
EATIS 2007

FrameWeb: A Framework-based Design Method for Web Engineering

Vítor Estêvão Silva Souza, Ricardo de Almeida Falbo
Computer Science Department, Federal University of Espírito Santo, Brazil

vitorsouza@gmail.com, falbo@inf.ufes.br

Abstract
Web application development has long evolved from CGI
scripting in structured programming languages to a
whole new discipline called Web Engineering. Today,
large and complex distributed systems are being built for
the web, mostly with the use of frameworks or a
container-based architecture. This paper proposes a
method for the design of Web applications based on the
use of frameworks, including a modeling language that
extends UML to build diagrams that specifically depict
framework-related components.

Keywords
Web Engineering, Web Information System, Frameworks,

UML Profile, Design Method

1. Introduction

First-generation Web Applications (WebApps) were
constructed in an ad-hoc manner, without a methodology
or a software process to support the development team.
While this may work for simple applications, it is
inconceivable nowadays to have a WebApp developed
with no concern for Software Engineering principles.
Thus, a new discipline and research field was born. Web
Engineering (WebE) is the establishment and use of
engineering principles and disciplined approaches to the
development, deployment and maintenance of Web-based
Applications [1].
In this new field of research, a lot of methods,
frameworks and modeling languages have been proposed.
Conte et al. reference quite a few in [2], but we can also
cite WebML [3], WAE [4], OOWS [5], UWE [6],
OOHDM [7] and many others.
Along with these researches, technologies for codifying
WebApps have also evolved. The use of frameworks or
container-based architectures to provide a solid Web
infrastructure for the application to be built upon is state-
of-the-practice. This Web infrastructure commonly
includes a Model-View-Controller (MVC) [8] (or Front
Controller [9]) architecture, a dependency injection
mechanism [10], automatic object/relational mapping for
persistence [11] and more. The use of these frameworks
speeds up the coding phase by reusing code that has
already been coded, tested and documented by 3rd parties.

These frameworks motivated the Software Engineering
Lab (LabES) of the Federal University of Espírito Santo
(UFES) to develop a WebE design method that focuses on
them. This work started in [12] and now is consolidated
in the Framework-based Design Method for Web
Engineering (FrameWeb). FrameWeb proposes a basic
architecture for developing WebApps and an UML profile
for a set of design models that brings concepts used by
some categories of frameworks.
This paper presents FrameWeb and is organized as
follows: section 2 discusses some issues concerning
WebE, with a special focus on existing frameworks that
are commonly used; section 3 presents FrameWeb using a
real example to illustrate it; section 4 talks about related
works and how FrameWeb compares to them. Finally,
section 5 presents our conclusions and future work.

2. Web Engineering

First generation Web applications (WebApps) were
usually developed in an ad hoc manner, with no concern
for Software Engineering principles. Today, however, it is
common sense that this kind of applications has to be
built around a Software Engineering apparatus
compatible with its size and non-functional requirements.
To deal with these characteristics, Web Engineering
(WebE) was born.
Web Engineering can be defined as “the establishment
and use of sound scientific, engineering and management
principles and disciplined and systematic approaches to
the successful development, deployment and maintenance
of high quality Web-based systems and applications” [1].
As with conventional software engineering, a WebE
process starts with the identification of the business
needs, followed by project planning. Next, requirements
are detailed and modeled taking into account the analysis
and design perspective. Then the application is built using
tools specialized for the Web. Finally, the system is tested
and delivered to end-users [13].
Considering that the platform to which we will develop a
software possibly is not taken into account before the
design phase of the software development process,
developing a WebApp would be just like developing any
other application up to that phase. However, many
differences between Web Engineering and Conventional
Software Engineering have been identified by researchers
and practitioners [14], among which we highlight the

EATIS 2007

short time frames for delivering the application [13]. This
urgency influences the software process as a whole,
suggesting that faster approaches should be preferred.
Looking for agility, especially in the coding phase,
several frameworks have been developed, especially if we
consider popular technologies, such as Java, .NET and
PHP. In this context, a framework is seen as an artifact
code that provides components ready for reuse by
inheritance, composition or configuration. When
combined, these frameworks allow large WebApps to be
built with n-tier architectures, relieving the programmers
of a lot of coding effort and making the development
faster and more productive.

2.1. Frameworks for Web development

In our experience with the development of WebApps
using the Java platform, we learned about and worked
with quite a few frameworks. Container-based
architectures (e.g. Java Enterprise Edition) have adopted
many concepts from successful frameworks so we can
consider them as sets of frameworks brought together.
The use of these frameworks has a considerable impact in
the architecture of a WebApp. Since it's possible to find
many frameworks for the exact same task, we categorized
them by objectives:
2.1.1. MVC frameworks. MVC stands for Model-
View-Controller [8] and is a software architecture that
has found great acceptance by Web developers. When
applied to the Web, the MVC architecture is adapted and
receives a new name: “Front Controller” [9]. Both terms
are used indistinguishably by Web developers.
When structured using the MVC architecture, a WebApp
manages all requests from clients using an object known
as Front Controller. This object decides which class will
respond to the current request (the action class). Then, it
instantiates an object of that class and delegates the
control to it, expecting some kind of response afterwards.
Based on that response, the controller decides the
appropriate view to present as result, such as a web page,
a template, a report, a file download, among other
possibilities.
MVC Frameworks usually provide the front controller, a
superclass or interface for action classes, several result
types and a well defined syntax for configuration files.
There are more than 50 MVC frameworks for the Java
platform alone. Some of the most popular are Struts1 and
WebWork2.
2.1.2. Decorator frameworks. Decorator frameworks
automate the otherwise tedious task of making every web
page of the site have the same layout (header, footer,
navigation bar, colors, images, etc).
They work like the Decorator design pattern [8],
providing a class that intercepts requests and wraps their
responses with an appropriate layout before it is returned

1 http://struts.apache.org
2 http://www.opensymphony.com/webwork

to the client. It also provides dynamic selection of
decorators, making it easy to create alternate layouts,
such as a “print version”. Examples are Tiles3 and
SiteMesh4.
2.1.3. Object/Relational Mapping frameworks.
Relational Database Management Systems (RDBMS)
have long been the de facto standard for data storage.
Even object oriented application still use it for object
persistence, giving rise to a “paradigm mismatch” [11].
Among the many options to deal with this problem, there
is the Object/Relational Mapping (ORM) approach,
which is the automatic and transparent persistence of
objects to tables of a RDBMS using meta-data that
describes the mapping between both worlds [11]. The use
of ORM frameworks is not restricted to Web applications
and has been in use for quite some time now in all kinds
of software. The most popular ORM framework is
Hibernate5. Other well-known frameworks are Java Data
Objects6 and Apache Object Relational Bridge7.
2.1.4. Dependency Injection frameworks. Object-
oriented applications are usually built in tiers, each of
which having a separate responsibility. According to [10],
when we create classes that depend on objects of other
classes to perform a certain task, it is preferred that the
dependent class is related only to the interface of its
dependencies, and not to a specific implementation of
that service. This is a good practice in programming
known as “programming to interfaces, not
implementations” [16, 8].
Dependency Injection (DI) frameworks allows the
developer to program to interfaces and specify the
concrete dependencies in a configuration file. When a
certain object is obtained from the DI framework, all of
its dependencies are automatically injected and satisfied.
As well as ORM frameworks, DI frameworks aren't
exclusively for WebApps, although they tend to integrate
more seamlessly with applications that run inside
containers, just like a WebApp runs inside a Web server.
Lots of frameworks provide this service, including Spring
Framework8 and PicoContainer9.
2.1.5. Other frameworks. Other kinds of frameworks
can also take part on the development of a WebApp,
including AOP frameworks, Authentication and
Authorization frameworks, search engines, cache
solutions and many others.
In spite of frameworks being much used, there is no Web
Engineering method that explores their use in the design
phase of the software process. To fill this gap, we propose
FrameWeb, a Framework-based Design Method for Web
Engineering, which is presented in the next section.

3 http://struts.apache.org/struts-tiles
4 http://www.opensymphony.com/sitemesh
5 http://www.hibernate.org
6 http://java.sun.com/products/jdo
7 http://db.apache.org/ojb/
8 http://www.springframework.org
9 http://www.picocontainer.org

EATIS 2007

3. FrameWeb

FrameWeb is a method for designing WebApps that
assumes the use of certain kinds of frameworks during
the software process. It defines a basic architecture for
WebApps and proposes design models that are closer to
their implementation using those frameworks.
FrameWeb does not prescribe a rigid software process,
but it does expect that use case and class diagrams are
developed during requirement analysis. Also, as
mentioned earlier, one of the motivations for the creation
of FrameWeb is the demand for agility that surrounds
WebApp projects. Thus, although the method brings more
agility especially to the design and coding phases,
developers are advised to follow principles of agility
during requirements analysis, as the ones proposed by
Agile Modeling [15].
Design is where the method focuses most on its
propositions. Since the implementation platform is
considered, a standard architecture and a set of models
specifically tailored for framework-based applications are
used during this phase.
The coding phase is greatly facilitated by the use of
frameworks, especially because design models already
show framework-related components and their
relationship among themselves. The use of frameworks
can also have an impact on testing and deployment, but
FrameWeb does not make any considerations about these
final stages.
To illustrate the use of the method, we partially present
throughout the rest of this paper its application to the
development of a WebApp, the LabES Portal. Figure 1
shows its use case diagram, simplified for brevity.

Figure 1. A simplified use case diagram for LabES
Portal.

To provide a better interaction with the Software
Engineering community, the Software Engineering Lab
(LabES) of the Federal University of Espírito Santo
developed a website named “LabES Portal”, which was
developed using FrameWeb. This WebApp has a basic set
of services providing information about current LabES
projects, areas of interest, publications and other material
available for download, among others.
During analysis, class diagrams were constructed to
represent the concepts involved in the problem domain,
without taking into account implementation aspects.
Since FrameWeb focus on the design phase, in this paper
we discuss it with more details. As previously mentioned
FrameWeb proposes: (i) a standard software architecture
that structures the system into layers that integrate well
with the framework categories presented in section 2, and
(ii) a set of design models that brings concepts used by
these framework categories using an UML profile
developed to make these diagrams closer to their
implementations. These two propositions are further
detailed in the subsections that follow.

3.1. Framework-based WebApp Architecture

Considering the framework categories presented
previously, FrameWeb proposes the use of the standard
software architecture for WebApps shown in Figure 2.
This architecture organizes the system in three tiers:
presentation, business and data access logic.

Figure 2. FrameWeb's standard architecture for
WebApps

The first tier concerns the graphical user interfaces. The
View package contains web pages, style sheets, images,
layout templates and other files related exclusively with
the exhibition of information to the user. The
Controller package comprises action classes and other
files related to the MVC framework. Both packages
depend on each other: view elements send user inputs to
controller classes that, in turn, process responses using
view elements again.
The second tier is where the business logic is
implemented. It is divided in two packages: the Domain
package includes the business domain concepts identified

EATIS 2007

and modeled by class diagrams during analysis and
refined during design; the Application package
implements the use cases defined in the requirement
specification. As the latter manipulates objects of the
former, it has a dependency association to it.
The Controller package from the Presentation tier
depends on the Application package, because it
mediates the user access to the functionalities provided
by the software. User input coming from the View are
translated into use case execution (methods of
Application classes) by the action classes
(Controller classes).
Both Controller and View have a dependency to the
Domain package with the stereotype <<weak>>. This
stereotype indicates loose coupling, since they use
domain objects only to display their data (View) or to
pass them around as parameters (View / Controller).
The third and last tier (the Persistence package) is
responsible for storing persistent objects in long-term
duration media, such as databases. Along with the use of
an ORM framework, FrameWeb suggests the use of the
Data Access Object (DAO) design pattern [9]. The DAO
pattern adds an extra abstraction layer, decoupling the
data access logic layer from the persistence technology,
allowing developers to change to another ORM
framework (or even to an OO database), if needed.
The Application package from the business tier
depends on the Persistence package to persist objects
as a result of an use case execution. Persistence
manipulates Domain objects and, thus, this weak
dependency association is also represented.
This architecture provides a solid base for WebApps that
make use of the frameworks presented in subsection 2.1.
Each package contains classes that integrate with these
frameworks. To model these classes, an UML-based
modeling language is proposed by FrameWeb, which is
presented in the next subsection.

3.2. Modeling Language

To model classes that integrate with the frameworks, we
felt the need for a specific modeling language that would
represent concepts that come from the use of these
frameworks.
Following the same approach as other modeling
languages, such as WAE [4] and UWE [6], FrameWeb
defines extensions to the UML meta-model to model
typical web and framework-related components, creating
an UML profile for use in four diagrams: domain model,
persistence model, navigation model and application
model. Each of these diagrams and the extensions
associated to them are explained in the subsections that
follow.
3.2.1. Domain Model. The domain model is an UML
class diagram that represents objects from the problem
domain, which later will guide the implementation of the
Domain package. Additionally, some information about

their mapping to relational data bases is added, in order to
guide the configuration of the ORM framework that will
be used for persistence.
O/R mappings aside, building the domain model is just
like building a regular domain design class diagram.
Since its classes were first modeled during analysis, you
start from them and add information that is platform-
dependent (usually attribute types and association
navigabilities). .
Concerning the O/R mappings, the domain model also
introduces information that models the meta-data needed
by the ORM framework to transparently persist objects,
providing information such as if a given class is persistent
or transient, in which table the class is going to be
persisted, if a given attribute can be null or not, among
others. Most mapping options have sensible defaults in
order to reduce the amount of work to be done. Table 1
shows some of the proposed mappings. The first column
shows the information being mapped; the second column
indicates which UML extension mechanism is used for
the mapping; the third column lists possible values and
the format in which they are to be written; the fourth and
last column presents the value to be considered if none is
specified (default value).

Table 1. Possible mappings for the domain model.

UML
Extension

Possible
Values

Default
Value

If the class is
persistent,
transient or
mapped

Class
stereotype

persistent
transient
mapped

persistent

If an attribute is
persistent or
transient

Attribute
stereotype

persistent
transient

persistent

Date/time
precision

Attribute
stereotype

precision=
(date | time |
timestamp)

precision
=

timestamp

If an attribute is
the primary key

Attribute
stereotype

id –

Size of an
attribute

Attribute
constraint

size=value –

Collection
ordering

Association
constraint

order=
(natural |
column)

–

Figure 3 shows part of the domain model for the LabES
Portal. According to the mappings, by default, all classes
are persistent and all attributes are nullable, except those
marked with a {not null} constraint. The precision for
the birthDate and availabilityDate attributes was
set to date only. The self-association in Area is

EATIS 2007

configured to be implemented using natural ordering (a
SortedSet is used) and to cascade all operations (eg. if
an area is deleted, the ORM framework automatically
deletes all subareas). Item and Publication are
marked as mapped superclasses, which indicates that they
are not persistent entities, but their attributes are
persistent when inherited by other classes
(Publication's hierarchy isn't shown).
3.2.2. Persistence Model. The persistence model is an
UML class diagram that shows the DAO [9] classes that
compose the persistence layer. It guides the
implementation of these classes and the creation of
specific queries to the database (Persistence package).
For each persistent class that needs persistence logic (i.e.,
needs to be stored, retrieved or deleted in an use case) the
persistence model should have a DAO interface and one
or more DAO classes (one for each persistence
technology used). The DAO classes must implement the
DAO interface, which in turn defines the methods
available for the persistence of a certain class.
As a suggestion, all DAO interfaces should extend a
BaseDAO interface, defining basic persistence methods
that all DAOs should implement – retrieve all objects,
retrieve an object given its id, save and delete an object.
Given that these basic services will always be available,
the DAO classes in the persistence model should display
only methods for specific queries that are needed for the
class they are responsible for persisting. For instance, to
validate an user's login and password it will be necessary
to retrieve all User objects with a given login attribute
value. Therefore, UserDAO has the method
retrieveByLogin(login : String) that indicates
the existence of such query.
Besides the BaseDAO interface, the designer can also
provide base DAO classes for any persistence technology

used (eg. HibernateBaseDAO for Hibernate ORM
framework). If provided, all concrete DAO classes of that
technology (eg. HibernateUserDAO) can extend that
base class.
Finally, since both interface and concrete classes are
displayed in the diagram, there is no need to have both
display their methods, since they are the same. The
developer should choose one of them to display the
methods and the other can remain empty. These rules
reduce the amount of work, increasing productivity.
3.2.3. Navigation Model. The navigation model is an
UML class diagram that depicts the different components
that form the presentation tier for a given use case or
scenario and their relationship among themselves. These
components can be web pages (<<page>> stereotype),
HTML forms (<<form>>), templates (<<template>>),
binary files such as PDF files and images (<<binary>>)
or action classes (no stereotype). Other classes can be
shown in the diagram and the reader differentiates them
from the action classes by naming conventions. Action
classes belong to the Controller package, while the
other Web resources are under View. Therefore, this
model guides the construction of the presentation layer.
Figure 4 shows the navigation model for the Login
scenario of the Authenticate User use case (from our
example). On the index web page the user will find a
form with login and password input fields, represented by
frmLogin attributes. The types of the attributes indicate
the types of HTML form fields to use and depend on the
MVC framework used. When submitted, the information
of the form is sent to the Front Controller, which will use
an instance of AuthenticateUserAction to respond.
That is depicted by the dependency association between
the form and the action class.

Figure 3. Domain model for the User Management module of LabES Portal.

EATIS 2007

When receiving input from a form, the action class'
attributes with the same name as the form fields receive
their value before the action is executed. Executing the
action consists of calling one of its execute methods. An
action class can respond to many different use case
scenarios and the method to be called is defined by the
scenario's name (in this case, executeLogin()) or by a
constraint in the incoming dependency association (eg.
{action=login}).
The execution method returns a string indicating the
result of the action. Dependency association from the
action to templates or web pages indicate possible
outcomes of the execution. If multiple outcomes exist, the
associations must indicate which result they represent. In
the example, if the login is successful, the user is sent to a
web page generated by the template engine after
processing the template home. If there are any problems
with the input (unknown login, incorrect password, etc),
the user is sent to another page to try logging in again.
The login template has a couple of attributes with the
same name as the action class. That means that their
values will be used in the template, namely to display
what kind of problem occurred during authentication and
to automatically fill the login form field with the last
login used.
The navigation model can also represent links between
web pages (using dependency associations) and the type
of result to process after an action is executed, such as
redirection, template processing and so on (represented
by a constraint in the outgoing dependency association
between the action class and some other element).
When building the navigation model, the developer must
choose the granularity of the action class: one for each
action, one for each use case scenario (a scenario can
encompass more than one action), one for each use case
(an use case can encompass more than one scenario) or
one for various use cases. This model guides the
construction of presentation tier components and the
configuration of the MVC framework.
3.2.4. Application Model. The application model is
an UML class diagram that displays classes from the
Application package and their relationships with
classes from the Controller and Persistence
packages. It's not necessary to display the dependencies
from Application classes with Domain classes because

the associations with the DAO classes already
demonstrate which classes are retrieved, saved or deleted
from the database and, thus, are manipulated by the
application class. Therefore, besides guiding the
construction of the packages from the business tier, this
model demonstrates how to integrate the different tiers to
provide the desired solution in the proposed architecture.
Analogous to the granularity of the action classes in the
navigation model, there is also a question of granularity
for the application classes: we can have a different class
for each scenario in an use case, one class for an entire
use case, including all scenarios, or one class for many
use cases. That being decided, the developer can
systematically transform use cases or use case scenarios
into methods of application classes, which will be made
available to classes from the presentation layer that need
to invoke those services.
For each application class modeled, there should be an
interface and a concrete class, enforcing the
“programming to interfaces” [16, 8] practice, which is
highly recommended by the Dependency Injection
frameworks. Since they define the same methods, there is
no need to display them on both.
The application model guides the construction of
application classes and also the configuration of the
dependency injection framework, which will be
responsible for wiring together all of these classes.

4. Related Work

 The amount of propositions in the Web Engineering
area, including methods, frameworks and modeling
languages, is quite vast, demonstrating that academics
and practitioners haven't yet elected a standard when it
comes to Web development.
Conallen's work [4] is well known and defines a software
process as well as a modeling language, named Web
Application Extensions (WAE), that extends UML to
provide Web-specific constructs for modeling WebApps.
It advocates the construction of a new model, the User
Experience (UX) Model, that defines guidelines for
modeling layout and navigation from requirements
specification through design. Models like the navigation
diagram, the class diagram and the component diagram

Figure 4. Navigation model for the Login scenario of Authenticate User use case (Portal LabES).

EATIS 2007

(the last two specific for the web tier) use WAE to
represent Web components such as screens, server pages,
client pages, forms, links and many more.
Both FrameWeb's modeling language and WAE define an
UML profile for the creation of diagrams that picture
web-related elements. However, as FrameWeb is based
on frameworks, its stereotypes and constraints are
different from those proposed by WAE. Also, we felt that
a dependency association represents the relations among
web components better than a regular association, which
explains why FrameWeb is not an extension of WAE, but
a new modeling language altogether.
As for Conallen's method, we find that FrameWeb
introduces fewer new concepts, facilitating the adoption
by developers already proficient in UML's most common
diagrams. Also, Conallen's UX model spans all the way
from requirements through design and FrameWeb
proposes web-related models for the design activity only,
allowing organizations to use their current processes
without much change.
OOWS (Object Oriented Web Solution) [5] is a method
for WebApp specification and development, which
divides the process in two stages. In the first stage,
structural, dynamic, functional, navigation and
presentation models are built using UML. In the second
stage, a component-based code generation strategy is
used to automatically create an operational prototype
using a conceptual model compiler.
OOWS uses UML for most of its models, making use of
its extension mechanisms. But it also proposes extensions
that are not standard, which can make things difficult for
developers that do not have CASE tools specifically
designed for the method. Its code generation strategy is
something that FrameWeb still lacks and does provide a
lot of agility to the process. Also, OOWS' navigation
models define specific indexing and filtering mechanisms
that make it easier to model these kinds of structures,
which are quite common in the Web environment.
The UML-based Web Engineering (UWE) [6] defines a
set of models to be built, a modeling language that
extends the UML meta-model, and a process to build the
models using that modeling language. The process is
composed by requirement analysis, conceptual navigation
and presentation design, supplemented with task and
deployment modeling. As with WAE, UWE's modeling
language defines stereotypes, tagged values and
constraints to create an UML profile specifically for Web
components.
Although UWE relies on an UML profile with standard
extensions, it does offer a few non-standard extensions
that are available through the use of ArgoUWE, an
extension of the ArgoUML10 tool that supports UWE. As
with WAE, it also doesn't define specific extensions for
framework-related components. Similar to OOWS, UWE
also supports a semi-automatic code generation solution
that, as we noted before, is something that FrameWeb

10 http://argouml.tigris.org/

lacks. UWE is otherwise very similar to FrameWeb up to
design stage, being based on use case and class diagrams.
Some works propose not a complete method but only a
modeling language for the construction of Web-related
models. WebML [3] proposes such a language, allowing
developers to model WebApp's functionalities in a high
level of abstraction, without committing to any
architecture in particular. WebML is based on XML, but
uses intuitive graphical representations that can easily be
supported by a CASE tool. Its XML form is ideal for
automatic generation of source code, producing Web
applications automatically from the models.
Although its graphical representations are intuitive, not
being based on UML is a big disadvantage of WebML for
reasons of developer's acceptance and tool support. It
does, however, provide the advantage of not being tied to
any software process at all, letting organizations free to
choose whatever method suits them.
A whole different category of propositions are
hypermedia methods, such as OOHDM [7]. This kind of
method focuses on contents and navigation structures
instead of functionality and seems to be better suitable for
information-driven WebApps.
Given all of the options available, FrameWeb comes in as
another option that targets a specific architecture, one
based in the use of frameworks. In this case, FrameWeb
excels for its agility, because models are directed towards
the framework architectures and allow for quick
understanding of the implementation. It also doesn't
introduce much complexity, allowing organizations to use
their own processes up to design with few adaptations, if
any. Of all the proposed design models, the navigation
model is the only one we consider a little bit complex,
making FrameWeb very easy to learn and use.
After CGI scripts and dynamic page technologies such as
ASP, PHP and JSP, the use of framework-based
architectures are becoming the standard for
implementation of medium-to-large-sized WebApps.
Taking the Java platform as example, the definition of
standards as JavaServer Faces (JSF)11 for Web
development and the new Enterprise JavaBeans (version
3.0)12 for distributed components reinforce that
conclusion. JSF defines a MVC-like architecture, and
EJB 3.0 had all of its persistence model reconstructed
based on Hibernate ORM framework and also makes
heavy use of Dependency Injection.
This context has motivated us for the creation of a
modeling language for this specific case and finally led to
the definition of a design method for WebApps.

5. Conclusions and future work
FrameWeb was applied in the development of the LabES
Portal, as discussed along the paper. First, developers
were trained in general concepts of Web Engineering, in

11 http://jcp.org/en/jsr/detail?id=127
12 http://jcp.org/en/jsr/detail?id=220

EATIS 2007

the use of FrameWeb and also in the following
frameworks: WebWork, FreeMarker (template engine),
SiteMesh, Hibernate and Spring.
In general, the development went smoothly. The method
allowed the developers to deliver the models mostly in
time and few deadlines had to be extended.
Some developers had difficulties on capturing the idea of
some frameworks, especially the MVC framework. All of
them had some experience with the Java platform, but
most did not have any experience with Web development.
At the end of the development, the developers were asked
to provide feedback on the work done. This feedback can
be summarized in the following items:

• Allowing to directly model aspects related to the
use of frameworks is the biggest strength of
FrameWeb;

• Implementing in Java what was modeled during
design was very much facilitated by the clear
understanding of the semantics of the four
models (domain, persistence, navigation and
application);

• The simplicity of the models facilitated the
adoption of FrameWeb, except for the navigation
model, which added some complexity to the
method.

The method, while functional, could use a lot of
improvement, some of which we list below:

• More case studies could be conducted to assess
the effectiveness of the method. Some of
FrameWeb's initial propositions have changed
after the LabES Portal case study was done and
many other improvements can come from more
practical experiences;

• Other frameworks and implementation platforms
could be studied in order to verify if the
modeling language fits for the diverse options
that exist. Our goal is to make the modeling
language as generic as possible;

• Tools could be developed to help create the
models or to convert the models to code,
automatically implementing much of the
infrastructure code and configuration for the
most used frameworks available.

6. Acknowledgments

This work was accomplished with the financial support of
FAPES, a foundation supporting science and technology
from the government of the state of Espírito Santo –
Brazil, and CAPES, an entity of the Brazilian
Government reverted to scientific and technological
development.

7. References

[1] Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.,
“Web Engineering: A New Discipline for Development of
Web-based Systems”, Proceedings. of. the First ICSE
Workshop on Web Engineering, IEEE, Australia, 1999.
[2] Conte, T., Travassos, G. H., Mendes E., “Revisão
Sistemática sobre Processos de Desenvolvimento para
Aplicações Web”. Technical Report ESE/PESC (in
portuguese) – COPPE/UFRJ, Rio de Janeiro, 2005.
[3] Ceri, S., Fraternali, P., Bongio, A., “Web Modeling
Language (WebML): a modeling language for designing
Web sites”. Computer Networks, Elsevier, June 2000, v.
33, n. 1-6, p. 137-157.
[4] Conallen, J., Building Web Applications with UML, 2nd

edition, Addison-Wesley, October 2002.
[5] Fons, J., Valderas, P., Ruiz, M., Rojas, G., Pastor, O.,
“OOWS: A Method to Develop Web Applications from
Web-Oriented Conceptual Models”. Proceedings of the
7th World Multiconference on Systemics, Cybernetics and
Informatics (SCI), Orlando, FL – USA, July 2003.
[6] Koch, N., Baumeister, H., Hennicker, R., Mandel, L.,
“Extending UML to Model Navigation and Presentation
in Web Applications”. Proceedings of Modelling Web
Applications in the UML Workshop, October 2000.
[7] Schwabe, D., Rossi, G., “An Object Oriented
Approach to Web-Based Application Design”. Theory
and Practice of Object Systems 4 (4), Wiley and Sons,
1998.
[8] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, October 1994.
[9] Sun Microsystems, “Core J2EE Patterns”:
http://java.sun.com/blueprints/corej2eepatterns/. Captured
on July 19th, 2006.
[10] Fowler, M., “Inversion of Control Containers and the
Dependency Injection Pattern”:
http://www.martinfowler.com/articles/injection.html.
Captured on July 19th, 2006.
[11] Bauer, C., King, G., Hibernate in Action, 1st edition,
Manning, August 2004.
[12] Souza, V. E. S., Falbo, R. A., “An Agile Approach
for Web Systems Engineering”. Proceedings of the 11th
Brazilian Symposium on Multimedia and the Web
(WebMedia), ACM, Poços de Caldas, MG – Brazil,
December 2005.
[13] Pressman, R.S., Software Engineering: A
Practitioner’s Approach, 6th edition, Mc Graw Hill, USA,
April 2004.
[14] Ahmad, R., Li, Z., Azam, F., “Web Engineering: A
New Emerging Discipline”, Proceedings of the IEEE
Symposium on Emerging Technologies, September 2005,
445-450.
[15] Ambler, S., Jeffries, R., Agile Modeling: Effective
Practices for Extreme Programming and the Unified
Process, 1st edition, Wiley, March 2002.
[16] Schmidt, D., “Programming Principles in Java:
Architectures and Interfaces”, chapter 9:
http://www.cis.ksu.edu/~schmidt/CIS200/

	1.Introduction
	2.Web Engineering
	2.1.Frameworks for Web development
	2.1.1.MVC frameworks. MVC stands for Model-View-Controller [8] and is a software architecture that has found great acceptance by Web developers. When applied to the Web, the MVC architecture is adapted and receives a new name: “Front Controller” [9]. Both terms are used indistinguishably by Web developers.
	2.1.2.Decorator frameworks. Decorator frameworks automate the otherwise tedious task of making every web page of the site have the same layout (header, footer, navigation bar, colors, images, etc).
	2.1.3.Object/Relational Mapping frameworks. Relational Database Management Systems (RDBMS) have long been the de facto standard for data storage. Even object oriented application still use it for object persistence, giving rise to a “paradigm mismatch” [11].
	2.1.4.Dependency Injection frameworks. Object-oriented applications are usually built in tiers, each of which having a separate responsibility. According to [10], when we create classes that depend on objects of other classes to perform a certain task, it is preferred that the dependent class is related only to the interface of its dependencies, and not to a specific implementation of that service. This is a good practice in programming known as “programming to interfaces, not implementations” [16, 8].
	2.1.5.Other frameworks. Other kinds of frameworks can also take part on the development of a WebApp, including AOP frameworks, Authentication and Authorization frameworks, search engines, cache solutions and many others.

	3.FrameWeb
	3.1.Framework-based WebApp Architecture
	3.2.Modeling Language
	3.2.1.Domain Model. The domain model is an UML class diagram that represents objects from the problem domain, which later will guide the implementation of the Domain package. Additionally, some information about their mapping to relational data bases is added, in order to guide the configuration of the ORM framework that will be used for persistence.
	3.2.2.Persistence Model. The persistence model is an UML class diagram that shows the DAO [9] classes that compose the persistence layer. It guides the implementation of these classes and the creation of specific queries to the database (Persistence package).
	3.2.3.Navigation Model. The navigation model is an UML class diagram that depicts the different components that form the presentation tier for a given use case or scenario and their relationship among themselves. These components can be web pages (<<page>> stereotype), HTML forms (<<form>>), templates (<<template>>), binary files such as PDF files and images (<<binary>>) or action classes (no stereotype). Other classes can be shown in the diagram and the reader differentiates them from the action classes by naming conventions. Action classes belong to the Controller package, while the other Web resources are under View. Therefore, this model guides the construction of the presentation layer.
	3.2.4.Application Model. The application model is an UML class diagram that displays classes from the Application package and their relationships with classes from the Controller and Persistence packages. It's not necessary to display the dependencies from Application classes with Domain classes because the associations with the DAO classes already demonstrate which classes are retrieved, saved or deleted from the database and, thus, are manipulated by the application class. Therefore, besides guiding the construction of the packages from the business tier, this model demonstrates how to integrate the different tiers to provide the desired solution in the proposed architecture.

	4.Related Work
	5.Conclusions and future work
	6.Acknowledgments
	7.References

