’s take two domains related 
by their organizational characteristics: Software Organizations and Universities. Figure 11 presents 
portions of the ontologies for these domains, focusing on how people are involved in these two types 
of organizations. 

 
Figure 11. Model fragments from the Software Organization and University domain ontologies. 

Considering these models fragments, we can see that, besides dealing with particularities of the relat-
ed domains (such as projects and teams in software organizations, and students, courses and enroll-
ments in universities), they address a problem shared by both domains: managing people in employ-
ments. Employment is a general modeling problem for the broader domain of organizations. A Soft-
ware Organization employs Developers assigning to them Software Development Roles; A University 
admits Professors, for occupying University Positions. Generally observing the given models, one can 
see an Organization employing People for playing an Organizational Role. Thus, the model fragments 
shown in Figure 11 can be generalized giving rise to the Employment DROP shown in Figure 12. In 



the Employment DROP, the Employment relator mediates Organization, Person (which plays the 
role of Employee in the context of an Employment), and Organizational Role. Organizational 
Role is a social role defined by and recognized by an Organization. 

 
Figure 12. Employment DROP. 

It is worth to mention that if a core ontology on organizations is available, an equivalent pattern could 
be extracted by the process explained in Subsection 4.1. Thus, the same resulting DROP can be 
achieved from two different ways: by fragmenting a core ontology, or by generalizing recurrent frag-
ments of domain ontologies. 

5 Using Conceptual Ontology Patterns in Building Reference Ontologies 

Throughout the Ontology Engineering process, different types of pattern can be reused in a variety of 
ways. Our focus here is on reusing FOPs and DROPs for building reference core and domain ontolo-
gies. Figure 13 shows, on the left-hand side, the ontology generality levels, and on the right-hand side, 
the corresponding types of COPs that can be extracted and where they apply. We should emphasize 
that here we do not aim at defining a pattern-based Ontology Engineering method. However, any 
method that considers the application of patterns can be used (e.g., [4] and [35]). 

 
Figure 13. Conceptual Ontology Patterns Extraction and Application. 

5.1 Engineering with Reuse: Building a Service Domain Reference Ontology by reusing 
DROPs and FOPs 

In order to illustrate the combined application of DROPs and FOPs for building a reference domain 
ontology, let's consider the case of a reference ontology for the Car Rental domain, aiming at answer-
ing the following competency questions (CQs): 
  



CQ01. How is a rent-a-car agency structured? 
CQ02. What is a rent-a-car service offering? 
CQ03. Who is involved in a rent-a-car service offering? 
CQ04. How is a rent-a-car service offering described? 
CQ05. Which are the terms and conditions of a rent-a-car service offering? 
CQ06. What is a rent-a-car service agreement? 
CQ07. Who is involved in a rent-a-car service agreement? 
CQ08. To which rent-a-car service offering does a rent-a-car service agreement conform? 
CQ09. Which car is located in a car rental? 
CQ10. Who are the enabled drivers in a car rental? 

These competency questions have been analyzed, and many of them are, in fact, adapted from compe-
tency questions associated to previously presented patterns, namely: CQ02 to CQ08. The reuse of 
CQs indeed has oriented the DROPs application during our modeling efforts here. 

The first question, CQ01, does not deal with services, addressing organizations composed of organ-
izational units. For modeling this, we have applied twice the first variant Subkind Pattern (see Table 
2), creating only one specialization for each kind. Thus, considering the Car Rental domain, a Car 
Rental Agency is a subkind of the Organization kind, and is composed of Car Rental Branch, which 
is a subkind of the Organizational Unit kind. The two applications of this FOP application are shown 
in Figure 14 (E). 

CQ02 and CQ03 deal with a car rental service offering and are addressed by the application of the 
SOffering DROP discussed in Subsection 4.1. Thus, the pattern is added to the domain model and its 
concepts and relations are extended, as shown in Figure 14 (A) and (B): Car Rental Offering is sub-
type of Service Offering, Car Rental Provider is a Service Provider, Potential Car Rental Commu-
nity is a Target Customer Community, and Potential Car Renter is subtype of Target Customer. 
The relations are also specialized, resulting in the fragment: Car Rental Provider offers Car Rental 
Offerings to a Potential Car Rental Community composed of Potential Car Renters. Moreover, the 
application of SOffering requires the application of other patterns, because two modeling problems 
remain opened. Firstly, the Car Rental Provider and the Potential Car Renter are rolemixins that 
must be completed in the domain ontology to keep the model consistency. Thus, the RoleMixin Pat-
tern (Table 2) should be applied in both cases in order to achieve a well-founded solution. The pro-
vider is a role that can be played by a Car Rental Agency or a Car Rental Branch (see Figure 14 
(C)), reusing the subkinds previously defined. The renter is a role played by a Person or an Organiza-
tion (see Figure 14 (D)). 

 
Figure 14. Combined application of DROPs and FOPs in the Car Rental domain. 

The model fragment shown in Figure 14, addressing CQ01-CQ3, is useful to show the combined ap-
plication of both DROPs and FOPs. There are two main perspectives. First, the application of the 



SOffering DROP had to be combined with applications of the RoleMixin Pattern, in order to pro-
duce a complete consistent model fragment. It allows the definition of more flexible patterns, cover-
ing a larger range of situations, but still offering a reuse-oriented support for the ontology engineer. 
Second, as aforementioned, the SOffering DROP is, by itself, an application of following FOPs: Rela-
tor Pattern, Collective Pattern and Category Pattern (see Table 2). Thus, the foundational 
knowledge of a set of FOPs is inherited by a DROP, where core knowledge is added, and then the 
accumulated knowledge is transferred to the domain representation in a chain. 

CQ04 (How is a rent-a-car service offering described?) is addressed by applying the SODescrip-
tion DROP, where a Car Rental Offering Description is created by specializing Service Offering 
Description and describing the already defined Car Rental Offering (a subtype of Service Offering), 
as shown in Figure 15 (A) and (B). This DROP application also requires to be complemented by a 
FOP, since Service Offering Description is a category, which shall be specialized into different 
types of descriptions for a service. Thus, by applying the Category Pattern, the complete answer for 
CQ04 comes specializing the Car Rental Offering Description into two kinds of offering descrip-
tions: Car Rental Offering Folder and Car Rental Offering Web Page, as shown in Figure 15 (C). 

To address CQ05 (Which are the terms and conditions of a rent-a-car service offering?), we ap-
plied the SOCommitment DROP. Since we have previously applied the SOffering DROP, the SO-
Commitment introduces only one new concept and three relations for the domain model, reusing the 
other already defined elements. Thus, the Car Rental Offering Commitment concept is created ex-
tending Service Offering Commitment, and the corresponding relations (partOf, inheres in, and ex-
ternally depends on) are also specialized (as shown in Figure 15 (D) and (E)). 

Figure 15 shows the complete Car Renter Offering sub-ontology complementing Figure 14 with the 
new DROPs and their applications. 

 
Figure 15. Car Rental Offering sub-ontology, with COPs applied. 

CQ06-CQ10 are addressed by the Car Rental Agreement sub-ontology, as Figure 16 shows. Starting 
from the three first questions (CQ06. What is a rent-a-car service agreement?; CQ07. Who are in-
volved in a rent-a-car service agreement?; and CQ08. To which rent-a-car service offering does a 
rent-a-car service agreement conform?), they are covered by the SOfferAgree DROP (Figure 16 (A)). 
Briefly, a car rental agreement is an agreement between a car lessor and a car renter, conforming to a 
previously established car rental offering. This way, by applying the SOfferAgree DROP through 
extension (see Figure 16 (B)), we modeled Car Rental Agreement as a subtype of Service Agree-



ment; Car Lessor as a subtype of Hired Service Provider, and Car Renter as a subtype of Service 
Customer. The Car Rental Offering (Service Offering), the Car Rental Provider (Service Provid-
er), and the Potential Car Renter (Target Customer) are imported from the Car Rental Offering sub-
ontology. 

However, the SOfferAgree DROP requires the application of the RoleMixin FOP in order to com-
plete the model fragment, defining the possible types of Hired Service Providers and Service Cus-
tomers. Figure 16 (C) shows the RoleMixin Pattern application, defining the two types of Car Les-
sor as an agency or a branch; and Figure 16 (D) shows the RoleMixin Pattern application, defining 
person and organization as the two types of Car Renter. 

Finally, let’s consider CQ09 (Which car is located in a car rental?) and CQ10 (Who are the ena-
bled drivers in a car rental?). These questions concern domain specific characteristics, not covered by 
services in general, and thus, not supported by the service DROPs extracted from UFO-S. Hence, the 
option is to apply a FOP. CQ09 is addressed by modeling cars that are assigned to a car rental. Thus, 
the Role Pattern applies. From a kind Car, we define the role Rented Car in a Car Rental Agree-
ment (Figure 16 (E)). CQ10 is addressed similarly, applying the Role Pattern to specialize Person as 
the role Enabled Driver, indicated in a Car Rental Agreement (Figure 16 (F)). 

 
Figure 16. Car Rental Agreement sub-ontology, with COPs applied. 

Figures 14 to 16 show some of the concepts of the domain ontology as specializations of concepts 
from the DROPs (and, thus, from the core ontology). This occurs because, in this case, we have 
adopted the reuse by extension approach for reusing DROPs. If we had adopted the reuse by analogy 
approach for reusing DROPs, this would not have happened. Figure 17 shows the resulting Car Rental 
Agreement sub-ontology, if the reuse by analogy approach had been used. In this case, the concepts 
related to the car rental agreement (see Figure 17 (A)) replace the corresponding concepts of the 
SOfferAgree DROP, instead of specializing them (as in Figure 16). We should reinforce that, in both 
cases, FOPs from Table 2 are always reused by analogy, independently from the approach chosen for 
reusing DROPs, as Figures 16 and 17 show. 



 
 Figure 17. Car Rental Agreement sub-ontology following the Reuse by Analogy Approach. 

Besides reusing conceptual model fragments, axioms defined in a COP can also be reused. This is a 
striking feature when applying DROPs, due to similarities between the domains being modeled, 
where, in general, concepts and relations are extended. To illustrate this process, Table 4 shows, in the 
first line, an axiom of the SOCommitments DROP and its description and, in the second line, a spe-
cialization of this axiom applied to the Car Rental domain. 

Table 4. Reusing Axioms from DROPs. 

Source Axiom Description 

SOCommitments 
DROP 

∀so: ServiceOffering, 
sp: ServiceProvider, 
tcc: TargetCustomerCommunity, 
soco: ServiceOfferingCommitment 
(involves(so, sp, ServiceProvider ) ˄ in-
volves(so, tcc, TargetCustomerCommunity) ˄ 
partOf(soco, so)) ! (inheresIn(soco, sp) ˄ ex-
ternallyDependentOn(soco, tcc))  

Each Service Offering Commitment 
that is part of a Service Offering in-
heres in the Service Provider that 
offers the Service Offering, and is 
externally-dependent on the Target 
Customer Community to which this 
offering is offered. 

Domain Ontology ∀cro: CarRentalOffering, 
crp: CarRentalProvider, 
pcrc: PotentialCarRenterCommunity, 
croc: CarRentalOfferingCommitment 
(involves(cro, crp, CarRentalProvider) ˄ in-
volves(so, pcrc, PotentialCarRenterCommunity) 
˄ partOf(croc, cro)) ! (inheresIn(croc, crp) ˄ 
externallyDependentOn(croc, pcrc)) 

Each Car Rental Offering Commit-
ment that is part of a Car Rental Of-
fering inheres in the Car Rental Pro-
vider that offers the Car Rental Offer-
ing, and is externally-dependent on 
the Potential Car Renter Community 
to which this offering is offered. 

 
As one can see, both axioms are equivalent, but the second one is more specific, once it is applied to a 
more specific domain.  

The reuse of axioms also has its origin at the foundational level. As discussed in depth and empiri-
cally demonstrated in [36], when the Relator Pattern is applied in a configuration in which it medi-
ates a set of Roles, a formal constraint that modelers typically want to include in the model is one that 
dictates that these roles are mutually disjoint in the scope of that relator. For instance, a criminal in-
vestigation can connect a suspect, a victim and an investigator; all these roles are played by individu-
als of the same Kind (Person); however, it is not the case that, in the scope of a given investigation, 
these roles can be played by the very same individual! In Table 5, we use the example of this FOP to 
illustrate an axiom defined for a FOP, reused by a DROP, and then by a domain ontology. 



Table 5. Reusing Axioms from FOPs and DROPs. 

Source Axiom Description 
Relator Pattern ex-
tended with a formula 
schema defining the 
mutual disjointness of 
Roles in the scope of 
a Relator 

∀r: RelatorUniversal1 ! (∃e1, e2 media-
tes(r, e1, Role1) ˄ mediates (r, e2, Ro-
le2)) ˄  (∀r,  e1, e2, r: RelatorUniversal1 ˄ 
mediates(r, e1, Role1) ˄ mediates (r, e2, 
Role2) ! e1 ≠ e2)  

For every relator r of type RelatorUniver-
sal1, we have that r mediates endurants 
playing the roles Role1 and Role2. Moreo-
ver, for every relator r of type RelatorUni-
versal1, we have that the individuals play-
ing roles R1 and R2 in the scope of r must 
be distinct. 

SOfferAgree DROP ∀a:  ServiceAgreement ! (∃p, c is-
BoundTo(a, p, HiredServiceProvider) ˄ 
c isBoundTo(a, c, ServiceCustomer)) ˄  
(∀ a, p, c 
a: ServiceAgreement ˄ 
isBoundTo(a,p, HiredServiceProvider) 
˄ isBoundTo(a,c,ServiceCustomer) ! 
p ≠ c)  

For every Service Agreement a, there are 
individuals bound to a playing the roles of 
Hired Service Provider and Service Cus-
tomer. Moreover, in the scope of a given 
Service Agreement a, these roles cannot be 
played by the same individual. 

Domain Ontology ∀a: CarRentalAgreement ! 
(∃l,r,c,d isBoundTo(a,l,CarLessor) ˄ 
isBoundTo(a,r,CarRenter) ˄ indica-
tes(a,c,RentedCar) ˄ indica-
tes(a,d,EnabledDriver)) ˄ 
(∀a,l,r 
a: CarRentalAgreement ˄ 
isBoundTo(a,l,CarLessor) ˄ 
isBoundTo(a,r,CarRenter) ! l ≠ r)) 

For all Car Rental Agreement, there are a 
Car Lessor, a Car Renter, a Rented Car, 
and an Enabled Driver. The Car Lessor 
and the Car Renter must be distinct indi-
viduals in the scope of a given Car Rental 
Agreement to which they are bound.. 
Moreover, this Car Rental Agreement indi-
cates the Rented Car and the Enabled 
Driver for that rental. 

The first line presents an axiom defined to exclude the aforementioned situation at the level of the 
Relator Pattern. We define a formula schema (line 1 of this table) that makes use of a ternary predi-
cate mediates(r,e,R) (meaning that endurant e is mediated by relator r instantiating the type R)2 in 
order to define a case where two roles3 are disjoint in the scope of relator of a given type. In the se-
cond line of that table, we instantiate that formula schema by replacing RelatorUniversal1, Role1 and 
Role2 with the core-level universals Service Agreement, Hired Service Provider and Service Custom-
er, respectively. Moreover, we replace the mediates(r,e,R) relation with the isBoundTo(r,e,R) relation 
in a way that the latter implies the former, plus the constraint that reinforces that R is of the proper 
type (i.e., either Hired Service Provider or Service Customer). Finally, in the third line of this table, 
when applying the SOfferAgree DROP to the Car Rental domain, we, once more, specialize this for-
mula schema by having the universals Car Rental Agreement, Car Renter and Car Lessor as domain-
level specializations of ServiceAgreement, Hired Service Provider and Service Customer, respective-
ly. Moreover, we extend this domain-level instantiation of that schema by including two new domain-
specific concepts (Enabled Driver and Rented Car) and a two new specializations of the mediates 
relation: indicates. The bold fragment of the formula in line 3 of this table connects an instance of Car 
Rental Agreement with instances of Rented Car and Enabled Driver (see Figure 15). 

5.2 Engineering with Reuse: Guidelines for Using DROPs and FOPs 
The approach followed in the previous example is now defined as a guideline, which can be used in 
tandem with any ontology engineering method that professes the use of ontology patterns. The model-
er should start by trying to reuse DROPs. For reusing DROPs, the following steps should be done: 

                                                        
2 Of course, if mediates(r,e,R) then mediates(r,e), where the latter is the previously defined existential dependence relation of 
mediation between relators and their relata.  
3 We use the case of two roles here just for the sake of simplicity. The formula schema can obviously be extended to define 
mutual disjointness across an arbitary number of roles in the scope of a relator.  



A. Know the target domain and the related DROPs. Once the ontology engineer knows the domain 
and the scope of the ontology to be built, she has to look for DROPs related to that domain. By study-
ing the candidate patterns, many modeling decisions can be expedited and more elements can be re-
used (e.g., model fragments, CQs, axioms and concept definitions). 

B. Find the applicable DROPs. For each domain-specific modeling problem, look for a DROP that 
can be reused to solve it. This can be done by looking the pattern’s intent, model fragment and CQs. 

C. Select the Reuse Approach to Adopt and Apply the DROPs. As discussed in Section 2, there 
are two reuse approaches that can be adopted: reuse by extension or reuse by analogy. Before apply-
ing any DROP, the ontology engineer should choose which reuse approach to adopt. The approach 
should be used for all DROPs, i.e., it is not recommended to reuse some DROPs by extension and 
others by analogy (notice that we are only talking about DROPs, since FOPs are typically reused by 
analogy). When reuse by extension is chosen, if a DROP matches the problem at hand, select it and 
add the corresponding model fragment directly to the domain model. Typically, the DROP fragment 
is extended in the domain model, creating new specialized concepts and relations. This reuse ap-
proach allows for some modifications to be applied to the original pattern, such as adding new proper-
ties to the concepts and restricting cardinality constraints. This approach was used in Subsection 5.1 
(Figures 14 to 16). Another possibility is to take the pattern fragment, replace their concepts by the 
corresponding domain concepts, and to do the necessary changes in the resulting model fragment (re-
use by analogy). The result of applying such approach is partially shown in Figure 17 for the case of 
the Car Rental Agreement sub-ontology. The first approach (reuse by extension) is preferred, mainly 
if some DROPs are applied many times in the same model, since this approach preserves the original 
domain types of the modeled elements. Reuse by extension is also useful for keeping track to the 
DROPs reused (and to the corresponding core ontology, if the DROPs are extracted from a core on-
tology). This could be useful for latter integrating the domain ontology with others developed using 
the same DROPs (and, thus the same core ontology) as basis. On the other hand, reuse by analogy 
makes the resulting domain ontology simpler, what certainly is valuable. At this point, axioms can 
also be reused (incorporated or specialized), and CQs can be rewritten for standardization. Observe 
the related patterns item in the DROP specification, and apply the mandatory patterns, and, if need-
ed, the optional patterns. This can be done as many times as needed, reusing a number of DROPs and 
FOPs. 

D. In a case that no DROP is applicable: check if there is a FOP to support the modeling problem, 
and apply it if necessary (see FOP application guidelines). Remember that the FOPs shown in Table 2 
are always reused by analogy. 

E. Check the domain model consistency and coverage. Check if the whole model is consistent and 
if it covers all the planned scope (all CQs are answered). At this point, besides the reused axioms, new 
domain-specific axioms can be added. If DROPs are not available to address some of (or even all) 
competency questions for the ontology being developed, the approach illustrated in Figure 6 should be 
followed for achieving a valid OntoUML structural model. For using the FOPs presented in Table 2, 
the following steps should be done: 

F. Categorize the main concepts with OntoUML categorizations. Once a main domain concept is 
identified, we must detect which of the OntoUML meta-types should be applied to model this con-
cept. Determining the correct meta-type, involves a precise analysis of ontological aspects covered by 
OntoUML meta-properties presented in Section 2.2. The systematic choice of the proper stereotype 
for a given concept in a given situation can be precisely identified by using the techniques presented 
in [20]. 

G. Identify a proper FOP. The proper choice of which meta-type should be used for modeling a 
domain concept automatically triggers the application of the corresponding OntoUML FOP (see Table 
2). The only exception when this domain concept is should be modeled as a kind (the only terminal 
symbol in the language). For instance, if a concept is categorized as a Relator, we need to apply one 
of the possible variations of the Relator Pattern. Once we select the possible FOPs to be applied for 
this categorization, we can use the competency question to find out which specific FOP variant must 
be applied. 



H. Apply the FOP. The application of a FOP implies the instantiation of the general meta-types 
comprising it with domain concepts (reuse by analogy [6]). Frequently, these instantiations can be 
done by reusing domain classes and relations that are already represented in the model. As specified 
in Table 2, the application of these FOPs frequently triggers the application of other associated FOPs 
in a recursive manner. The recursive application of series of FOPs terminates when a terminal symbol 
(a Kind) is reached. In this manner, OntoUML guarantees that all elements of domain-level model 
fragment represented in the language obey a unique and determinate principle of identity. An illustra-
tion of the process of building a domain conceptual model just by recursively applying OntoUML 
FOPs was shown in Figure 6. In that model, the choice of using the second variant of the Relator 
Pattern could be motivated by a CQ such as: “What kind of relation is established between a Cus-
tomer and a Supplier?”. 

6 Experience Report: Evaluating the Proposed Approach through the 
Design of Ontology Patterns Languages 

In order to evaluate and refine the research reported in this paper, we have applied it in a series of 
initiatives in different domains. One important part of our strategy for exploring and promoting the 
creation and application of COPs in a reuse-oriented process is the development of Ontology Pattern 
Languages (OPLs) [2, 37]. While FOPs tend to be generally applied, DROPs for a specific field are 
very interrelated [8]. For this reason, DROPs are usually applied in combination (with other DROPs 
and FOPs), bearing to each other relations such as co-occurrence dependence (patterns must be ap-
plied together), temporal precedence (a pattern must be used before another one can be used) or mutu-
al exclusion (patterns are alternatives to each other as a solution to a given instance of a modeling 
problem). An OPL organizes DROPs in a guided application process by explicitly representing these 
relations. 

An Ontology Pattern Language (OPL) is a network of interconnected DROPs that provides holistic 
support for solving ontology development problems for a specific domain. An OPL contains a set of 
interrelated DROPs, plus a modeling workflow guiding on how to use and combine them in a specific 
order, and suggesting patterns for solving some modeling problems in that domain [37]. We have ap-
plied the guidelines discussed in Subsection 4.1 for deriving DROPs for OPLs in five different com-
plex domains. One of them is Service OPL (S-OPL), whose patterns were extracted from UFO-S, a 
commitment-based core ontology for services [10], as discussed in Subsection 4.1. The other four 
OPLs are briefly described in the sequel. More details about them can be found in [37]: 
• Software Process OPL (SP-OPL) [8]: consists in a network of ontology modeling patterns cov-

ering the software process domain. Its patterns were extracted from the Software Process Ontol-
ogy [38], and has more than 40 patterns addressing software process definition in three levels: 
standard, intended and performed processes 

• ISO Software Process OPL (ISP-OPL) [39]: is a specialization of SP-OPL focusing on the 
terminology and process structure provided by ISO standards devoted to software processes. It is 
based on an ontological analysis of the ISO/IEC 24744 metamodel (Software Engineering Met-
amodel for Development Methodologies – SEMDM), and involves a set of 27 patterns regarding 
work units, work products and human resources. 

• Measurement OPL (M-OPL) [40]: provides ontology modeling patterns addressing the core 
conceptualization about measurement. It is composed of 19 patterns regarding measurable enti-
ties, measures, measurement units & scales, measurement procedures, measurement planning, 
and measurement & analysis. 

• Enterprise OPL (E-OPL) [41]: provides ontology modeling patterns for enterprise ontology 
modeling. It is composed of 22 patterns addressing common aspects to several enterprises: or-
ganization arrangement, team definition, institutional roles, institutional goals, and human re-
source management. 

 
As discussed in Section 4, several DROPs are supported by FOPs, thus, inheriting the FOP structure. 
However, in our first OPLs, we tried to make it transparent for the user, which was not supposed to 
know the FOPs for using an OPL. After some experimentation, however, we observed that knowing 



the FOPs that can be applied in combination with each DROP reduces modeling errors and results in 
more consistent domain ontologies [39]. Thus, we decided also to include FOPs as related patterns for 
supporting the combined application of COPs when using OPLs. 

Regarding pattern application, these OPLs have being used for building domain ontologies in sev-
eral initiatives. For instance, in an experiment, S-OPL was applied by a group of 10 people for build-
ing 5 domain ontologies in service related domains (condominium administration, cable TV, cleaning 
services, hotel hosting, and passengers transport). Most of the participants classified the ontology de-
velopment aided by S-OPL as simple and intuitive, resulting in better quality ontologies. S-OPL was 
used also in a in a real case study to model an email service in a big Italian company [34]. In another 
experiment, ISP-OPL was applied by a group of 19 people, resulting in 8 software process domain 
ontologies comprising human resource management, measurement, risk management, software archi-
tectural design, software configuration management, software documentation management, software 
maintenance, and stakeholder requirements definition. In the ISP-OPL experiment, when comparing 
the development of ontologies with and without the use of the ISP-OPL patterns, the majority of the 
participants that had a previous experience developing ontologies reported an expressive gain in 
productivity and quality of the results [39]. In addition, the reuse of patterns has promoted some 
standardization between the resulting ontologies. In general, these experiment results have shown that 
pattern application can improve the ontology engineering process by reducing complexity, improving 
productivity and resulting in better quality ontologies. Moreover, we have been verifying the real re-
currence of the DROPs and collecting results and insights that are helping to improve the approaches 
for creation and application of DROPs. As we advance in the pattern application guidelines, the use of 
OPLs also advances, given the close relation between the two approaches. 

It is important to highlight that it is not intent of this paper to discuss how COPs can be collectively 
organized (e.g. in a catalog or OPL). For a detailed discussion on OPLs, see [2, 37]. 

7 Tool Support for Ontology Pattern Application in OLED 

In order to support the approach proposed here, we have extended the OLED4 (OntoUML Editor) tool 
[42]. OLED is a model-based open-source computational tool, which provides a complete framework 
to support the modeling, design, verification, validation and implementation activities of the ontology 
development process. It provides a number of features, such as construction, evaluation, simulation 
and transformations of OntoUML models [9]. The extension proposed in the context of the present 
work automates the process of definition and application of FOPs and DROPs, following the ap-
proaches proposed in this paper. 

In order to provide support for a pattern-based approach for ontology modeling, OLED was 
equipped with a built-in FOP library. Moreover, it supports the modeler in the definition of her own 
libraries of DROPs. 

For the case of FOPs, we collected the main foundational patterns of UFO-A (see Section 3) and 
defined a pattern palette in the tool. Picking up one pattern from the palette, the users can configure 
and apply the patterns guided by the Pattern Application feature, as depicted in Figure 18. As one can 
see in this figure, the right-hand side of the window illustrates the model fragment that represents the 
applied FOP (in this case, the Subkind Pattern – variant 2). The left-hand side allows customizing 
the specific application of a FOP. It is possible to set the name of the domain concepts, to choose one 
of the possible stereotypes for a type (since a generic stereotype is used to define a pattern, e.g. Sortal, 
Moment, Rigid Sortal). The modeler can also choose to instantiate the classes forming the pattern by 
selecting a class that is already present in the model being built. This last option is one of the most 
important features in order to combine patterns, since concepts already introduced in the current con-
ceptual model can be reused. In order to improve the usability of OLED, we also implemented the 
buttons “Add New Concept”, “Remove Concept” and “Create Concepts”. The addition of new con-
cepts depends on which pattern is being applied. For the case of partitions or generalizations, this but-
ton adds new subtypes; for other cases, such as the Relator Pattern, it can add a new related concept. 

                                                        
4OLED: https://github.com/nemo-ufes/ontouml-lightweight-editor 



Now, suppose in this example that the class named “General” in Figure 18 is not stereotyped as a 
Kind but as a Subkind. In this case, the tool would again call for another instantiation of this window 
in which a new recursive instantiation of Subkind Pattern could be configured. This process would 
be repeated in a coordinated way by the tool until a terminal symbol (i.e., a Kind) is reached. 

 

Figure 18. FOP Application window – Subkind Partition FOP. 

Considering DROP libraries, instead of defining a default palette for the patterns, it is possible to cre-
ate customized libraries. These libraries can be created in the tool by defining each pattern in a dis-
tinct diagram and adding the related information. The suitable libraries can be imported and applied to 
build core and domain ontologies. In order to improve the sharing of libraries of DROPs, a XML file 
saves the information related to each pattern, namely: description, competency questions, and axioms 
(as OCL rules). This feature also makes possible for the combination of different types of COPs, since 
the OLED extension enables to build a core ontology by applying FOPs, and then saving fragments of 
this core ontology in a DROP library. These DROPs (and FOPs), in turn, can be reused to build do-
main ontologies. 

As well as for FOPs, OLED has also a DROP Application feature. Once a DROP library is chosen, 
the palette shows its patterns. When a DROP is selected for application, the DROP Application win-
dow shows the DROP model and related information, as illustrated in Figure 19. 

 
Figure 19. DROP Application window – SOfferAgree DROP 

As one can see, this window is very similar to the FOP Application window. In the right-hand side, 
the window presents the DROP conceptual model, and, in the left-hand side, the configuration options 
for that pattern. In addition, as depicted in Figure 20, the tool also provides a way to verify the DROP 
description (through the button “DROP info”). 



 
Figure 20. Description Window for SOfferAgree DROP. 

This window presents the specific information for the selected DROP, in order to provide a simple 
way to consult the applicability of the pattern. Here, we have information about the pattern descrip-
tion, its associated competency questions and axioms. Regarding the latter, the axioms are written in 
OCL and added to the model when the pattern is applied. With this feature, the tool incorporates the 
axioms defined in each DROP to the domain ontologies being built. 

Finally, Figure 21 shows an example of how these features contribute to building domain ontolo-
gies. First, the SOfferAgree DROP is selected in the palette (left-hand side of Figure 21) to be reused. 
A new window for DROP configuration opens (Figure 19). Next, the DROP concepts are included in 
the current model (highlighted concepts), and can be specialized with domain specific concepts and 
relations, which can be complemented with the application of a FOP or another DROP. 

 

 
Figure 21. OLED's support for reusing COPs. 

 



8 Related Work 

There are few works addressing the combined application of OPs, most of which focus on reusing 
patterns of the same generality level, or of the same type. 

Uschold and colleagues [43] consider the use of an implementation guide for building domain on-
tologies. This guide intends to provide a computer-based toolset that helps to capture aspects of a 
business and to analyze them to identify and compare options for meeting the business requirements. 
This process has been applied, for instance, in the Gist ontology [44]. Gist has the main purpose of 
laying a foundation for improving interoperability and integration among IT systems for business do-
mains. Once the generic concepts for business are widespread and well known, the Gist ontology pro-
vides a catalog of generic concepts for the enterprise domain. The Gist’s intents are similar to the idea 
of DROPs, but restricted to the enterprise domain. Gist can be considered an enterprise core ontology 
that establishes a method for selecting and applying its concepts. Hence, it would be plausible to con-
sider the Gist’s fragments as DROPs. As Gist, others reliable generic ontologies are capable of serv-
ing as a potential source of DROPs for specific domains. One of our main concerns here is to show 
that core ontologies can take advantage of using foundational ontologies and consequently FOPs. 
Moreover, we also focus on providing guidelines for extracting DROPs from core ontologies 

In [2], Gangemi and Presutti present six categories of patterns (namely: structural, content, lexico-
syntactic, reasoning, presentation and correspondence) for ontologies at the design and implementa-
tion levels. Their Content Patterns are quite similar to our DROPs. However, they do not consider 
foundational patterns nor discuss how patterns can be combined. An evolution of this work is present-
ed by Falbo and colleagues [6], which extend the Gangemi and Presutti's work [2]. In [6], they change 
the pattern classification, which now consider DROPs and FOPs as Content OPs (which were re-
named to Conceptual OPs - COPs). They also briefly show how these types of COPs can be used for 
building ontologies (reuse by analogy and reuse by extension). In fact, we took that work as our base-
line. Here, we presented approaches including the mechanism for deriving FOPs and DROPs. We also 
discussed how FOPs and DROPs are applied in a systematic and combined way. Finally, we present a 
software tool supporting the definition and application of these COPs. 

In another work of the same group, Falbo and colleagues [8] discussed how core ontologies can be 
organized as Ontology Pattern Languages (OPLs). An OPL provides guidance for the application of 
DROPs to build domain ontologies. OPLs are a relevant example of the combined application of 
COPs, when DROPs are reused in forming a complex pattern, or even in sequence. However, typical-
ly, in this line of work, OPLs explore only the application of DROPs (i.e., domain-related OPs). As a 
contribution of this paper, we present how FOPs, combined with DROPs, are useful for supporting the 
development of domain ontologies. This combination of COPs at different level is useful especially 
for: (i) applying a FOP when there is no DROP suitable for meeting a domain requirement; (ii) apply-
ing a DROP enriched by a FOP background; (iii) combining different DROP applications in structur-
ally valid ontology configurations; and (iv) combining DROPs from different related OPLs. Consider-
ing all these situations, we demonstrate here how the inclusion of FOPs can be beneficial for OPLs. 
Moreover, the approach for extracting DROPs from core ontologies, presented in Subsection 4.1, sys-
tematizes the way that DROPs that constitute an OPL can be derived. In fact, making explicit the ra-
tionale underlying this process is an important contribution of this work. 

In another work [45], Fernández-López et al. present a systematic method for reusing operational 
ontologies. Different from the work presented here, they tried to formalize the method of building 
operational ontologies, reusing ontologies from different domains, in order to create a network of on-
tologies. This method analyzes the modeled concepts, as well as related axioms, in order to find the 
more suitable correlated ontologies to be applied. Afterwards, two (or more) ontologies are mapped 
by the concepts that they share. In that approach, the authors do not consider a unique core ontology 
as source to build the ontology at hand. Instead of this, they provide a method to identify the suitable 
ontologies and join them. Although in our approach we also apply guidelines to the extraction and 
application of COPs, we consider that core ontologies should derive a wide set of generic patterns to 
model the intended domain and then, whenever necessary, these patterns might be extended to reflect 
each specific domain. 



9 Final Considerations 

Ontology Patterns have been recognized as a beneficial approach for Ontology Engineering [2, 3]. 
This paper discussed how Content Ontology Patterns (FOPs and DROPs) can be systematically de-
rived and reused for developing reference domain ontologies. The presented approaches for deriving 
FOPs and DROPs have helped achieving a consistent and useful set of patterns that are being applied 
in different initiatives, including the development of OPLs as well as the evolution of an OntoUML 
computational supporting tool. 

The application of these two types of COPs from different generality levels enriches the ontology 
development process in many ways: whilst FOPs add the foundational grounding for the domain 
models, DROPs support the reuse of core domain knowledge in a systematic manner. By combining 
these types of patterns, we have that: (i) FOPs can be applied when there is no suitable DROP for the 
problem at hand; (ii) FOPs can complement a DROP application by adding the necessary concepts to 
make the model consistent; and (iii) when a DROP is built carrying a FOP structure, its use causes a 
chained application of both foundational and domain aspects in the same fragment. In general, the 
combined use of these two types of COPs can enrich a domain ontology model with structural founda-
tional and core domain knowledge. 

Besides these advantages from a modeling point of view, COPs can also contribute for reusing 
competency questions and axioms from higher-level ontologies. The key point is that when develop-
ing domain ontologies, foundational aspects count as much as the domain aspects. Thus, for building 
well-founded and domain compliant ontologies, it is essential to reuse both aspects. This reuse can be 
achieved by applying foundational and domain-related patterns in combination. 

Concerning evaluation, the proposed approach for extracting DROPs from core ontologies (see 
Subsection 4.1) has been applied for deriving the constituent DROPs of five Ontology Pattern Lan-
guages. In this paper, we showed its application for deriving the patterns of an OPL in the service 
domain (S-OPL) [34]. This series of evaluation studies provide us with invaluable feedback for evolv-
ing this approach, culminating with a proposal that makes explicit the rational behind the process 
through which DROPs are elicited for OPLs. The approach presented here is now being used by inde-
pendent researchers to derive the DROPs for an OPL in the domain of collaboration, taking as basis a 
Collaboration Core Ontology [46]. This initiate shall serve as yet another evaluation study for our 
approach. Regarding the guidelines for using DROPs and FOPs in combination for building domain 
ontologies, they have been applied in several initiatives using OPLs (see, for instance, [39] and [34]). 

We claim that when DROPs are extracted from a core ontology and organized as an OPL, we can 
achieve higher levels of reuse. In particular when, besides the models and concept definitions, the 
DROPs include competency questions (CQs) and axioms. OPLs guide the ontology engineer through 
the set of DROPs. By providing the CQs, it is easier for she to identify the useful patterns and adapt 
them for the case in hands. Thus, the reuse process becomes straightforward, as in the case discussed 
in Section 5.1. On the other hand, if DROPs are extracted from domain ontologies and put into cata-
logues, containing less information (for instance, without clearly presenting the CQs, definitions and 
axioms), reuse becomes harder. 

As future work, we are using the COPs derivation and application approaches for improving and 
increasing the available set of patterns (especially in OPLs). In this context, a comprehensive and nav-
igable specification is to be produced and published in order to improve the COPs availability. We are 
also investing efforts in evolving some aspects of the OLED tool, mainly for integrating different pat-
terns libraries and improving the model construction usability. Finally, we are planning additional 
empirical studies to better demonstrate the advantages of this pattern-based approach in which FOPs 
and DROPs are combined, both in terms of the productivity gained and in terms of the cognitive trac-
tability of the resulting models. 

10 Acknowledgements 

This research is funded by the Brazilian Research Funding Agencies CNPq (Processes 485368/2013-7 
and 461777/2014-2) and FAPES (Process 69382549/2014). 



11 References 

1. Noppens, O. and Liebig, T., “Ontology Patterns and Beyond Towards a Universal Pattern Language”, in 
WOP, 2009. 

2. Gangemi, A. and Presutti, V., “Ontology Design Patterns”, in Handbook on Ontologies, Second, S. Staab 
and R. Studer, Eds. Springer, pp. 221–243, 2009. 

3. Blomqvist, E., Gangemi, A. and Presutti, V., “Experiments on pattern-based ontology design”, in Proceed-
ings of 5th International Conference on Knowledge Capture (K-CAP’09), 2009. 

4. Presutti, V., Daga, E., Gangemi, A. and Blomqvist, E., “eXtreme Design with Content Ontology Design 
Patterns”, in Proceedings of the Workshop of Ontology Patterns (WOP’09), 2009. 

5. Guizzardi, G., “On Ontology, ontologies, Conceptualizations, Modeling Languages and (Meta)Models”, In: 
Vasilecas, O., Edler, J., Caplinskas, A. (eds.) Databases and Information Systems IV, pp. 18-39, IOS Press, 
Amsterdam, 2007. 

6. Falbo, R.A., Guizzardi, G., Gangemi, A. and Presutti, V., “Ontology patterns: clarifying concepts and ter-
minology”, in Proc. of the 4th Workshop on Ontology and Semantic Web Patterns, Sidney, Australia, 2013. 

7. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S., “Grounding Software Domain Ontologies in the Unified 
Foundational Ontology (UFO): The Case of the ODE Software Process Ontology”. In: Proc. XI Iberoameri-
can Workshop on Requirements Engineering and Software Environments, pp.244-251. Recife, Brazil, 2008. 

8. Falbo, R.A., Barcellos, M.P., Nardi, J.C., Guizzardi, G., “Organizing ontology design patterns as ontology 
pattern languages”, in Proceedings of the 10th Extended Semantic Web Conference (ESWC’13), Montpel-
lier, France, 2013. 

9. Guizzardi, G., “Ontological foundations for structural conceptual models”, Enschede: Telematica Instituut 
Fundamental Research Series, 2005. 

10. Nardi, J.C., Falbo, R.A., Almeida, J.P.A., Guizzardi, G., Pires, L.F., van Sinderen, M.J., Guarino, N. and 
Fonseca, C.M., “A commitment-based reference ontology for services”, Information Systems, 54, pp.263-
288, 2015. 

11. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.S., “Towards Ontological Foundation for Con-
ceptual Modeling: The Unified Foundational Ontology (UFO) Story”, Applied Ontology, Vol. 10, issues 3-
4, IOS Press, 2015. 

12. U.S. Department of Defense (2011), “Data Modeling Guide (DMG) for an Enterprise Logical Data Model 
(ELDM)”, available online: http://www.omgwiki.org/architecture-ecosystem/lib/exe/fetch.php?media= 
dmg_for_enterprise_ldm_v2_3.pdf. 

13. Scherp, A., Saathoff, C., Franz, T., Staab, S., “Designing core ontologies”, Applied Ontology, vol. 6, pp. 
177–221, 2011. 

14. Guarino, N., “Formal Ontology and Information Systems”, in FOIS’98, vol. 46, 1998. 
15. Guizzardi, G., Wagner, G., Falbo, R.A., Guizzardi, R.S.S, Almeida, J.P.A., “Towards Ontological Founda-

tions for the Conceptual Modeling of Events”, In: 32th Int. Conference on Conceptual Modeling (ER’13), 
pp.327-341. Hong-Kong, China, 2013. 

16. Duarte, B.B., Souza, V.E.S., Leal, A.L.C., Falbo, R.A., Guizzardi, G., Guizzardi, R.S.S., “Towards an On-
tology of Requirements at Runtime”, in Proc. of the 9th International Conference on Formal Ontology in In-
formation Systems, Annecy, France, 2016. 

17. Guizzardi, G., “Ontology Patterns, Anti-Patterns and Pattern Languages for Next-Generation Conceptual 
Modeling”, in Proc. of the 34th Int. Conference on Conceptual Modeling (ER’14), Atlanta, USA, 2014. 

18. Guarino, N., Guizzardi, G., “We need to Discuss the Relationship: Revisiting Relationships as Modeling 
Constructs”, 27th International Conference on Advance Information Systems Engineering (CAISE 2015), 
Stockholm, Sweden, 2015. 

19. Guizzardi, G., Ferreira Pires, L., van Sinderen, M., “An Ontology-Based Approach for Evaluating the Do-
main Appropriateness and Comprehensibility Appropriateness of Modeling Languages”, ACM/IEEE 8th In-
ternational Conference on Model Driven Engineering Languages and Systems, Montego Bay, Jamaica, 
2005, Lecture Notes in Computer Science LNCS 3713, Springer-Verlag. 

20. Guizzardi, G., das Graças, A.P. and Guizzardi, R.S., “Design patterns and inductive modeling rules to sup-
port the construction of ontologically well-founded conceptual models in OntoUML”, In International Con-
ference on Advanced Information Systems Engineering, pp. 402-413. Springer Berlin Heidelberg, 2011. 

21. Guizzardi, G., Wagner, G., Guarino, N. and van Sinderen, M., “An Ontologically Well-Founded Profile for 
UML Conceptual Models”, 16th International Conference on Advances in Information Systems Engineer-
ing (CAiSE), Latvia, 2004. Springer-Verlag, Berlin, Lecture Notes in Computer Science 3084, ISBN 3-540-
22151-4. 

22. Guizzardi, G., Masolo, C., Borgo, S., “In the Defense of a Trope-Based Ontology for Conceptual Modeling: 
An Example with the Foundations of Attributes, Weak Entities and Datatypes”, 25th International Confer-
ence on Conceptual Modeling (ER’2006), Arizona, USA, 2006. 



23. Albuquerque, A., Guizzardi, G., “An Ontological Foundation for Conceptual Modeling Datatypes based on 
Semantic Reference Spaces”, In: 7th IEEE International Conference on Research Challenges in Information 
Science (RCIS 2013), Paris, 2013. 

24. Guizzardi, G., Wagner, G., “What’s in a Relationship?: An Ontological Analysis”, 27th International Con-
ference on Conceptual Modeling (ER'08), Barcelona, Spain, LN Computer Science, v.5231, p.83-97, 2008. 

25. Guizzardi, G., “Ontological Foundations for Conceptual Part-Whole Relations: The Case of Collectives and 
their Parts”, 23rd Int. Conf. on Advanced Information System Engineering (CAiSE'11), London, UK, 2011. 

26. Guizzardi, G., “The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited”, 
21st Int. Conf. on Advanced Information Systems Engineering (CAISE’09), Amsterdam, 2009. 

27. Guizzardi, G., “On the Representation of Quantities and their Parts in Conceptual Modeling”, 6th Interna-
tional Conference on Formal Ontologies in Information Systems (FOIS’10), Toronto, 2010. 

28. Guizzardi, G., Wagner, G., Falbo, R.A., Guizzardi, R.S.S., Almeida, J.P.A., “Towards Ontological Founda-
tions for the Conceptual Modeling of Events”, 32nd International Conference on Conceptual Modeling 
(ER’13), Hong Kong, 2013. 

29. Guizzardi, G., Almeida, J.P., Guarino, N., Carvalho, V.A., “Towards an Ontological Analysis of 
Powertypes”, International Workshop on Formal Ontologies for Artificial Intelligence (FOFAI 2015), 24th 
International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, 2015. 

30. Grüninger, M., Fox, M.S., “Methodology for the Design and Evaluation of Ontologies. Workshop on Basic 
Ontological Issues in Knowledge Sharing”, 1995. 

31. d'Aquin, M., “Modularizing Ontologies”, In: Suarez-Figueroa, M. C., et al. (eds), Ontology Engineering in a 
Networked World. Springer, Berlin, 2012. 

32. d'Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M., “Criteria and Evaluation for Ontology Modulari-
zation Techniques”, In: Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modulari-
zation, Springer-Verlag, pp. 67–89, 2009. 

33. Buschmann, F., Henney, K., Schmidt, D.C., “Pattern-Oriented Software Architecture: On Patterns and Pat-
tern Languages”, John Wiley & Sons Ltd, 2007. 

34. Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino, N., Longo, A. and Livieri, 
B., “An ontology pattern language for service modeling”. In Proceedings of the 31st Annual ACM Sympo-
sium on Applied Computing, pp. 321-326, 2016. 

35. Falbo, R.A., “SABiO: Systematic Approach for Building Ontologies”. In Guizzardi, G., Pastor, O., Wand, 
Y., de Cesare, S., Gailly, F., Lycett, M., and Partridge, C., editors, Proc. of the Proceedings of the 1st Joint 
Workshop ONTO.COM / ODISE on Ontologies in Conceptual Modeling and Information Systems Engi-
neering, Rio de Janeiro, Brazil, 2014. 

36. Salles, T.P., Guizzardi, G., “Ontological Anti-Patterns: Empirically Uncovered Error-Prone Structures in 
Ontology-Driven Conceptual Models”, Data & Knowledge Engineering (DKE) Journal, 2015. 

37. Falbo, R.A., Barcellos, M.P., Ruy, F.B., Guizzardi, G., Guizzardi, R.S.S., “Ontology Pattern Languages”. In 
Gangemi, A., Hitzler, P., Janowicz, K., Krisnadhi, A., and Presutti, V., editors, Ontology Engineering with 
Ontology Design Patterns: Foundations and Applications. IOS Press, 2016. 

38. Bringuente, A.C.O., Falbo, R.A., Guizzardi, G., “Using a Foundational Ontology for Reengineering a Soft-
ware Process Ontology”, Journal of Information and Data Management, vol. 2, n. 3, pp. 511-526, 2011. 

39. Ruy, F.B., Falbo, R.A., Barcellos, M.P., Guizzardi, G., and Quirino, G.K.S., “An ISO-based Software Pro-
cess Ontology Pattern Language and its Application for Harmonizing Standards”. ACM SIGAPP Applied 
Computing Review, 15(2):27--40, 2015. 

40. Barcellos, M.P., Falbo, R.A. and V. Frauches. “Towards a measurement ontology pattern language”. In 
Guizzardi, G., Pastor, O., Wand, Y., de Cesare, S., Gailly, F., Lycett, M., and Partridge, C., editors, Proc. of 
the Proceedings of the 1st Joint Workshop ONTO.COM / ODISE on Ontologies in Conceptual Modeling 
and Information Systems Engineering, Rio de Janeiro, RJ, Brasil, 2014. 

41. Falbo, R.A., Ruy, F.B., Guizzardi, G., Barcellos, M.P., Almeida, J.P.A., “Towards an enterprise ontology 
pattern language”, in Proc. 29th ACM Symposium on Applied Computing (SAC’14), pp. 323–330, 2014. 

42. Guerson, J., Sales, T.P., Guizzardi, G. and Almeida, J.P.A., "OntoUML Lightweight Editor: A Model-
Based Environment to Build, Evaluate and Implement Reference Ontologies." IEEE 19th International En-
terprise Distributed Object Computing Workshop. IEEE, 2015. 

43. Uschold, M., King, M., Moralee, S. and Zorgios, Y., “The enterprise ontology”, Knowledge Engineering 
Rev., vol. 13, no. 01, pp. 31–89, 1998. 

44. Uschold, M. and McComb, D., “Introduction to Gist”, IAOA, 2013. [Online]. Available: 
http://iaoa.org/isc2014/uploads/Whitepaper-Uschold-IntroductionToGist.pdf. 

45. Fernández-López, M., Gómez-Pérez, A. and Suárez-Figueroa, M.C., “Methodological guidelines for reusing 
general ontologies”, Data & Knowledge Engineering, 86, pp.242-275, 2013. 

46. Frechiani, F., Antunes, J., Guizzardi, R.S.S., “Towards a Collaboration Ontology”, In: 2nd Workshop on 
Ontologies and Metamodels in Software and Data Engineering, João Pessoa, Brazil, 2007. 


