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Abstract 

Considering that conceptual models are produced with the aim of representing certain aspects of 

the physical and social world according to a specific conceptualization and that ontologies aim 

at describing conceptualizations, there has been growing interest in the use of ontologies to 

provide a sound theoretical basis for the discipline of conceptual modeling. This has given rise to 

a research area called ontology-based conceptual modeling, with significant advances to 

conceptual modeling in the last decades. Despite these advances, ontology-based conceptual 

modeling still lacks proper support to address subject domains that require not only the 

representation of categories of individuals but also the representation of categories of categories 

(or types of types). The representation of entities of multiple (related) classification “levels” has 

been the focus of a separate research area under the banner of multi-level modeling, aiming to 

address the limitations of the conventional two-level modeling paradigm. Despite the relevant 

contributions of multi-level modeling and ontology-based conceptual modeling, their combination 

has not yet received due attention. This work explores this gap by proposing the use of formal 

theories for multi-level modeling in combination with foundational ontologies to support what 

we call multi-level ontology-based conceptual modeling. To provide a well-founded approach to 

multi-level conceptual modeling, we develop a theory called MLT that formally characterizes the 

nature of classification levels and precisely defines the relations that may occur between elements 

of different classification levels. In order to leverage the benefits of the use of a foundational 

ontology to domains dealing with multiple classification levels, we combine the proposed multi-

level modeling theory with a foundational ontology. This combination results in a hierarchical 

modeling approach that supports the construction of multi-level conceptual models in a spectrum 

of levels of specificity, from foundational ontologies to domain models. To demonstrate the 

applicability of our multi-level ontology-based conceptual modeling approach, we employ it to 

develop a core ontology for organizational structure, a domain that spans multiple classification 

levels. Further, we show how MLT can be used as a reference theory to clarify the semantics and 

enhance the expressiveness of UML with respect to the representation of multi-level models. The 

resulting UML profile enables the practical application of MLT. 

 

Keywords: conceptual modeling, models, ontology, foundational ontology, ontology-based 

conceptual modeling, classification levels, multi-level modeling, power type. 



Resumo 

Considerando que modelos conceituais são produzidos com o objetivo de representar certos 

aspectos do mundo físico e social de acordo com uma conceituação específica e que ontologias 

buscam descrever conceituações, tem havido crescente interesse no uso de ontologias para 

fornecer uma base teórica sólida para a disciplina de modelagem conceitual. Esse interesse deu 

origem a uma área de pesquisa denominada modelagem conceitual baseada em ontologias, com 

avanços significativos na modelagem conceitual nas últimas décadas. Apesar desses avanços, a 

modelagem baseada em ontologias não provê suporte adequado à modelagem de domínios que 

exigem a representação de categorias de indivíduos e de categorias de categorias (ou tipos de 

tipos). A representação de entidades de vários "níveis" de classificação tem sido o foco de uma 

área de pesquisa distinta denominada modelagem multi-nível. As iniciativas em modelagem 

multi-nível visam a contornar as limitações impostas pelo paradigma convencional de modelagem 

em dois níveis. Apesar das contribuições relevantes das áreas de modelagem multi-nível e de 

modelagem conceitual baseada em ontologias, a combinação dessas duas áreas ainda não recebeu 

a devida atenção. Este trabalho explora essa lacuna propondo o uso combinado de teorias formais 

para a modelagem multi-nível e de ontologias de fundamentação para apoiar o que chamamos de 

modelagem conceitual multi-nível baseada em ontologias. Para fornecer uma abordagem bem 

fundamentada à modelagem conceitual multi-nível, desenvolvemos uma teoria chamada MLT. 

MLT caracteriza formalmente a natureza dos níveis de classificação e define precisamente as 

relações que podem ocorrer entre elementos de diferentes níveis de classificação. A fim de 

aproveitar os benefícios do uso de ontologias de fundamentação na modelagem de domínios que 

abrangem vários níveis de classificação, combinamos MLT com uma ontologia de 

fundamentação. Essa combinação resulta em uma abordagem de modelagem que apoia a 

construção de modelos conceituais multi-níveis em um espectro de níveis de especificidade, desde 

ontologias de fundamentação até modelos conceituas de domínios específicos. Para demonstrar a 

aplicabilidade da nossa abordagem de modelagem conceitual multi-nível baseada em ontologias, 

a empregamos para desenvolver uma ontologia núcleo para estruturas organizacionais, um 

domínio que abrange vários níveis de classificação. Além disso, mostramos como MLT pode ser 

usada como uma teoria de referência para esclarecer a semântica e aumentar a expressividade de 

UML no que diz respeito à representação de modelos de multi-níveis. O perfil UML produzido 

viabiliza a aplicação prática de MLT pela comunidade de modelagem conceitual. 

 

Palavras-chave: modelagem conceitual, modelo conceitual, ontologia, ontologia de 

fundamentação, modelagem conceitual baseada em ontologias, níveis de classificação, 

modelagem multi-nível, power type.  
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Chapter 1.  Introduction 

This chapter presents an overview of this thesis and defines the basis for the subsequent chapters. 

It discusses the context in which the thesis is embedded, the motivation for conducting this work, 

the objectives, and the methodological aspects that have guided this research work. Finally, it 

presents the structure of this document. 

1.1 Context and Motivation 

Conceptual modeling is the activity of formally describing some aspects of the physical and social 

world around us for the purposes of understanding and communication (MYLOPOULOS, 1992). 

It is generally considered a fundamental activity in information systems engineering (OLIVÉ, 

2007), in which a given subject domain is described independently of specific implementation 

choices (GUIZZARDI, 2005). The main artifact of this activity is a conceptual model, i.e., a 

specification aiming at representing a conceptualization of the subject domain of interest.  

Given the scope and purpose of conceptual modeling, suitable techniques for this endeavor 

should be based on abstractions with consideration for human cognition and common sense 

(GUARINO, 1994; GUIZZARDI, 2005). A number of authors, such as Wand and Weber (1993), 

Guarino (1994) and Guizzardi (2005), have defended that ontologies can provide such 

abstractions and serve as a sound theoretical basis for the discipline of conceptual modeling, 

giving rise to a research area called ontology-based conceptual modeling (GUIZZARDI, 2005). 

As discussed by some of these authors, when conceptual modeling languages take into account 

formal distinctions, the potential misunderstandings and inconsistencies in conceptual models are 

reduced, i.e. when ontological concerns are addressed, the quality of conceptual models is 

improved, facilitating thus the understanding and communication about a domain of enquiry 

(CARRARETTO, 2012). 

Two prominent examples of the use of ontologies to provide a sound basis for conceptual 

modeling are (GUARINO; WELTY, 2002a) and (GUIZZARDI, 2005). Guarino and Welty 

(2002) defined a methodology whose main goal is to detect formal and semantic inconsistencies 

in the properties defined in a conceptual model. They focus on defining a methodology to evaluate 

the soundness of taxonomic structures considering a set of metaproperties that characterize 

relevant aspects of categories of individuals and relations that make up the model. Guizzardi 

(2005), in his turn, defines a foundational ontology called UFO (Unified Foundational Ontology) 

and uses this ontology to base his conceptual modeling activities. As a foundational ontology, 

UFO captures domain-independent concepts which may be applied to any modeling effort, 
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including some metaproperties defined in (GUARINO; WELTY, 2002a). Further, aiming to 

provide an ontologically well-founded support to conceptual modeling, Guizzardi (2005) 

proposes OntoUML. OntoUML is a UML (OMG, 2011) profile that reflects the taxonomy of 

categories of UFO such that the distinctions of the foundational ontology can be used to provide 

beneficial constraints and modeling guidelines, ultimately leading to ontologically well-founded 

conceptual models. The resulting conceptual models represent categories of individuals in the 

subject domain (e.g., the “Person” kind, the “Child” phase, the “Student” role).  

So far, the support to ontology-based conceptual modeling has been focused mainly on the 

analysis of properties of categories of individuals. As a consequence, these approaches are unable 

to describe subject domains in which the categorization scheme itself is part of the subject matter. 

In these subject domains, experts make use of categories of categories (i.e. types of types) in their 

accounts. For instance, considering the software development domain (GONZALEZ-PEREZ; 

HENDERSON-SELLERS, 2006), project managers often need to plan according to the types of 

tasks to be executed during the software development project (e.g. “requirements specification”, 

“coding”). They may also need to classify those types of tasks giving rise to types of types of tasks. 

In this case, “requirements specification” and “coding” could be considered as examples of 

“technical task types”, as opposed to “management task types”. Finally, during project 

development, they need to track the execution of individual tasks (e.g. specifying the requirements 

of the system X). Thus, to describe the conceptualization underlying the software development 

domain, one needs to represent entities of different (but nonetheless related) classification 

“levels”, such as tasks (specific individual occurrences), types of tasks, and types of types of tasks. 

The need to support the representation of subject domains that deal with multiple classification 

levels has given rise to what has been referred to as multi-level modeling (ATKINSON; KÜHNE, 

2001; NEUMAYR; GRÜN; SCHREFL, 2009). 

Despite the recent advances in multi-level modeling approaches and tools, there is still no 

consensus on what kinds of constructs and concepts provide the best support for it. Actually, one 

of the fundamental challenges on multi-level modeling is the definition of what qualities an 

approach needs to possess in order to be characterized as a multi-level approach (ATKINSON; 

GERBIG; KÜHNE, 2014). Further, the literature on multi-level modeling lacks a formal theory 

capturing the foundational concepts underlying multi-level modeling. We believe that such a 

foundational theory could facilitate the identification of the characterizing features a multi-level 

approach should possess, being useful to support the proposal of well-founded multi-level 

modeling approaches. Further, such a theory could be used as foundations to clarify the semantics 

of existing approaches as well as to relate and harmonize different approaches to multi-level 

modeling.  

Regardless of the growing interest on both multi-level modeling and ontology-based 

conceptual modeling, the combination of these two prominent areas has not yet received due 
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attention. The focus of the present work is on the use of formal theories for multi-level modeling 

in combination with foundational ontologies to support the design of ontologically well-founded 

conceptual models dealing with multiple classification levels, characterizing what we call multi-

level ontology-based conceptual modeling. 

1.2 Objectives 

The general objective of this work is to extend the foundations of ontology-based conceptual 

modeling to incorporate support for dealing with multiple classification levels. We approach this 

objective with the combination of a formal theory for multi-level modeling and a foundational 

ontology, which allows us to leverage the benefits of ontology-based conceptual modeling to 

domains that includes categories of categories, providing, thus, support to multi-level ontology-

based conceptual modeling. 

In order to pursue this general objective, the following specific objectives are defined: 

SO1. To develop a formal theory that captures the conceptualization underlying multi-

level modeling. Such a multi-level theory must formally characterize defining 

aspects of categories in the different classification levels as well as precisely 

define the relations that may occur between elements of different classification 

levels; 

SO2. To define an approach to support multi-level ontology-based conceptual modeling 

based on the combination of the proposed multi-level theory (SO1) with a 

foundational ontology. The proposed approach must guide the construction of 

models that incorporate the guidelines of the foundational ontology as well as 

those of the multi-level theory; 

SO3. To demonstrate the applicability of the proposed multi-level ontology-based 

conceptual modeling approach by applying it to construct a core ontology on a 

domain that spans multiple classification levels; and,  

SO4. To show how the proposed multi-level theory can be used as a reference theory to 

clarify the semantics and enhance the expressiveness of a widely employed 

modeling language with respect to the representation of multi-level models. 

1.3 Approach 

We follow a systematic approach based on a strict separation of concerns: first, the 

conceptualization underlying certain phenomena is captured by a reference theory; second, 
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representation strategies that reflect the conceptualization captured by the reference theory are 

devised, while addressing technological and pragmatic concerns1.  

As discussed by Guizzardi (2005), a theory that is to be suitable as a reference for a 

representation strategy should be constructed with the sole objective of capturing the best possible 

description of a certain vision of the world. Therefore, technological issues and language 

engineering concerns should play a minor role, if any. 

In the case of multi-level modeling, a reference theory is not readily available in the 

literature. However, in the last decades, several approaches for the representation of multi-level 

models have been worked out, including those mostly focused on multi-level modeling from a 

model-driven engineering perspective (ATKINSON; KÜHNE, 2003; FRANK, 2014; LARA et 

al., 2013) and those that propose modeling languages (approaches) for models with multiple levels 

of classification (ATKINSON; GERBIG, 2012; DE LARA; GUERRA, 2010; NEUMAYR; 

GRÜN; SCHREFL, 2009). These approaches embody conceptual notions that are key to the 

representation of multi-level models, such as the existence of entities that are simultaneously 

types and instances (classes and objects), the iterated application of instantiation, etc. Therefore, 

they can be used to set requirements for a reference theory capturing the conceptualization 

underlying multi-level modeling, independently of technological and language engineering 

concerns. 

We propose a reference theory formalized into an axiomatic theory named MLT. MLT 

characterizes the nature of classification levels, and precisely defines the relations that may occur 

between elements of different classification levels, addressing thereby SO1. The axioms and 

theorems of MLT provide us with rules and patterns to guide the design of sound multi-level 

models. Further, they allow us to contrast and relate conceptual notions that underlie different 

multi-level modeling approaches, enabling the harmonization of such approaches. We employ 

first-order logic in the specification of MLT and verify the theory’s consistency as well as the 

validity of the proposed theorems by applying a lightweight formal method based on the use of 

Alloy (JACKSON, 2006). Alloy also allows us to simulate the specification to validate that it 

indeed matches the multi-level modeling phenomena we aim to characterize.  

We subscribe to the approach put forward by Guarino (1994) and Guizzardi (2005) who 

have defended that conceptual modeling should be rooted in a set of domain-independent concepts 

from a formal foundational ontology. A foundational ontology captures a philosophically and 

cognitively well-founded general (meta) conceptualization dealing with formal aspects of entities 

irrespective of their particular nature, e.g., identity and unity, types and instantiation, rigidity, 

mereology, dependence (GUIZZARDI, 2005). In order to benefit from the use of a foundational 

ontology while addressing multi-level concerns, we combine MLT with the Unified Foundational 

                                                      
1 This approach is worked out in (CARVALHO; ALMEIDA; GUIZZARDI, 2014) for the case of domain 

ontologies as reference theories supporting the design of domain-specific languages. 
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Ontology (UFO) (GUIZZARDI, 2005), addressing thereby SO2. We adopt UFO, as it has been 

successfully employed to analyze a number of classical conceptual modeling constructs, including 

Object Types and Taxonomic Structures, Attributes and Datatypes, Intrinsic and Relational 

Properties, Weak Entities, and Part-Whole Relations (GUIZZARDI, 2005). 

The patterns and rules of MLT are applied to establish the relation between MLT and UFO, 

and later to establish the relation between a conceptual domain model and the MLT-UFO 

combination. This combination results in a hierarchical modeling approach that supports the 

construction of multi-level conceptual models in a spectrum of levels of specificity, from the 

foundational ontology to domain models. The models constructed following the proposed 

approach respect all rules and patterns of both MLT and UFO.  

To illustrate the applicability of this approach to address multi-level ontology-based 

conceptual modeling, we use it to construct a core organizational structure ontology (a task 

corresponding to SO3). We show how the application of the approach leads to the proposal of a 

core ontology that can be extended with models to specify enterprise-specific structures, allowing 

modelers to cope with the large diversity in organizational structures and structuring approaches. 

The proposed core ontology contributes to the enterprise modeling area defining a semantic 

foundation for the organizational structure domain that reflects the domain’s multi-level nature, 

differently from a number of existing organizational structure ontologies and modeling 

approaches. 

To demonstrate the applicability of MLT as a reference theory in the redesign of modeling 

language mechanisms (SO4) we use the theory to found an analysis of the UML support for 

representing the power type pattern. The power type pattern is an early approach to represent 

certain multi-level phenomena and is used extensively in many important modeling initiatives, 

such as the ISO/IEC 24744 standard (ISO/IEC, 2007). The analysis allows us to demonstrate that 

UML’s current support for the power type pattern lacks expressivity, clarity, and parsimony. By 

employing the result of this analysis, we propose a UML profile to address the exposed 

limitations. We use the formal rules of MLT to systematically incorporate syntactic constraints in 

the language, guiding thus the modeler to produce sound multi-level models. A tool that 

implements the proposed profile and performs syntactic verification of MLT rules is provided. 

Considering that UML is a de facto standard for conceptual modeling, the proposed UML profile 

and the provided tool support enable the practical application of MLT by the conceptual modeling 

community. 

1.4 Outline of this Thesis 

The remainder of this thesis is organized as follows: 
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• Chapter 2. Basic Notions: This chapter describes some notions that are required to 

substantiate this work, including a brief discussion on the different meanings attributed 

to “ontology”, an introduction to ontology-based conceptual modeling with a focus on 

UFO and OntoUML, and a brief introduction to multi-level conceptual modeling, 

highlighting the main concepts underlying some prominent multi-level modeling 

approaches that influence our multi-level theory. 

• Chapter 3. A Formal Theory for Multi-Level Conceptual Modeling: This chapter presents 

a formal theory for multi-level modeling. First, it establishes the requirements to be 

satisfied and then discusses how the theory formally characterizes the classification levels 

and the entities that populate each level. Further, it presents the formal definitions of 

structural relations that occur between entities captured in a multi-level model. An 

extensive review of related work is provided in this chapter in order to position the 

proposed theory and the current literature on multi-level modeling. 

• Chapter 4. Multi-Level Ontology-based Conceptual Modeling with MLT: This chapter 

discusses the MLT-UFO combination and presents guidelines for the introduction of 

second-order types (i.e. types of types) in ontologically well-founded conceptual models, 

respecting the rules of both theories. The MLT-UFO combination is positioned as a top 

layer in a hierarchy of ontology-based multi-level models. 

• Chapter 5. Applying MLT-UFO in the Development of a Core Ontology: This chapter 

presents a core organizational structure ontology founded in the MLT-UFO combination, 

in order to demonstrate the application of our multi-level ontology-based modeling 

approach. The suitability of the organizational structure domain for this task is justified 

considering the multi-level nature of this domain, involving a number of types of types 

that vary in different organizations (including, e.g., organization unit types, employee 

types, types of employment relations). 

• Chapter 6. Using MLT to Revisit the Representation of Multi-Level Models in UML: 

This chapter demonstrates the use of MLT as a reference theory to support the redesign 

of the UML’s power type pattern support. It presents an analysis of power types in UML 

in the light of MLT, demonstrating that the current support lacks expressivity, clarity, and 

parsimony. Then a UML profile that reflects the distinctions and rules of MLT to address 

the exposed limitations is proposed.  

• Chapter 7. Final Considerations: This chapter summarizes the research contributions, lists 

the published papers, discusses some limitations of this work, and describes future 

perspectives. 
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• Appendix A: Specification of MLT in Alloy – The basic theory: This appendix presents 

a specification of MLT in Alloy that assumes, for simplification, that entities instantiate 

types necessarily, effectively dealing with rigid types in a static classification setting. 

• Appendix B: Specification of MLT in Alloy – Addressing Dynamic Classification: This 

appendix presents a specification of MLT in Alloy that addresses dynamic classification. 

 

  



22 

Chapter 2.  Basic Notions 

This chapter describes some basic notions, which are required to substantiate this work. It starts 

with a brief discussion on the different meanings attributed to “ontology” in order to establish the 

sense that will be adopted here (Section 2.1). Using this notion of ontology, a brief 

characterization of ontology-based conceptual modeling is presented in Section 2.2. This section 

focuses on the use of the Unified Foundational Ontology (UFO) (GUIZZARDI, 2005) as a basis 

for ontology-based conceptual modeling. In order to establish the notion of multi-level conceptual 

modeling adopted in this work, a discussion on what characterizes multi-level conceptual 

modeling is conducted in Section 2.3. This section also discusses the main concepts underlying 

some of the most prominent multi-level modeling approaches in software engineering. Finally, 

some concluding remarks are presented (Section 2.4). 

2.1 Ontology 

Many meanings have been attributed to the term “ontology”. “Ontology” (with uppercase initial) 

refers to a philosophical discipline that studies the most general features of reality, dealing with 

relations between entities that belong to distinct domains of science (e.g., Physics, Chemistry, 

Biology), and also by entities recognized by common sense (GUARINO, 1998; GUIZZARDI, 

2007).  

With lowercase initial, “ontology” is used considering two perspectives, namely a 

philosophical and an engineering perspective. In the philosophical perspective, ontology is a 

particular system of categories accounting for a certain vision of the world independent of the 

language used to describe it (GUIZZARDI, 2007). This is what we call here conceptualization. 

In contrast, in the engineering perspective, this term is used to refer to an artifact represented in 

a specific language (GUARINO, 1998; GUIZZARDI, 2007). We adopt here this engineering 

perspective and following Gruber (1993) we define an ontology as “an explicit representation of 

a conceptualization”. Figure 1 illustrates the relation between an ontology and a conceptualization 

as adopted in this work. The conceptualization is illustrated with a cloud alluding to the fact that, 

in contrast to ontologies that are symbolic artifacts, conceptualizations are abstract entities that 

only exist in the thought realm. 

 
Figure 1 - An ontology is an artifact that explicitly represents a conceptualization. 

Different ontologies are developed to capture conceptualizations with different levels of 

generality. Some authors have proposed taxonomies of types of ontologies that classify ontologies 
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according to their level of generality (FALBO et al., 2013; GUARINO, 1998; SCHERP et al., 

2011): (i) a foundational ontology describes very general concepts independently of a particular 

problem or domain, such as object, property, relation, event, action, etc.; (ii) a core ontology 

provides a precise definition of structural knowledge in a specific field that spans across different 

domains (e.g., an ontology that describes different aspects of events); (iii) a domain ontology 

describes a conceptualization related to a generic domain (such as biology, software processes, 

genealogy); (iv) a task ontology describes a conceptualization related to a generic task (such as 

diagnosis, planning, meeting), and (v) an application ontology describes concepts dependent on 

a particular domain and task (e.g., a medical ontology that is defined by the specialization of a 

disease domain ontology and a diagnosis task ontology). As illustrated by Figure 2, these types 

of ontologies can be seen as regions in a spectrum or continuum with fuzzy boundaries between 

them (FALBO et al., 2013). 

 
Figure 2 - Generality level of ontology as a continuum (FALBO et al., 2013). 

Regarding the purpose of usage, ontologies can be classified as reference ontologies or as 

operational ontologies (FALBO et al., 2013; GUIZZARDI, 2007). Reference ontologies are 

designed to be used in an off-line manner to assist humans in tasks of meaning negotiation and 

consensus establishment. These ontologies should be constructed with the sole objective of 

making the best possible description of the domain in reality (GUIZZARDI, 2007). Once users 

have already agreed on a common conceptualization, specialized versions of a reference ontology 

can be created for run-time use. These versions are classified as operational ontologies, and 

sacrifice representation adequacy and theoretical foundation to guarantee desirable computational 

properties (e.g., expressiveness, and tractability) (FALBO et al., 2013; GUIZZARDI, 2007). The 

notion of reference ontology is especially important to this work, and will find use in the revision 

and definition of modeling approaches. 

2.2 Ontology-based Conceptual Modeling 

2.2.1 Principles 

Authors such as Guizzardi (2007), and Wand and Weber (1993) have defended that an appropriate 

conceptual modeling language should provide modeling primitives that reflect the conceptual 

categories defined in a reference ontology capturing the conceptualization underlying the 

phenomena at hand. For example, a modeling language to represent genealogy trees should 
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provide modeling primitives reflecting concepts formally defined by a reference domain ontology 

in genealogy (e.g. “Man”, “Woman”, “biological father of”, etc.) (CARVALHO; ALMEIDA; 

GUIZZARDI, 2014; GUIZZARDI, 2005). Further, the real-world rules formalized by the 

reference ontology should guide the definition of syntactic constraints to govern how the 

modeling primitives can be combined (e.g. only instances of “Man” can be the source of 

“biological father of” relations). These syntactic constraints that have the purpose of reflecting 

real-world rules in the language, characterizes what we call semantically-motivated syntactic 

constraints (CARVALHO; ALMEIDA; GUIZZARDI, 2014). 

Based on similar principles, Guarino (1994) and Guizzardi (2005) defend that an 

appropriate general-purpose conceptual modeling language should provide modeling primitives 

that reflect the conceptual categories defined in a foundational ontology. Thus, these languages 

should reflect a (meta) conceptualization, dealing with formal aspects of entities irrespective of 

their particular nature, e.g., identity and unity, types and instantiation, rigidity, mereology, 

dependence (GUIZZARDI, 2005). These initiatives concerning the use of ontologies to found 

conceptual modeling characterizes the research area under the banner of ontology-based 

conceptual modeling. 

Founded on these ideas and aiming to provide foundations for conceptual modeling 

activities, Guizzardi (2005) proposes the Unified Foundation Ontology (UFO). UFO was used as 

a reference ontology to evaluate a fragment of UML and, based on this analysis, a UML extension 

for the purposes of conceptual modeling (dubbed OntoUML) has been proposed. Next section 

presents UFO and OntoUML focusing on relevant aspects to this work. 

2.2.2 Conceptual Modeling Founded on UFO 

The Unified Foundational Ontology (UFO) is a domain-independent system of categories 

aggregating results from disciplines such as Analytical Philosophy, Cognitive Science, 

Philosophical Logics and Linguistics. Over the years, UFO has been successfully employed to 

analyze the classical conceptual modeling constructs including Object Types and Taxonomic 

Structures, Part-Whole Relations, Intrinsic and Relational Properties, Weak Entities, Attributes 

and Datatypes, etc. (GUIZZARDI, 2005). Here we present a fragment of UFO that is relevant for 

this work. For an in-depth discussion, formal characterization and discussion regarding empirical 

support for UFO’s categories, see (GUIZZARDI, 2005).  

UFO begins with a distinction between universals and individuals. Universals are patterns 

of features that can be realized in a number of individuals. For example, John and Mary are 

individuals that instantiate the universals “Man” and “Woman” respectively. UFO includes a 

taxonomy of individuals and a taxonomy of universals.  

The topmost distinction in the taxonomy of individuals is that between endurants and 

events. Endurants (as opposed to events) are the individuals said to be wholly present whenever 



25 

they are present, i.e., they can endure in time, suffering a number of qualitative changes while 

maintaining their identity (e.g., a house, a person). Since in this work we are especially interested 

in a portion of UFO that accounts for structural (as opposed to dynamic) aspects of conceptual 

modeling, we focus on endurants. Endurants are further classified into Substantials and Moments. 

Substantials are existentially-independent endurants (e.g. a person, a forest). A moment, in 

contrast, is an endurant that inheres in, and, therefore, is existentially dependent of, another 

endurant(s). Moments that are dependent of one single individual are Intrinsic Moments (e.g. a 

person’s age) whereas moments that depend on a plurality of individuals are instances of Relator 

(e.g. a marriage, an employment, an enrollment). 

Intrinsic moments in UFO are further classified into Qualities and Modes. Those that are 

measurable and directly related to some quality structure are termed Qualities (e.g. a car’s weight 

has a measurable value in a one-dimensional structure of positive numbers). In contrast, intrinsic 

moments not directly related to measurable structures are termed Modes (e.g., a person’s skills, 

intentions, beliefs or symptoms). 

These distinctions among individuals are reflected in the taxonomy of universals. Instances 

of Quality Universals have qualities as instances (e.g., the quality universal “Age” is instantiated 

by “Mick Jagger’s age”, “John’s age”), instances of Mode Universals have modes as instances 

(e.g., “Disease” is instantiated by “John’s diabetes”, and “Skill” is instantiated by “John’s 

programming skills”), instances of Relator Universal have relators as instances (e.g., “Marriage” 

is instantiated by “John and Mary’s Marriage”), and instances of Substantial Universals have 

substantials as instances (e.g., “Person” is instantiated by “John”, “Mary”, “Mick Jagger”).  

The ontological category of Substantial Universal is further specialized according to the 

ontological notions of identity and rigidity. Substantial universals that carry a uniform principle 

of identity for their individuals are instances of Sortal Universal (e.g., “Person”, “Car”, 

“Organization”). In contrast, instances of Mixin Universal (or Non-Sortal Universal) represent 

abstractions of properties that are common to instances of various sortals (e.g., the mixin 

“Insurable Item” describes properties that are common to entities of different sortals such as 

“House”, “Car”, “Work of Art”). Moreover, a universal is said to be rigid if it classifies its 

instances necessarily (in the modal sense). In other words, if a universal T is rigid, then an instance 

x of T cannot cease to be an instance of T without ceasing to exist (e.g., “Person”, “Organization”). 

In contrast, a universal is anti-rigid if its instances can move in and out of the extension of that 

universal without ceasing to exist (e.g., “Student”, “Insured Organization”) 
2.  

A Rigid Sortal that supplies a uniform principle of identity to its instances is termed Kind 

(e.g “Person”, “Organization”). Instances of Kind may be specialized by other rigid sortals that 

inherit the principle of identity supplied by the Kind. These rigid sortals are termed Subkinds (e.g. 

                                                      
2 For the sake of simplicity, here we do not consider semi-rigid types, i.e. types that classify some of its 

instances necessarily and some of them only contingently (GUARINO; WELTY, 2002b). 
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“Man”, “Woman”). Anti-rigid sortals are further classified into the categories Role or Phase. 

Instances of Role classify substantials through the relational properties they bear in the scope of 

a relational context (e.g. “Employee”, “Employer”, “Husband”, “Student”), and thus are 

considered externally dependent universals. In contrast, instances of Phase classify substantials 

depending on one or more of their intrinsic properties (e.g “Child”, “Adult”).  

Rigid Mixins that represent abstractions of properties that apply to instances of different 

kinds are called Category universals (e.g., “Legal Entity” abstracting properties of persons and 

organizations). Analogously to anti-rigid sortals, anti-rigid mixins are classified into Role Mixin 

(which are externally dependent) and Phase Mixin. Role Mixins classify substantials of different 

kinds through common relational properties (e.g. “Customer”, abstracting relational properties 

applicable to persons and organizations). In contrast, Phase Mixins classify substantials of 

different kinds through common intrinsic properties (e.g. “Living Animal” and “Deceased 

Animal” that classify in a contingent manner instances of entities of kinds such as “Dog”, 

“Person”, “Cow”, etc.).  

Figure 3 summarizes the discussion so far by depicting a fragment of UFO’s taxonomy of 

universals in the left-hand side (“Endurant Universal” and its specializations) and the taxonomy 

of individuals in the right-hand side (“Endurant” and its specializations). This fragment of the 

UFO ontology is presented here as a UML class diagram for presentation-purposes only. The 

actual representation of the ontology is captured in (GUIZZARDI, 2005) in a particular type of 

Intensional Modal Logics with Sortal Quantification. 

 
Figure 3 - UFO endurant individuals and universals taxonomies 

In order to support the construction of ontology-driven conceptual models, a UML profile 

(dubbed OntoUML) was proposed in (GUIZZARDI, 2005). Over the years, it has been adopted 

by many research, industrial and government institutions worldwide, in areas ranging from 

Geology to Organ Donation, from Biodiversity Management to Logistics, from Software 

Engineering to Telecommunications (GUIZZARDI et al., 2015b). It has been also applied in the 

representation of some core ontologies founded on UFO, such as the organizational ontology O3 

(PEREIRA; ALMEIDA, 2014) and the reference ontology for services UFO-S (NARDI et al., 

2015). Besides the modeling language itself, the OntoUML approach also offers a model-based 
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environment for model construction, verbalization, code generation, formal verification and 

validation (BENEVIDES; GUIZZARDI, 2009). The environment provides a validation strategy 

based on visual model simulation (BENEVIDES et al., 2011; BRAGA et al., 2010) and offer 

support for detection, simulation and elimination of anti-patterns (GUIZZARDI; SALES, 2014). 

Further, automated transformation to OWL (GUIZZARDI; ZAMBORLINI, 2013) and to Alloy 

are available (BENEVIDES et al., 2011; BRAGA et al., 2010). OntoUML has also been 

considered as a candidate for addressing the OMG SIMF (Semantic Information Model 

Federation) Request for Proposal, after a report of its continuous successful use by a branch of 

the U.S. Department of Defense (U.S. DEPARTMENT OF DEFENSE, 2016).  

OntoUML includes modeling primitives that reflect ontological distinctions put forth by 

UFO (these are represented as stereotypes for each of the leaf ontological categories of the UFO 

taxonomy of universals). Figure 4 depicts an OntoUML diagram including domain concepts to 

illustrate each aforementioned UFO notion. 

OntoUML also defines stereotypes for associations. Associations stereotyped 

«characterization» are used to represent relations between substantial universals and intrinsic 

moment universals, meaning that instances of the former bear instances of the latter. For instance, 

in Figure 4, associations stereotyped «characterization» are used to capture that each person bears 

an age and a set of skills. Associations stereotyped «mediation», in their turn, are used to represent 

relations between relator universals and roles in a relational context. In Figure 4 associations 

stereotyped «mediation» are used to capture that an employment establishes the relationship 

between an employee and an employer. 

 
Figure 4 - An OntoUML diagram 

In addition to prescribing specialized modeling primitives, OntoUML includes formal 

syntactic constraints that govern how these primitives can be combined, taking into account the 

ontological notions of existential dependence, rigidity and principle of identity, among others. 

Since these constraints are derived from the axiomatization of the foundational ontology, they are 

considered semantically-motivated syntactic constraints. These semantically-motivated syntactic 

constraints play a key role on guaranteeing the compliance of OntoUML diagrams to UFO rules, 

and allows the development of tool support to automate the verification of this compliance. We 

present here a subset of these semantically-motivated syntactic constraints, namely those that 
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govern how specialization between domain types may be applied to ensure that the resulting 

conceptual models are sound. The six presented constraints (or “rules”) are relevant for the 

analysis conducted in Chapter 4.  

Considering that Moment and Substantial are disjoint categories, since no entity can be at 

the same time existentially-dependent and existentially-independent, instances of Moment 

Universal may not specialize instances of Substantial Universal and vice-versa (rule U1). The 

same applies to qualities, modes and relators; these are disjoint ontological categories, and thus 

instances of Quality Universal, Mode Universal and Relator Universal cannot specialize each 

other (rule U2). 

In the case of substantial universals, a further rule arises from the distinction into sortals 

and mixins (i.e., non-sortals): instances of Mixin Universal cannot specialize instances of Sortal 

Universal (rule U3). This is because if a mixin universal were to specialize a sortal universal, it 

would inherit the principle of identity carried by that sortal universal. However, by definition, 

mixin universals do not carry a principle of identity. 

A further constraint arises from the distinction into rigid and anti-rigid universals: rigid 

universals (instances of Rigid Sortal and Rigid Mixin) may not specialize instances of anti-rigid 

universals (Anti-Rigid Sortal and Anti-Rigid Mixin) (rule U4). If a rigid subtype were to specialize 

an anti-rigid supertype, its instances would instantiate the subtype necessarily (by definition) and 

would also instantiate the supertype necessarily (by virtue of specialization). However, as we 

considering an anti-rigid supertype – which applies contingently (i.e., non-necessarily) to its 

instances – this is not possible by definition. Note that the converse is admissible, and thus an 

anti-rigid type may specialize a rigid one as no contradiction arises. 

Two rules emerge from the source of principle of identity in sortal specialization. First, an 

instance of Kind cannot specialize another sortal universal (rule U5). A kind K supplies a principle 

of identity to its instances, and, if it were to specialize another sortal universal S, it would inherit 

a principle of identity carried by S, i.e., supplied by S or by another kind that S specializes. As a 

consequence, K, in this case, would carry more than one principle of identity for its instances. As 

discussed in depth in (GUIZZARDI, 2005), these instances would become ontologically 

indeterminate individuals. Second, instances of Subkind, Phase and Role are sortals that carry – 

but do no supply – a principle of identify for their instances. Hence, they must specialize a unique 

instance of Kind (rule U6), which will supply the principle of identity for their instances.  

Conceptual domain models constructed in OntoUML are able to express ontological 

properties of the types that apply to individuals in the subject domain. However, currently, no 

support is provided to represent domain-specific types of types, since the second-order types of 

OntoUML are predefined in the language profile (as stereotypes). Due to this limitation, some 

publications, such as (PEREIRA; ALMEIDA, 2014) and (FALBO et al., 2014) mention higher-

order universals in OntoUML models using stereotypes whose semantics is not formally defined. 
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This motivates our investigation into the combination of UFO with a theory capable of accounting 

for multiple levels of classification. 

2.3 Multi-level Modeling 

 Multi-level conceptual modeling addresses phenomena dealing with a number of complex 

notions and subtle relations that cross multiple levels of instantiation. These phenomena are 

ubiquitous in many application domains, such as, software development (GONZALEZ-PEREZ; 

HENDERSON-SELLERS, 2006), organizational roles (or professional positions) (PEREIRA; 

ALMEIDA, 2014), biological taxonomy (MAYR, 1982) and artifact types (e.g., product types) 

(NEUMAYR; GRÜN; SCHREFL, 2009). Many approaches for multi-level modeling have been 

proposed, with different purposes and founded on different concepts, as, for example, 

(ATKINSON; GERBIG, 2012; GONZALEZ-PEREZ; HENDERSON-SELLERS, 2006; LARA; 

GUERRA; CUADRADO, 2014; NEUMAYR; GRÜN; SCHREFL, 2009; ODELL, 1994; 

PARTRIDGE, 2005), although, to the best of our knowledge, none of them address ontological 

distinctions such as existential dependence, rigidity and sortality. 

The following sections discuss the main concepts underlying some prominent multi-level 

modeling approaches in software engineering, which have influenced this work.  

2.3.1 Power Types 

The concept of power type is an early notion used to support the construction of models addressing 

more than one classification level. Although the notion of power type has had some influence 

over the majority of the multi-level approaches, different definitions for this term can be found in 

the literature. The work presented here was strongly influenced by two seminal definitions of 

power type, namely the proposals of (CARDELLI, 1988) and (ODELL, 1994). 

The focus of Cardelli (1988) was on providing a logical theory to define the notion of power 

type. He considers that types are intentionally (in contrast with extensionally) defined and argues 

that types are not intended as arbitrary sets of elements, but as sets whose elements share a 

common structure. Further, he considers that subtypes should not be intended as arbitrary subsets, 

i.e., the subtypes of a type should be identified considering the structure they define to their 

instances. Based on these notions, Cardelli coined the notion of power type to characterize a type 

that captures the common structure of all types that specializes a specific type. According to 

(CARDELLI, 1988), the same way specializations are intuitively analogous to subsets, power 

types can be intuitively understood as powersets. The powerset of a set A is the set whose elements 

are all possible subsets of A including A itself. Thus, “if A is a type, then Power(A) is the type 

whose elements are all the subtypes of A” (including A).  
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Modeling languages issues were out of the scope of (CARDELLI, 1988). In contrast, Odell 

(1994) provided an informal definition of power type, and focused on how representing power 

types in object-oriented models using examples to illustrate his approach. The notion proposed 

by Odell in (ODELL, 1994) is the most referenced notion of power type in software engineering.  

Odell (1994) stated simply that a power type is a type whose instances are subtypes of 

another type. To illustrate it, the author presented an example considering a type “Tree Species” 

having instances such as “Sugar Maple”, “Apricot”, “American Elm” and “Saguaro”. Since all 

instances of “Tree Species” specialize “Tree”, “Tree Species” is a power type of “Tree”. To 

facilitate the discussion here, we use the term base type to refer to the type that generalizes the 

power type instances, i.e., “Tree” is the base type of “Tree Species”. 

Concerning the representation of power types in object-oriented conceptual models, Odell 

proposed the use of an association between a base type and a power type to express that each 

instance of the power type “classifies” zero or more instances of the base type and that each 

instance of the base type “is classified by” one instance of the power type. Figure 5 illustrates it 

representing the relation between “Tree” and “Tree Species”. 

 
Figure 5 - Illustrating the notation proposed by Odell to represent that each instance of the base type is 

instance of one instance of the power type (adapted from (ODELL, 1994)) 

Odell has also proposed labeling the “subtype partitions” (generalization sets) of the base 

type as a way to identify which specializations of the base type are instances of each power type. 

For example, in order to identify that “Sugar Maple” and “Apricot” are instances of “Tree 

Species” the generalization set was labeled “: Tree Species” (see Figure 6). The support for power 

types of the current version of UML (OMG, 2011) is inspired in Odell’s original proposal. 

 
Figure 6 - Illustrating the notation proposed by Odell to associate power types with subtypes partitions 

(adapted from (ODELL, 1994)) 

Concerning the different notions of power type, it is important to notice that Odell’s 

definition is less strict than Cardelli’s definition (CARDELLI, 1988). Cardelli coins the power set 

concept stating that all the specializations of the base type are instances of the power type. Odell’s 

definition, in turn, does not comply with that restriction assuming that all instances of the power 

type specializes the base type but there may be specializations of the base type that are not 
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instances of the power type. For example, assuming that there may be specializations of “Tree” 

that are not instances of “Tree Species”, according to Cardelli’s power type definition “Tree 

Species” is not the power type of “Tree”, in contrast with Odell’s notion. Thus, as pointed out by 

(HENDERSON-SELLERS, 2012), the relation defined by Odell is misnamed power type since, 

in fact, it denotes a strict subset of the power set. An important consequence of this difference 

concerning the two definitions is that, according to Cardelli’s definition, each type has at most 

one power type, while, following Odell’s definition, a type may have more than one power type. 

2.3.2 Clabjects and Deep Instantiation 

The concept of power type is founded on the notion that “instances of types can also be types” 

(ODELL, 1994). While this notion can serve as a foundation for a multi-level approach, the power 

type pattern has often been used in two-level architectures, in which a model element is classified 

exclusively as an object (instance) or as a class (type). In this case, one needs to admit two entities: 

one capturing the class facet and another capturing the object facet of the power type. Further, 

some strategy to link the two facets must be adopted. For example, Gonzalez-Perez and 

Henderson-Sellers denote this informally in (GONZALEZ-PEREZ; HENDERSON-SELLERS, 

2006) by drawing ellipses on top of diagrams to relate the two facets of a power type.  

Atkinson and Kühne (ATKINSON; KÜHNE, 2000) propose a more radical revision of 

two-level architectures coining the notion of clabject. This notion is founded on the observation 

that every instantiable entity has both a type (or class) facet and an instance (or object) facet which 

are equally valid (ATKINSON; KÜHNE, 2000). For example, “Sugar Maple” could be 

considered a clabject since it has both an instance facet (it is instance of “Tree Species”) and a 

type facet (some instances of “Tree” are also instances of “Sugar Maple”). Thus, instances of 

power types can be considered clabjects. These notions are central to the multi-level theory we 

propose in this work  

Atkinson and Kühne also recognize an important characteristic of multi-level domains: in 

such domains an element at some level can describe features of elements at each level beneath 

that level (ATKINSON; KÜHNE, 2001, 2008). Founded on this observation, they propose the 

notion of deep instantiation as a contrast to the tradition on object-oriented community of 

considering that a class can only define the properties of its direct instances (which they call 

“shallow instantiation” in (ATKINSON; KÜHNE, 2001)). 

Besides adhering to the notion of clabject, the authors define the concept of potency 

(ATKINSON; KÜHNE, 2008). Deep instantiation is based on the idea of assigning a potency to 

every model element, i.e. to each clabject, attribute or association is assigned a potency. The 

potency of a model element is an integer that defines the depth to which a model element can be 

instantiated. When a clabject is instantiated from another clabject the potencies of the created 

clabject and of its fields and association are given by the original clabject, fields and association 
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potencies decremented by one. Objects have potency equal to zero indicating they cannot be 

instantiated, i.e. a clabject with potency zero corresponds to an object, if the potency of a field 

becomes zero then a value can be assigned to that field, and an association with potency zero 

corresponds to a link. 

Further, every model element has a level. The level of a model element is an integer 

representing the model level in which the element resides (e.g. an M0 element has level value 0). 

As well as the potency of an element, the element level value is also reduced by 1 when the 

element is instantiated. Thus, instantiation can only be applied to model elements whose potency 

and level are greater than 0. Moreover, elements whose potency is zero cannot be instantiated, 

regardless of their level value. 

For example, suppose a scenario in which we want to model computer monitors and their 

models, such that each instance of “Monitor” is instance of one instance of “Monitor Model”, i.e. 

following (ODELL, 1994) “Monitor Model” is power type of “Monitor”. Further consider that 

each “Monitor” has a “serial number”, that each “Monitor Model” defines the “screen size” of its 

instances and that “Dell E1913” and “Dell E2216” are instances of “Monitor Model”.  

Applying the deep instantiation approach (ATKINSON; KÜHNE, 2001, 2008) to capture 

this scenario we could define a clabject “Monitor Model” with potency 2. The attribute “screen 

size” could be defined as a field of “Monitor Model” with potency 1 denoting that each instance 

of “Monitor Model” has a specific value assigned to “screen size”. Finally, we could define “serial 

number” as a field of “Monitor Model” with potency 2, so that instances of “Monitor Model” 

would be clabjects in which “serial number” field would have potency of 1. Thus, instances of 

instances of “Monitor Model” would have a value assigned to “serial number”, since its potency 

would reach zero. For example, “Dell E1913” is an instance of “Monitor Model” with “screen 

size” 19″ and “myMonitor” is an instance of “Dell E1913” with “1234” as its “serial number”. 

Figure 7 depicts this example, which is a simplified version of an example presented in 

(ATKINSON; KÜHNE, 2008).  

Note that the deep instantiation approach allowed us to omit the representation of the 

“Monitor” type from our model since we were able to capture its attributes as fields of “Monitor 

Model” having potency 2. This illustrates what the authors consider to be one of the main benefits 

of the deep instantiation-based approach: the possibility of reducing “accidental complexity” in 

domain models since it supports multi-level modeling without the need of introducing types to 

the models only “because of the idiosyncrasies of a particular solution to deep characterization” 

(ATKINSON; KÜHNE, 2008). 
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Figure 7 - Illustrating the deep instantiation approach using a deep-modeling tool called Melanee 

(ATKINSON; GERBIG, 2012) 

Some formalizations of approaches based on deep instantiation can be found in the 

literature (e.g. (KENNEL, 2012; ROSSINI et al., 2014)), as well as proposals of modeling 

languages and tools to support deep modeling (ATKINSON; GERBIG, 2012; DE LARA; 

GUERRA, 2010). 

2.3.3 Ontological Instantiation and Linguistic Instantiation 

Atkinson and Kühne propose in (ATKINSON; KÜHNE, 2003) the Orthogonal 

Classification Architecture (OCA) to address the need of considering two different kinds of 

instantiation: the “linguistic instantiation” and the “ontological instantiation”. Whereas linguistic 

instantiation is used to define the relations between domain entities and linguistic constructs, 

ontological instantiations relate domain entities to other domain entities. Figure 8 illustrates the 

application of OCA defining two linguistic levels (L1 and L0) and three ontological levels (O2, 

O1 and O0). 

In Figure 8, the level L1 accommodates the metamodel of a modeling language and models 

constructed in such language are considered to be at level L0. Thus, the elements in level L1 

define the modeling language constructs and each element in level L0 is a “linguistic” instance of 

an element in L1. Besides the “linguistic” instantiation relations between elements in L0 and 

elements in L1, Figure 8 captures the “ontological” classifications that occur between elements 

in a common “linguistic” level. An “ontological” instantiation is used to represent the relation 

between a domain element and a domain category that classify such element. For example, Figure 

8 captures the fact that “Lassie” (a real-world dog represented in a model) is an “ontological” 

instance of “Collie” (a domain category represented in the same model) which, in its turn, is an 
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“ontological” instance of “Breed”. Since our focus is on conceptual modeling (and not language 

engineering or language metamodeling), this work is focused on “ontological” instantiation.  

 
Figure 8 - The Orthogonal Classification Architecture (extracted from (ATKINSON; KÜHNE, 2003)). 

2.4 Final Considerations 

In this chapter, we have discussed some key developments of the last decades in ontology-based 

conceptual modeling and in multi-level modeling.  

Following authors such as (GUARINO, 1998; GUIZZARDI, 2005; WAND; WEBER, 

1993) we argued that an appropriate conceptual modeling language should provide modeling 

primitives that reflect the conceptual categories defined in an ontology, characterizing what we 

call ontology-based conceptual modeling. We have discussed the use of the Unified Foundational 

Ontology (UFO) (GUIZZARDI, 2005) as a basis for ontology-based conceptual modeling, 

concluding that, so far, its support to ontology-based conceptual modeling has been focused on 

the analysis of properties of categories of individuals. As a consequence, this approach is unable 

to account for subject domains in which the categorization scheme itself is part of the subject 

matter. 

Multi-level modeling, in its turn, has not yet received the required conceptual treatment. As 

we have seen, the debate concerning multi-level modeling in software engineering is mainly 

focused on the use of models as engineering artifacts, especially in the context of model-driven 

engineering. Nevertheless, they provide important notions, such as power types and clabjects, 

which will be explored later in our multi-level conceptual modeling theory. 
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With these observations in mind, the general goal of this work can be seen under two 

complementary points of view, as we aim to: (i) extend the ontology-based conceptual modeling 

foundations to consider multiple classification levels; and (ii) contribute to the multi-level 

modeling field by proposing a multi-level approach that addresses ontological distinctions. 

The first step towards our multi-level ontology-based conceptual modeling approach is the 

development of a formal theory that captures the conceptualization underlying multi-level 

modeling. Next chapter presents this theory. 

  



36 

Chapter 3.  A Formal Theory for Multi-Level 

Conceptual Modeling 

There is ample psychological evidence to support the hypothesis that humans conceive the 

physical and social world using some notion of “categories” and use categorization or 

classification strategies since a pre-language age of 3-4 months (see (GUIZZARDI, 2005), pp. 

114-118). Thus, it is no surprise that a vast majority of conceptual modeling techniques are based 

on notions such as “class” and “type”, and that multi-level modeling approaches recur to “types” 

of “types” to support the representation of domains dealing with multiple classification levels. 

Despite this common ground of most multi-level modeling approaches, there is still no consensus 

on what kinds of constructs and concepts provide the best support for it.  

In the last decades many approaches for multi-level modeling have been proposed, with 

different purposes and founded on different concepts (LARA; GUERRA; CUADRADO, 2014; 

NEUMAYR; SCHREFL; THALHEIM, 2011), most of them focused on proposing modeling 

languages and model-driven development approaches. We believe the multi-level modeling area 

can benefit from a theory capturing the nature of multi-level domains, independent of language 

and technological issues. This theory could be applied to provide semantic foundations in 

activities such as the design of new multi-level conceptual modeling languages and approaches, 

the redesign of existing languages/approaches and the harmonization of approaches founded on 

different concepts. 

Aiming to provide a theory that achieves these desiderata, we develop a formal theory for 

multi-level modeling called MLT. MLT is built up from a basic instantiation relation and 

characterizes the concepts of individuals and types, with types organized in levels related by 

instantiation. The theory defines relations that occur between entities in the same level, as well as 

relations that may hold between elements of different levels. Further, MLT accounts for attributes 

and relationships (CHEN, 1976), providing support to discuss how an element at some level can 

influence features of elements at a lower level. The theory is formally defined through 

axiomatization in first-order logic, and verified and validated applying a lightweight formal 

method. 

Although we do not propose a language for multi-level conceptual modeling, we explore 

patterns that emerge from the application of the theory, as well as modeling constraints to ensure 

that multi-level models respect the theory axioms, clearly suggesting semantically-motivated 

syntactic constraints to multi-level modeling languages founded on MLT. Since our focus is on 

conceptual modeling (and not language engineering or language metamodeling), we address 
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“ontological instantiation” and we are thus unconcerned with “linguistic instantiation” 

(ATKINSON; KUHNE, 2003).  

This chapter is further organized as follows. Section 3.1 presents a set of requirements we 

believe that a theory should meet to be used as a reference theory for multi-level conceptual 

modeling. Section 3.2 presents the basic types of MLT, which play a key role in characterizing 

the classification levels. Section 3.3 presents the definitions of the intra-level structural relations, 

i.e. the relations that may occur between elements in the same classification level. Section 3.4, in 

its turn, discusses the cross-level relations, i.e., the relations that may occur between elements in 

different classification levels. Section 3.5 illustrates the application of the theory to the domain 

of biological taxonomy. Section 3.6 presents the MLT accounts for attributes and relationships. 

Section 3.7 discusses how MLT addresses dynamic classification (a required feature to enable the 

combination of MLT with UFO). Section 3.8 presents some remarks on the identity conditions of 

types. Section 3.9 discusses how MLT achieves the defined requirements. Section 3.10 positions 

MLT with respect to related work, and Section 3.11 presents some final considerations. 

3.1 Requirements for a Multi-level Conceptual Modeling 

Theory 

We establish here six requirements we judge important for a multi-level modeling theory to 

provide an adequate support to the task of describing multi-level domains. We indicate sources 

in the literature that have already established similar requirements to corroborate the relevance of 

the requirements identified here. 

An essential requirement for a multi-level modeling theory is to account for entities of 

multiple (related) classification levels, capturing chains of instantiation between the involved 

entities (R1). To meet this requirement, the theory must admit entities that are, simultaneously, 

type (class) and instance (object) (ATKINSON; KÜHNE, 2000).  

Another key requirement for a multi-level modeling theory is to define principles for the 

organization of entities into levels, clearly characterizing the nature of entities populating each 

level (R2). These principles should guide the adequate use of classification (instantiation) 

relations. The lack of principles to guide the organization of entities into levels may lead to the 

construction of unsound multi-level models. For example, in (BRASILEIRO et al., 2016a) we 

assessed Wikidata and found over 22,000 violations of the strict metamodeling principle. The 

identified problems seem to arise from inadequate use of instantiation and subtyping, and could 

have been prevented with guidance from the editing/modeling environment.  

Considering that the number of levels specified in a conceptual model may vary according 

to the nature of the phenomena being captured and to the model purposes, a multi-level theory 

should allow an arbitrary number of classification levels (R3). The ability to deal with an 
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arbitrary number of levels is pointed out by authors such as (ATKINSON; GERBIG, 2012; 

FRANK, 2014), as a key requirement for multi-level modeling approaches in the context of 

language engineering. 

An important characteristic of domains spanning multiple levels of classification is that 

there are rules that apply to the instantiation of types of different levels. This kind of rule is present 

in an early and important approach for multi-level modeling, named the power type pattern 

(CARDELLI, 1988; ODELL, 1994), which establishes a relationship between two types such that 

the instances of a type (the so-called “powertype” or “higher-order” type) are specializations of a 

lower-level type (the so-called “base type”). For example, all instances of Mobile Phone Model 

(e.g. Iphone5 and Zenfone2) specialize the base type Mobile Phone. In order to represent Mobile 

Phone Model, we need to establish its relation with the Mobile Phone type (we call this sort of 

relation a structural relation, governing the instantiation of types at different levels). Further, one 

may need to represent whether an instance of Mobile Phone may instantiate: (i) only one, or (ii) 

more than one Mobile Phone Model. The biological taxonomy domain is rich in rules concerning 

instantiation of types at different levels. For example, it defines that the instances of Biological 

Taxonomic Rank obey a sort of subordination chain such that every instance of Phylum specializes 

one instance of Kingdom, every instance of Class specializes one instance of Phylum, and so on. 

In order to capture these nuances of multi-levels domains, a multi-level theory should precisely 

define structural relations that account for rules for the instantiation of types at different levels 

(R4).  

In conceptual modeling, types can be seen as entities that capture common features of other 

entities which are considered their instances. These features are often captured using the notions 

of attributes and relationships (CHEN, 1976). A recurrent phenomena in domains dealing with 

multiple classification levels is that features of types in one classification level may constrain 

features in one level lower. For example, considering that every mobile phone has a screen we 

may define screen size as a feature that characterizes mobile phones. Further, consider that mobile 

phones models categorize the mobile phones with respect to some features, including the screen 

size. In this scenario, the screen size defined by an instance of “Mobile Phone Model” constrains 

the feature “screen size” of all its instances (e.g. defining that Iphone5 have screen size of “4-

inch” means that every instance of Iphone5 must have a 4-inch screen). To be able to capture this 

phenomenon, an appropriate multi-level modeling theory should provide an account for features 

(attributes and relationships) of entities, including support to rules relating features of entities in 

different levels (R5). An example of multi-level modeling approach that provides a mechanism 

to capture a specific sort of relations between attributes of entities in different levels is the one 

proposed in (ATKINSON; GERBIG, 2012) (this mechanism is further discussed in Section 

3.10.2.) 
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Finally, in various domains, there are relations that may occur between entities of different 

classification levels. For example, consider the following domain rules: (i) each Car has an owner 

(a Person), (ii) each Car is classified as instance of a Car Model, and (iii) each Car Model is 

designed by a Person. In this domain, instances of Person (individuals) must be related, 

simultaneously, with instances of Car Model (which are classes) and with instances of Car, i.e., 

individuals that are instances of instances of Car Model. To capture scenarios like this, a multi-

level modeling theory should admit the existence of domain relations between entities in different 

classification levels (R6). Next sections present a formal multi-level theory we developed 

observing requirements R1 to R6. 

3.2 MLT Foundations: Basic Types and the Instantiation 

Relation 

The notions of type and individual are central for our multi-level modeling theory. Types are 

predicative entities that can possibly be applied to a multitude of entities (including types 

themselves). Particular entities, which are not types, are considered individuals. 

Each type is characterized by an intension, which is used to judge whether the type applies 

to an entity (e.g., whether something is a Person, a Dog, a Chair) (it is also called principle of 

application in (GUIZZARDI, 2005)). If the intension of a type t applies to an entity e then it is 

said that e is an instance of t. Thus, the instance of relation (or instantiation relation3) maps a type 

to the entities that fall under the type. The set of instances of a type is called the extension of the 

type (HENDERSON-SELLERS, 2012). We assume that the theory is only concerned with types 

with non-trivially false intensions, i.e., with types that have possible instances in the scope of the 

conceptualization being considered. 

MLT is formalized in first-order logic, quantifying over all possible individuals and types. 

The instantiation relation is formally represented by a binary predicate iof(e,t) that holds if an 

entity e is instance of an entity t (denoting a type). For instance, the proposition iof(Vitória,City) 

denotes the fact that “Vitória” is an instance of  the type “City”.4  

We build up the theory axiomatization defining the conditions for entities to be considered 

individuals, with the constant “Individual” in axiom A1. An entity is an instance of “Individual” 

iff it does not possibly play the role of type in instantiation relations. 

∀x iof(x, Individual) ↔ ∄y iof(y, x)  (A1) 

                                                      
3 We are aware that certain approaches such as RM-ODP distinguish the terms instantiation and instance, 

but this distinction is not required here, and hence we use the terms interchangeably. 
4 For the sake of clarity in the presentation, we focus in this section on types that apply necessarily to their 

instances (the so-called rigid types (GUIZZARDI, 2005)). A treatment of dynamic classification (and non-

rigidity) is deferred to Section 3.7. 
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We consider that two types are equal iff the sets of all their possible instances are the same (see 

Axiom A2). Note that this definition of equality only applies to elements which are not 

individuals, hence the ‘guard’ conditions on the left-hand side of the implication.  

∀t1, t2 (¬iof(t1, Individual) ∧ ¬iof(t2, Individual)) → 

((t1 = t2) ↔ (∀e  iof(e, t1) ↔ iof(e, t2)))    (A2) 

As a multi-level modeling theory, we deal with types that have individuals as instances as 

well as with types whose extension is composed by other types. In order to accommodate these 

varieties of types, the notion of type order is used. Types whose instances are individuals are 

called first-order types. Types whose instances are first-order types are called second-order types. 

Those types whose extensions are composed by second-order types are called third-order types, 

and so on. We use the term higher-order type to refer to types with order higher than one. 

Axiom A3 characterizes “First-Order-Type” (or shortly “1stOT”), defining a first-order 

type as an entity whose instances are instances of “Individual”. Analogously, A4 and A5 

characterize “Second-Order Type” (or “2ndOT”) and “Third-Order Type” (“3rdOT”). A4 defines 

that an entity t is a second-order type iff all its instances are first-order types (i.e., instances of 

“1stOT”), and A5 defines that an entity t is a third-order type iff all its instances are second-order 

types (i.e., instances of “2ndOT”). 

This scheme can be simply extended to consider as many orders as necessary. However, 

we present our theory here for the sake of brevity considering only first-order, second-order and 

third-order types. 

∀t iof(t, 1stOT) ↔ (∃y iof(y, t) ∧ (∀x iof(x, t) → iof(x, Individual)))      (A3) 

∀t iof(t, 2ndOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 1stOT)))      (A4) 

∀t iof(t, 3rdOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 2ndOT)))      (A5) 

Substituting t by Individual in axiom A3, one can see that “Individual” is an instance of 

“1stOT” (theorem T1). Analogously, using further axioms A4 and A5 we can show that “1stOT” 

is instance of “2ndOT” and “2ndOT” is instance of “3rdOT” (see theorems T2 and T3).  

iof(Individual, 1stOT)    (T1) 

iof(1stOT, 2ndOT)    (T2) 

iof(2ndOT, 3rdOT)    (T3) 

Theorem T4 states that “Individual”, “1stOT”, “2ndOT” and “3rdOT” have no instances in 

common, i.e., their extensions are disjoint. To see why this theorem holds, we need to analyze all 

the possible combinations of the basic types in pairs, starting from evaluating the possibility for 

an entity to be instance of both “Individual” and “1stOT”. According to A1, instances of 

“Individual” do not have instances, while according to A3 instances of “1stOT” necessarily have 
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some instance. Thus, no entity can be an instance of “Individual” and “1stOT” simultaneously. 

Using A1 in tandem with A4 and A5 we can also conclude that “Individual” does not have 

instances in common with “2ndOT” nor with “3rdOT”. Now, suppose an entity e, which is 

instance of both “1stOT” and “2ndOT”. Using A3 and A4, all its instances should be 

simultaneously “Individual” and “1stOT”, which is impossible, as we have already concluded. 

Hence, there are no entities which simultaneously instantiate “1stOT” and “2ndOT”. Following 

analogous reasoning and using axioms A4 and A5 one can conclude that “2ndOT” and “3rdOT” 

do not have instances in common. Finally, applying the same strategy and using axioms A3 in 

tandem with A5 one can see that “1stOT” and “3rdOT” have no entities in common. 

∄x (iof(x, Individual) ∧ iof(x, 1stOT)) ∨ (iof(x, Individual) ∧ iof(x, 2ndOT)) ∨ 

(iof(x, Individual) ∧ iof(x, 3rdOT)) ∨ (iof(x, 1stOT) ∧ iof(x, 2ndOT)) ∨ 

(iof(x, 1stOT) ∧ iof(x, 3rdOT)) ∨ (iof(x, 2ndOT) ∧ iof(x, 3rdOT))     (T4) 

Axiom A6 states that each entity in our domain of enquiry is necessarily an instance of 

“Individual”, “1stOT”, “2ndOT” or “3rdOT” (except “3rdOT” whose type is outside the scope of 

the formalization). This makes the set of extensions of “Individual”, “1stOT”, “2ndOT” and 

“3rdOT” a partition of the set of entities considered in the theory (and their union the domain of 

quantification).  

∀x (iof(x, Individual) ∨ iof(x, 1stOT) ∨ iof(x, 2ndOT) ∨ iof(x, 3rdOT)) ∨ (x = 3rdOT)      (A6) 

Axioms A1 to A6 prescribe a strictly stratified organization of entities into orders. As a 

result, the instance of relation in MLT is asymmetric (i.e. irreflexive and antisymmetric) 

(Theorem T5) and anti-transitive (Theorem T6). These properties of instantiation relations are 

consistent with those widely accepted in the conceptual modeling community (HENDERSON-

SELLERS, 2012; KÜHNE, 2009).  

∄x, y (iof(x, y) ∧ iof (y, x))  (T5) 

∄x, y, z (iof(x, y) ∧ iof(y, z) ∧ iof (x, z))  (T6) 

To see that T5 and T6 hold, one needs to observe that the stratification prescribed by axioms 

A1 to A6 guarantees that instantiation relations hold between two elements such that the latter is 

one order higher than the former. Thus, the instances of an entity are in one order lower than it, 

while its types are in one order higher. 

To demonstrate the validity of T5 we follow a case based strategy considering all possible cases 

for entities in the domain of quantification according to A6:  

- First, suppose y is an instance of “Individual”. Since instances of “Individual” do not have 

any possible instance (A1), iof(x, y) is never true. Thus, T5 holds for this case.  

- Suppose y is an instance of “1stOT”. According to A3, x must be an instance of “Individual” 

to make iof(x, y) true. Since instances of “Individual” do not have any possible instance (A1), 

iof(y, x) is never true. Thus, T5 holds for this case. 
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- Suppose y is an instance of “2ndOT”. According to A4, x must be an instance of “1stOT” to 

make iof(x, y) true. If x is instance of “1stOT”, all its instances must be instances of 

“Individual” (A3), requiring y to be an instance of “Individual” to make iof(y ,x) true. Since 

y cannot be simultaneously instance of “2ndOT” and “Individual” (T4), T5 holds. The case 

in which y is an instance of “3rdOT” is analogous to this one. 

- Finally, suppose that y is “3rdOT”. To see why iof(y, x) is never true, we can consider all 

cases for x according to A6. If x is an instance of “Individual”, iof(y, x) is false (A1). If x is 

an instance of “1stOT”, y would have to be an instance of “Individual” to make iof(y,x) true. 

However, this is not possible, as instances of “Individual” do not have any possible instance 

(A1), and “3rdOT” does (T3). If x is an instance of “2ndOT”, y would have to be an instance 

of “1stOT” (A4) to make iof(y, x) true. Being y an instance of “1stOT”, every instance of it 

would be an instance of “Individual” (A3). However, since y is “3rdOT”, its instances should 

be instances of “2ndOT” (A5). This is not possible, given T4. The case in which x is an 

instance of “3rdOT” is analogous. If x is “3rdOT”, y would have to be instance of “3rdOT” 

to make iof(y, x) true (A5). Being y an instance of “3rdOT”, every instance of it would be an 

instance of “2ndOT”, which is impossible, considering that “3rdOT” and “2ndOT” have no 

instances in common (T4). 

To demonstrate the validity of T6, we follow a case-based analysis similar to one we used to 

analyze T5. 

- First, suppose z is an instance of “Individual”. Since instances of “Individual” do not have 

any possible instance (A1), iof(y, z) is never true. Thus, T6 holds for this case.  

- Suppose z is an instance of “1stOT”. According to A3, y must be an instance of “Individual” 

to make iof(y, z) true. Since instances of “Individual” do not have any possible instance (A1), 

iof(x, y) is never true. Thus, T6 holds for this case. 

- Suppose z is an instance of “2ndOT”. According to A4, y must be an instance of “1stOT” to 

make iof(y, z) true. If y is instance of “1stOT”, x must be an instance of “Individual” to make 

iof(x, y) true (A3). Being z an instance of “2ndOT” and x an instance of “Individual”, iof(x,z) 

is never true. Thus, T6 holds for this case. The case in which z is an instance of “3rdOT” is 

analogous to this one. 

- Finally, suppose that z is “3rdOT”. In this case, to make iof(y, z) true, y must obviously be an 

instance of “3rdOT”. If y is instance of “3rdOT”, x must be an instance of “2ndOT” to make 

iof(x, y) true (A5). Being x an instance of “2ndOT”, it cannot be instance of “3rdOT” (T4). 

Thus, iof(x,z) is never true and T6 holds in this case. 

Note that the notion of order we have used is inspired on the ramified hierarchy introduced 

by Russell in his type theory (COQUAND, 2014). However, Russell’s main goal with the notion 

of order was to prevent circularity in the hierarchy of types and hence sets of a given order could 

include sets of an arbitrary lower order. Differently from Russell, in our theory a type can only 
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have instances at the immediately lower order, resulting in levels of entities. This is a common 

feature of the instance of relation in various techniques which adopt the so-called strict 

metamodeling principle (ATKINSON; KÜHNE, 2000). Further, stratified levels arise from the 

cascaded application of the power type pattern starting from first-order types. 

Figure 9 illustrates the elements that form the basis for our multi-level modeling theory, 

using a notation that is largely inspired in UML. We use the UML class notation to represent the 

basic types of the theory (“Individual”, “1stOT”, “2ndOT” and “3rdOT”). We use associations as 

usual to represent relations between instances of the related types. The multiplicities of the 

associations reflect the constraints in the formalization. For example, each instance of 

“Individual” is instance of at least one instance of “1stOT”, and, on the inverse direction, each 

instance of “1stOT” has at least one instance of “Individual” in its extension. We use 

dependencies (dashed arrows) to represent when relations hold between the types, with labels to 

denote the names of the predicates that apply. For instance, a dashed arrow labeled iof between 

“Individual” and “1stOT” represents that the former is an instance of the latter (i.e., that 

iof(Individual,1sOT) holds). In Figure 9 the dashed arrows are justified by theorems T1-T3. The 

notation used to elaborate Figure 9 is used in all further diagrams in this chapter. 

  
Figure 9 - Basic foundations of MLT: basic types and instance of relations. 

3.3 Intra-level Structural Relations 

MLT defines some relations that occur between types of the same order (the intra-level structural 

relations). All these definitions are based on the instantiation relation.  

3.3.1 Specialization and Proper Specialization Relations 

We start with the ordinary specialization between types. Definition D1 defines that t1 specializes 

t2 iff all instances of t1 are also instances of t2. Since instances of “Individual” do not have 

instances (A1), D1 states that specialization only applies to elements that are not individuals (i.e. 

elements that have some possible instances). As discussed in (HENDERSON-SELLERS, 2012; 

KÜHNE, 2009), specialization is a partial order relation (i.e., a reflexive, transitive and 

antisymmetric relation), which is guaranteed in this theory.  

∀t1, t2 specializes(t1, t2) ↔ (∃y iof(y, t1) ∧ (∀e iof(e, t1) → iof(e, t2)))  (D1) 

According to D1, every type specializes itself. Since this may be undesired in some 

contexts, we define the proper specialization relation (we use the qualifier ‘proper’ as in ‘proper 
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subset’ considering that the extension of the specialized type is a proper subset of the extension 

of the general type (HENDERSON-SELLERS, 2012)). Definition D2, thus, defines that t1 proper 

specializes t2 iff t1 specializes t2 and t1 is different from t2. 

∀ t1, t2  properSpecializes(t1, t2) ↔ (specializes(t1, t2) ∧ t1 ≠ t2)   (D2) 

Insofar as the instances of a type are defined by its intension, the proper specialization 

relation reflects the fact that the intension of the specializing type keeps the constraints stated by 

the intension of the specialized type and adds some other constraint(s) to it, some “additional 

classification criteria”. To put it more formally, consider two types, t and t’. If t’ proper 

specializes t, this means that the intension of t’ is given by the conjunction of the intension of t 

and a predicate that captures the additional classification constraints defined by t’ with respect to 

t. Note that, since we consider there is no relevant type without possible instances, the resultant 

intension of t’ cannot be a trivially false predicate. For example, consider that “Man” is a type 

that applies to every instance of “Person” of the male gender. Assuming this, the intension of 

“Man” is given by the conjunction between the intension of “Person” and being male. Thus, in 

this case, “Man” proper specializes “Person”, adding gender as a classification criterion.  

Figure 10 augments Figure 9 by including the representation of specialization and proper 

specialization relations. Note that the axioms presented thus far guarantee that these relations may 

only hold between types of the same order, which is reflected in the diagram. 

 
Figure 10 - Intra- level structural relations: specialization and proper specialization. 

Substituting t2 for Individual in definition D1 and comparing the right-hand side of the 

resultant proposition with the right-hand side of axiom A3, we conclude that an entity is instance 

of “1stOT” iff it specializes “Individual” (theorem T7). Analogously, it follows from D1 and A4 

that an entity is instance of “2ndOT” iff it specializes “1stOT” (theorem T8). Finally, from D1 

and A5 one can see that every instance of “3rdOT” specializes “2ndOT” (theorem T9). 

Therefore, an important consequence of the theory presented so far is that any instance of a higher-

order type (any instance of “1stOT”, “2ndOT”, and “3rdOT”) specializes the basic type at an 

immediately lower order. 

∀t iof(t, 1stOT) ↔ specializes(t, Individual) (T7) 

∀t iof(t, 2ndOT) ↔ specializes(t, 1stOT) (T8) 

∀t iof(t, 3rdOT) ↔ specializes(t, 2ndOT) (T9) 
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This leads to a basic pattern in the theory: Every type that is not a basic type (e.g., a 

domain type) is an instance of one of the basic higher-order types (“1stOT”, “2ndOT”, and 

“3rdOT”), and, at the same time, specializes the basic type at the immediately lower level 

(respectively, “Individual”, “1stOT”, “2ndOT”). For example, consider the enterprise domain, in 

which we may need a type to capture the concept of “Employee”. The type “Employee” classifies 

individuals (e.g. John or Mary), i.e., every instance of “Employee” is also instance of 

“Individual”. Thus, by axiom A3, we have that “Employee” is instance of “1stOT” and, 

considering T7, “Employee” specializes “Individual”. In fact, since “Employee” and “Individual” 

are different types, we can say that “Employee” proper specializes “Individual”. This basic 

pattern is illustrated in Figure 11. In order to preserve the intuition in the representation, we used 

the conventional UML notation to represent specializations (in this case to represent the fact that 

the proposition properSpecializes(Employee, Individual) holds). We have used the instance 

specification notation to represent an individual (John), while keeping the use of dashed arrows 

to show instantiation. The theory basic types are shaded to differentiate them from domain 

elements. 

  
Figure 11 - Using the theory to model a domain. 

MLT supports also specializations and instantiations occurring between domain elements. 

For instance, supposing we need to classify the employees according to their highest academic 

degrees, we can consider types such as “PhDEmployee” and “BachelorEmployee” to classify 

respectively employees having Ph.D. and bachelor degrees. These types are proper specializations 

of “Employee”, since their instances are also instances of “Employee”. Thus, by the transitivity 

of specialization, they also specialize “Individual” and, considering theorem T7, they are 

instances of “1stOT”.  

Further, we may consider a second-order type called “EmployeeAcademicDegreeType” 

that has as instances the types that specialize “Employee” according to the academic degree (e.g 

“PhDEmployee” and “BachelorEmployee”). More formally, “EmployeeAcademicDegreeType” 

is a type applied to types that have the intension given by the conjunction of the intension of 

“Employee” and a predicate that captures the property of having a specific highest academic 

degree. For example, the intension of “PhDEmployee” is given by the conjunction of the intension 

of “Employee” and a predicate that captures the property of having a Ph.D. academic degree, thus 
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“PhDEmployee” is instance of “EmployeeAcademicDegreeType”. Again applying the basic 

pattern, “EmployeeAcademicDegreeType” is an instance of “2ndOT” (since its instances are 

instances of “1stOT”) and specializes “1stOT” (see A4 and T8).  

Figure 12 augments Figure 11 adding the discussed entities and relations. In order to 

increase the readability of the diagram, we use dashed rectangles to group elements that have a 

common link to other element and draw only one arrow between the border of the rectangle and 

the other element. For example, instead of representing two iof links between 

“EmployeeAcademicDegreeType” and its instances, we group its instances in a dashed rectangle 

and draw one iof link between such rectangle and “EmployeeAcademicDegreeType”. Moreover, 

we omitted the representation of some relations that are implied by the represented relations. For 

example, although we do not represent that “PhDEmployee” proper specializes “Individual”, it 

can be inferred by the fact that it proper specializes “Employee” which, in turn, proper specializes 

“Individual”. Finally, we represented that “John” is an instance of “PhDEmployee”, and thus, 

given the proper specialization relation semantics, it can be inferred that “John” is also instance 

of both “Employee” and “Individual”. 

 
Figure 12 - Instantiations and specializations between domain elements. 

3.3.2 The Subordination Relation 

Consider now an extension of the example in Figure 12, in which we introduce a second second-

order type called “EmployeeRoleType” beside “EmployeeAcademicDegreeType”. The instances 

of “EmployeeRoleType” are specializations of “Employee” according to the role they play (e.g. 

“Programmer” and “ResearchManager”). Consider further that, in order to reflect required 

qualifications in the domain, all instances of “EmployeeRoleType” must specialize instances of 

“EmployeeAcademicDegreeType”. In other words, the intension of each instance of 

“EmployeeRoleType” is given by the conjunction of the intension of an instance of 

“EmployeeAcademicDegreeType” and an additional constraint capturing the role their instances 

must play. For example, we may consider that “Programmer” specializes “BachelorEmployee” 

and “ResearchManager” specializes “PhDEmployee”. To allow modelers to capture this kind of 
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relations between higher-order types that implies specializations between their instances, MLT 

defines the notion of subordination.  

We call subordination the relations that occur between two higher-order types t1 and t2 

when t1 applies to types that have the intension given by the conjunction of the intension of an 

instance of t2 and a predicate that captures a constraint following some classification criteria. 

Therefore, D3 defines that t1 is subordinate to t2 iff every instance of t1 specializes an instance 

of t2. Subordination is a relation between types, and thus D3 excludes the possibility of 

subordination involving instances of “Individual” (i.e. entities with no possible instances). 

∀t1, t2 isSubordinateTo (t1, t2) ↔ 
(∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → (∃t4 iof(t4, t2) ∧ properSpecializes(t3, t4)))) (D3) 

Since subordination implies specializations between the instances of the involved types at 

one order lower, and specializations can only be established between types at the same order, 

subordination can only hold between higher-order types of equal order (see Figure 13). 

 
Figure 13 - Intra-level structural relations: subordination. 

Figure 14 illustrates the augmented example, showing that “EmployeeRoleType” is 

subordinate to “EmployeeAcademicDegreeType”. Note that subordination between two higher-

order types implies specialization between their instances but should be clearly distinguished 

from a specialization between the higher-order types (in the example, “EmployeeRoleType” does 

not specialize “EmployeeAcademicDegreeType”). Moreover, as we show later in Section 3.5, the 

use of subordination relations between higher-order types plays a fundamental role on the 

specification of taxonomies of types in one order lower. 

 
Figure 14 - An example of subordination relation. 

Table 1 summarizes the characteristics of the defined intra-level structural relations. 
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Table 1 - Intra-level structural relations characteristics. 

Name Meaning 
Domain and 

Range 
Properties 

Specialization 

specializes(t1,t2) 

The intension of t1 adds some additional 

constraints to the one of t2 or both types have the 

same intension (t2=t1), i.e. every instance of t1 is 

also an instance of t2. 
Types of the same 

order (instances of 

1stOT, 2ndOT or 

3rdOT) 

Reflexive, 

antisymmetric 

and transitive. 

Proper Specialization 

properSpecializes(t1,t2) 

The intension of t1 adds some additional constraint 

to the one of t2 i.e. every instance of t1 is also an 

instance of t2 and there is at least one instance of t2 

that is not instance of t1. 
Irreflexive, 

antisymmetric 

and transitive 
Subordination 

isSubordinateTo(t1,t2) 

The intension of each instance of t1 adds some 

classification criteria to the intension of some 

instance of t2 i.e. every instance of t1 proper 

specializes some instance of t2. 

Higher-order types 

of the same order 

(instances of 

2ndOT or 3rdOT) 

3.4 Cross-level Structural Relations 

This section defines the relations that occur between types of adjacent levels (the so-called cross-

level structural relations). These relations support our analysis of the notions of power type in the 

literature, as well as their full incorporation in the theory. 

3.4.1 The Power Type Of Relation 

The use of power types is one of the most common techniques for multi-level modeling. A seminal 

theory for the notion of power type was proposed by Cardelli (1988). According to (CARDELLI, 

1988), “if A is a type, then Power(A) is the type whose elements are all the subtypes of A” 

(including A). Following Cardelli, definition D4 states that a type t1 is power type of a type t2 iff 

all instances of t1 are specializations of t2 and all possible specializations of t2 are instances of 

t1. In this case, t2 is said the base type of t1. Analyzing it in terms of the intension of the involved 

types, a type t1 is power type of a type t2 iff the intension of t1 defines that its instances applies 

to instances of t2 but does not define a classification criteria. Thus, the extension of t1 is composed 

by all specializations of t2, including t2 itself. Further, D4 guarantees that entities without 

instances (individuals) are not considered power types of other entities. 

∀t1, t2 isPowertypeOf(t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) ↔ specializes(t3, t2))) (D4) 

Recall that “Individual” is an instance of “1stOT” (theorem T1) and that all the types that 

specialize “Individual” are also instances of “1stOT” (theorem T7). Thus, it follows from the 

definition of power type (D4) that “1stOT” is power type of “Individual” (theorem T10). 

Analogously, “2ndOT” is power type of “1stOT” (theorem T11), and “3rdOT” is power type of 

“2ndOT” (theorem T12). 

isPowertypeOf(1stOT, Individual)  (T10) 

isPowertypeOf(2ndOT, 1stOT)  (T11) 

isPowertypeOf(2ndOT, 3rdOT)  (T12) 
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It is interesting to note that, to be a power type, a type must have an intension that defines 

that all its instances are specializations of the base type and, conversely, all specializations of the 

base type are instances of the power type (see D4). Thus, it is possible to conclude that each type 

has at most one power type (theorem T13) and that each type is power type of, at most, one other 

type (theorem T14). This suggests a concrete syntactic constraint for a multi-level model: only 

one power type can be linked to a base type through the is power type of relation. 

∀p, t  isPowertypeOf(p, t) →  ∄p′(p ≠ p′) ∧  isPowertypeOf(p′, t)     (T13) 

∀p, t  isPowertypeOf(p, t) →  ∄t′(t ≠ t′) ∧  isPowertypeOf(p, t′)     (T14) 

Theorem T13 can be proved as follows: (i) supposing two higher order types, p and p’, are 

power type of t, according to D4, both p and p’ should have as only instances all the specializations 

of t; (ii) thus, applying axiom A2, we conclude that p is equal to p’ (p=p’). Analogously, theorem 

T14 can be proved as follows: (i) supposing p is power type of t, according to D4, p should have 

as only instances all the specializations of t; (ii) if we also consider a type t’ such that p is power 

type of t’ then p should have as only instances all the specializations of t’; thus, t = t’. 

In his accounts for the notion of power type, Cardelli (1988) proved that if a type t2 

specializes a type t1 then the power type of t2 specializes the power type of t1. Since our definition 

for isPowertypeOf relation follows Cardelli’s definition, we verified that this property is entailed 

by our theory. Theorem T15 formalizes this property. This may be used to check the syntax of 

power type hierarchies, and also to generate the power type hierarchy corresponding to the base 

type hierarchy. 

∀t1, t2, t3, t4(specializes(t2, t1) ∧ isPowertypeOf(t4, t2) ∧ isPowertypeOf(t3, t1)) →

specializes(t4, t3)                  (T15) 

T15 can be proved as follows: (i) considering that t3 is power type of t1 by definition D4 

we conclude that t1 and all its specializations are instance of t3; (ii) considering the transitivity of 

specialization and that t2 specializes t1, we have that all specializations of t2 also specialize t1, 

and thus, all specializations of t2 are instance of t3; (iii) considering that t4 is power type of t2 by 

D4 we conclude that all instances of t4 are specializations of t2; (iv) thus, by (ii) and (iii) we 

conclude that all instances of t4 are also instances of t3, i.e., t4 specializes t3. 

Given the power type definition (D4), if p1 is power type of t1 we conclude that p1 is one 

order higher then t1, i.e., if p1 is a second-order type (iof(p1, 2ndOT)) then t1 is a first-order type 

(iof(t1, 1stOT)), if p1 is a third-order type (iof(p1, 3rdOT)) t1 is a second-order type (iof(t1, 

2ndOT)), and so on. Furthermore, since instances of “Individual” are not types, they cannot 

participate in isPowertypeOf relations as power type nor as base type. Figure 15 augments Figure 

9 by including the representation of isPowertypeOf relations. 
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Figure 15 - Cross-level relations: isPowertypeOf. 

Since the power type of a base type is a type whose intension defines that its instances 

classify instances of the base type, for each first-order type f it is always possible to define a 

second-order type s such that s is power type of f, and for each second-order type s it is possible 

to define a third-order type t such that t is power type of s. While the theory necessitates the 

existence of the power type of any type (except the power types of third-order types, which are 

outside the scope of the theory), the decision on whether to represent the power type of a particular 

type is a modeling decision. When the power type is not relevant for the domain being modeled 

it is often omitted from the model.  

To illustrate the use of the is power type of relation, we augment the example of Figure 14 

in Figure 16 introducing “EmployeeType”, which is power type of “Employee”. Consequently, 

all types that specialize “Employee” are instances of “EmployeeType”. Since the instances of 

“EmployeeType” are first-order types, “EmployeeType” is an instance of “2ndOT” and 

specializes “1stOT”. Further, since all instances of “EmployeeRoleType” are also instances of 

“EmployeeType”, it follows that “EmployeeRoleType” specializes “EmployeeType”. 

Analogously, “EmployeeAcademicDegreeType” specializes “EmployeeType”.  

 
Figure 16 - An example of isPowertypeOf relation. 

3.4.2 The Categorization Relation and its variations 

Although the definition of power type we adopted here is compliant with the one proposed by 

Cardelli (1988), there are other definitions to this term in software engineering literature which 

have had great influence in practice, for example the definition in (ODELL, 1994). 
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In (ODELL, 1994), the author stated that a power type is a type whose instances are 

subtypes of another type. It is important to notice that Odell’s definition is less strict than 

Cardelli’s (CARDELLI, 1988). Cardelli follows the power set concept stating that all the 

specializations of the base type are instances of the power type. Odell’s definition, in turn, does 

not comply with that restriction. Thus, as pointed out by (HENDERSON-SELLERS, 2012), the 

relation defined by Odell is misnamed power type since, in fact, it denotes a subset of the power 

set. 

Inspired on Odell’s definition (ODELL, 1994), we defined the categorization relation 

(Definition D5): a type t1 categorizes a type t2 iff all instances of t1 are properSpecializations of 

t2. Further, D5 guarantees that categorization relations only apply to elements that are not 

individuals (i.e., elements that have instances). 

∀t1, t2 categorizes (t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → properSpecializes(t3, t2))) (D5) 

The categorization relation occurs between a higher order type t1 and a base type t2 when 

the intension of t1 defines that its instances specialize t2 according to a specific classification 

criteria (i.e. proper specializes t2). Thus, the instances of t1 specialize t2 but t2 is not an instance 

of t1 and there may be other types that specializes t2 according to other classification criteria and, 

thus, are not instances of t1. Categorization relations only occur between types of adjacent levels 

(see Figure 17).  

 
Figure 17 - Cross-Level relations: categorization. 

Recall that, if a type t’ proper specializes a type t, the intension of t’ is given by the 

conjunction of the intension of t and a predicate that captures the additional constraints defined 

by t’ with respect to t. Extending this reasoning, if a higher-order type h categorizes t, the intension 

of h establishes some criteria to define the additional constraint that is joined to the intension of t 

to compose the intension of its instances. Thus, every type t’ whose intension extends the 

intension of t following the established criteria is considered an instance of h. 

In our previous example, “EmployeeAcademicDegreeType” use the employees’ academic 

degree as a criterion to classify employees. Putting it more formally, the intension of 

“EmployeeAcademicDegreeType” defines that, to be considered an instance of it, a type must 

have its intension given by the conjunction of the intension of “Employee” and a constraint that 

captures the property of having a specific academic degree. Therefore, we conclude that 

“EmployeeAcademicDegreeType” categorizes “Employee”.  

Still considering the previous example, the intension of “PhDEmployee” is given by the 

conjunction of the intension of “Employee” and a predicate that captures the property of having 
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a PhD degree. Thus, “PhDEmployee” is an instance of “EmployeeAcademicDegreeType”. 

Analogously, since the instances of “EmployeeRoleType” specialize “Employee” according to 

roles the employee was hired to play (the classification criteria), “EmployeeRoleType” also 

categorizes “Employee”, having instances such as “Programmer” and “Research Manager”. 

Note that, if a type t1 is subordinate to t2 and t2 categorizes a type t3, considering the 

definitions of subordination (D3) and categorization (D5) we conclude that all instances of t1 

proper specialize some instance of t2 and that all instances of t2 proper specialize t3. Applying 

the proper specialization definition (D2) it follows that all instances of t1 proper specialize t3 

and, thus, t1 categorizes t3. This idea is formalized in theorem T16. This theorem can be used to 

check the completeness of models. 

∀t1, t2, t3 (isSubordinateTo(t1, t2) ∧ categorizes(t2, t3))  →  categorizes(t1, t3) (T16) 

Further, considering the definitions of power type (D4), categorization (D5) and proper 

specialization (D2) we conclude that if a type t2 is power type of a type t1 and a type t3 categorizes 

the same base type t1, then all instances of t3 are also instances of the power type t2 and, thus, t3 

proper specializes t2. This idea is formalized in theorem T17. Again, this theorem can be used to 

check the completeness of models: a model would be incomplete if it omits the specialization 

between a type that categorizes a base type and this base type’s power type.  

∀t1, t2, t3 (isPowertypeOf(t2, t1) ∧ categorizes(t3, t1)) → properSpecializes(t3, t2) (T17) 

Thus, considering our previous example, both “EmployeeAcademicDegree” and 

“EmployeeRoleType” categorize “Employee” and proper specialize “EmployeeType”. 

Although intuitive, the notion of categorization does not capture some important and subtle 

aspects of the relation between the higher-order type and base type. For instance, if 

“EmployeeRoleType” categorizes “Employee” then instances of “Employee” can be instances of 

instances of “EmployeeRoleType”. However, it is not clear whether all instances of “Employee” 

must instantiate at least one instance of “EmployeeRoleType”. It is also silent on whether it is 

possible to have instances of “Employee” that are instances of more than one instance of 

“EmployeeRoleType”. To address these subtle aspects of the relation between higher-order types 

and base types MLT defines three variations of the categorization relation.  

First of all, suppose that our company considers that each employee must play at least one 

role, i.e., in addition to the fact that “EmployeeRoleType” categorizes “Employee” the instances 

of “EmployeeRoleType” must completely classify the instances of “Employee”. In order to 

accommodate this expressiveness, we define a variation of categorization relation called 

completeCategorization (see definition D6). Thus, we are able to state that “EmployeeRoleType” 

completely categorizes “Employee”. 

∀t1, t2 completelyCategorizes(t1, t2) ↔ 

(categorizes(t1, t2) ∧ (∀e iof(e, t2) → ∃t3 (iof(e, t3) ∧ iof(t3, t1))))  (D6) 
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We also define a variation of categorization relation, called disjointCategorization, to 

accommodate the cases in which each instance of the base type is instance of at most one instance 

of the characterizing type. Thus, according to D7, a type t1 disjointlyCategorizes t2 iff t1 

categorizes t2 and every instance of t2 is instance of, at most, an instance of t1. 

∀t1, t2 disjointlyCategorizes (t1, t2) ↔  

(categorizes(t1, t2) ∧ ∀e, t3, t4 ((iof(t3, t1) ∧ iof(t4, t1) ∧ iof(e, t3) ∧ iof(e, t4)) → t3 = t4)))      (D7) 

In our example, we could consider that each employee falls under one classification 

according to his higher academic degree. Thus, “EmployeeAcademicDegreeType” 

simultaneously disjointlyCategorizes and completelyCategorizes “Employee”, i.e. each instance 

of “Employee” is instance of one and only one instance of “EmployeeExperienceType”. In this 

case, we say that “EmployeeAcademicDegreeType” partitions “Employee” (see Figure 18). D8 

formally defines the partition relation. 

∀t1, t2 partitions(t1, t2) ↔ 

(completelyCategorizes(t1, t2) ∧ disjointlyCategorizes(t1, t2))       (D8) 

The intension of a higher-order type which partitions a base type defines that its instances 

must apply to instances of the base type and also define a classification criteria such that each 

instance of the base type is classified by one and only one instance of the higher order type.  

 
Figure 18 - An example of domain modeling applying categorization and subordination relations. 

Although the definition that Odell gave to the notion of power type is aligned with the 

relation we call categorizes, all examples of use provided in (ODELL, 1994) exhibit relations that 

should be classified as partitions according to our theory. Henderson-Sellers (2012), following 

those examples of use, provided a set theoretic formalization for the notion we call here partition.  

Since all power type-based relations (power type of, categorization, complete 

categorization, disjoint categorization and partition) define that the instances of their domains 

are specializations/proper specializations of their ranges, both their domains and their ranges are 

types. Further, their domains must be types in one order higher than their ranges. Thus, only 

higher-order types may play the role of domain of those power type-based relations. Since 
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completely categorizes, disjointly categorizes and partition relations all subsume categorizes 

relations, only the latter is represented in Figure 18 for simplicity.  

A consequence of the partitions definition is that, if two types t1 and t2 both partition the 

same type t3 then it is not possible for t1 to specialize t2. This is captured in theorem T18. Again, 

this theorem suggests a clear syntactic constraint for a multi-level modeling language in the 

presence of more than one partition of the same base type. 

∀ t1, t2, t3 (partitions(t1, t3) ∧ partitions(t2, t3)) → ¬properSpecializes(t1, t2) (T18) 

T18 can be proved as follows: (i) Using the definition of partitions (D8), we conclude that 

the instances of t1 form a disjoint and complete partition of t3. (ii) Supposing t1 proper specializes 

t2, using the definition of proper specialization (D2) we conclude that all instances of t1 must 

also be instances of t2 and t2 must have at least one additional instance that is not an instance of 

t1. (iii) Consider that t4 is the type that is instance of t2 and is not an instance of t1. Since t2 also 

partitions t3, then t4 must specialize t3. (iv) However, the instances of t2 that are also instances 

of t1 already completely and disjoint classifies the instances of t3. Thus, t4 does not have possible 

instances, and thus is not a valid type according to our theory. Therefore, there is no hypothesis 

in which t1 partitions t3, t2 partitions t3 and t1 specializes t2.  

3.4.3 Summary 

The definitions of MLT cross-level relations clarify and position conflicting notions of 

power type. Cardelli’s notion of power type, which is captured in MLT by the isPowertypeOf 

relation, is used to define higher-order types whose instances are all possible specializations of a 

lower-order type (including the base type itself, since specialization is reflexive). In its turn, 

Odell’s notion of power type, captured by categorization relations, is used to define higher-order 

types having all its instances as proper specializations of a lower order type.  

Given their abstract nature, domain-specific examples of Cardelli’s power types are harder 

to be found. They may be used whenever the modeler wants to define a second-order type that 

may give rise to specializations of a base type following any kind of criteria. For example, 

considering the organizational domain, it may be useful to specify an “Employee Type” power 

type to generalize over all possible specializations of “Employee” that may be created. If the 

modeler wants to capture the notion that employees must be categorized according to a specific 

criteria, giving rise to less abstract second-order types, categorization relations are used. For 

example, a second-order type called “Employee Role” could be created to support the creation of 

specializations of “Employee” concerning the role employees play in the company. By virtue of 

MLT rules, the second-order type “Employee Role” would be a specialization of the (more 

abstract) second-order type “Employee Type” (as illustrated in Figure 18). 
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Table 2 summarizes some information about the cross-level relations. All these relations 

are irreflexive, antisymmetric and intransitive.  

Table 2 - Cross-level structural relations characteristics. 

Name Meaning Domain and Range 
Instantiation 

iof(e,t) 
The intension of t applies to e. 

Elements of adjacent 

levels. 

Power type  

isPowertypeOf(t1,t2) 

The intension of t1 defines that its instances applies to 

instances of t2 but does not define a classification criteria. 

Thus, the extension of t1 is composed by all specializations 

of t2, including t2 itself. 

Types of adjacent 

levels (2ndOT→1stOT 

or 3rdOT→2ndOT ) 

 

Categorization 

categorizes(t1,t2) 

The intension of t1 defines that its instances applies to 

instances of t2 according to a specific classification criteria. 

Thus, the extension of t1 is composed by the proper 

specializations of t2 that follows the specified classification 

criteria. 

Complete Categorization 

completelyCategorizes(t1,t2) 

A variation of categorization in which the classification 

criteria defined by the intension of t1 guarantees that each 

instance of t2 is instance of at least one instance of t1. 

Disjoint Categorization 

disjointlyCategorizes(t1,t2) 

A variation of categorization in which the classification 

criteria defined by the intension of t1 guarantees that each 

instance of t2 is instance of at most one instance of t1. 

Partition 

partitions(t1,t2) 

A variation of categorization in which the classification 

criteria defined by the intension of t1 guarantees that each 

instance of t2 is instance of exactly one instance of t1. 

3.5 A Paradigmatic Example 

The previous section presented general implications of our theory for multi-level modeling. In 

this section we consider a representative application scenario to illustrate the theory 

expressiveness. We consider the biological taxonomy for living beings (MAYR, 1982), which is 

one of the most mature examples of taxonomical hierarchies. The biological taxonomy for living 

beings classifies living beings according to biological taxa in seven or more ranks, e.g., kingdom, 

phylum, class, order, genus, species, and breed.  

According to MLT, every domain type is an instance of one of the basic higher-order types 

(“1stOT”, “2ndOT”, and “3rdOT”), and specializes the basic type at the immediately lower level 

(respectively, “Individual”, “1stOT”, “2ndOT”). Applying this pattern, we identify that (i) 

“LivingBeing” is an instance of “1stOT” and specializes “Individual” (since its instances are 

particular living beings), (ii) “BiologicalTaxon” and its specializations are instances of “2ndOT” 

and specializes “1stOT” (its instances are the first-order types which classify living beings, such 

as, e.g., the “Animalia” kingdom and the “Homo Sapiens” species5), and (iii) “BiologicalRank” 

specializes “2ndOT” and instantiates “3rdOT” (its instances are second-order types which classify 

taxa, such as, e.g., the “Species” taxon). Figure 19 illustrates this domain using the basic pattern.  

                                                      
5 Note that in biology there is a long and involved debate on the ontological status of taxa such as species 

(ERESHEFSKY, 2010). One of the interpretations is that each biological taxon (e.g., the “Homo Sapiens” 

species, the “Canis Lupus Familiaris” species) represents a group of animals rather than a kind or type of 

animal. We stay clear of this debate and represent species (and other taxa) as the type that is instantiated by 

all members of that group (and only by them) (e.g., “Human” and “Dog”). 
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Figure 19 - Applying our theory basic pattern to the biological taxonomy for living beings. 

Each “LivingBeing” is instance of one instance of each “Biological Rank”, i.e., each living 

being is instance of one kingdom, one phylum, and so on. Therefore, we conclude that each one 

of the seven instances of “BiologicalRank” partitions “LivingBeing”. Further, the instances of 

“Biological Rank” (specializations of “Biological Taxon”) obey a subordination chain such that 

every instance of “Phylum” proper specializes one instance of “Kingdom”, every instance of 

“Class” proper specializes one instance of “Phylum”, and so on. Thus, according to our theory, 

each instance of “Biological Rank” is subordinate to another instance of “Biological Rank”, 

forming a chain of subordination (except “Kingdom” which is the top of the chain). Since all 

instances of “Biological Rank” specialize “BiologicalTaxon” and each instance of 

“BiologicalTaxon” is instance of exactly one instance of “Biological Rank” (e.g., “Animal” is 

instance of “Kingdom”, Collie is instance of Breed, etc.) according to our theory, “Biological 

Rank” partitions “BiologicalTaxon”. Figure 20 illustrates how the notions in the theory can be 

employed; one instance of each represented biological rank is shown. 

This example of application shows the expressiveness of our theory. We have explored the 

entities and relations to fully describe the structural arrangement of the biological taxonomy for 

living beings. The pattern to classify domain types as instantiations and specializations of the 

theory’s basic types permitted us to identify the order of each type involved. Using the partition 

relation we were able to (i) express how the instances of biological rank apply to living beings 

and (ii) to understand the relation between biological rank and biological taxon. The notion of 

subordination relation was central for understanding how the instances of biological rank are 

related to each other.  

Finally, it allowed us to notice that the shape of tree that the biological taxonomy for living 

beings exhibits is explained by the combination of two characteristics, namely, (i) the partitions 

relations that all instances of “BiologicalRank” have with “LivingBeing”, and (ii) the chain of 

subordination that the instances of “BiologicalRank” form. 
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Figure 20 - Using our theory to describe the structural relations that exist in biological taxonomy 

(relations between the notions of biological rank, biological taxon and living being). 

3.6 Accounting for Attributes and Relationships 

As we have discussed so far, types capture common features of the entities that are considered 

their instances. If we say that “John” is an instance of the types “Person” and “Man”, this is 

because there are certain characteristics that he shares with other instances of “Person” (such as 

having a brain, being a biped mammal) and with other instances of “Man” (such as having a Y 

chromosome). These common features are referred to in the intension of the types and are often 

not explicitly represented in conceptual models. Differently from these common features, features 

that may vary across different instances of a type or even across different points in time, are often 

captured using the notions of attributes and relationships (both which trace back in the conceptual 

modeling literature to Chen’s work on the Entity Relationship model (CHEN, 1976)). Examples 

of attributes are a person’s height and weight, a mobile phone’s screen size and a computer’s 

storage capacity. Examples of relationships include a marriage between husband and wife, an 

employment between a person and an organization, the friendship between people in a social 

network, etc. This section extends our account to include these ubiquitous notions in conceptual 

modeling. 
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In order to account for attributes in MLT, we extend our domain of quantification (which 

thus far included only types and individuals) to cover also attributes and their possible values in 

different possible worlds. In order to keep our formalization simple despite this additional sorts 

of elements in the domain of quantification, the axioms defined in this section are formalized in 

many-sorted first-order logic, assuming four disjoint sets: a set ‘E’ of individuals and types, a set 

‘A’ of attributes, a set ‘V’ of values that can be assigned to the attributes, and a set ‘W’ of possible 

worlds. The MLT axioms described in the previous sections can be understood in the light of this 

strategy as quantifying always over the set ‘E’ (composed by individuals and types).  

To represent the relation between types and attributes, we define a ternary predicate 

typeHasAttribute (t, a, at) that holds if a type t has an attribute a of type at. For example, the 

proposition typeHasAttribute (MobilePhone, serialNumber, String) denotes that “serialNumber” 

is an attribute defined for the type “MobilePhone” having “String” as the type of its assignable 

values. Therefore, each instance of “MobilePhone” may assign instances of “String” to the 

attribute “serialNumber” 6.  

We consider that attributes are dependent on types. To capture this notion, Axiom A7 states 

that for each attribute a there must be some entity t which has a. Further, A7 states that each 

attribute has a unique type at for its values. 

∀ a: A (∃ t: E, ∃! at: E (typeHasAttribute (t, a, at)))  (A7) 

To allow the representation of the values assigned to an attribute we define the predicate 

hasValue(e,a,v,w) that holds if an entity e assigns a value v to the attribute a in a world w. In order 

to cater for “multivalued” attributes, values assigned by entities to attributes are considered sets 

of entities. Therefore, the sort ‘V’ of possible values of attributes is, indeed, the powerset of the 

sort of entities ‘E’ (V = ℙ(E)), i.e. ‘V’ is the sort of all possible subsets of ‘E’, including the empty 

set and ‘E’ itself. For instance, the proposition hasValue(MyPhone, SerialNumber, {“1234”}, w1) 

states that a specific instance of “MobilePhone”, named “MyPhone”, has the unitary set {“1234”} 

assigned to the attribute “SerialNumber” in a world “w1”.  

We consider that a type t has an attribute a of type at, iff all instances of t have (at all 

possible worlds) a set of values v for a respecting attribute type at (i.e., all elements composing 

the set of values v must be instances of at). This definition is captured by D9. Axiom A8 defines 

that any entity that has a value for an attribute a must be an instance of a type that has the attribute 

a. Further, we consider that the scope of an attribute is limited to a specific type and its 

specializations. Thus, if two different types t and t’ have a common attribute a it means that there 

is a type t’’ such that t’’ has the attribute a and both t and t’ specializes t’’ (see axiom A9). 

  

                                                      
6 Datatypes such as String and Integer can be considered first-order types whose instances (e.g. the integer 

value “1” and the string “xyz”) are “abstract entities” (see (GUIZZARDI, 2005), p. 327). 
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∀t, at: E, a: A (typeHasAttribute (t, a, at) ↔ 

 (¬iof(t, Individual) ∧ ¬iof(at, Individual) ∧ ∀e: E( iof(e, t) → 

 ∀w: W, ∃! v: V (hasValue(e, a, v, w) ∧ ∀e′: E(e′ ∈  v → iof(e′, at))))))           (D9) 

∀e: E, a: A, v: V, w: W (hasValue(e, a, v, w) → ∃ t, at ∶ E (iof(e, t) ∧  typeHasAttribute (t, a, at)))    (A8) 

∀t, t′, at: E, a: A ((typeHasAttribute (t, a, at) ∧ typeHasAttribute (t′, a, at)) → 

∃ t′′: E ( typeHasAttribute (t′′, a, at) ∧ specializes(t, t′′) ∧  specializes(t′, t′′)))  (A9) 

As a consequence of the definitions and axioms present so far, if a type t’ specializes t, then 

t’ has all attributes of t, capturing the semantics of inheritance (see theorem T19). Theorem T19 

can be proved as follows: (i) considering that t defines an attribute a, by D9 we infer that all 

instances of t must assign values to a; (ii) Since t’ specializes t, by the specialization definition 

we conclude that all instances of t’ are also instances of t, and thus, all instances of t’ must assign 

values to a; (iii) Therefore, by D9 we conclude that t’ also has the attribute a. Another 

consequence that follows from the definitions and axioms defined so far is that given an attribute 

a there exists one topmost type t that defines a, i.e. there is a type t that has a such that any other 

type t’ that has the attribute a specializes t (see T20).  

∀t, t′, at: E, a: A ( (typeHasAttribute (t, a, at) ∧ specializes (t′, t)) → 

typeHasAttribute (t′, a, at))  (T19) 

∀ a: A, ∃ ! t, at: E (typeHasAttribute (t, a, at) ∧ 

∀ t′: E( typeHasAttribute(t′, a, at) → specializes(t′, t)))  (T20) 

The use of sets as values to the attributes allows the representation of multivalued attributes 

(by setting as the attribute value a set with more than one element) and the representation of 

optional attributes by allowing attributes to have an empty set as value. Definitions D10 and D11 

capture the notions of mandatory and monovalued attributes in order to express constraints on the 

multiplicities of attributes. An attribute a is mandatory iff in every possible world, the values 

assigned to it are not empty sets. An attribute a is monovalued iff in every possible world, the 

values assigned to it by all entities are sets containing at most one value. Therefore, in order to 

express, for example, that each instance of “MobilePhone” has one and only one “serialNumber”, 

besides defining that typeHasAttribute (MobilePhone, SerialNumber, String) one should also state 

that isMandatoryAttribute(SerialNumber) and isMonoValuedAttribute(SerialNumber). 

∀a: A (isMandatoryAttribute (a) ↔ ∀e: E, v: V, w: W(hasValue(e, a, v, w) → ∃e′: E(e′ ∈  v))) (D10) 

∀a: A (isMonoValuedAttribute (a) ↔ 

∀e: E, v: V, w: W(hasValue(e, a, v, w) → ∀e′, e′′: E((e′ ∈  v ∧  e′′ ∈  v) → e′ =  e′′))) (D11) 

In the case of multi-level modeling, attributes defined in higher-order types can be given a 

value for types. We assume that attributes defined in one order capture properties of elements of 

the immediately lower order and, thus, may have values assigned to them in one order lower. In 
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other words, attributes defined in first-order types have values assigned for individuals, attributes 

defined in second-order types have values assigned for first-order types, and so on.  

Figure 21 illustrates the concepts presented so far. To capture that each instance of 

“MobilePhone” must have an IMEI number, a screen of a specific size and a specific storage 

capacity, the “MobilePhone” type defines three mandatory and monovalued attributes, namely 

“imei”, “screenSize” and “storageCapacity”. Therefore, assuming that all these attributes have 

values of type “String” we may state that typeHasAttribute(MobilePhone, Imei, String), 

typeHasAttribute(MobilePhone, ScreenSize, String), and typeHasAttribute(MobilePhone, 

StorageCapacity, String) hold. 

 
Figure 21 - Illustrating the account for attributes. 

In Figure 21, “MyMobile” is an instance of “MobilePhone” (i.e. iof(MyMobile, 

MobilePhone) holds) having “12345” as its IMEI number, a “4-inch” screen and “16 GB” of 

storage capacity (in Figure 21 we represented the assignment of values to attributes by adding, 

after the attribute name, an equality “=” followed by the valued assigned to the attribute; attributes 

are considered by default mandatory and monovalued). Assuming that Figure 21 illustrates the 

state-of-affairs of a world w1, we may state that hasValue(MyMobile, Imei,{“12345”}, w1), 

hasValue(MyMobile, ScreenSize,{“4 inches”}, w1) and hasValue(MyMobile, 

StorageCapacity,{“16 GB”}, w1) hold.  

Further, considering that each instance of “MobilePhone” must be classified by one 

instance of “MobilePhoneModel”, we define a type “MobilePhoneModel” that partitions 

“MobilePhone” (i.e., partitions(MobilePhoneModel, MobilePhone) holds). To capture the official 

launch date of each mobile phone model, we define that “MobilePhoneModel” has an attribute 

named “launchDate” (typeHasAttribute(MobilePhoneModel, LaunchDate, String)). In Figure 21 

“IPhone5” is an instance of “MobilePhoneModel” launched on “21 Sept., 2012” (i.e. 

hasValue(IPhone5, LaunchDate, {“21 Sept., 2012”}, w1) holds). 

All attributes introduced in the example so far only have effects at the immediately lower 

level, complying thus to what has been called “shallow instantiation” (ATKINSON; KÜHNE, 

2001). However, a key characteristic of an account for attributes in a multi-level theory is that 

attributes defined in higher-order types (such as second- and third-order types) may affect the 
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intension of the instances of these higher-order types. In other words, some attributes of a higher-

order type aim at capturing regularities over instances of its instances, constraining the set of 

possible instances of its instances. Following (GUIZZARDI et al., 2015a), we classify these 

attributes as regularity attributes.  

Definition D12 formalizes the notion of regularity attributes as attributes that affect the 

intension of the instances of the types that have it, i.e. two instances having different values 

assigned to a regularity attribute must have different instances. Therefore, recalling that in MLT 

two types are the same if they have the exact same possible instances, D12 defines that, an 

attribute a is a regularity attribute iff every different value for a results in a different type7. Note 

that, since regularity attributes affect the intension of instances of a type, they can only be defined 

for higher-order types (thus not for individuals nor first-order types). This constraint is reflected 

in D12.  

                 ∀a: A (regularityAttribute (a) ↔ 

(∀t, at: E (typeHasAttribute (t, a, at) → (¬iof(t, Individual) ∧  ¬iof(t, 1stOT))) ∧ 

∀e, e′: E, v, v′: V, w, w′: W ((hasValue(e, a, v, w) ∧ hasValue(e′, a, v′, w′) ∧  v ≠ v′) → e ≠ e′))) (D12) 

Figure 22 extends Figure 21 adding to “MobilePhoneModel” the attributes 

“instancesScreenSize”, “instancesMinStorageCapacity” and “instancesMaxStorageCapacity”. 

All these attributes effectively serve as parameters in the intension of the instances of 

“MobilePhoneModel”, i.e. the values assigned to these attributes influence the selection of the 

possible instances of instances of “MobilePhoneModel”. Therefore, they are considered 

regularity attributes. For example, by assigning the value “4 inches” to the attribute 

“instancesScreenSize” of “IPhone5” we are representing that every instance of “IPhone5” must 

have 4-inch screens. Analogously, by assigning the values “16 GB” and “32 GB” respectively to 

the attributes “instancesMinStorageCapacity” and “instancesMaxStorageCapacity” of “IPhone5” 

we are representing that every instance of “IPhone5” must have storage capacity between 16 and 

32 GB. Therefore, having a 4-inch screen and storage capacity between 16 and 32 GB are parts 

of the intension of “IPhone5”. 

The influence of the regularity attributes of higher-order types over the intension of its 

instances may be reflected as constraints over the possible values for attributes of the base type. 

For example, the fact that “instancesScreenSize” is a regularity attribute of “MobilePhoneModel” 

is reflected by the fact that an instance of “MobilePhoneModel” must have as instances mobile 

phones having a specific “screenSize”. Therefore, the fact that “IPhone5” has the value “4 inches” 

assigned to the regularity attribute “instancesScreenSize” implies that every instance of 

“IPhone5” must have the value “4 inches” assigned to the attribute “screenSize”. Analogously, 

                                                      
7 A more comprehensive definition would acknowledge that differences in various regularity attributes 

simultaneously may cancel each other’s effects on the intension, thus we could add a ceteris paribus clause 

to definition D12, which would then state that an attribute a is a regularity attribute iff different values for 

a with all other things equal would result in a different type.  
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the values assigned to the regularity attributes “instancesMinStorageCapacity” and 

“instancesMaxStorageCapacity” of “MobilePhoneModel” constrain the possible values the 

instances of a specific (instance of) “MobilePhoneModel” may have assigned to the attribute 

“storageCapacity”. For example, the values “16GB” and “32 GB” respectively assigned to 

“instancesMinStorageCapacity” and “instancesMaxStorageCapacity” of “IPhone5” imply that its 

instances must have a value between 16 and 32 GB assigned to the “storageCapacity” attribute. 

To emphasize the relations between the regularity attributes of “MobilePhoneModel” and the 

attributes of “MobilePhone” and the constraints over their values, in Figure 22, we placed the 

related attributes in colored boxes that are linked to each other. Note that this is not meant as a 

modeling language construct, and our sole intention here is to draw attention to these relations 

involving regularity attributes.  

 
Figure 22 - Illustrating the notion of regularity attributes. 

A mechanism to express the relations between attributes defined by types in one order and 

attributes of types in one order lower is a desirable feature of multi-level modeling languages. 

Indeed, some potency-based approaches to multi-level modeling include some support for the 

representation of regularity attributes. For example, in Melanie (ATKINSON; GERBIG, 2012) 

the notions of durability and mutability are used to capture situations in which the attribute of a 

higher-order type t directly influences the possible values that instances of instances of t may 

assign to an attribute (such as the relation between the attribute “instancesScreenSize” of 

“MobilePhoneModel” and the attribute “screenSize” of “MobilePhone” illustrated in Figure 22). 

For further discussion considering the relation between MLT and clabject and deep-instantiation 

based approaches see Section 3.10.2. 

To account for basic relationships in our theory we follow a strategy similar to the one 

adopted by OWL (W3C, 2012), Telos (MYLOPOULOS, 1992) and Ecore (STEINBERG; 

BUDINSKY, 2008): we represent a binary relationship between two types t1 and t2 as an attribute 

defined in t1 with type t2  (actually representing an association end connected to t2). This 

treatment allows the reuse of the notions of mandatory, monovalued and regularity attributes. 

These can be applied on both association ends when necessary, giving rise to two opposing 
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attributes each one defined in each of the related types having the other type as the type of the 

attribute (again similarly to Ecore and OWL). For example, consider the scenario illustrated in 

Figure 23. According to Figure 23, each instance of “MobilePhone” “requires” an instance of 

“Processor” installed in it (“installedProcessor”) and each instance of “Processor” may be 

“installed in”, at most, one instance of “MobilePhone”. Thus: (i) “MobilePhone” has a mandatory 

and mono-valued attribute called “installedProcessor” having “Processor” as type (formally, 

typeHasAtribute(MobilePhone, installedProcessor, Processor), 

isMandatoryAttribute(installedProcessor) and isMonoValuedAttribute(installedProcessor)); and 

(ii) “Processor” has a mono-valued attribute called “installedIn” having “MobilePhone” as type 

(formally, typeHasAtribute(Processor, installedIn, MobilePhone) and 

isMonoValuedAttribute(installedIn)).  

Following the same approach, we could represent the relation between 

“MobilePhoneModel” and “ProcessorModel” depicted in Figure 23. To capture that each 

(instance of) “MobilePhoneModel” “is compatible with” one (instance of) “ProcessorModel” we 

could define in “MobilePhoneModel” a mandatory mono-valued attribute called 

“compatibleProcessorModel” having “ProcessorModel” as type (formally, 

typeHasAtribute(MobilePhoneModel, compatibleProcessorModel, ProcessorModel)). 

Moreover, we could capture the fact that each (instance of) “ProcessorModel” may be compatible 

with some (instance of) “MobilePhoneModel” by defining in “ProcessorModel” an attribute 

called “compatiblePhoneModels” having “MobilePhoneModel” as type (formally, 

typeHasAtribute(ProcessorModel, compatiblePhoneModels, MobilePhoneModel).  

 
Figure 23 - Illustrating a scenario in which relations in one order capture regularities over instances of 

types in one order lower. 

Whenever opposite attributes are defined, we need to relate the two attributes in order to 

constrain that whenever an instance of one type refers to an instance of the other type through an 

attribute, the reference in the opposite direction also holds. For example, we need to constrain 

that whenever an instance e of “MobilePhone” refers to an instance e’ of “Processor” through the 

attribute “installedProcessor” then e’ refers to e through the attribute “installedIn”. In this case, 
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we say that the attributes “installedProcessor” and “installedIn” are opposite attributes. The refers 

to predicate is formally defined in D13, while D14 formally defines the is opposite predicate. D13 

states that an entity e refers to an entity e’ through attribute a (in a world w), iff the value of e for 

a (in w) is a set that includes e’. D14, in its turn, states that two attributes a and a’ are opposite 

iff whenever an entity e refers to an entity e’ through the attribute a, e’ refers to e through a’, and 

vice versa. In the example below, isOpposite(installedIn, installedProcessor) and 

isOpposite(compatiblePhoneModels, compatibleProcessorModel) hold. 

∀e, e′: E, a: A, w: W (refersTo(e, e′, a, w) ↔ ∀ v: V(hasValue(e, a, v, w) → (e′ ∈  v)))  (D13) 

∀a, a′: A (isOpposite (a, a′) ↔  ∀e, e′: E, w: W (refersTo(e, e′, a, w) ↔  refersTo(e′, e, a′, w)))  (D14) 

To see how the notion of regularity attribute is applicable to the attributes capturing 

relations between types, consider that instances of a (instance of) “MobilePhoneModel” may have 

installed on them only instances of the (instance of) “ProcessorModel” compatible with it. In this 

case, the intension of an instance of “MobilePhoneModel” is affected by the value assigned to its 

“compatibleProcessorModel” attribute. For example, in Figure 23 since the “IPhone5” “is 

compatible with” “A6” (i.e. “IPhone5” has “A6” as a “compatibleProcessorModel”), instances of 

“IPhone5” must have processors of type “A6” installed on them. Therefore, the attribute 

“compatibleProcessorModel” of the type “MobilePhoneModel” is a regularity attribute that 

constrains the possible values for the attribute “installedProcessor” of the type “MobilePhone”. 

Conversely, and following analogous reasoning, we can conclude that the attribute 

“compatiblePhoneModel” of the type “ProcessorModel” is a regularity attribute that constrains 

the possible values for the attribute “installedIn” of the type “Processor”.  

This simple treatment of relations as attributes can be extended with a notion of relations 

as object-like entities (GUARINO; GUIZZARDI, 2015). This notion was already discussed by 

Chen in 1976 (CHEN, 1976), when he observes that “some people may view something (e.g. a 

marriage) as a relationship” (i.e. as a tuple that relates two entities), “while other people may view 

it as an entity” (i.e. as something that have its own life). Subscribing to Chen’s intuition and 

aiming to explain the very nature of relationships, Guarino and Guizzardi presented in 

(GUARINO; GUIZZARDI, 2015) an ontological theory of relationships as object-like entities. 

Following such theory, the relations can be reified giving rise to the so-called relator types.  

Following (GUARINO; GUIZZARDI, 2015), MLT supports the representation of relator 

types as regular types. The formalization that we propose for attributes can also be used to 

establish the link between relata and relators. Further, the relator-based approach (GUARINO; 

GUIZZARDI, 2015) can be used to address n-ary relationships when necessary. An example of 

the use of relator types in multi-level modeling with MLT can be seen in Chapter 5. (including 

examples of types of relator types in the organizational structure domain). 
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3.7 Addressing Dynamic Classification 

The MLT formalization in Sections 3.1 - 3.4 assumed for simplification that entities instantiate 

types necessarily, effectively dealing with rigid types in a static classification setting. In this 

section, we lift that restriction and discuss how dynamic classification can be addressed in MLT, 

accounting thus also for non-rigid types. Dynamic classification is key to conceptual modeling 

and in particular to ontology-based conceptual modeling (GUIZZARDI, 2005). Supporting 

dynamic classification allows the use of MLT as a basis for these kinds of conceptual models (e.g. 

see Chapter 4.  and Chapter 5. ). 

By addressing dynamic classification, we want to support the notion that both individuals 

and types can change qualitatively keeping their identity. Consider for example, a hierarchy of 

second-order types in which the second-order type “Species” is specialized according to 

conservation status into “Not Threatened”, “Endangered” and “Extinct”. Making the types “Not 

Threatened”, “Endangered” and “Extinct” anti-rigid allows us to capture the fact that a particular 

species (say “Giant Panda”) can change types. Ontological implications of this approach to the 

nature of types are discussed in (GUIZZARDI et al., 2015a). 

Our strategy to formalize this notion is based on the use of a world-indexed instance of 

relation, represented by a ternary predicate iof(e,t,w) that holds if an entity e is instance of an 

entity t (denoting a type) in a world w. Consider for example that “John” is an instance of 

“Student” at world “w1” but not at “w2”, when he has graduated. In this case, we can state that 

iof(John,Student,w1) and ¬iof(John,Student,w2).  

This modification to the instantiation predicate requires us to adjust some axioms of MLT 

accordingly. Axiom A1 was modified to express that, to be considered an instance of “Individual”, 

an entity must have no possible instance in any admissible world (see axiom A1’). Further, two 

types are considered the same iff they have the same instances in all possible worlds (see axiom 

A2’). Thus, two types whose extensions are contingently equal are not considered the same. For 

example, it allows us to capture that, although there is a possible world in which all instances of 

“Person” are also instances of “Student”, “Student” and “Person” are different types since an 

(instance of) “Person” is not necessarily an (instance of) “Student”. 

∀x, w (iof(x, Individual, w) ↔ ∀w’(world(w’)  →  ¬∃y (iof(y, x, w’))))  (A1’) 

∀t, t’, w ((¬iof(t, Individual, w) ∧ ¬iof(t’, Individual, w))  →  

((t = t’)  ↔  ∀x, w’(iof(x, t, w’)  ↔  iof (x, t’, w’))))      (A2’) 

The characterizations of the other basic types must also be adjusted to consider possible 

worlds. Thus, axiom A3’ characterizes “First-Order-Type” (or shortly “1stOT”), defining a first-

order type as an entity with at least one instance in a possible world and whose instances in all 

possible worlds are instances of “Individual”. Analogously, A4’ and A5’ characterize “Second-
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Order Type” (or “2ndOT”) and “Third-Order Type” (“3rdOT”). Additionally, axiom A6’ adjusts 

A6 to state that, for all possible worlds, each entity in our domain of enquiry is either an instance 

of “Individual”, “1stOT”, “2ndOT” or “3rdOT” (except “3rdOT” whose type is outside the scope 

of the formalization). 

∀t, w (iof(t, 1stOT, w) ↔ 

(∃y, w′ (iof(y, t, w′)) ∧ ∀x, w′′ (iof(x, t, w′′) → iof(x, Individual, w′′))))     (A3’) 

∀t, w (iof(t, 2ndOT, w) ↔ 

(∃y, w′ (iof(y, t, w′)) ∧ ∀t′, w′′ (iof(t′, t, w′′) → iof(t′, 1stOT, w′′))))      (A4’) 

∀t, w (iof(t, 3rdOT, w) ↔ 

(∃y, w′ (iof(y, t, w′) ∧ ∀t′, w′′ (iof(t′, t, w′′) → iof(t′, 2ndOT, w′′))))      (A5’) 

∀w, x ((world(w) ∧ ¬world(x)) →  

(iof(x, Individual, w) ∨ iof(x, 1stOT, w) ∨ iof(x, 2ndOT, w) ∨ iof(x, 3rdOT, w) ∨ (x = 3rdOT)))  (A6’) 

Since axiom A1’ defines that to be an instance of “Individual” in a world w an entity x must 

not have instances in any world, we can conclude that if an entity x is an instance of “Individual” 

in any world it is an instance of “Individual” in all possible worlds, i.e. instances of “Individual” 

are necessarily instances of it. Thus, “Individual” is a rigid type. Analogously, using axioms A3’ 

to A5’ we conclude that “1stOT”, “2ndOT” and “3rdOT” are also rigid types, i.e., the basic types 

of MLT are all rigid. 

Concerning the intra- and the cross-level structural relations of MLT, they express 

properties that are not contingent to the involved types. Consider for example the specialization 

relation between t1 and t2: a type t1 specializes a type t2 iff in all possible worlds all instances of 

t1 are also instances of t2 (see definition D1’). We can observe that, by definition, it is not 

admissible for t1 to specialize t2 in a world w and not specialize it in another world w’. Thus, in 

contrast with the instantiation relation, the specialization relation is not world-indexed. The same 

reasoning applies to all other intra- and cross-level structural relations of MLT, namely, proper 

specialization, subordination, power type of and categorization. Therefore, the definitions of 

these relations in the formalization that accounts for dynamic classification are most similar to 

the ones presented in Sections 3.3 and 3.4, with minor adjustments concerning the quantification 

of possible worlds (see Definitions D1’, D2’, D3’, D4’, D5’, D6’, D7’and D8’). 

∀t1, t2 (specializes(t1, t2) ↔ 

(∃y, w1 (iof(y, t1, w1)) ∧ ∀e, w2 (iof(e, t1, w2)  →  iof(e, t2, w2))))       (D1’) 

∀ t1, t2 (properSpecializes(t1, t2) ↔ (specializes(t1, t2) ∧ ¬(t1 = t2)))         (D2’) 

∀t1, t2 (isSubordinateTo (t1, t2) ↔   

(∃x, w1 (iof(x, t1, w1)) ∧ ∀t3, w2 (iof(t3, t1, w2)  →  ∃t4 (iof(t4, t2, w2)  ∧

 properSpecializes(t3, t4)))))     (D3’) 

∀t1, t2 (isPowertypeOf(t1, t2) ↔ 

(∃x, w1 (iof(x, t1, w1)) ∧ ∀t3, w2 (∀t3 iof(t3, t1, w2) ↔ specializes(t3, t2))))       (D4’) 
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∀t1, t2 (categorizes (t1, t2) ↔ 

(∃x, w1 (iof(x, t1, w1))∀t3, w2 (iof(t3, t1, w2) → properSpecializes(t3, t2))))            (D5’) 

∀t1, t2 (completelyCategorizes(t1, t2) ↔ 

(categorizes(t1, t2) ∧ ∀w, e (iof(e, t2, w) → ∃t3 (iof(e, t3, w) ∧ iof(t3, t1, w))))) (D6’) 

∀t1, t2 (disjointlyCategorizes (t1, t2) ↔  (categorizes(t1, t2) ∧ 

∀w, e, t3, t4 ((iof(t3, t1, w) ∧ iof(t4, t1, w) ∧ iof(e, t3, w) ∧ iof(e, t4, w)) → t3 = t4)))         (D7’) 

∀t1, t2 (partitions(t1, t2) ↔ 

(completelyCategorizes(t1, t2) ∧ disjointlyCategorizes(t1, t2)))       (D8’) 

Further, all the theorems presented in the previous formalization are also valid when 

considering dynamic classification. The theorems T1-T4 and T7-T9 presented in Sections 3.1 and 

3.3 must be properly adapted considering the use of the world-indexed instantiation relation while 

the theorems T10 – T15 presented in Section 3.4 can be included in this formalization without 

modification. 

3.8 A Note on the Identity Conditions of Types 

The notion of equality of types is central to account for both Odell’s and Cardelli’s notions of 

power type. For example, according to Odell’s notion, there is no instance of the “power type” 

that is equal to the base type. Further, considering Cardelli’s sense, (in-)equality is key to establish 

the uniqueness of the power type for a given base type, as well as the uniqueness of a base type 

for a given power type. So, which notion of identity condition is adequate in the theory becomes 

an important issue.  

As discussed in (SWOYER; ORILIA, 2014), there is a spectrum of options for the identity 

conditions of types, with respect to how finely they are individuated. In an “infra-coarse” 

account, types with the same extension are considered identical. This is what we would call an 

“entirely extensional” approach.  

In contrast, in a “medium-coarse” account, types “are identical just in case they necessarily 

have the same extension” (SWOYER; ORILIA, 2014). “This seems to transpose the identity 

conditions for sets into an appropriately intensional key, and this is precisely how identity 

conditions for properties work in accounts that treat them as intensions” (SWOYER; ORILIA, 

2014). In such accounts, intensions of types are functions from possible worlds to sets of objects 

therein (MONTAGUE, 1974). This is one of the approaches that Bealer (1982) uses for dealing 

with “intensional entities”. This is what we would call an “intensional” approach.  

Finally, in an “ultra-fine” approach (also referred to as “hyperintensional” approach 

(SWOYER; ORILIA, 2014)) types “are individuated almost as finely as the linguistic expressions 

that express them” (SWOYER; ORILIA, 2014). According to the “hyperintensional” approaches, 

two types can be considered distinct even in cases they necessarily have the same extension. For 
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example, if we consider two types t and t’ such that the intension of t’ is formed by a conjunction 

of the intension of t with a trivially “true” statement, adopting an “ultra-fine” approach t and t’ 

must be considered two distinct types. 

As discussed by Bealer (1982), the medium-coarse and the ultra-fine accounts have each 

their own value for the intensional conception of types, with different applications. He defends 

that the medium-coarse approach is ideally suited for treating the modalities (necessity, 

possibility, impossibility, contingency, etc.), and that the ultra-fine approach is valuable for 

dealing with intentional matters (belief, desire, perception, decision, etc.). He discusses that the 

ultra-fine approach, while ideally suitable for the treatment of intentional matters, “has only 

complicated the treatment of the modalities” (BEALER, 1982). Given the scope of the present 

work, we opt for the medium-coarse approach. It allows us to state the impossibility of individuals 

to have instances (A1) and later (in Section 3.7) to deal with types that apply contingently (or 

non-necessarily) to their instances (e.g., Student, Living Person). 

In the formalization presented in Section 3.1, while modality is not formally treated, our 

choice for the medium-coarse account is reflected in how we stipulate the domain of 

quantification, which includes all possible types and all their possible instances. The fact that we 

quantify over all possible entities guides the interpretation of the axioms and definitions, in which 

quantifiers end up having some modal importance (even if informally). For example, Axiom A2 

defines that two types are equal iff all their possible instances coincide. In other words, A2 states 

two types t1 and t2 are equal iff it is inadmissible for an entity to be an instance of t1 and not an 

instance of t2 (there is no possible entity that is an instance of t1 and not an instance of t2). Our 

choice of language here (first-order logics instead of some sort of quantified modal logics) aims 

at making the theory more accessible.  

In Section 3.7, we reify possible worlds, and thus, modality is addressed more explicitly in 

the formalization. Again, here we have opted not to use some sort of modal logic to retain the 

accessibility of the theory. The axiom that defines equality (A2’) states that two types are equal 

iff they have the same instances in all possible worlds, clarifying that we take the approach that 

two types are the same iff they are necessarily coextensional. Since the extension of a type is 

world-dependent, it makes sense to talk about the distinction between extension (in a particular 

world) and intension (across worlds) (MONTAGUE, 1974). 

3.9 Addressed Requirements 

The MLT axiomatization is built up defining the conditions for entities to be considered 

instances of each one of the theory’s basic types. For example, entities having no possible 

instances are instances of “Individual”, entities having individuals as instances are instances of 

“First-order Type” and so on. Further, MLT considers that each entity in the domain of enquiry 
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is instance of exactly one of its basic types. This stratified organization prescribed by MLT basic 

types accounts for chains of instantiation involving entities of multiple (related) classification 

levels (meeting requirement R1) and precisely characterizes the nature of entities in each level 

(meeting R2). Moreover, the basic types’ schema can be extended to consider as many orders as 

necessary to capture a domain at hand, and, once defined a certain number of levels, MLT does 

not impose to domains the need of defining instances in all prescribed levels. Therefore, this 

schema allows an arbitrary number of classification levels (requirement R3). 

Despite being key to meet three of the defined requirements, the strict stratification strategy 

imposes a limitation to the theory: MLT does not account for types having instances at different 

orders. Having the ability to account for this sort of types could be useful to capture the notion of 

a universal type (e.g. the type “Type” having as instances every entity that have instances). An 

extension of MLT to account for types having instances at different orders is an issue for future 

investigation. 

The structural relations of MLT play a key role on capturing rules for the instantiation of 

types at different levels (requirement R4). For example, as discussed in Section 3.5, such relations 

allow the representation of rules concerning instantiation of types that characterizes the taxonomy 

of living beings: (i) using the subordination relation it is possible to capture that instances of each 

(instance of) “Biological Rank” proper specialize one instance of another (instance of) 

“Biological Rank”, while (ii) by representing that each (instance of) “Biological Rank” partition 

“LivingBeing”, we capture that that every instance of “LivingBeing” is instance of one instance 

of each (instance of) “Biological Rank”.  

The MLT account for attributes and relationships (discussed in Section 3.6) proposes the 

notion of regularity attributes as way to capture constraints involving features of entities in 

different classification levels (requirement R5). Further, the MLT account for relationships does 

not pose any restriction on domain relations between types in different classification levels 

(meeting R6). For instance, considering again the mobile phone domain used to illustrate section 

3.6, we could define a relationship capturing that each (instance of) “MobilePhoneModel” (a 

second-order type) is “designed by” an instance of “Person” (a first-order type). 

3.10 Related Work 

3.10.1 Power type-based Approaches  

Two early attempts to address multi-level modeling, namely power types (CARDELLI, 1988; 

ODELL, 1994) and materialization (PIROTTE et al., 1994), raised from the identification of 

patterns to represent the relationship between a class of categories and a class of more concrete 

entities. The notion of power types was adopted in the object-oriented model community (largely 
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influenced by (ODELL, 1994)) and materialization has been developed in the database 

community. Despite the different origins, power type and materialization are based on similar 

conceptualizations (ATKINSON; KÜHNE, 2008) and addressing the same concerns 

(GONZALEZ-PEREZ; HENDERSON-SELLERS, 2006). Both approaches establish a 

relationship between two types such that the instances of one are specializations (subtypes) of 

another.  

Odell (1994) defined the concept of power type informally using regular associations 

between a class representing the power type and a base class. This differs from MLT’s approach 

because cross-layer relations between types (is power type of, categorizes and partitions) have 

specialized semantics. This allows us to prescribe rules for the domain models that use these 

relations following the axioms in the theory. 

Similarly to Odell (1994), Gonzalez-Perez and Henderson-Sellers (2006) use an 

association labeled “partitions” between a power type and a base type (called a “partitioned type” 

in their terminology). The authors illustrate their technique with a diagram in which “partitions” 

is modeled as a many-to-one association between “Task” and “TaskKind”, meaning that every 

instance of the partitioned type (“Task”) is linked to exactly one instance of the power type 

(“TaskKind”). In the sequel, they discuss that the “partitions association possesses instantiation 

semantics”, and that, because of this, “Task” is a special instance of “TaskKind” (the most generic 

kind of task). However, if “Task” itself is an instance of “TaskKind”, then the “partitions” 

association cannot be a many-to-one association between “Task” and “TaskKind”. This is because 

all instances of subtypes of “Task” are also instances of “Task”, and thus instances of at least two 

“TaskKinds” (one which is “Task” itself). The source of the difficulty seems to lie in that their 

“partitions” association is semantically overloaded, conflating two underlying notions, in terms 

of MLT: (i) the fact that “TaskKind” partitions “Task”, and (ii) the implied consequence that 

instances of “Task” are instances of instances of “TaskKind” (which in our theory is reflected in 

the instance of relation between “Task” as specialization of “Individual” and “TaskKind” as a 

specialization of “First-Order Type”). The modeler is free to determine whether “Task” itself is 

an instance of “TaskKind” (in which case he/she would replace (i) with the fact that “TaskKind” 

is a power type of “Task”). Note that the elements of our theory help us to identify the semantic 

overload, provide an explanation for the conceptual issue in this power type-based approach, and 

offer alternatives to express the modeler’s intended conceptualization.  

The UML 2.4.1 specification (OMG, 2011) attempts to cover the needs of multi-level 

modeling by including a power type association that relates a classifier (power type) to a 

generalization set composed by the generalizations that occur between the base classifier and the 

instances of the power type. Because of its dependence on the generalization set construct, the 

pattern can only be applied when specializations of the base type are explicitly modeled 

(otherwise there would be no generalization set). We consider this undesirable as it would rule 
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out simple models that are possible in our approach, e.g., one defining “Employee Type” as a 

power type of “Employee”, without forcing the modeler to define specific instances for 

“Employee Type”. While our theory necessitates the existence of entities for any type, and hence 

necessitates the existence of instances for “Employee Type”, it does not require these instances 

to be modeled explicitly, which is the case of the UML because of its choice to base the power 

type pattern in a structure that uses generalization sets (this issue is further discussed in Chapter 

6. where we use MLT to conduct an analysis and a revision of the UML power type support). 

Both the Gonzalez-Perez and Henderson-Sellers’ approach (2006) and the UML approach 

for power types (OMG, 2011) are founded on Odell’s notion and attempt to address the need of 

representing multi-level domains in a two level architecture. These approaches do not discuss 

what characterizes each classification level and do not provide a comprehensive set of principles 

to guide the organization of entities into levels. For example, the only rule in UML concerning 

the consistency of instantiation chains aims at avoiding a “power type” to be represented as an 

instance of itself. Therefore, we consider that these approaches partially meet requirement R1 

(since they provide a workaround to account for multiple classification levels in a two level 

architecture), but do not meet R2 (since they lack rules to guide the correct use of the notion of 

power type). These approaches allow the definition of chains of power types with as many power 

types as necessary. Thus, although they do not discuss the notion of classification level, we 

consider that they meet the requirement R3. Further, we consider that the requirement R4 is 

partially met by such approaches, since the only modeling construct these approaches define to 

govern the instantiation of types at different levels is a relation that maps Odell’s notion of power 

type. Concerning the support for the representation of features (attributes and relationships) of 

entities, these approaches do not provide any construct to capture rules relating features of entities 

in different classification levels, not meeting requirement R5. Finally, since no restriction is set 

concerning domain relations involving entities in different classification levels, we consider that 

they meet requirement R6. 

DeepTelos is a knowledge representation language which approaches multi-level modeling 

with the systematic application of the notion of “most general instance (MGI)” (JEUSFELD; 

NEUMAYR, 2016). The authors revisit the axiomatization of Telos (JARKE et al., 1995; 

MYLOPOULOS et al., 1990) and add the notion of MGI to Telo’s formal principles for 

instantiation, specialization, object naming and attribute definition. The notion of MGI can be 

seen as the opposite of the Odell’s power type relation. For example, to capture that “Tree 

Species” is a “power type” (in Odell’s sense) of “Tree”, in DeepTelos it would be stated that 

“Tree” is the “most general instance” (MGI) of “Tree Species”. 

According to the authors, the modeling levels in DeepTelos are captured by hierarchies of 

“most general instances”. For example, we may design a multi-level model for hierarchies of 

products, by representing a type “Product”, a type “ProductModel” as the most general instance 
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of “Product”, and a type “ProductCategory” as the most general instance of “ProductModel”, with 

each application of the MGI construct characterizing a level. The authors do not clarify whether 

entities in different hierarchies could be considered to be at the same level. For example, it is not 

clearly defined whether instances of “ProductModel” and instances of “TreeSpecies” would be 

considering entities of the same classification level. In MLT, this is settled by defining the basic 

types as the top most type of each classification level. Given the aforementioned characteristics 

of the language, we consider that DeepTelos meets requirement R1, and partially meets R2. 

Further, since DeepTelos allows the definition of chains of MGI to represent as many levels as 

necessary, we consider it meets R3.  

Considering that DeepTelos provides only the concept of MGI to constrain the instantiation 

of types in different levels, not elaborating on the nuances of the relations between higher-order 

types and base types, we consider that it partially meets requirement R4. Although, we consider 

it is possible to extend the DeepTelos built-in support by using its features of user-defined 

constraints and rules to formally define all the cross-level structural relations proposed in MLT. 

Similarly to MLT, DeepTelos admits relations between types in different levels, meeting 

thus requirement R6, but, in contrast to MLT, its account for attributes does not include any 

support to explain the relationship between attributes of entities in different classification levels, 

not meeting requirement R5.  

The notion of power type introduced by Odell (1994) in the object oriented community 

differs from the concept coined earlier by Cardelli (1988) since the latter is derived directly from 

the mathematical notion of power set while the former may be used more loosely as we discussed 

in Section 3.4. MLT is able to account for both definitions formally, revealing their differences. 

It covers the expressiveness of both approaches through formally-defined structural cross-level 

relations (is power type of, categorizes and partitions). Further, it allows us to show that a higher-

order type that is related to a base type through the categorizes relation is necessarily a 

specialization of the power type of that base type. Thus, the power type of a base type is the most 

abstract higher-order type related to a base type. 

An example of modeling approach that encompass both Odell’s and Cardelli’s notions of 

power type is defined in Boro (PARTRIDGE, 2005). Boro is a conceptual modeling approach 

whose semantics is founded on a four-dimensional (4D), extensional ontology. It provides 

constructs having purposes similar to the MLT relations of power type, partitions, specializations 

and subordination. However, while MLT considers an intensional semantics (as discussed in 

Section 3.8), the use of an extensional ontology as its foundations makes the mapping from Boro 

constructs to the set theory straightforward (PARTRIDGE et al., 2016). Because of this choice, 

Boro’s multi-level strategy is not suitable for use with a 3D ontology such as UFO, which requires 

dynamic classification. Further, differently from MLT, Boro does not discuss the relation between 

features (attributes and relationships) of entities in different orders. 
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Boro accounts for types in different classification levels and does not pose any restriction 

to the use of chains of power types, meting, thus, R1 and R3. Boro does not explicitly discuss the 

notion of levels and the nature of entities in each level. Although, since it explicitly adopts an 

extensional semantics, we consider that the rules and principles derived straightforward from set 

theory may guide the adequate use of classification (e.g. by adopting the semantics of the set 

membership (∈) to the instantiation relation many rules to govern the use of instantiations are 

leveraged). Therefore, we consider that Boro partially meets requirement R2.  

Differently from approaches based on Odell’s notion and similarly to MLT, Boro defines 

a number of constructs to capture rules concerning the instantiation of types in different 

classification levels, meeting thus requirement R4. Concerning the support to the representation 

of features (attributes and relationships) of entities, it does not provide constructs to capture the 

relation between features of entities in different classification levels, not meeting R5. Finally, 

similarly to UML and Henderson-Sellers approaches, Boro does not pose any restriction to 

domain relations involving entities in different classification levels, meeting thus R6. 

Table 3 summarizes our observations concerning the adequacy of the analyzed power type-

based modeling approaches to the requirements we have established.  

Table 3 - Requirements addressed by power type-based approaches. 

Requirement Approaches based 

on Odell’s notion 

Deep Telos Boro 

R1 – To account for entities of multiple 

classification levels 

Partially. Yes. Yes. 

R2 – To define principles for the organization 

of entities into levels 

No. Partially. Partially. 

R3 – To allow an arbitrary number of 

classification levels 

Yes. Yes. Yes. 

R4 –To account for rules for the instantiation 

of types at different levels 

Partially. Partially. Yes. 

R5 - To account for rules relating features of 

entities in different levels  

No. No. No. 

R6 – To admit the existence of  domain 

relations between entities in different levels 

Yes. Yes. Yes 

3.10.2 Deep Instantiation-based Approaches 

The concept of power type is founded on the notion that “instances of types can also be types” 

(ODELL, 1994). Motivated by a similar observation, Atkinson and Kühne (ATKINSON; 

KÜHNE, 2000) coined the term clabject, emphasizing that every instantiable entity has both a 

type (or class) facet and an instance (or object) facet which are equally valid (ATKINSON; 

KÜHNE, 2000). This notion is valuable to our theory. The basic types of MLT, except the higher 
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order one, may be considered clabjects. For example, “Individual” is instance of “First-Order 

Type” (its instance facet) and a type for all entities that are not types (its type or class facet). (Note 

that, individuals in MLT (instances of “Individual”) have no class facet, and thus should not be 

referred to as clabjects.) 

In (ATKINSON; KÜHNE, 2000), Atkinson and Kühne argue that a multi-level modeling 

framework should adhere to two fundamental principles: support for the clabject notion and strict 

metamodeling. Strict metamodeling (ATKINSON, 1997) assumes that each element of a level 

must be an instance of an element of the level above. We follow this principle with respect to the 

instantiation relation, and every entity in our domain of enquiry is instance of exactly one of the 

basic types and every entity can only be instance of entities at one order higher (all entities that 

have no instances are instances of “Individual”; “Individual” and all its specializations are 

instances of “First-Order Type”, and so on.) They also discuss that “some kind of ‘trick’ is needed 

at the top level”. The ‘trick’ we used in our theory is that the highest order foundational type is 

not instance of anything, since entities with higher order are not considered (see axiom A6 in 

Section 3.1). Alternatively, an infinite number of basic types may be considered at ever increasing 

orders, in which case a ‘trick’ at the top of the classification scheme would not be required. We 

have opted instead for a finite number of basic types to avoid necessitating the existence of an 

infinite number of levels, which would be an unnecessary ontological commitment for all 

conceptual modeling applications we have considered so far. 

Atkinson and Kühne have also proposed a deep instantiation-based approach 

(ATKINSON; KÜHNE, 2001, 2008) as a means to provide for multiple levels of classification 

whereby an element at some level can describe features of elements at each level beneath that 

level. It is based on the idea of assigning to clabjects and fields (attributes and slots) a potency 

which defines how deep the instantiation chain produced by that clabject or field may become. 

When a clabject is instantiated from another clabject the potencies of the created clabject and of 

its fields are given by the original clabject and fields potencies decremented by one. Objects have 

potency equal to zero indicating they cannot be instantiated. If the potency of a field becomes 

zero then a value can be assigned to that field. For example, we could define a clabject mobile 

phone model with an attribute IMEI assigning a potency of 2 to both the type and the attribute. 

Therefore, instances of mobile phone model would be clabjects in which IMEI attribute would 

have potency of 1. Instances of instances of mobile phone model have a value assigned to IMEI, 

since its potency would reach zero.  

The authors consider that the main benefit of deep instantiation-based approach is to 

reduce “accidental complexity” in domain models since it supports multi-level modeling without 

the need of introducing types to the models only “because of the idiosyncrasies of a particular 

solution to deep characterization” (ATKINSON; KÜHNE, 2008). They argue that power type-

based solutions force the modelers to add unneeded types to the model. For instance, considering 



75 

the cited example of mobile phone model, using power types the modeler would be “forced” to 

represent the concept of mobile phone. Using deep instantiation, the modeler could define the 

mobile phone properties (e.g. IMEI) as properties of mobile phone model having potency of 2, 

being free to not represent the concept of mobile phone. 

While the deep instantiation approach can reduce the number of entities represented in a 

model, this strategy should be used with parsimony. Important consequences of omitting base 

types in the current deep instantiation approach are that the modeler becomes unable to express 

whether the instances of a higher-order type (mobile phone model in previous example) are 

disjoint and/or covering types and we are also prevented from determining metaproperties (such 

as e.g., rigidity) of the base type (mobile phone in this case). Further, as discussed in 

(GUIZZARDI, 2005), conceptual models should always include kinds that define the principle of 

identity of individuals (in the example this type is mobile phone). If these types are omitted (and 

incorporated into higher-order types by using the notion of potency), the source of the principle 

of identity becomes hidden.  

It is worth noticing that the deep instantiation approach allows the modeler to represent the 

base type if it is deemed desirable. However, if the modeler decides to represent the base type, 

the approach does not provide constructs to represent the relation between it and the higher-order 

type, not distinguishing thus between the different possible kinds of cross-level relations. As a 

consequence, the approach “as is” does not provide mechanisms to check if the rules concerning 

these relations are respected, e.g., to guarantee that all instances of the higher-order type (“Mobile 

Phone Model”) specialize the base type (“Mobile Phone”). We believe that the relations and rules 

we discuss here could be used to further evolve the deep instantiation approach. 

In addition to having mechanisms aimed at simplifying the models by omitting base types, 

some recent deep instantiation approaches (KENNEL, 2012) also support the representation of a 

particular kind of regularity attribute by using a combination of the notions of attribute durability 

and mutability. The durability of an attribute indicates how far the attribute spans in an 

instantiation tree. The mutability of an attribute defines how often the attribute value can be 

changed over the instantiation tree. Consider for example a class such as “MobilePhoneModel” 

with potency 2. An attribute “screenSize” with durability 2 and mutability 1 will be given a value 

at the first instantiation (e.g., stating that the “Iphone5” has “screenSize” equals to 4 inches), and 

that value will determine the value of “screenSize” for the instances of instances of 

“MobilePhoneModel” (thus, all Iphone5s have a screen size of 4 inches). In our view, this 

representation captures the constraint relating an attribute of a first-order type (“screenSize”) and 

a regularity attribute of a second-order type (“instancesScreenSize”) as a single attribute with 

durability 2 and mutability 1 in a clabject with potency 2. This is a useful language mechanism 

for this particular kind of regularity attribute, which fully determines the value of the lower-level 

attribute. Unfortunately, this representation strategy is only capable of capturing the constraints 
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involving regularity attributes that determine the exact value that must be assigned to attributes 

in the lower order. It is not applicable, for example, to capture the constraint involving the 

regularity attributes “instancesMinStorageCapacity” and “instancesMaxStorageCapacity” of 

“MobilePhoneModel”: an instance i of “MobilePhone” must have assigned to the attribute 

“storageCapacity” a value equal or higher than the value assigned to 

“instancesMinStorageCapacity” and equal or lower than the value assigned to 

“instancesMaxStorageCapacity” of the “MobilePhoneType” instantiated by i. Thus, since the 

values of “instancesMinStorageCapacity” and “instancesMaxStorageCapacity” are not directly 

reflected in the value of a mobile phone attribute, they would be given durability and mutability 

of 1. 

In an analysis of deep instantiation, Neumayr et al., (2014) observe that the approach is 

unable to capture certain domain scenarios in which a clabject is related to other clabjects at 

different instantiation levels. For example, consider a scenario in which every instance of 

“MobilePhoneModel” has a “designer” being an instance of “Person” and every instance of an 

instance of “MobilePhoneModel” (i.e., every instance of “MobilePhone”) has an “owner” which 

is also an instance of “Person”. In this scenario the type “Person” should have a relation with 

“MobilePhoneModel” (called “designer”) and another relation with “MobilePhone” (called 

“owner”). Considering that “Person” and “MobilePhone” are in the same level, the “owner” 

relation does not cross level boundaries. Nevertheless, “MobilePhoneModel” is placed in one 

level higher, and thus, the “designer” relation is crossing level boundaries, which is not allowed 

in that approach. Because of that, the authors introduce a Dual Deep Instantiation (DDI) approach 

distinguishing between source potency and target potency. An association thus becomes 

characterized by two potency numbers. Thus, in the aforementioned example, the “designer” 

relationship between “Person” and “MobilePhoneModel” would have both source and target 

potencies of 1 whereas the “owner” relationship would be defined having source potency of 1 and 

target potency of 2 (meaning that ownership relations hold between instances of “Person” and 

instance of instances of “MobilePhoneModel”). Another approach that allows for the 

representation of this kind of domain scenario is discussed in (ATKINSON; KUHNE, 2001). The 

approach is based on the definition of the so-called “metamodeling spaces”, each of which defines 

a separate set of instantiation levels. Levels in one metamodeling space are independent of levels 

in other spaces. As a consequence, an element in a particular metamodeling space S may be 

simultaneously related to elements in different levels as long as the target elements are not in S. 

For example, “Person” in a space P could be related to both “Mobile Phone” and “Mobile Phone 

Model” placed in different levels in another space M. Differently from (NEUMAYR et al., 2014) 

and (ATKINSON; KUHNE, 2001), our approach accommodates the domain scenario without a 

special mechanism, since relations between elements at different orders are allowed. In the 

example considered, we would represent the omitted base type “MobilePhone” defining that 
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“MobilePhoneModel” partitions “MobilePhone”, capturing thus, the fact that every instance of 

“MobilePhone” is instance of one instance of “MobilePhoneModel”. The “designer” relationship 

would be placed between “MobilePhoneModel” and “Person” whereas the “owner” relationship 

would be defined between “MobilePhone” and “Person”. 

In (NEUMAYR; GRÜN; SCHREFL, 2009) another multi-level modeling approach that 

applies the notion of deep instantiation is proposed. The focus of this approach is also on reducing 

“unnecessary complexity”, improve readability and simplify maintenance and extension. The 

approach is founded in the concepts of m-objects and m-relationships. M-objects encapsulate 

different levels of abstraction that relate to a single domain concept. Analogously, m-relationships 

describe “relationships between m-objects at multiple level of abstraction”. An m-object can 

concretize another m-object. The concretize relationship comprises classification, generalization 

and aggregation relationships between the levels of an m-object (NEUMAYR; GRÜN; 

SCHREFL, 2009). We observe that this is a semantic overload between three relationships of 

quite different ontological nature, which could affect the understandability and usability of the 

approach. 

Besides the so far mentioned initiatives, many other works focusing on deep instantiation-

based approaches can be found in the literature, proposing alternative formalizations 

(ATKINSON; GERBIG, 2012; NEUMAYR; GRÜN; SCHREFL, 2009; ROSSINI et al., 2014), 

exploring its uses in different contexts (LARA et al., 2013; LARA; GUERRA; CUADRADO, 

2014), and proposing tools for automated support (ATKINSON; GERBIG, 2012; DE LARA; 

GUERRA, 2010). These works focus on deep instantiation, which illustrates its wide acceptance 

as a basic mechanism for multi-level modeling approaches. However, none of these approaches 

aim at providing a semantic account that can be used to explain regularity attributes in deep 

instantiation and that supports the power type pattern and its variations. 

With regard to the requirements we pursue in MLT, the deep instantiation approaches are, 

in general, characterized for admitting entities in multiple classification levels and for providing 

mechanisms to organize and capture the instantiation chains allowing an arbitrary number of 

classification levels. These approaches, therefore, meet requirements R1, R2 and R3. Such 

approaches usually assume that instantiations are the only relations that may cross level 

boundaries and do not provide constructs to capture rules concerning instantiation in different 

levels (such as the cross-level relations of MLT). Therefore, we consider that deep instantiation 

approaches in general do not satisfy requirements R4 nor R6 (although, as we have discussed, 

Neumayr et al., (NEUMAYR et al., 2014) propose a workaround to allow domain relations 

between elements in different levels). Finally, as we have discussed, some deep instantiation-

approaches (such as (KENNEL, 2012)) provide mechanisms to capture particular kinds of rules 

relating features of entities in different levels. Thus, we consider they partially meet requirement 
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R5. Table 4 augments Table 3 including our analysis concerning the adequacy of deep 

instantiation-based approaches to the requirements we have established. 

Table 4 - Requirements addressed by the analyzed multi-level modeling approaches. 

Requirement Approaches based 

on Odell’s notion 

Deep Telos Boro Deep-instantiation 

based Approaches 

R1 – To account for 

entities of multiple 

classification levels 

Partially. Yes. Yes. Yes. 

R2 – To define principles 

for the organization of 

entities into levels 

No. Partially. Partially. Yes. 

R3 – To allow a flexible 

number of classification 

levels 

Yes. Yes. Yes. Yes. 

R4 –To account for rules 

for the instantiation of 

types at different levels 

Partially. Partially. Yes. No. 

R5 - To account for rules 

relating features of 

entities in different levels  

No. No. No. Partially. 

R6 – To admit the 

existence of  domain 

relations between entities 

in different levels 

Yes. Yes. Yes. No. 

3.11 Final Considerations 

This chapter presented a formal theory for multi-level conceptual modeling called MLT. The 

theory is formally defined using first-order logic and its consistency is verified using a lightweight 

formal method. Both the basic types and the structural relations defined in the theory are founded 

on the basic notion of (ontological) instantiation, which is applied regularly across levels, 

following the principle of strict (meta-)modeling. We have shown how the elements of the theory 

can be used as foundations for a domain theory: domain types instantiate and specialize the basic 

types of the theory. 

To verify the consistency of MLT we have used Alloy (JACKSON, 2006). The axioms of 

MLT were represented as facts and the theorems were defined as assertions in an Alloy module. 

It allowed us to verify the satisfiability of our theory, to conduct some model simulations and to 

verify the theorems whose informal proofs have been discussed in this chapter. Appendix A 

presents a specification of MLT encompassing the axioms, definitions and theorems discussed in 

Sections 3.2 - 3.4. Such specification, thus, does not address dynamic classification. Appendix B, 
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in its turn, presents a specification of MLT that address dynamic classification, following the 

discussion presented in Section 3.7. 

Using the structural cross-level relations defined in the theory (is power type of, 

categorizes, partitions), we are able to account for the different notions of power type in the 

literature, as well as to contrast and relate them. Since these relations are ultimately explained in 

terms of instantiation between entities of adjacent levels, the consequence of our account of power 

types is that we can formally harmonize power type and clabject-based approaches.  

With respect to intra-level relations, we define the “ordinary” specialization relation and a 

subordination relation between higher-order types of the same order. Subordination allows for 

the creation of expressive multi-level models; subordination between higher-order types implies 

specialization between instances of the types related by subordination. An example of the 

usefulness of the subordination relation is shown in the biological taxonomy domain, in which 

taxonomic ranks (instances of “Second-Order Type”) are related by subordination in a sequence 

(with lower ranks subordinated to higher ranks). This ensures the taxonomy at the first-order level 

has an adequate structure (a taxonomic tree). 

In order to facilitate the readers’ first contact with MLT, we have opted to suppress two 

direct extensions of the theory in the early part of this chapter: (i) the support for non-rigid types, 

and (ii) the generalization of the notion of order to support an infinite number of classification 

levels. With respect to (i) this extension is presented in Section 3.7. It allows instantiation to be 

contingent, thereby enabling dynamic classification, which is an important feature for conceptual 

modeling (GUIZZARDI, 2005). With respect to (ii), axioms A3, A4 and A5 would give way to 

an inductive definition for a basic type Ti+1 based on the definition of the basic type at an 

immediately lower order Ti. The “disjointness” axiom (A6) would be modified accordingly. 

The whole theory presented here is built up from an ‘opaque’ notion of instantiation, i.e., 

using instantiation as a primitive notion and not appealing to the ‘internals’ of intensions. The 

resulting theory is thus independent of any modeling choices or ontological commitments 

concerning the nature of ‘intensions’ of types. Naturally, this could be worked out in an extension 

of this work. To formally discuss the nature of ‘intensions’ of types, one could either opt for using 

a higher-order logics (which we avoid here intentionally since we aim at a more approachable 

formalization) or to reify and treat the intensions of types as structured elements with ‘parts’ or 

“constituents pretty much like the linguistic expressions that we use to speak about them” 

(SWOYER; ORILIA, 2014). The adequacy of these approaches is an issue for further 

investigation. 

It is important to stress that it is not our intention in this chapter to propose a multi-level 

conceptual modeling language. Instead, we focus on the concepts that would constitute an 

adequate semantic domain for such a language. The theory we propose can be considered a 
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reference top-level ontology for types, with the main purpose of clarifying key concepts and 

relations for multi-level conceptualizations.  

As discussed in (GUIZZARDI, 2005), a reference theory can be used to inform the revision 

and redesign of a modeling language, first through the identification of semantic overload, 

construct deficit, construct excess and construct redundancy, but also through the definition of 

modeling patterns and semantically-motivated syntactic constraints (CARVALHO; ALMEIDA; 

GUIZZARDI, 2014). This has been fruitful in the past in the revision of the UML, resulting in 

the OntoUML profile for conceptual modeling (GUIZZARDI, 2005). Thus, a natural application 

for MLT is to inform the (re-)design of a well-founded multi-level conceptual modeling language. 

Some earlier results to that extent are presented in Sections 3.1 - 3.4, showing: (i) how theorems 

of the theory reveal useful syntactic constraints for multi-level domain models; and (ii) how 

patterns of domain entities that are admissible by the theory can be reflected in modeling patterns. 

We have also been able to spot a deficiency in the UML given its reliance on the construct of 

generalization set to represent the power type pattern. Further, we have been able to identify cases 

of semantic overload in the power-type based technique presented in (GONZALEZ-PEREZ; 

HENDERSON-SELLERS, 2006), and in the m-objects approach (NEUMAYR; GRÜN; 

SCHREFL, 2009). Recently, Recker et al. (2011) reported results from a study with 528 modelers 

demonstrating that “users of conceptual modeling grammars perceive ontological deficiencies to 

exist and that these deficiency perceptions are negatively associated with usefulness and ease of 

use of these grammars”. This highlights the potential practical implications of our theory. 

Next chapter presents a modeling approach based on the use of MLT as the top-most layer 

of UFO and incorporating the typology of universals of UFO as instances of “Second-order type” 

and specializations of “First-Order Type”. The resultant approach supports the design of 

conceptual models that can represent types as well as types of types while adhering to the rules 

of both MLT and UFO. Further, in Chapter 6. , MLT is used as a reference to found the proposal 

of a UML extension that enhances its support to represent of power types. 
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Chapter 4.  Multi-Level Ontology-based 

Conceptual Modeling with MLT and UFO 

Both ontology-based conceptual modeling and multi-level modeling provide guidance to improve 

the quality of conceptual models: while the former addresses the use of ontological distinctions 

to reduce the potential misunderstandings and inconsistencies in conceptual models, the latter 

focuses on providing adequate support to the representation of multi-level phenomena. This 

chapter presents a modeling approach that benefits from both ontology-based conceptual 

modeling and multi-level modeling. It is founded on the combination of the formal multi-level 

theory we propose in Chapter 3.  (MLT) with the Unified Foundational Ontology (UFO). This 

modeling approach aims to support the construction of ontologically well-founded conceptual 

multi-level models by leveraging the ontological distinctions put forth by UFO to domains dealing 

with types of types. 

This chapter is further organized as follows. Section 4.1 presents an overall discussion 

about our modeling approach. Section 4.2 discusses the combination of MLT and UFO to provide 

foundations for ontology-based multi-level modeling. Section 4.3 identifies guidelines for multi-

level conceptual modeling that arise from the MLT-UFO combination. Section 4.4 positions our 

modeling approach with respect to the existing work on multi-level conceptual modeling, and 

Section 4.5 presents some final considerations. 

4.1 Overview 

Our approach to multi-level ontology-based conceptual modeling proposes the 

construction of a hierarchy of ontologies founded on the combination of MLT and UFO. MLT is 

used as the topmost layer of the hierarchy. The basic pattern of MLT is applied to establish the 

relation between MLT and UFO, and later to establish the relation between a domain ontology 

and MLT-UFO. More specifically, the concepts of UFO instantiate and specialize elements of 

MLT, thereby respecting MLT’s axioms and leveraging the use of structural relations and patterns 

of MLT in UFO. In turn, the concepts of domain conceptual models instantiate and specialize 

concepts of MLT and UFO, respecting all rules and patterns of both MLT and UFO.  

The main goal of combining MLT and UFO to provide a foundational structure for 

conceptual modeling is to conjoin MLT notions of (i) (ontological) instantiation which is applied 

regularly across levels and (ii) cross-level relations that may occur between elements of different 

classification levels with the (iii) ontologically well-founded taxonomies of (first-order) 

universals and individuals of UFO. Consequently, conceptual models built with the MLT-UFO 
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combination benefit from the ontological distinctions of UFO as well as MLT concepts and 

patterns for multi-level modeling. 

Here we use the term conceptual models as a general term to refer to a set of types of 

conceptual models concerning to different levels of generality. For example, following the 

classification of ontologies concerning their generality level proposed in (FALBO et al., 2013) 

(see Figure 2 in Chapter 2), we can imagine a hierarchy of models in which the MLT-UFO 

combination plays the role of a foundation ontology serving as basis to the construction of core 

ontologies. Core ontologies may be constructed applying the MLT-UFO combination, i.e. the 

core ontology concepts instantiate and specialize MLT-UFO concepts. Then, domain specific 

ontologies may extend core ontologies by instantiating and specializing the core ontology 

distinctions with the concepts that are required in a particular domain. The domain ontologies, in 

turn, may be extended by application ontologies that specialize and instantiate their general 

domain concepts to specific applications in such domains. This pattern can be repeatedly applied 

to create as much conceptual models specialization levels as necessary. This scenario is illustrated 

in Figure 24. Therefore, the first step to enable this modeling approach is to combine MLT and 

UFO. 

 
Figure 24 - Illustrating a hierarchy of conceptual models founded on the MLT-UFO combination. 

4.2 Combining MLT and UFO 

The relation between MLT and UFO is established through the application of the MLT basic 

pattern. In this setting the concepts of UFO instantiate and specialize elements of MLT. Since the 

UFO notion of individual is coincident with the MLT notion of Individual and the UFO notion of 

universal is encompassed by the MLT notion of first-order type (“1stOT”), we consider that the 

concepts in UFO taxonomy of individuals are instances of “1stOT” specializing “Individual” 

while the concepts in UFO taxonomy of universals are instances of “2ndOT” specializing 

“1stOT”. For each entity in the taxonomy of individuals (e.g., “Endurant”, “Substantial”, 
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“Moment”), there is a corresponding entity in the taxonomy of universals (“Endurant Universal”, 

“Substantial Universal”, “Moment Universal”). Instances of the entity in the taxonomy of 

universals specialize the corresponding entity in the taxonomy of individuals. Thus, in MLT 

terms, “Endurant Universal” categorizes “Endurant”, “Substantial Universal” categorizes 

“Substantial”, and so on. 

In addition to these general categorization relations, we can also use more specific MLT 

relations to further explain how the two taxonomies relate according to ground notions in UFO 

(such as identity). For example, since each instance of “Substantial” is an instance of exactly one 

instance of “Kind” (the kind that supplies the principle of identity), following MLT, “Kind” 

partitions “Substantial”. In addition, since they carry (but do not supply) a principle of identity, 

instances of “Subkind”, “Phase” and “Role” must specialize an instance of “Kind” that supplies 

such principle. Thus, in MLT terms, “Subkind”, “Phase” and “Role” are subordinate to “Kind”. 

Figure 25 illustrates the resulting two-layer hierarchy revealing these relations. 

 
Figure 25 - Applying MLT to UFO fragment on endurants. 

In UFO, if an intrinsic moment m is existentially dependent of a substantial s it is said that 

m inheres in s and, conversely, that s bears m (e.g. “my car’s color” inheres in “my car” and “my 

car” bears “my car’s color”) 8. Further, intrinsic moment universals are connected to substantial 

universal through characterizations: an intrinsic moment universal characterizes a substantial 

universal iff each instance of the latter bears an instance of the former (e.g. “Color” characterizes 

“Physical Object” since each instance of “Physical Object” bears an instance of “Color”) 

                                                      
8 As discussed in Section 2.2.2, according to UFO an intrinsic moment is an endurant inherent to another 

endurant, i.e. an intrinsic moment may inhere in a substantial or in another moment. Although, considering 

our specific interest in capturing relations between taxonomies of substantials and taxonomies of moments, 

for the sake of simplicity we focus here in the case of intrinsic moments that inhere in substantials. 
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(GUIZZARDI, 2005). Figure 26 uses associations to illustrate the UFO notions of inherence and 

characterization. 

Assuming the naming conventions adopted in Figure 26 we can state that, in MLT terms, 

the attribute “characterized universals” of “Intrinsic Moment Universal” is a regularity attribute 

that constrains the possible values for the attribute “bearer individual” of the type “Intrinsic 

Moment”. For example, according to Figure 26, instances of “Color” may inhere in instances of 

“Physical Object” because “Color” characterizes “Physical Object”. In other words, since “Color” 

has “Physical Object” as a “characterized universal”, instances of “Color” have instances of 

“Physical Object” as “bearer individual”. Conversely, “characterizer universals” is a regularity 

attribute of “Substantial Universal” that constrains the possible values for the attribute “inherent 

moments” of “Substantial”. Therefore, instances of “Physical Object” have instances of “Color” 

as “inherent moments” since “Physical Object” has “Color” as a “characterizer universal”. 

 
Figure 26 - Applying the MLT notion of regularity attribute to interpret the UFO notion of 

characterization. 

This view of characterization as regularity attribute is used in Section 4.3.3 to propose a 

strategy to make explicit the relations between taxonomies of substantials and taxonomies of 

intrinsic moments. Similarly, the UFO notion of mediation may also be viewed as a regularity 

attribute. Therefore, a similar strategy can be applied to make explicit the relations between 

taxonomies of substantials and taxonomies of relators. This issue is also discussed in Section 

4.3.3. 

4.3 Guidelines for the Application of MLT-UFO 

Combination 

In order to benefit from the ontological distinctions of UFO as well as the basic concepts and 

patterns for multi-level modeling of MLT, conceptual models built with the MLT-UFO 
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combination must adhere to the rules of both theories. Thus, every domain first-order type must: 

(i) instantiate one of the leaf ontological categories of UFO taxonomy of universals (and, 

consequently, instantiate MLT “1stOT”); and (ii) simultaneously, specialize one of the leaf 

ontological categories of UFO taxonomy of individuals (and thus, specialize “Individual”). For 

example, consider “Legal Entity” as instance of “Category”. Since “Category” specializes 

“1stOT” we conclude that “Legal Entity” is also a first-order type. Considering that “Category” 

categorizes “Substantial”, it follows that “Legal Entity” specializes “Substantial” (and, indirectly, 

specializes “Individual”). Analogously, “Person” and “Organization” are instances of “Kind” and 

specialize “Legal Entity” (indirectly specializing “Substantial” and “Individual”). 

In our approach, we introduce domain second-order types as specializations of one of the 

leaf categories of UFO taxonomy of universals. In order to clarify which first-order type is 

ultimately specialized by instances of a second-order type, every domain second-order type has 

an MLT cross-level relation (i.e., categorizes, disjointly categorizes, completely categorizes or 

partitions) with a first-order type, which is termed its base type. Further, we consider that a 

second-order type also defines the classification criteria that its instances must apply to specialize 

the base type. As a result, we can use the MLT-UFO combination to provide rules and patterns 

for introducing second-order types in ontology-based domain models.  

The rules for introducing second-order types in ontology-based domain conceptual models 

are defined considering the UFO leaf categories being specialized. For each specialization case, 

we identify the admissible ontological categories for a (first-order) base type as well as the MLT 

cross-level relations that may be established between the second-order type and the base type. 

This is possible by combining the MLT basic pattern, which determines that each instance of a 

second-order type specializes a (first-order) base type, with UFO rules that determine constraints 

for specialization relations according to the types’ ontological categories (discussed in Section 

2.2.2).  

As a general rule, we have that, according to UFO, substantial universals cannot specialize 

moment universals and vice-versa (rule U1), and thus a specialization of “Substantial Universal” 

cannot have an instance of “Moment Universal” as a base type. Conversely, a specialization of 

“Moment Universal” cannot have an instance of “Substantial Universal” as a base type. Specific 

rules that apply to second-order types specializing each leaf category of the UFO taxonomy of 

universals are considered in the sequence. First, in Section 4.3.1, we consider second-order types 

specializing “Sortal Universal” (viz., the leaf categories “Kind”, “Subkind”, “Phase” and “Role”). 

Second, in Section 4.3.2, we consider second-order types specializing “Mixin Universal” (viz., 

the leaf categories “Category”, “Phase Mixin”, “Role Mixin”). Finally, in Section 4.3.3, we 

consider second-order types specializing “Moment Universal” (viz., “Quality Universal”, “Mode 

Universal” and “Relator Universal”) and discuss the relation between taxonomies of moments 

and taxonomies of substantials. 
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4.3.1 Second-Order Types Specializing “Sortal Universal” 

Specializations of “Kind” 

According to UFO, kinds are sortal universals that supply identity criteria to their instances, and 

hence, they cannot specialize another sortal universal (rule U5). This rules out sortal universals 

as base types for second-order types specializing “Kind”. Further, considering that kinds are rigid 

universals, they cannot specialize anti-rigid universals (rule U4), which also rules out anti-rigid 

universals as base types for specializations of “Kind”. Therefore, by excluding sortal universals 

and anti-rigid universals as admissible base types, a second-order type specializing “Kind” must 

have a rigid mixin sortal as base type (i.e., an instance of “Category”).  

Moreover, considering that each individual must be instance of exactly one kind, we can 

more specifically state that a specialization of “Kind” must partition an instance of “Category”, 

using as classification criteria the principle of identity supplied by the kind. For example, 

considering “Legal Entity” as a “Category” that generalizes properties of different kinds of legal 

entities, we may define a second-order type “Legal Entity Kind” that specializes “Kind” and 

partitions “Legal Entity” having as instances the kinds “Person” and “Organization”. Figure 27 

illustrates this scenario.  

  
Figure 27 - A domain second-order type specializing “Kind” and partitioning an instance of “Category”. 

Specializations of “Subkind” 

Since subkinds are rigid universals, they cannot specialize instances of anti-rigid universals (rule 

U4). Thus, a second-order type specializing “Subkind” must have, as base type, an instance of 

“Rigid Sortal” (i.e., an instance of “Kind” or “Subkind”) or an instance of “Rigid Mixin” (i.e., an 

instance of “Category”).  

Subkinds are common in taxonomies in which the more specific types form a partition of 

a more general type distinguishing instances according to immutable intrinsic properties (e.g., 

“Person” specialized into “Man” and “Woman” according to gender). In these cases, a second-

order type that specializes “Subkind” partitions an instance of “Kind”, “Subkind” or “Category” 
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using some immutable intrinsic properties exemplified by their instances as classification criteria 

(see “Person Gender Subkind” with instances “Man” and “Woman” in Figure 28).  

 
Figure 28 - A domain second-order type specializing “Subkind” and partitioning an instance of “Kind”. 

Another example of second-order type that can be represented as a specialization of 

“Subkind” is “Horse Breed”, partitioning “Horse” having instances such as “Mustang Horse” and 

“Arabian Horse”. Note that MLT does not force the modeler to enumerate the instances of second-

order types (such as “Horse Breed”), while still capturing the fact that its instances form a partition 

of the base type (“Horse”) (see Figure 29). 

 
Figure 29 - Domain second-order types specializing “Subkind” and partitioning instances of “Category” 

and “Kind”. 
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Differently from the cases in which the base type is a kind or a subkind, when the base type 

is a category, in addition to specializing the base type, the instance of the higher-order type must 

also specialize some instance of “Kind”. This is a consequence of rule U6, which was captured 

through the subordination of “Subkind” to “Kind” in the MLT-UFO combination. In these cases, 

the principle of identity carried by the instances of the second-order type is not yet settled by the 

base type, and thus the principle of identity must be determined for each instance of the second-

order type. In the example of Figure 29, the second-order type “Female Animal Subkind” 

specializes “Subkind” and partitions “Female Animal” having instances such as “Cow” and 

“Mare” (see Figure 29). “Cow” specializes “Ox”, inheriting its principle of identity, while “Mare” 

specializes “Horse”, inheriting thus a different principle of identity. 

Specializations of “Phase” 

According to UFO, instances of “Phase” are anti-rigid sortal universals. As such, they may 

specialize any substantial universal. A second-order type that specializes “Phase” may thus have 

as base type any instance of “Substantial Universal” regardless of rigidity and sortality (i.e., an 

instance of “Kind”, “Subkind”, “Phase”, “Role”, “Category”, “Phase Mixin” or “Role Mixin”).  

As discussed in (GUIZZARDI, 2005), instances of “Phase” classify individuals of a 

specific kind using some mutable intrinsic property as classification criteria, forming partitions 

of a more general type. We can capture this notion with a second-order type that specializes 

“Phase” and partitions an instance of “Substantial Universal”. For example, in Figure 30, “Person 

Age Phase” partitions “Person” into “Child”, “Adult” and “Elder” according to the intrinsic 

property age.  

 
Figure 30 - A domain second-order type specializing “Phase” and partitioning an instance of “Kind”. 
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To capture domains in which some mutable intrinsic properties are applicable to 

individuals of different kinds, one may define specializations of “Phase” having as base types 

instances of “Mixin Universal” (i.e. “Category”, “Phase Mixin” and “Role Mixin”). In these 

cases, the principle of identity carried by the instances of the second-order type is determined for 

each instance, by establishing the kind that it specializes. In the example in Figure 31, the second-

order type “Young Animal Phase” partitions “Young Animal” having “Child” and “Calf” as 

instances; “Child” specializes the kind “Person”, inheriting its principle of identity, while “Calf” 

specializes the kind “Ox”, inheriting thus a different principle of identity.  

 
Figure 31 - A domain second-order type specializing “Phase” and partitioning an instance of “Phase 

Mixin”. 

Specializations of “Role” 

Similarly to instances of “Phase”, instances of “Role” are anti-rigid sortal universals and may 

specialize any substantial universal. Thus, a second-order type that specializes “Role” may have 

as base type any instance of “Substantial Universal” (i.e., an instance of “Kind”, “Subkind”, 

“Phase”, “Role”, “Category”, “Phase Mixin” or “Role Mixin”).  

As discussed in (GUIZZARDI, 2005), instances of “Role” classify individuals through the 

relational properties they bear in the scope of a relational context. A second-order type 

specializing “Role” may thus categorize an instance of “Substantial Universal” using as 

classification criteria some relational properties exemplified by the instances of the base type. For 

example, we can define a second-order type “Person Role” that categorizes “Person” according 

to roles that persons may play during their lives. Types such as “Employee”, “Driver” and “Wife” 

would be examples of instances of “Person Role”. More specific specializations of “Person Role” 

include: (i) “Woman Role” whose instances specialize “Woman” (an instance of “Subkind”) and 

include those roles that are played exclusively by women, such as “Wife” or “Biological Mother”; 
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(ii) “Adult Role” whose instances specialize “Adult” (an instance of “Phase”) and include those 

roles that are played exclusively by adults, such as “Driver” and “Congressman”; and, (iii) 

“Employee Type” whose instances specialize “Employee” (an instance of “Role”) into 

“Temporary Employee” and “Permanent Employee”, considering the type of work contract they 

have. These examples of second-order types specializing “Role” are illustrated in Figure 32. 

 
Figure 32 - Domain second-order types specializing “Role” and categorizing instances of “Sortal 

Universal”. 

To capture domains in which roles can be played by individuals of different kinds, one may 

define second-order types that specialize “Role” having as base types instances of “Mixin 

Universal” (i.e., instances of “Role Mixin”, “Phase Mixin” or “Category”). In these cases, each 

instance of the second-order type must specialize a sortal universal to settle the principle of 

identity. For example, considering that “Customer” is a “Role Mixin” that generalizes a role that 

can be played by any “Legal Entity”, we may define a second-order type “Customer Type” that 

specializes “Role” and partitions “Customer” having as instances “Personal Customer” and 

“Corporate Customer”. “Personal Customer” specializes “Person”, inheriting its principle of 

identity, while “Corporate Customer” specializes “Organization”, inheriting thus a different 

principle of identity (see Figure 33). 
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Figure 33 - Domain second-order types specializing “Kind” and “Role” and partitioning instances of 

“Mixin Universal”. 

4.3.2 Second-Order Types Specializing “Mixin Universal” 

Similarly to “Sortal Universal”, “Mixin Universal” is a specialization of “Substantial Universal”, 

and thus, its instances cannot specialize instances of “Moment Universal” (rule U1). Moreover, 

considering that mixin universals cannot specialize sortal universals (rule U3), we have that 

second-order types specializing “Mixin Universal” cannot have an instance of “Sortal Universal” 

as base type. Therefore, a specialization of “Mixin Universal” must categorize an instance of 

“Mixin Universal”, ultimately an instance of “Category”, “Phase Mixin” or “Role Mixin”. 

Specific rules that apply to second-order types specializing each leaf category of mixin universal 

are considered in the sequence.  

Specializations of “Category” 

 Since instances of “Category” are rigid universals, they may not specialize anti-rigid universals 

(rule U4). Therefore, a second-order type that specializes “Category” must have, as base type, a 

rigid mixin universal, i.e. an instance of “Category”. This structure gives rise to hierarchies of 

categories in which the more specific types usually form a partition of a more general type 

distinguishing instances according to some immutable intrinsic properties. In these cases, the 

second-order type specializing “Category” partitions an instance of “Category”. For example, 

considering “Animal” is a category that generalizes intrinsic immutable properties of different 

kinds of animals, we may define a second-order type “Animal Category by Presence of a 

Backbone” that partitions “Animal” having as instances “Vertebrate Animal” and “Invertebrate 

Animal” (see Figure 34).  
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Figure 34 - A domain second-order type specializing “Category” and partitioning an instance of 

“Category”. 

 
Figure 35 - Using MLT-UFO combination to describe concepts involved in biological taxonomy. 
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Other examples of second-order types specializing “Category” can be found in the 

biological taxonomy for living beings. Such taxonomy classifies living beings according to 

biological taxa in seven or more ranks, e.g., kingdom, phylum, class, order, genus, species, and 

breed. As discussed in Section 3.5, the seven biological ranks are second-order types that partition 

“Living Being” obeying a subordination chain such that “Phylum” is subordinate to “Kingdom”, 

“Class” is subordinate to “Phylum”, and so on. Assuming, that the identity criteria for living 

beings are provided by their species, we have that “Species” specializes “Kind” and partitions 

“Living Being”. In this case, since specializations of “Kind” may only be subordinate to 

specializations of “Category”, the five biological ranks to which “Species” is subordinate, namely 

“Kingdom”, “Phylum”, “Class”, “Order” and “Genus”, are specializations of “Category”. 

“Breed”, in its turn, is subordinate to “Species” and specializes of “Subkind”. This scenario is 

illustrated in Figure 35. 

Specializations of “Phase Mixin” 

Instances of “Phase Mixin” are anti-rigid mixin universals. As such, they may specialize any 

mixin universal. Thus, a second-order type that specializes “Phase Mixin” may have as base type 

any instance of “Mixin Universal” (i.e. an instance of “Category”, “Phase Mixin” or “Role 

Mixin”). Considering that phase mixins classify individuals of different kinds according to some 

mutable intrinsic property, the instances of “Phase Mixin” usually form partitions of a more 

general type. We can capture this notion with a second-order type that specializes “Phase Mixin” 

and partitions an instance of “Mixin Universal”. For example, in Figure 36, “Animal Phase” is a 

second-order type that specializes “Phase Mixin” and partitions “Animal” (an instance of 

“Category”) having as instances “Living Animal” and “Dead Animal”.  

 
Figure 36 - Second-order types specializing “Phase Mixin”. 
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Specializations of “Role Mixin” 

Similarly to instances of “Phase Mixin”, instances of “Role Mixin” are anti-rigid mixin universals 

and may only specialize other mixin universals. Thus, a second-order type that specializes “Role 

Mixin” may have as base type any instance of “Mixin Universal (i.e. an instance of “Category”, 

“Phase Mixin” or “Role Mixin”).  

In contrast to specializations of “Phase Mixin”, second-order types specializing “Role 

Mixin” use as classification criteria some relational properties individuals bear in the scope of a 

relational context, allowing us to capture scenarios in which a role can be played by individuals 

of different kinds. For example, considering “Legal Entity” as a “Category” that generalizes 

properties of different kinds of legal entities, we may define a second-order type “Legal Entity 

Role” that specializes “Role Mixin” and categorizes “Legal Entity” having instances such as 

“Customer” and “Supplier”. The second-order type “Customer Role”, in its turn, specializes 

“Role Mixin” and categorizes “Customer” having as instances types that define roles that are 

played by customers such as “Account Holder” and “Insurance Beneficiary”. This scenario is 

illustrated in Figure 37. 

 
Figure 37 - Domain second-order types specializing “Role Mixin”. 

4.3.3 Second-Order Types Specializing “Moment Universal” 

Thus far we have focused on second-order types specializing “Substantial Universal”. As 

evidenced in the previous sections, these types define the criteria used by their instances to 

specialize a base type according to certain (intrinsic or relational) properties of substantials. These 

properties are formally accounted for in UFO using the notions of moment (particularized 

properties that are ultimately dependent on substantials) and moment universal (universals whose 
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instances are moments). As a consequence, in a conceptual domain model founded in UFO, 

moment universals are treated as types along with substantial universals. In this section, we 

address the second-order types specializing each leaf category of UFO’s taxonomy of moment 

universals, discussing rules for defining the admissible ontological category for their base types. 

We further explore the interrelations between moment universals and substantial universals in a 

domain conceptual model.  

Differently from the taxonomy of substantial universals, in its original version, UFO does 

not elaborate on the rigidity and sortality of moment universals9. The UFO taxonomy of moment 

universals reflects the taxonomy of moment individuals, having thus three leaf concepts, namely 

“Quality Universal”, “Mode Universal” and “Relator Universal”. Considering that “Quality”, 

“Mode” and “Relator” are disjoint types categorized respectively by “Quality Universal”, “Mode 

Universal” and “Relator Universal”, it is not possible for an instance of one leaf concept of the 

moment universal taxonomy to specialize an instance of another leaf concept (rule U2). Adding 

to this the fact that instances of “Moment Universal” cannot specialize instances of “Substantial 

Universal” (rule U1), we conclude that specializations of each leaf concept of the moment 

universal taxonomy may only have instances of the same leaf concept as base type. Thus, 

specializations of “Quality Universal” must categorize instances of “Quality Universal”, 

specializations of “Mode Universal” must categorize instances of “Mode Universal” and 

specializations of “Relator Universal” must categorize instances of “Relator Universal”. We 

consider each of these cases in the sequence.  

Specializations of “Quality Universal” 

Following the theory of Conceptual Spaces (GÄRDENFORS, 2000), UFO assumes that for 

several perceivable or conceivable quality universals there is an associated quality dimension in 

human cognition. For example, “Age” and “Height” are associated with one-dimensional 

structures with a zero point isomorphic to the half-line of nonnegative numbers while “Color” can 

be associated to a structure (a quality domain) formed by three dimensions, named Hue, 

Saturation and Brightness. In Figure 38, following (GUIZZARDI, 2005), we use the UML 

construct of a structured datatype to model the color domain according to the Hue, Saturation and 

Brightness (HSB) scheme. In this representation, the datatype attributes “hue”, “saturation” and 

“brightness” are placeholders for the coordinates of each of the quality dimensions forming the 

color domain (GUIZZARDI, 2005). The separate identification of the “Color” quality universal 

allows us to use different quality structures if necessary, each of which with a separate 

                                                      
9There is a recent proposal for extending UFO in which the distinctions between sortals and mixins as well 

as between rigid and anti-rigid types are applied to moment universals (GUARINO; GUIZZARDI, 2015; 

GUIZZARDI et al., 2015b). This proposal, however, has neither been formally characterized nor 

incorporated into results derived from UFO (e.g., OntoUML). For this reason, this proposal is not 

considered here. 
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corresponding datatype. Further, we can account for the change in a quality of an entity by 

admitting that the value of the structured datatype may change. For example, we can account for 

the change of the color of a particular apple from green to red, and from red to brown by admitting 

changes on its values in the structured data type.  

Second-order types specializing “Quality Universal” can be defined to categorize an 

instance of “Quality Universal” considering possible regions of the associated quality structure. 

For example, we can define a second-order type “Color Type” specializing “Quality Universal” 

and categorizing “Color” according to selected regions of a color domain having instances such 

as “Blue-Toned Color” and “Green-Toned Color” (see Figure 38). Since each instance of “Color 

Type” determines a region of the color domain, its instances (i.e., instances of “Color”) always 

have values for quality dimensions within the specified region. Determining whether the 

categorization is disjoint or not would allow us to represent whether there is overlap in the regions 

specified by the various instances of “Color Type”. 

 
Figure 38 - Second-order types specializing “Quality Universal”. 

The possibility of defining second-order types categorizing instances of Quality Universal 

allows us to define important relations between these instances, which appear very frequently in 

the characterization of quality universals. For instance, one might want to represent that a color 

type is similar to another one (a binary relation between instances of “Color Type”). For example, 

“Red-Toned Color” is similar to “Orange-Toned Color”, while “Red-Toned Color” is not similar 

to “Blue-Toned Color”. 

As previously discussed, the relation between an intrinsic moment universal (a quality 

universal or mode universal) and a substantial universal is made explicit using the UFO notion of 

characterization (GUIZZARDI, 2005). For instance, recovering an example used in Section 4.2, 

consider an instance of “Category” called “Physical Object” which in a particular 

conceptualization encompasses all entities which are tangible and visible, such as a car, a fruit, 

and so on. To capture that a physical object has a color, we define that the quality universal 
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“Color” “characterizes” “Physical Object”, meaning that instances of “Color” are moments that 

may “inhere in” instances of “Physical Object”.  

The same criteria used to specialize a quality universal can be used to specialize the 

characterized substantial universal, establishing a correspondence between the taxonomy of 

qualities and the taxonomy of substantials. For example, we could define substantial universals 

such as “Blue Object” and “Green Object” specializing “Physical Object” reflecting the 

specialization of “Color” into “Green-Toned Color” and “Blue-Toned Color”. In this setting, in 

addition to the second-order type specializing “Quality Universal”, we may define a second-order 

type specializing “Substantial Universal” whose instances are characterized by instances of the 

former. In the example at hand, we may define the domain second-order type “Physical Object 

Type by Color” with instances “Blue Object” and “Green Object”, each of which is characterized 

by an instance of “Color Type”. This is captured in the domain conceptual model of Figure 39, in 

two ways. First, the inherence relation between “Physical Object” and “Color” is specialized to 

link each instance of “Physical Object Type by Color” to the corresponding instance of “Color 

Type” (e.g., every instance of “Blue Object” bears an instance of “Blue-Toned Color”, every 

instance of “Green Object” bears an instance of “Green-Toned Color”, and so on). Second, a one-

to-one association between “Physical Object Type by Color” and “Color Type” (characterizes) is 

used to represent that each instance of the former is defined considering an instance of the latter. 

 
Figure 39 - Making explicit the relation between substantials and qualities taxonomies. 

In Section 4.2 we apply the MLT notion of regularity attribute to interpret the UFO notion 

of characterization, concluding that “characterized universals” is a regularity attribute of 

“Intrinsic Moment Universal” that constrains the possible values for the attribute “bearer 

individual” of the type “Intrinsic Moment”, and that “characterizer universals” is a regularity 

attribute of “Substantial Universal” that constrains the possible values for the attribute “inherent 

moment” of the type “Substantial”. This scenario is illustrated in Figure 26. Figure 40 augments 

Figure 26 to show how the same view can be applied to explain the relation between a domain 
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second-order type specializing “Intrinsic Moment Universal” and a domain second-order type 

specializing “Substantial Universal”. According to Figure 40, the attribute “characterized 

universal” of “Color Type” can be seen as a regularity attribute that constrains the possible values 

for the attribute “bearer individual” of the type “Color”. For example, instances of “Blue-Toned 

Color” inheres in instances of “Blue Object” because “Blue-Toned Color” characterizes “Blue 

Object”. In other words, since “Blue-Toned Color” has “Blue Object” as a “characterized 

universal”, instances of “Blue-Toned Color” may have instances of “Blue Object” as “bearer 

individual”. Conversely, the attribute “characterizer universal” of “Physical Object Type by 

Color” is a regularity attribute that constrains the possible values for the attribute “inherent 

moment” of the type “Physical Object”. Therefore, for example, instances of “Blue Object” (such 

as my car) may have instances of “Blue-Toned Color” (such as my car’s color) as “inherent 

moment” because “Blue Object” has “Blue-Toned Color” as a “characterizer universal”. 

 
Figure 40 - Using the notion of regularity attribute to explain the relation between taxonomies of intrinsic 

moments and taxonomies of substantials. 

To determine which of leaf ontological category is specialized by the introduced second-

order type, we must consider: (i) the mutability of the quality involved in the adopted 

classification criteria (in this case, the mutability of the color of a physical object) and (ii) the 

ontological category of its base type (in this case, the ontological category of “Physical Object”).  

For a mutable quality, the instances of the second-order type are in general anti-rigid types. 

For example, considering that the color of a physical object may change during its life cycle 

(migrating from the extension of a color type to another), we conclude that instances of “Physical 

Object Type by Color” are anti-rigid types (e.g. an apple may change from green to red, ceasing 
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to be an instance of “Green Object” and becoming an instance of “Red Object”). Considering 

“Physical Object” a category, two alternatives remain (“Phase” and “Phase Mixin”) for the leaf 

ontological category being specialized by the introduced second-order type, dependent on 

whether its instances carry a principle of identity. Considering that instances of “Physical Object 

Type by Color” have instances of different kinds, we define that it specializes “Phase Mixin” (see 

in Figure 39). 

In the cases in which the qualities involved are immutable, we need to consider further the 

rigidity of the base type in order to determine whether the instances of the second-order type at 

hand are rigid or anti-rigid types. For an immutable quality and a rigid base type, the instances of 

the second-order type are rigid types, and thus, the second-order type must specialize either 

“Kind”, “Subkind” or “Category”. For example, consider a second-order type “Person Type by 

Gender” that partitions “Person” using a quality “Gender” as classification criteria. If we consider 

that the gender of a person is immutable and that “Person” is a rigid type, we can conclude that 

instances of “Person Type by Gender” (e.g. “Man” and “Woman”) are rigid types. Further, since 

the base type is a kind, “Person Type by Gender” must specialize “Subkind”. In contrast, for an 

immutable quality and anti-rigid base type, the instances of the second-order type are anti-rigid 

types and thus, the second-order type must specialize either “Phase”, “Role”, “Phase Mixin” or 

“Role Mixin”. For example, considering that “Child” is a phase, if we define a second-order type 

“Child Type by Gender” that uses gender as criteria to partition “Child” we have that “Child Type 

by Gender” specializes “Phase” with instances “Boy” and “Girl”.  

Specializations of “Mode Universal” 

Similarly to quality universals, mode universals may also be categorized according to some 

criteria. Thus, we may define a second-order type that specializes “Mode Universal” and 

categorizes an instance of “Mode Universal” using properties of the mode individuals as 

classification criteria. For example, we may define a second-order type “Disease Type” that 

categorizes “Disease” having instances such as “Diabetes” and “Hemophilia” (see Figure 41). 

Considering that modes are reification of intrinsic properties inhering in substantials, 

similarly to quality universal, mode universals may characterize substantial universals. Further, 

the same criteria used by a second-order type specializing “Mode Universal” to categorize an 

instance M of “Mode Universal” can be used to categorize an instance S of “Substantial 

Universal” distinguishing instances according to the subtype of M they bear. For example, 

consider an instance of “Phase” called “Diseased Person” which encompasses all persons bearing 

some disease. To capture that diseases inhere in diseased persons (and, conversely, that diseased 

persons bear diseases), we may relate “Disease” to “Diseased Person” through a “inheres in” 

association. We may define a second-order type “Diseased Person Type” that categorizes 

“Diseased Person” according to the type of disease, having instances such as “Diabetic Person” 
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and “Hemophiliac Person”. In this scenario, each instance of “Disease Type” “characterizes” a 

specific instance of “Diseased Person Type”, meaning that the instances of each instance of 

“Disease Type” must “inheres in” one instance of a specific instance of “Diseased Person Type”. 

Therefore, the attribute “characterized universal” of “Disease Type” is a regularity attribute that 

constrains the possible values for the attribute “bearer individual” of the type “Disease”, and, 

conversely, the attribute “characterizer universal” of “Diseased Person Type” is a regularity 

attribute that constrains the possible values for the attribute “inherent individual” of the type 

“Diseased Person” 

The same pattern we applied in the previous section to represent the relation between 

taxonomies of qualities and taxonomies of substantials is applied here to capture the 

correspondence between the taxonomy of modes and the taxonomy of substantials. As shown in 

Figure 41, it is captured in two ways. First, the “characterizes” association between “Intrinsic 

Moment Universal” and “Substantial Universal” is specialized giving rise to a one-to-one 

association between “Disease Type” and “Diseased Person Type”, representing that each instance 

of the latter is characterized by an instance of the former. Second, the “inheres in” relation 

between “Disease” and “Diseased Person” is specialized to link each instance of “Disease Type” 

to the corresponding instance of “Diseased Person Type” (e.g., every instance of “Diabetes” 

inheres in an instance of “Diabetic Person”). 

 
Figure 41 - Making explicit the relation between substantials and modes taxonomies. 

Further, applying the same analysis we conducted in the previous section to determine 

which leaf ontological category is specialized by the introduced second-order type, we conclude 
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that “Diseased Person Type” specializes “Phase” since the base type “Diseased Person” is a 

“Phase”. 

Specializations of “Relator Universal” 

As discussed in (GUARINO; GUIZZARDI, 2015), besides having the power of connecting 

entities, relators also have their own intrinsic properties. Using these intrinsic properties as 

classification criteria, we may define specializations of “Relator Universal” that categorize 

instances of “Relator Universal”. For example, we may define a second-order type “Employment 

Type by Duration” that partitions “Employment” having “Temporary Employment” and 

“Tenured Employment” as instances (see Figure 42).  

Relator universals may also be specialized considering properties of the connected entities 

(the relata). In this case, we may define a second-order type that specializes “Relator Universal” 

and categorizes an instance of “Relator Universal” using properties of the relata as criteria. For 

example, considering that important characteristics of employments (e.g., the types of claims and 

commitments entailed) vary according to the sort of the organization which is the employer, we 

may define a second-order type “Employment Type by Employer Nature” that specializes 

“Relator Universal” and partitions “Employment” having instances such as “Public Employment” 

and “Private Employment”. This scenario is illustrated in Figure 42. 

 
Figure 42 - Second-order types specializing “Relator Universal”. 

In the previous sub-sections, we discussed that taxonomies of substantials may be created 

reflecting taxonomies of intrinsic moments. The same reasoning can be applied to taxonomies of 

relators: the criteria used by a second-order type specializing “Relator Universal” to categorize 

an instance of “Relator Universal” can be used to categorize an instance of “Role” mediated by 

the relator universal, distinguishing instances according to the type of relational properties they 

bear. For example, consider the role “Employee” encompassing all persons having an 

employment. To capture that each employee has at least one employment, we relate 
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“Employment” to “Employee” through a “relates” association, specializing the association that 

relates relators to substantials. Since every employee has employments, we may define a second-

order type “Employee Type” that categorizes “Employee” according to the type of employment, 

having instances such as “Temporary Employee” and “Tenured Employee”. Every instance of 

“Employee Type” would have as instances objects having employments of a specific 

“Employment Type by Duration”. Therefore, the attribute “mediated universal” of “Employment 

Type by Duration” is a regularity attribute that constrains the possible values for the attribute 

“related individuals” of the type “Employment”. This scenario is captured in the domain 

conceptual model of Figure 43 in two ways. First, the “mediates” association between “Relator 

Universal” and “Role” is specialized giving rise to a one-to-one association between 

“Employment Type by Duration” and “Employee Type”. Second, the “involves” association 

between “Employment” and “Employee” is specialized to link each instance of “Employment 

Type by Duration” to the corresponding instance of “Employee Type”. 

 
Figure 43 - Explicitly representing the relation between taxonomies of substantials and taxonomies of 

relators. 

4.3.4 Summary 

Table 5 summarizes the discussion concerning specializations of “Substantial Universal”. It 

presents the admissible ontological categories for base types of second-order types specializing 

each leaf category of “Substantial Universal”. The columns representing admissible base types 

are marked with a capital ‘X’, while inadmissible base types are marked with an hyphen ‘-’ (e.g., 

the table informs that it is admissible for a second-order type specializing “Subkind” to have an 
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instance of “Kind” as base type, but it is inadmissible for a specialization of “Subkind” to have 

an instance of “Subkind” as base type). 

Table 5 - Allowed base types for specializations of Substantial Universal. 

 First-order Base Type 

Second-order 

Type 

Instance of 

“Kind” 

Instance of 

“Subkind” 

Instance of 

“Role” 

Instance of 

“Phase” 

Instance of 

“Category” 

Instance of 

“Role Mixin” 

Instance of 

“Phase Mixin” 

Specialization of 

“Kind” 
- - - - X - - 

Specialization of 

“Subkind” 
X - - - X - - 

Specialization of 

“Phase” 
X X X X X X X 

Specialization of 

“Role” 
X X X X X X X 

Specialization of 

“Category” 
- - - - X - - 

Specialization of 

“Phase Mixin” 
- - - - X X X 

Specialization of 

“Role Mixin” 
- - - - X X X 

As discussed in Section 4.3.3, the rules concerning the admissible ontological categories 

for base types of second-order types specializing “Moment Universal” are simpler, as sortality 

and rigidity are not addressed here for these types. In summary: (i) a specialization of “Quality 

Universal” must have an instance of “Quality Universal” as base type; (ii) a specialization of 

“Mode Universal” must have an instance of “Mode Universal” as base type; and (iii) a 

specialization of “Relator Universal” must have an instance of “Relator Universal” as base type. 

4.4 Related Work 

The strategy previously used in OntoUML (GUIZZARDI, 2005) was one in which the types 

represented in conceptual models could only instantiate the universals in UFO’s taxonomy of 

universals. These were represented by a fixed set of UML stereotypes, and thus a conceptual 

model could only have first-order types. In that approach, the axioms of the foundational ontology 

had to be incorporated into the syntax and semantics of the language profile (e.g., translated into 

corresponding syntactic rules as shown in (GUIZZARDI, 2005), or incorporated in a 

transformation of OntoUML into a logical formalism). This additional step is not necessary here 

as the structural relations and axioms of MLT-UFO are directly incorporated in the domain 

ontology. For example, concerning the combinations of the specialization patterns for second-

order types, it is inadmissible for a domain second-order type that specializes “Kind” and 

“Subkind” to be subordinate to a domain second-order type which specializes “Role” or “Phase”. 

This is a consequence of the constraint in UFO that rules out the specialization of an anti-rigid 

universal by a rigid universal, together with the definition of subordination in MLT.  
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One recent initiative of applying ontological distinctions to discuss multi-level modeling 

issues can be found in (ERIKSSON; HENDERSON-SELLERS; ÅGERFALK, 2013). In 

(ERIKSSON; HENDERSON-SELLERS; ÅGERFALK, 2013), the authors propose a UFO-based 

approach that tries to avoid second-order types by employing a pattern based on the so-called 

ontological square comprising the categories of Substantial Universal/Substantial Individual and 

Moment Universal/Moment Individual, as well as their mutual relations. They provide an 

example in which “Horse” is considered a substantial type, a horse named “Prancer” is a 

substantial object (instance of “Horse”), “Breed” is a moment type and “Shetland Pony” is a 

moment object (instance of “Breed”). Since both Prancer and Shetland Pony are objects, there is 

no instance of relation between them. According to the authors, each instance of Horse is related 

to one instance of Breed, and one instance of Breed is related to many instances of Horse. Their 

assumption that the same moment object can be related to various substantial objects is a 

misinterpretation of a basic rule of the foundational ontology. In UFO, the relation between 

moment objects (individuals) and substantial objects (individuals) is that of inherence. In the 

ontology literature, in general, and in UFO, in particular, it is not possible for an intrinsic moment 

to inhere in two different individuals. What the authors seem to intend to represent is actually the 

relation between a property (in the ontological sense) “Shetland Pony” and a number of 

individuals in which this property is exemplified (also in the ontological sense (GUIZZARDI, 

2005)). However, under this interpretation, “Shetland Pony” becomes a universal and “Breed” a 

second-order universal, defeating what they were trying to accomplish with their approach. 

Besides this ontological problem, the authors ignore the intuitive mechanisms of defining 

subtypes of a type according to properties of their instances and the benefits of such mechanisms. 

For example, using such approach, there is no support to represent properties that inhere only in 

instances of “Shetland Pony”. 

Boro (PARTRIDGE, 2005) is a pioneer conceptual modeling approach in applying 

ontological concerns to address multiple-levels of classification. Our approach differs from Boro 

in its foundations: while BORO adopts a 4D ontology, our approach is founded on a 3D ontology; 

while BORO assumes an extensional criteria for types identity, we opt for an intensional criteria. 

The approach we propose here is, to the best of our knowledge, the first initiative on identifying 

patterns and constraints for higher-order types that is based on a 3D foundational ontology. 

Because of that, it enables us to proceed with a research program that directly incorporates these 

contributions to the practice of conceptual modeling via the OntoUML language and its associated 

tools. 
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4.5 Final Considerations 

In this chapter, we have extended the Unified Foundational Ontology with the MLT multi-level 

theory in order to provide foundations for multi-level ontology-based conceptual modeling.  

We have shown how the elements of MLT can be used to serve as the topmost layer of a 

hierarchy of conceptual models, from a foundational ontology to conceptual domain models. The 

concepts of the foundational ontology instantiate and specialize elements of MLT, respecting its 

axioms and using structural relations and patterns of MLT. In turn, the concepts of the conceptual 

domain model instantiate and specialize MLT-UFO, respecting MLT and UFO axioms and 

patterns. The result is an approach to define conceptual domain models that can represent types 

as well as types of types while adhering to the rules of a foundational ontology. UFO’s original 

taxonomy of (first-order) universals is leveraged in order to provide patterns for types of types in 

the domain model. These patterns guide the modeler in the definition of higher-order types and 

their relations allowing the modeler to express modal properties of instances of higher-order 

types.  

Another consequence of employing MLT concerns the engineering of UFO itself. UFO’s 

taxonomies can now be explained in terms of instantiation of higher-order types. Further, as 

shown in Section 4.2, the relations of MLT (such as categorization) are used to explain how 

elements in the taxonomy of endurant universals relate to elements in the taxonomy of endurant 

individuals. Finally, the MLT notion of regularity attribute is applied to found a discussion 

concerning the UFO’s notions of characterization and mediation. We discuss that the 

characterization relation holding between an intrinsic moment universal and a substantial 

Universal influences the intension of such universals by regulating the inherence relations that 

may hold between their instances. Analogously, the mediation relation holding between a relator 

universals and a role regulates the involves relations that may hold between their instances.  

Given our focus on structural (as opposed to dynamic) aspects of conceptual modeling we 

do not discuss here the combination of MLT with the UFO portion that accounts for perdurants 

(events). Considering that the multi-level rules and patterns of MLT are independent of particular 

applications or domains, we believe that it is possible to extend the approach to encompass the 

UFO distinctions for events. This extension is an issue for future investigation. 

While here we have focused the examples on the definition of domain models, the 

discussed approach forms the basis for further extension of UFO itself, as well as to include core 

ontologies in the hierarchy of models between the foundational ontology and domain models. In 

the future we will apply this approach to improve the formalization of UFO-based ontologies 

whose conceptualizations span multiple levels of classifications. To illustrate the applicability of 

this approach in the development of core ontologies spanning multiple levels of classification, we 
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have used it to construct a core organizational structure ontology. This subject is explored in next 

chapter. 

Finally, we should highlight that our use of a notation inspired in UML to construct 

diagrams has been solely illustrative. It is not our intention to propose that notation as a modeling 

language. In Chapter 6. , we propose a UML profile that reflects MLT distinctions and rules to 

improve the expressivity, clarity, and parsimony of the UML support to model the power type 

pattern. Following a similar approach, a natural application for the MLT-UFO combination is to 

inform the design of a well-founded multi-level conceptual modeling language or to promote the 

redesign of a language, such as OntoUML, into a multi-level modeling language. 
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Chapter 5.  Applying MLT-UFO in the 

Development of a Core Ontology 

One of the key challenges in conceptualizing the organizational structure domain is that it can 

span multiple levels of classification, with types and types of types being part of the domain of 

enquiry. For instance, organizations may be staffed according to role types such as “Professor”, 

“Dean”, “Secretary”, “Project Leader”. They may also be structured according to different types 

of organizational units, such as “Division”, “Department”, “Section”, each of which may impose 

constraints on some required role types (e.g. each “Department” of the “Federal University of 

Espírito Santo” has a “Dean”). Thus, to describe the conceptualization underlying this domain, 

one needs to represent entities of different (but nonetheless related) classification levels, such as 

individual persons (“John”, “Mary”), role types (“Dean”, “Secretary”), organizational units 

(“Sales Division of Coca-Cola Inc.”, “Computer Science Department of the Federal University 

of Espírito Santo”) and organizational unit types (“Department”, “Division”). Furthermore, there 

is a large diversity of organizational structuring approaches in different enterprise settings, 

making the enumeration of a fixed set of role types and organizational unit types untenable. 

Considering the multi-level nature of the organizational structure domain and aiming to illustrate 

the applicability of our multi-level ontology-based conceptual modeling approach in the 

development of core ontologies, we have applied that approach to construct a core organizational 

structure ontology, which is reported in this chapter. 

The task undertaken here is also relevant from the perspective of enterprise modeling. This 

is because some of the existing approaches for the representation of the organizational structure 

domain, such as ArchiMate (THE OPEN GROUP, 2012) and the W3C Org Ontology (W3C, 

2014), do not offer modeling constructs to represent types of organizations and types of 

organizational units, focusing only on offering constructs for users to capture instance-level 

notions. Some other approaches such as ARIS do cover types of roles and organizational units 

(including elements such as “Position Type”, “Organization Unit Type” and “Person Type”), but 

present several semantic ambiguities (SANTOS; ALMEIDA; GUIZZARDI, 2013), lacking a 

clear semantic foundation for the concepts in the organizational structure domain (a problem 

which affects many other approaches concerning role-related concepts as discussed in 

(ALMEIDA; GUIZZARDI; SANTOS JR., 2009)). 

Considering that the main goal of enterprise models is to represent organizational reality 

faithfully and thus serve for the purposes of documentation, analysis and communication, 

Enterprise Architecture (EA) modeling languages could benefit from the use of well-founded 

conceptual models as theoretical basis. The semantic shortcomings of some enterprise modeling 
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approaches have motivated several efforts in the past decade into suitable conceptual foundations 

to inform the design or redesign of enterprise modeling approaches. For example, the Unified 

Foundational Ontology (UFO) (GUIZZARDI, 2005) has been used to identify issues in the 

modeling of roles in some enterprise modeling approaches (ALMEIDA; GUIZZARDI; SANTOS 

JR., 2009) and other related organizational structure elements of ARIS (SANTOS; ALMEIDA; 

GUIZZARDI, 2013). That has led to a number of proposals of improvements to these EA 

approaches. More recently, more specialized semantic foundations have been explored, 

employing not only a foundational ontology but also core organizational ontologies in the 

evaluation and redesign of modeling languages. For example, UFO-S (NARDI et al., 2015) has 

been used to evaluate the service constructs of ArchiMate (NARDI; FALBO; ALMEIDA, 2014) 

and the O3 Organizational Ontology (aligned with the foundational ontology) to inform the 

extension of the ArchiMate metamodel for organizational structure modeling (PEREIRA; 

ALMEIDA, 2014). This allows for a more detailed analysis of certain domain-specific language 

aspects, incorporating relevant notions from the specialized literature for a particular domain of 

enquiry.  

Despite these advances in enterprise modeling, a semantic foundation for the organizational 

structure domain that is capable of addressing the multi-level modeling issues is still lacking. 

Therefore, besides meeting the objective of illustrating the application of our modeling approach, 

the core ontology we propose here aims at addressing this gap, being thus, a contribution to the 

enterprise modeling area. 

This chapter is further structured as follows: Section 5.1 presents the core organizational 

structure ontology built with the MLT-UFO combination; Section 5.2 positions the proposed 

ontology with respect to other organizational structure ontologies and with some organizational 

structure modeling approaches; finally, Section 5.3 presents concluding remarks. 

5.1 A Core Organization Ontology Founded on MLT-UFO 

In order to cope with the large diversity in organizational structures and structuring approaches, 

and following the modeling approach proposed in Chapter 4. , our core organizational structure 

ontology defines foundational concepts of organizational domains and may be extended by 

enterprise-specific ontologies that instantiate and specialize these basic distinctions with the 

concepts that are required in a particular organizational setting. 

For instance, the core ontology defines generic concepts such as “Organization Type”, 

“Unit Type” and “Business Roles” and refrains from enumerating specific unit types such as 

“Division” and “Department”, as well as specific business roles such as “Vendor”, “Manager” 

and so on. These variations will be accommodated at more specific ontologies that extend the 

core organizational ontology to provide the elements that are used to account for organizational 



109 

reality in particular enterprise contexts. An example of a hierarchy of models is illustrated in 

Figure 44. The core organizational structure ontology extends MLT-UFO and is extended by two 

domain-specific organizational ontologies: one focused on universities and another for 

manufacturing companies. Finally, the domain-specific ontologies are further refined to provide 

concepts required in the context of specific universities (e.g., the Federal University of Espírito 

Santo, UFES) and specific manufacturing companies (such as the Ford Motor Company). 

 
Figure 44 - Illustrating a hierarchy of organizational structure conceptual models founded on MLT-UFO 

combination. 

Following the patterns proposed in Chapter 4. , every domain first-order type of our 

ontology (i) instantiates one of the leaf ontological categories of UFO taxonomy of universals 

(the types in dark grey in Figure 45) and, consequently, instantiates MLT “1stOT”; and (ii) 

simultaneously, specializes one of the leaf ontological categories of UFO taxonomy of individuals 

and, thus, specializes “Individual”. Further, every second-order type of our ontology specializes 

one of the leaf ontological categories of UFO taxonomy of universals and has an MLT cross-level 

relation with a first-order type. 

Besides the UFO concepts discussed so far, we have also applied some concepts of the 

UFO social layer (GUIZZARDI; GUIZZARDI; FALBO, 2008) to support the construction of the 

core organizational structure ontology. The UFO taxonomy of individuals includes a social layer 

that specializes its core with distinctions to account for intentionality and social reality. It 

distinguishes between agentive and non-agentive objects. Agentive objects (instances of “Agent”) 

can perform actions and have intentional moments (intentions, desires and beliefs). Agents are 

differentiated in “Physical Agents” (e.g., a person) and “Social Agents” (e.g., an organization). 

The latter are created by speech acts and normative descriptions recognized by a numbers of 

agents. Figure 45 includes the required concepts of the UFO social layer (types in white) to the 

MLT-UFO combination model (augmenting thus Figure 25 of Chapter 4. ). 
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Figure 45 - Including concepts of the UFO social layer to the MLT-UFO combination model. 

This ontology has been defined as a simplified version of O3 (PEREIRA; ALMEIDA, 

2014; PEREIRA, 2015) focusing on the general concepts and highlighting the aspects that are 

specific to multi-level modeling. It adds to O3 second-order types to map the notions of “Unit 

Type”, “Organization Type” and “Assignment Type”. We discuss the ontology following two 

points of view: (i) organizational structure (in Section 5.1.1) and (ii) organizations roles and 

allocations (in Section 5.1.2). 

5.1.1 Organizational Structure 

Figure 46 illustrates the fragment of the ontology related with organizational structure concepts 

and its use as the basis of a hierarchy of models. Types that are part of the core ontology are 

shaded in dark gray. The types in light gray compose a fragment of a domain ontology about 

universities organizational structure. Finally, the types in white compose a model representing 

part of the organizational structure of the Federal University of Espírito Santo. 

The topmost concept of this fragment is “Organization”, specializing the UFO notion of 

“Social Agent”. As defined in (ETZIONI, 1964), organizations are (artificial) social units built 

with the explicit intention of pursuing specific goals. Organizations include corporations, armies, 

hospitals and churches, but exclude tribes, ethnic groups, families and groups of friends. Members 

of an organization (which constitute the organization at a particular point in time) can be replaced 

or relocated to other functions while the organization persists in time.  

We specialize “Organization” into “Formal Organization” and “Organizational Unit”. 

Formal organizations are formally recognized by the external environment. Their creation is 

determined by normative descriptions or speech acts that are recognized by the normative context 

in which they exist. Examples of formal organization include “Microsoft Inc.”, “The UK 

Government” and the “Federal University of Espírito Santo”. Organizational units are those 

organizations that are only recognized in the internal context of a formal organization and 

represent the working groups of a formal organization. Examples of organizational units include 
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the Marketing Department of Ford and the Sales Division of Coca-Cola. Considering that 

“Organization” is a general notion that does not provide a principle of identity to its instances we 

define it as an instance of “Category”. Further, assuming that “Formal Organization” and 

“Organizational Unit” provide a principle of identity to organizations and their units, both are 

considered instances of the UFO notion of “Kind”.  

 
Figure 46 - Illustrating the definitions of the core organizational structure ontology and its use as the 

basis of a hierarchy of models. 

We define a second-order type named “Formal Organization Type” whose instances are 

specializations of “Formal Organization”. Considering that every instance of “Formal 

Organization” is also instance of at least one instance of “Formal Organization Type” we state 

that “Formal Organization Type” completely categorizes (in MLT sense) “Formal Organization”. 

Examples of formal organization types specializing “Formal Organization” include “University”, 

“Corporation”, “Government”, and “Hospital”. Further, given that “Formal Organization” is an 

instance of “Kind”, and that the instances of “Formal Organization Type” are rigid types (i.e. the 

type of a formal organization do not change during the organization life cycle), it follows that 

instances of “Formal Organization Type” are subkinds in UFO sense. Therefore, following a 

pattern for second-order types discussed in Section 4.3.1, “Formal Organization Type” specializes 

the UFO notion of “Subkind”.  

Analogously, we define “Organizational Unit Type” as a second-order type whose 

instances are rigid types that specialize “Organizational Unit” (such as “Department”, “Division” 

and “Project”). Thus, considering that (i) each instance of “Organizational Unit” is instance of, at 

least, one instance of “Organizational Unit Type”, and (ii) that “Organizational Unit Type” is a 
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(instance of) “Kind”, we conclude that (i) “Organizational Unit Type” completely categorizes 

“Organizational Unit”, and (ii) specializes “Subkind” (again, following a pattern discussed in 

Section 4.3.1). 

Formal organizations may be composed of other formal organizations and of organizational 

units (see (ALMEIDA; GUIZZARDI, 2012) for a discussion on the whole-part relation of UFO 

applied at the organizational context). In this setting, a formal organization type may define the 

possible structures of its instances by constraining the types of organization (organizational units 

or other formal organizations) that may compose organizations of such type. Analogously, 

organizational units may be composed of other organizational units, and an organizational unit 

type may specify that an instance of it must be composed of other units of specific types. This is 

the basis for the definition of domain-specific types in an ontology that extends the core ontology. 

For instance, consider a domain ontology about university organizational structure. In this 

context, we can define “University” as an instance of “Formal Organization Type” (and thus, as 

a specialization of “Formal Organization”). Considering that universities are structured into 

faculties, which, in turn, are organized into departments we can define both “Faculty” and 

“Department” as instances of “Organizational Unit Type” and, thus, as specializations of 

“Organizational Unit”. Further, we may state that a “University” is composed of at least two 

faculties and each “Faculty” of a “University” is mandatorily composed of at least two 

“Departments”. Figure 46 illustrates it representing these domain-specific concepts in light gray. 

Both formal organization types and organizational unit types may be specialized into 

domain-specific types. For example, supposing that all Brazilian federal universities must comply 

with the previous definition of university and, additionally, must have a “Central Management 

Unit”, we may capture it by creating: (i) an instance of “Formal Organization Type” called 

“Brazilian Federal University” as a specialization of “University”, and (ii) an instance of 

“Organizational Unit Type” called “Central Management Unit” having a mandatory composition 

relation with “Brazilian Federal University”. Considering these two new types are part of the 

university ontology, they are depicted in light gray in Figure 46. 

This hierarchy of models can be further extended by creating models to express the 

structure of specific universities, such as the Federal University of Espírito Santo (UFES). For 

example, “UFES” can be represented as an instance of “Brazilian Federal University” being 

composed of some faculties (such as “Faculty of Technology of UFES” and the “Faculty of Law 

of UFES”) and a central management unit. The “Faculty of Technology of UFES” is composed 

of some departments such as the “Computer Science Department of UFES” and the “Electrical 

Engineering Department of UFES”. Some of the types that composes the structure organizational 

model of UFES are represented in Figure 46 with a white background. 

The MLT notion of regularity attribute can be applied to capture the constraints imposed 

by the formal organization types to the possible composition of their instances. To illustrate it, in 
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Figure 47 “Formal Organization Type” is the source of two associations, each one capturing a 

regularity attribute. The attribute “compatible org types” of “Formal Organization Type” is a 

regularity attribute that regulates the attribute “component orgs” of “Formal Organization” 

constraining the compositions of formal organizations in other formal organizations according to 

their types. The regularity attribute “compatible unit types”, in its turn, regulates the attribute 

“component units”, constraining the composition of formal organizations in organizational units, 

again considering their types. Thus, considering the scenario in Figure 47, since “University” has 

“Research Center” and “Faculty” as “compatible unit types”, instances of “University” may be 

composed of research centers and faculties. For each value attributed to the “compatible unit type” 

regularity attribute one composition association is placed to capture the influence of the regularity 

attribute over the intension of the created type. In Figure 47 a composition association between 

“University” and “Faculty” captures that a university must have at least two faculties while the 

composition between “University” and “Research Center” captures that each university may have 

some research center (but it is not mandatory). Finally, since “University” has no value for the 

“compatible formal organization type” attribute, its instances may not be composed of other 

formal organizations. 

 
Figure 47 - Illustrating the use of regularity attributes to constrain formal organizations and 

organizational units compositions. 

The same reasoning is applied to the composition of organizational units in other 

organizational units. The regularity attribute “compatible subunit types” of “Organizational Unit 

Type” regulates the attribute “component subunits” of “Organizational Unit”, such that 

organization units of a specific type t may only be composed of organizations units whose types 

are compatible with t. For example, in Figure 47, since “Faculty” has “Department” as its 

“compatible unit type”, instances of “Faculty” may be composed of instances of “Department”. 

The influence of the regularity attribute over the intension of “Faculty” is captured by a 

composition association which states that each faculty must be composed of at least two 

departments. 
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5.1.2 Organization Roles and Allocations 

Figure 48 presents the concepts related with the agents that compose the organization and the 

types of roles they may play (types shaded in light grey). We are concerned in this fragment with 

the roles that persons play, first of all as a member of a formal organization, and then when they 

are given more specific places in organizational unit (organizational unit member).  

We consider that only a specific kind of physical agents may compose organizations, 

namely the natural persons. To capture it we define that “Natural Person” specializes “Physical 

Agent” being instance of the UFO notion of “Kind”. To become a “Formal Organization 

Member”, a person (an instance of “Natural Person”) must be admitted by a formal organization, 

giving rise to an “Admission”. Analogously, the association between a person (playing the role 

of “Unit Member”) and an “Organizational Unit” (playing the role of “Allocation Unit”) is given 

by an “Assignment”. Thus, both “Admission” and “Assignment” specialize the UFO notion of 

“Relator” being instances of “Relator Universal”. “Employer” and “Allocation Unit” specialize, 

respectively, “Formal Organization” and “Organizational Unit”, being both instances of the UFO 

notion of “Role”, while “Formal Organization Member” and “Unit Member” are instances of 

“Role” and specialize “Natural Person”. Further, since “Natural Person” is a specialization of 

“Physical Agent” both, “Formal Organization Member” and “Unit Member” (indirectly) 

specialize the UFO notion of “Physical Agent”. This scenario is illustrated in Figure 48.  

 
Figure 48 - Fragment of the core organizational structure ontology that copes with agents that compose 

the organization and types of roles they may play. 

In order to play a particular role in an organizational unit, a person needs to be a formal 

organization member first. To capture this constraint, the assignments are tied with the admission 
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that made the individual a member of the organization, which is defined through the relationship 

“refers to” (see Figure 48). An assignment a may only refer to an admission b iff: (i) the person 

that plays the role of “Unit Member” in a is the same person that plays the role of “Formal 

Organization Member” in b, and (ii) the organizational unit playing the role of “Allocation Unit” 

in a is part of the formal organization playing the role of “Employer” in b. Further, since to play 

the role of “Unit Member” it is necessary to be a formal organization member, “Unit Member” is 

defined as a specialization of “Formal Organization Member”. 

Different types of roles are relevant in the scope of different types of formal organizations. 

For example, in a university, employee types such as “Professor” and “Management Analyst” 

become relevant, while in a hospital employee types such as “Doctor” and “Nurse” may be 

defined. Therefore, our ontology includes the notion of “Formal Organization Member Type”. 

Analogously, to fill the necessity of identifying different types of roles that are played in the 

context of different organizational units we propose the notion of “Business Role”. 

Instances of “Formal Organization Member Type” are roles that specialize “Formal 

Organization Member” such that each organization member is instance of at least one “Formal 

Organization Member Type”. Thus, “Formal Organization Member Type” completely categorizes 

“Formal Organization Member”. Similarly, since instances of “Business Role” are roles 

specializing “Unit Member” such that each unit member is instance of at least one business role, 

we state that “Business Role” completely categorizes “Unit Member”. Therefore, both “Formal 

Organization Member Type” and “Business Role” are second-order types that specialize “Role” 

categorizing an instance of “Role” (following, thus, a pattern discussed in Section 4.3.1). Figure 

49 illustrates this. Types that are part of the core ontology are shaded in dark gray while the 

domain-specific types are in light gray. 

 
Figure 49 - Illustrating the relation between business roles and formal organization member types (the 

cover relation). 
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Specific formal organization member types define the set of roles (business roles) that a 

typified employee can occupy in the organization. Business roles define more specific 

capabilities, duties and prerogatives possibly in the scope of organizational units. Members who 

are instances of an (instance of) “Formal Organization Member Type” may play the business roles 

that are covered by such employee type. For example, we may state that, in the context of a 

university, both professors and management analysts may play the role of department dean while 

only professors may play the role of researchers, i.e., both “Professor” and “Management 

Analyst” cover “Department Dean” but only “Professor” covers “Researcher” (this scenario is 

illustrated in Figure 49). 

Thus, we can define that if a role x covers a role y it means that: (i) instances of x are 

potential instances of y in the sense that individuals that plays the role x may also play the role y; 

and (ii) for every  instance i of y we have that i is instance of x or there is another role z such that 

z covers y and i is instance of z. Note that it is also possible to define cover relations between 

business roles (see Figure 49). 

Each “Formal Organization Member Type” is admitted in the context of at least one 

“Formal Organization Type”, and for each “Formal Organization Type” there may be the 

necessity of certain formal organization member types. Thus, from the combination between a 

formal organization type and a formal organization member type arises the concept of “Admission 

Type”. The instances of “Admission Type” specializes “Admission” prescribing the employee 

types that are admissible in each formal organization type. Thus, “Admission Type” completely 

categorizes “Admission” (an instance of “Relator Universal”) and specializes the UFO notion of 

“Relator Universal” (following, thus, a pattern discussed in Section 4.3.3). The admission types 

allow the prescription of the possible allocations of an organization according to its type. For 

instance, we can define that a University must have, at least, twenty professors and two 

management analysts. Figure 50 illustrates this scenario (core ontology types are shaded in dark 

gray and the domain-specific ones are in light gray).  

A variant of the pattern for the explicit representation of relations between taxonomies of 

substantials and taxonomies of relators (discussed in Section 4.3.3) is applied in Figure 50. In this 

setting the regularity attribute “possible org types” of “Admission Type” (represented in Figure 

50 as an association end) constrains the attribute “organization” (again represented as an 

association end) of “Admission”, and, thus, the “is generated by” association between 

“Admission” and “Formal Organization” is redefined to link each instance of “Admission Type” 

to the corresponding instances of “Formal Organization Type”, accommodating specific 

multiplicities constraints. For example, since “University” is a “possible org type” of “University 

Professor Admission”, the “is generated by” association is redefined to link “University Professor 

Admission” to “University”, stating that every university must have, at least, twenty professors 

admissions. Similarly, the regularity attribute “possible member types” of “Admission Type” 
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constrains the attribute “member” of “Admission”, and, thus, the “formalizes” association 

between “Admission” and “Formal Organization Member” is redefined to link each instance of 

“Admission Type” to the corresponding instances of “Formal Organization Member Type”, 

accommodating specific multiplicities constraints. For example, since “Professor” is a “possible 

member type” of “University Professor Admission”, a specialization of the “formalizes” 

association is created to link “University Professor Admission” to “Professor”, stating that a 

professor may be admitted in many universities. 

 
Figure 50 - Representing the relation between taxonomies of admissions, taxonomies of formal 

organizations and taxonomies of formal organization members. 

Analogously, each “Business Role” is played in the context of at least one “Unit Type” and 

for each “Unit Type”, there may be the necessity of certain business roles. Thus, from the 

combination between a unit type and business role arises the concept of “Assignment Type”. The 

instances of “Assignment Type” specialize “Assignment”, prescribing the assignment types that 

are admissible in each unit type. Thus, “Assignment Type” completely categorizes “Assignment” 

(an instance of “Relator Universal”) and specializes the UFO notion of “Relator Universal” 

(following, thus, a pattern discussed in Section 4.3.3). The assignment types allow the prescription 

of the possible allocations of a unit according to its type. For instance, we can define that each 

department must have one member playing the role of department dean. Figure 51 illustrates this 

scenario (core ontology types are shaded in dark gray and the domain-specific ones are in light 

gray). Recall that, to play a business role in a unit, (i) the person must be first admitted in the 

formal organization to which such unit belongs, and (ii) the business role must be covered by the 

type instantiated by the person in the scope of its admission to the organization. 
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Again, a variant of the pattern for the explicit representation of relations between 

substantials and relators taxonomies is applied in Figure 51. In this setting the regularity attribute 

“possible unit types” of “Assignment Type” (represented in Figure 51 as an association end) 

constrains the attribute “unit” (again represented as an association end) of “Assignment”, and, 

thus, the “assigns to” association between “Assignment” and “Organizational Unit” is redefined 

to link each instance of “Assignment Type” to the corresponding instances of “Organizational 

Unit Type”, accommodating specific multiplicities constraints. For example, since “Department” 

is a “possible unit type” of “Department Dean Assignment”, the “assigns to” association is 

redefined to link “Department Dean Assignment” to “Department” stating that each department 

must have one department dean. Similarly, the regularity attribute “possible role types” of 

“Assignment Type” constrains the attribute “member” of “Assignment”, and, thus, the “assigns” 

association between “Assignment” and “Unit Member” is redefined to link each instance of 

“Assignment Type” to the corresponding instances of “Business Role”, accommodating specific 

multiplicities constraints. For example, since “Department Dean” is the “possible member type” 

of “Department Dean Assignment”, the “assigns” redefined to link “Department Dean 

Assignment” to “Department Dean” stating that each department dean is dean of exactly one 

department. 

 
Figure 51 - Representing the relation between taxonomies of assignments, taxonomies of organizational 

units and taxonomies of business roles. 

5.2 Related Work 

As we have already argued, a suitable conceptualization for organizational structure spans 

multiple levels of classification, requiring a multi-level modeling approach. In this section, we 
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position our core ontology with respect to other organizational structure ontologies and modeling 

approaches. 

5.2.1 Organizational Structure Ontologies 

As discussed in (PEREIRA; ALMEIDA, 2014), the organizational structure domain has been the 

subject of a number of ontologies since the end of the 90s, including initiatives such as The AIAI 

Enterprise Ontology (EO) (USCHOLD; KING; MORALEE, 1998), the organization ontology for 

the TOVE enterprise model (FOX et al., 1998), the W3C Org Ontology (W3C, 2014), among 

others. 

The AIAI Enterprise Ontology (EO) (USCHOLD; KING; MORALEE, 1998) is described 

in natural language and is based on formalized meta-ontology, with good coverage of concepts 

related to organization structure (PEREIRA; ALMEIDA, 2014). As discussed in (PEREIRA; 

ALMEIDA, 2014), EO includes a direct relationship between a “person” and an “organization 

unit” (“working for”), without the intermediary of roles or positions they play in the scope of an 

“organizational unit”. In case a person plays multiple roles, it is not possible to define which role 

is played in the context of each “organization unit”. Further, EO does not provide second-order 

notions such as “Organization Type”, “Unit Type” or “Business Role”. Instead, it defines fixed 

sets of types and business roles for specific domains (e.g., “Vendor”, “Customer”, “Reseller”). 

This makes it less general than the core ontology discussed here. 

A similar remark can be made with respect to the organization ontology for the TOVE 

enterprise model (FOX et al., 1998), which chooses for a fixed hierarchical structure for the 

organizational with three levels: “organization”, “division” and “sub-division”. Choosing fixed 

roles and types restricts the applicability of these ontologies, making them unsuitable to any 

organizational contexts not structured according to these three levels. We take a different 

approach and aim here at a more general ontology while employing a hierarchical approach to 

cater for domain-specificity. Specific structures with instances of higher-order types can appear 

at a lower level of specificity, e.g., in an enterprise-specific ontology that extends the core 

organizational ontology for a particular organizational setting.  

The W3C Org Ontology (W3C, 2014) is a W3C initiative aiming to provide support for 

publishing linked data of organizational information. Given its focus on the Semantic Web, the 

Org Ontology is an operational ontology and is defined in OWL. In terms of coverage of the 

domain, the Org Ontology does not provide concepts that would be comparable to our notions of 

“Formal Organization Type” and “Unit Type”, dealing only with instance-level notions for 

organizations and units. In the case of business roles for organizational members, it provides the 

concepts of “Role” and “Post”, although these are not considered types of employees. With 

respect to these concepts, first of all, we should note that there is not a clear conceptual difference 

between them as observed by Pereira (2015). A “Post” represents a position within an 
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organization and defines roles that are played by members holding such position (W3C, 2014). 

On the other hand, a “Role” denotes a role (in its general sense) that a member can play in the 

organization (the notion of organization here encompasses our notions of formal organization and 

organizational unit) (W3C, 2014). Despite the lack of a clearer definition on the conceptual 

differences between “Post” and “Role”, their functions in Org Ontology are similar to the ones 

we attribute to the notions of “Formal Organization Member Type” and “Business Role” in our 

ontology. Although, while we formally assume these concepts as “first-order” types, Org 

ontology faces them as individuals. Failing to represent their “type” nature, the semantics of the 

relation between members of the organization and the roles they play is not explicitly captured in 

the model. Differently, in our ontology, it is clear that roles are universals that are instantiated by 

members of the organization. This allows us to account for the fact that, while playing such roles, 

members of the organization bear a number of moments, such as commitments and claims, 

permissions, intentions, capabilities, skills, etc. Further, as types they can be included in 

specialization hierarchies which reveal relations between business roles. Finally, treating these 

concepts as types that specializes the UFO notion of “Role” allows us to formally capture their 

meta-properties (such as being anti-rigid and relationally dependent).  

The concepts of the core organization structure ontology we propose here are based on the 

notions defined in the O3 ontology (PEREIRA; ALMEIDA, 2014; PEREIRA, 2015). Our 

ontology differs from O3 in its focus: we are concerned here solely with the most general concepts 

for organizational structure highlighting the aspects that are specific to multi-level modeling. For 

instance, we introduce the second-order concept of “Organizational Unit Type” and avoid fixing 

the distinctions used to specialize the notion of “Organizational Unit” such as the O3 distinctions 

between “structural” vs. “missionary units” and between “staff” vs. “line units”. Following our 

hierarchical modeling approach, these distinctions can be accounted for in a lower-level ontology. 

For example, applying the basic pattern of MLT the O3 notion of “Structural Unit” can be defined 

as an instance of “Organizational Unit Type” and, simultaneously, as a specialization of 

“Organizational Unit”. A topic for further investigation concerns the specification of other parts 

of O3 as an extension of this core ontology.  

The Enterprise Ontology Pattern Language (E-OPL) (FALBO et al., 2014) is another 

example of ontology for organizations founded in UFO. It includes some notions for 

organizational structure, and aims to provide a basis for an enterprise pattern language whose 

fragments can be selected flexibly. E-OPL does not include concepts similar or corresponding to 

our notions of “Formal Organization Type” or “Organizational Unit Type”, but it provides a 

hierarchy of higher-order types having “Institutional Role” as its root concept. The E-OPL notion 

of “Institutional Role” encompasses our notions of “Business Role” and “Organization Member 

Type” and further distinguishes between positions and roles and discusses the existence of 

“informal roles”.  
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Since E-OPL is defined in the current version of OntoUML, which does not provide 

adequate support for higher-order types (as already discussed), a stereotype «hou» is used to mark 

the second-order types. Using our modeling approach E-OPL could benefit from the formal rules 

and concepts of MLT concerning multi-level modeling. Further, it would be possible to formally 

capture meta-properties of institutional roles by identifying that “Institutional Role” is a 

specialization of “Role” that categorizes “Human Resource”; this is currently not available to E-

OPL due to the use of OntoUML. A revision of E-OPL at light of MLT-UFO combination is a 

topic for further investigation. 

5.2.2 Organizational Structure Approaches 

Many prominent enterprise architecture modeling approaches cater for the representation of 

organizational structures. For example, the Architecture of Integrated Information Systems 

(ARIS) (SCHEER, 1999) is an enterprise architecture framework that provides both a method for 

analysis and design of organizational aspects (including organizational structure) and a language 

for its representation. ARIS has a significant number of modeling constructs for organizational 

structure, including second-order notions such as organization unit type and unit member type. 

Nevertheless, as pointed out in (SANTOS; ALMEIDA; GUIZZARDI, 2013), ARIS lacks a sound 

semantic foundation and many of its modeling language constructs present problems such as 

redundancies and semantic overload (GUIZZARDI, 2005). As discussed in (SANTOS; 

ALMEIDA; GUIZZARDI, 2013) these problems also apply to the second-order notions. The 

ARIS metamodel seems to have evolved in an ad hoc manner and some of the second-order 

notions seem to have been introduced irregularly. For example, there is no support to represent 

the specialization of organizational unit types (while there is support to represent the 

specialization of “Person Types”); the notion of “Person Type” may be applied indiscriminately 

to persons and organization units alike; “positions” can be instances of “position types” but also 

“organizational unit types”. Please refer to (SANTOS; ALMEIDA; GUIZZARDI, 2013) for an 

in depth discussion on the semantics of ARIS organizational structure elements.  

Another widely employed EA modeling language that includes organizational structure 

elements is ArchiMate (THE OPEN GROUP, 2012). A strength of the language is the broad 

coverage of a wide number of aspects of EA, and the possibility to describe relations between the 

various aspects. Nevertheless, the emphasis on providing an overview of relations seems to have 

led to a less sophisticated treatment of some aspects, and that includes the active structure domain 

(PEREIRA; ALMEIDA, 2014). In (PEREIRA; ALMEIDA, 2014) the authors conducted a 

semantic analysis of the fragment of the ArchiMate metamodel related with the representation of 

active structure revealing some problems caused by its lack of a sound semantics foundation. 

Concerning the ability to deal with second-order notions, such fragment of ArchiMate does not 

provide support to the specification of organizations types or organizational unit types. It provides 
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a construct called “Business Role” whose instances represent “the responsibility for performing 

specific behavior, to which an actor can be assigned”. We consider that the functions of “Business 

Role” in ArchiMate encompass the ones we attribute to the notions of “Formal Organization 

Member Type” and “Business Role” in our ontology. Although, differently from our approach, 

ArchiMate does not provide support to indicate that a business role is pertinent to a specific unit 

(PEREIRA; ALMEIDA, 2014). Further, while we assume business roles as types, ArchiMate 

faces them as individual. Therefore, all limitations induced by the decision of not representing the 

“type” nature of business roles that we have discussed in our analysis of the W3C Org Ontology 

are also present in ArchiMate.  

Similarly to our approach, the Department of Defense Architecture Framework (DoDAF) 

(US DEPARTMENT OF DEFENSE, 2015) provides an account for the second-order notions of 

organizations types and role types (in its Operational Viewpoint OV-4) with a multi-level 

approach based on the IDEAS Foundational Ontology. Differently from our approach, they have 

chosen to consider the membership relations between organizations and their employees as 

“whole part” relations, which are specializations of the formal notion of “tuple” in IDEAS. A 

tuple is defined as an ordered pair of two things. In contrast, our approach considers the 

membership relations as specialization of the UFO notion of “relator”. In this view, the 

relationship between members and organizations (as well as the relationship between unit 

members and units) can: qualitatively change while maintaining their identity; be the subject of 

modal properties; be characterized by having both essential and accidental properties 

(GUARINO; GUIZZARDI, 2015). None of this is possible in the case in which relationships are 

reduced to tuples (see (GUARINO; GUIZZARDI, 2015) for a full discussion on the benefits of 

this foundational account to relationships). 

5.3 Final Considerations 

Aiming (i) to illustrate the application of the approach to support  multi-level ontology-based 

conceptual modeling presented in Chapter 5.  and (ii) to address the lack of a suitable foundation 

for organizational structure modeling, this chapter presents a core organizational structure 

ontology built with the combination of MLT and UFO. The foundational distinctions provided by 

UFO have allowed us to address some ontological issues concerning the core ontology concepts 

(e.g., anti-rigidity of role types, reification of relators), while the use of MLT has allowed us to 

address higher-order types and provides us with a sound basis to establish the relation between 

foundational ontology, core ontology and their specializations (e.g., an enterprise-specific 

ontology).  

The result is a hierarchical modeling approach. The core organizational structure ontology 

may be extended by enterprise-specific ontologies that simultaneously instantiate and specialize 
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the core ontology distinctions with the concepts that are required in a particular organizational 

setting. Such a hierarchical approach is required to cope with the large diversity in organizational 

structures and structuring approaches.   

The core ontology has been defined as a simplified version of O3 focusing on the general 

concepts and highlighting the aspects that are specific to multi-level modeling. It adds to O3 

second-order types to map the notions of “Unit Type”, “Organization Type” and “Assignment 

Type”. It addresses second-order types that are not covered by ArchiMate, the W3C Org 

Ontology, the TOVE Enterprise Ontology and the AIAI Enterprise Ontology. These approaches 

propose a fixed set of organization and role types to their users, and thus cannot accommodate 

variations of enterprise settings.  

Topics for further investigation concern the specification of other parts of O3 as an 

extension of this core ontology, and the specification of domain- or industry-specific models as 

an extension of O3 applying thus the proposed hierarchical modeling approach. Other topics of 

further investigation include revisiting the ontological analysis of ARIS conducted in (SANTOS; 

ALMEIDA; GUIZZARDI, 2013) and the extension of ArchiMate proposed in (PEREIRA, 2015) 

in light of MLT-UFO and the core ontology presented here.  
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Chapter 6.  Using MLT to Revisit the 

Representation of Multi-Level Models in UML 

Three fundamental quality attributes that must be reinforced in all conceptual modeling languages 

are expressivity, clarity and parsimony (HALPIN; MORGAN, 2008). The first refers to the ability 

of the language to capture all relevant aspects of the phenomena in reality it purports to represent; 

the second to how easy it is for the language users to unambiguously recognize which aspects of 

the underlying phenomena are represented; the third to how economic a language is in not forcing 

the modeler to represent more than it is necessary for a problem at hand. There is now a long 

tradition in conceptual modeling of using Reference Theories to evaluate and (re) design 

conceptual modeling languages according to these quality attributes (RECKER et al., 2011). 

Examples of fundamental conceptual modeling constructs that have been analyzed and re-

designed following this strategy include types and taxonomic structures, part-whole relations, 

intrinsic and relational properties, roles, etc. (GUIZZARDI, 2005). Here, we use MLT as a 

reference theory to revisit the UML support to represent the power type pattern. 

The power type pattern is extensively used in many important modeling initiatives. An 

example is the ISO/IEC 24744 standard (ISO/IEC, 2007). Moreover, this pattern can regularly be 

found in many catalogues of modeling best practices, in which it appears as an ingredient of other 

patterns (see, for instance, (FOWLER, 1997)). Finally, the relevance of this pattern has led to its 

adoption in the current version of the Unified Modeling Language (UML) (OMG, 2011), which 

allows modelers to specify a power type in the context of a “generalization set”. 

UML is a de facto standard for conceptual modeling and information systems engineering. 

Moreover, it is the basis for ontology-driven conceptual modeling languages such as OntoUML 

(GUIZZARDI, 2005), which in the past years have gained increasing adoption in the conceptual 

modeling and ontology engineering communities (GUIZZARDI et al., 2015b). For this reason, 

we believe that providing precise and unambiguous semantics and advancing the UML support 

for modeling power types amounts to an important contribution for conceptual modeling, in 

general, and for ontology-driven conceptual modeling and ontology engineering, in particular. 

Aiming to achieve these goals, here we apply MLT to analyze the UML support for modeling the 

power type pattern. 

By using MLT as a reference theory, we analyze and expose a number of limitations in the 

existing UML support for modeling the power type pattern. In particular, we demonstrate that this 

support: (i) lacks expressivity, for example for representing different definitions of power type 

that exist in the literature (e.g. CARDELLI, 1988; ODELL, 1994), each of which has relevant 

applications; (ii) that it lacks clarity, for example because it confounds constraints that apply to 
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power type instantiation with those that apply to corresponding generalization sets; (iii) that it 

lacks parsimony, for example because it forces the modeler to explicitly represent at least one 

instance of each power type. By employing the results of this analysis, we propose a UML profile 

for addressing the exposed limitations. We use the distinctions put forth by MLT to devise this 

profile, and we use the formal rules inherent to MLT to guide the development of the profile’s 

syntactic constraints. 

The remainder of this chapter is structured as follows: Section 6.1 discusses UML’s current 

support for power types, revealing its limitations in light of MLT; Section 6.2 presents our 

proposal to extend a fragment of UML reflecting the rules of MLT and Section 6.3 presents 

concluding remarks. 

6.1 UML’s Power Type Pattern Support in a Nutshell 

The notion of generalization set is central to the UML’s power type pattern support. According 

to the UML 2.4.1 specification (OMG, 2011), each generalization set contains a particular set of 

generalizations that collectively describe the way a specific classifier (a class) is specialized into 

subclasses. To provide support to the power type pattern, UML includes in its “powertypes” 

package a meta-association that relates a classifier (the so-called “powertype”) to a generalization 

set that is composed by the generalizations that occur between the base classifier and the instances 

of the power type (OMG, 2011). The relation between the power type and the generalization set 

is represented in the UML notation by placing the name of the classifier next to the generalization 

set preceded by a colon. For example, in Figure 52 three specializations of “Tree” are defined, 

namely “Elm”, “Apricot” and “Saguaro”. The text “:Tree Species” denotes that the three subtypes 

enumerated in the generalization set are instances of “Tree Species” and that “Tree Species” is 

the “power type” of the generalization set. Note that the term “power type” as used in UML does 

not correspond to the notion of “power type” as proposed by Cardelli. (This issue is discussed in 

Section 6.2.) The “disjoint” constraint means that the subtypes have no instances in common 

while the “incomplete” constraint means that there are instances of “Tree” that are not instances 

of “Elm”, “Apricot” and “Saguaro”. The relation between the power type (e.g. “Tree Species”) 

and the base type (e.g. “Tree”) may be represented using a regular association with no special 

syntax and semantics.  

 
Figure 52 - The UML notation for the power type pattern (adapted from (OMG, 2011)). 
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A key observation is that for a classifier to be considered a “power type” in UML, it must 

be related to a generalization set. Thus, in UML, the power type pattern can only be applied when 

specializations of the base type are explicitly modeled (otherwise there would be no generalization 

set). We consider this undesirable as it rules out simple models such as one defining “Tree 

Species” as a “power type” of “Tree”, without forcing the modeler to define specific instances for 

“Tree Species”. 

Furthermore, the only syntactic constraint defined in UML concerning power types is that 

“the classifier that maps to a generalization set may neither be a specific nor a general classifier 

in any of the generalization relationships defined for that generalization set” (OMG, 2011). While 

this rule prevents the power type from being involved in the generalization set defined to represent 

its own relation with the base type, this constraint is insufficient to rule out scenarios in which the 

power type is incorrectly related by generalization with types of any other levels. 

6.2 Applying MLT to Revisit the Power type Support in 

UML 

The application of MLT to revise the power type support in UML leads to the formulation of 

modeling recommendations to ensure: (i) a precise interpretation for the UML constructs used to 

express the power type pattern, (ii) a comprehensive support for the power type pattern including 

its variants in the literature, and; (iii) a number of syntactic rules to prevent the construction of 

inconsistent models.  

First of all, we should observe that the UML specification is silent with respect to whether 

Cardelli’s notion of power type can be adopted. However, given that a generalization set can be 

said to define the classification criteria used to specialize the general type, the UML notion of 

power type seems to correspond to the categorization relation in MLT (not to the is power type 

of relation), in particular as other generalization sets may co-exist defining other classification 

criteria for the subtypes. This interpretation is corroborated by statements in the specification that 

explain that the subtypes of a base type are the instances of the “power type” (excluding the base 

type itself).  

Further, we should observe that the semantics of the generalization sets constraints (e.g. 

“disjoint”, “incomplete”) is defined considering the types (classifiers) specified in the 

generalization set. UML does not provide any support to express constraints concerning the whole 

set of possible instances of the “power types”, and thus it is unable to differ between the variations 

of categorization defined in MLT. For example, the generalization set represented in Figure 52 is 

“incomplete” denoting that there are trees that are not instances of any represented species. 

Although, the generalization set does not capture the rule that every instance of “Tree” is an 

instance of one instance of “Tree Species”, i.e. that “Tree Species” completely categorizes “Tree”. 
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To address this expressiveness limitation, modelers usually use regular associations (with no 

special syntax and semantics) to represent the classification relations that hold between the base 

type and the higher-order type (as illustrated in Figure 52). 

In the sequel, we propose a UML profile based on MLT that enriches the UML support to 

model the power type pattern. 

6.2.1 The «instantiation» Stereotype 

Our first recommendation is to mark the association between the base type and the higher order 

type with the «instantiation» stereotype, in order to distinguish it from other domain relations that 

do not have an instantiation semantics. An association stereotyped «instantiation» represents that 

instances of the target type are instantiated by instances of the source type and, thus, denote that 

there is a categorization relation between the involved types (regardless of possible generalization 

sets). For example, in Figure 53 an association stereotyped «instantiation» having “Tree” as 

source and “Tree Species” as target type is used to represent that instances of “Tree” are instances 

of instances of “Tree Species” and, conversely, that instances of “Tree Species” have instances 

of “Tree” as instances. Therefore, in MLT terms, it denotes that “Tree Species” categorizes 

“Tree”. Since this modeling structure does not rely on generalization sets, the modeler is not 

forced to represent instances of the power type, which would have been required in the case of 

plain UML.  

 
Figure 53 - Illustrating the use of «instantiation». 

The multiplicities of the “target” side of an «instantiation» association can be used to 

distinguish between the different variations of categorization. Whenever the lower bound 

multiplicity of the target association end is set to one, each instance of the base type is instance 

of, at least one instance of the power type. Thus, the higher order type completely categorizes the 

base type. In contrast, if the lower bound multiplicity of the target association end is set to zero, 

the inferred categorization relation is not a complete categorization. Analogously, if the upper 

bound multiplicity of the target association end is set to one, each instance of the base type is 

instance of, at most one instance of the higher order type. Thus, in this case, the higher order type 

disjointly categorizes the base type. In contrast, if the upper bound multiplicity of the target 

association end is set to many (*), the inferred categorization relation is not a disjoint 

categorization.  

Table 6 summarizes the suggested interpretation in terms of MLT, considering different 

combinations of lower and upper bound multiplicities for the target association end. The 

combinations of multiplicities of the «instantiation» association with the values of the related 
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generalization set attributes create additional challenges for modelers using the power type 

pattern. These combinations are discussed in each of the following subsections, in which we 

expose some semantic issues. 

Table 6 - The influence of the multiplicities in the semantics of «instantiation» associations. 

UML Notation Semantics in terms of MLT 

 
disjointlyCategorizes (H, B) ∧ completelyCategorizes(H, B) ≡ partitions(H, B) 

 
disjointlyCategorizes (H, B) ∧ ¬completelyCategorizes(H, B) 

 
completelyCategorizes(H, B) ∧ ¬disjointlyCategorizes (H, B) 

 
categorizes(H, B) ∧ ¬completelyCategorizes(H, B) ∧ ¬disjointlyCategorizes(H, B)  

Lower and upper bound multiplicities set to one 

When both the lower and the upper bound multiplicities of an «instantiation» association are set 

to one, we have that the power type simultaneously, completely and disjointly categorizes (i.e. 

partitions) the base type. For example, according to Figure 53 “Tree Species” partitions “Tree” 

(i.e. each instance of “Tree” is instance of exactly one instance of “Tree Species”). If it is used in 

tandem with a complete generalization set it means that all the instances of the higher-order type 

are enumerated in the diagram. For example, the model in Figure 54 represents that: (i) every 

instance of “Person” must be either an instance of “Man” or an instance of “Woman” and that (ii) 

“Man” and “Woman” are the only admissible instances of “Person Gender”. 

 
Figure 54 - Using «instantiation» to denote partitions relations. 

At a first superficial inspection, one could consider that «instantiation» associations having 

the lower bound multiplicity (of the target association end) set to one could only be combined 

with a complete generalization set (as in Figure 54). However, this is not the case because the 

“complete” constraint represents whether all instances of the supertype are instances of one of 

the subtypes in the generalization set, and it is silent with respect to whether the higher-order type 

completely categorizes the base type. Thus, a combination of an «instantiation» association 

having both lower and upper multiplicities set to one in a pattern with an incomplete 

generalization set is admissible, and would mean that there are instances of the higher-order type 

that are not enumerated in the generalization set. For example, Figure 55 represents that: (i) each 

instance of “Tree” is instance of exactly one instance of “Tree Species” (represented by the 

«instantiation» association), (ii) “Elm”, “Apricot” and “Saguaro” are instances of “Tree Species” 
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(see the generalization set name), (iii) there are instances of “Tree” that are not instances of “Elm”, 

“Apricot” nor “Saguaro (represented by the incomplete constraint). Given the semantics of the 

«instantiation» stereotype in tandem with the semantics of the incomplete generalization set we 

can infer that (iv) there are instances of “Tree Species” that are not represented in the diagram.  

 
Figure 55 - Combining partitions relations with “incomplete” generalization sets. 

Since the upper bound multiplicity of an «instantiation» association set to one means that 

each instance of the base type is instance of at most one instance of the higher-order type, a model 

combining it in a pattern with an overlapping generalization set is inconsistent, and thus, deemed 

syntactically invalid. 

Lower bound multiplicity set to zero and upper bound set to one 

An association stereotyped «instantiation» having the lower multiplicity set to zero and the upper 

bound multiplicity set to one denotes that the target type disjointly categorizes but does not 

completely categorize (in MLT sense) the source type. For example, suppose that an organization 

defines a type of roles called “Management Role” such that an employee cannot play more than 

one role of such type and it is not the case that all employees play some “Management Role”. 

This scenario is illustrated in Figure 56, showing “Organization President” and “Department 

Dean” as examples of instances of “Management Role”. The interpretation of the combination of 

an «instantiation» association having zero as the lower bound and one as the upper bound 

multiplicity with an incomplete generalization set is subtler than the cases we have discussed so 

far. In order to analyze this combination, we should first note that: (i) there are instances of 

“Employee” which are not instances of any instance of “Management Role” (as a consequence of 

the semantics of the «instantiation» association); and (ii) there are instances of “Employee” which 

are neither “Organization President” nor “Department Dean” (as a consequence of the semantics 

of incomplete generalization sets). The model is still silent with respect to whether all instances 

of “Management Role” are enumerated in this generalization set. It is possible that there are no 

other instances of “Management Role”, but an interpretation in which there are other management 

roles not mentioned in the model (e.g. “Division Head”) is also admissible.  
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Figure 56 - Using «instantiation» to denote categorization relations that are disjoint but not complete. 

Since an «instantiation» association having zero as the lower bound multiplicity implies 

that there are instances of the base type that are not instances of any instance of the higher-order 

type, a model combining it in a pattern with a complete generalization set is deemed syntactically 

invalid. Further, as previously discussed, the combination of an «instantiation» association with 

upper bound multiplicity set to one in a pattern with an overlapping generalization set is also 

deemed syntactically invalid. 

Lower bound multiplicity set to one and upper bound set to many 

An «instantiation» association having the lower multiplicity set to one and the upper bound 

multiplicity set to “many” (*) denotes that the target type completely categorizes but does not 

disjointly categorize (in MLT sense) the source type. For example, suppose that the rules of an 

organization define a type of roles called “Business Role” (having instances as “Programmer”, 

“DB Designer” and “Sw Designer”) such that every employee must play one or more roles of 

such type.  

Associations stereotyped «instantiation» with “one” as lower bound multiplicity and 

“many” as upper bound multiplicity can be combined with any generalization sets despite they 

are complete or incomplete, disjoint or overlapping. However, the generalization sets constraints 

influence the semantics of the diagrams. For example, in Figure 57 the generalization set is 

complete and disjoint meaning each instance of “Employee” plays exactly one of the represented 

instances of “Business Role”. Therefore, since the multiplicities of the «instantiation» association 

between “Business Role” and “Employee” denotes that the instances of the former are 

overlapping, we conclude that there are non-represented instances of “Business Role” such that 

some of these instances are overlapping between them or some of them are overlapping with the 

represented ones. If the generalization set of Figure 57 were defined incomplete we could infer 

that there were non-represented instances of “Business Role” such that the whole set of instances 

of “Business Role” classifies all instances of “Employee” having some overlaps. Finally, 

considering the hypothesis in which the generalization set of Figure 57 were defined complete 

and overlapping we would have two possible interpretations: (i) all instances of “Business Role” 

are represented in the model or (ii) there are non-represented instances of “Business Role” but the 

represented ones already classify all instances of “Employee” having overlaps between them. 
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Figure 57 - Using «instantiation» to denote categorization relations that are complete but not disjoint. 

Lower bound multiplicity set to zero and upper bound set to many 

An «instantiation» association having the lower multiplicity set to zero and the upper bound 

multiplicity set to many (*) denotes that the target type categorizes (in MLT sense) the source 

type, however it is neither a complete categorization nor a disjoint categorization. Therefore, 

there may be instances of the base type that are instances of more than one instance of the higher-

order type, and there may be instances of the base type that are not instances of any instance of 

the higher-order type. For example, Figure 58 consider a second-order type named “Social Role” 

whose instances represent roles that instances of “Person” may play in social relations, such as 

“Client”, “Employee” and “Husband”. Some instances of “Person” may play more than one 

“Social Role” and some other instances may play no social role. 

Note that it is not possible to infer whether all instances of “Social Role” are represented 

or not in Figure 58: (i) they may all be enumerated, or (ii) there may be non-represented instances 

of “Social Role”. If the generalization set of Figure 58 were disjoint, the diagram would still be 

considered syntactically valid, and we could infer that there were non-represented instances of 

“Social Role” such that the whole set of instances of “Social Role” have some overlaps. Finally, 

if the generalization set of Figure 58 were complete, the diagram would be considered 

syntactically invalid since the whole set of instances of “Social Role” does not classify all 

instances of “Person”.  

 
Figure 58 - Using «instantiation» to denote categorization relations that are not complete nor disjoint. 

Table 7 summarizes the semantics of the combinations of the multiplicities of 

«instantiation» associations with the possible constraints of generalization sets, classifying each 

possible combination as: (i) enumerated if one can infer that all instances of the higher-order type 

are represented in the diagram; (ii) non enumerated if one can infer that there are instances of the 

higher-order type not represented in the diagram; (iii) silent: if it is not possible to infer whether 
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the instances of the higher-order type are enumerated or not; or (iv) invalid if the combination is 

syntactically invalid. 

Table 7 - Analyzing the combination of «instantiation» with generalization set constraints. 

Association 

Multiplicities 

Generalization sets constraints 

Lower Upper 
{disjoint} {overlapping} 

{complete} {incomplete} {complete} {incomplete} 

1 1 enumerated non enumerated invalid invalid  

0 1 invalid  silent invalid  invalid  

1 * non enumerated  non enumerated  silent non enumerated  

0 * invalid  non enumerated  invalid  silent 

6.2.2 An Additional Attribute for Generalization Sets 

As we have previously discussed (and summarized in Table 7), three possible combinations of 

the multiplicities of «instantiation» associations with the possible constraints of generalization 

sets result in models that are syntactically valid but that are silent with respect to whether all 

instances of the higher-order type are enumerated in the generalization set. This is the case, for 

example, of the diagram presented in Figure 58, in which we combine the use of a «instantiation» 

association having the lower multiplicity set to zero and the upper bound multiplicity set to many 

(*) with an overlapping and incomplete generalization.  

Our second recommendation is to address this kind of ambiguities by defining an additional 

attribute to generalization sets named isEnumerated. If isEnumerated = true, all instances of the 

higher-order type related to such generalization set are enumerated in the set. In contrast, if 

isEnumerated = false, there is at least one instance of the higher-order type related to the 

generalization set that is not represented in the set. This attribute is optional and only applicable 

to generalization sets that are associated with a power type. Note that this attribute is optional 

even in the cases in which a power type is present. In the absence of this attribute, the regular 

UML semantics applies, i.e. if it is not used, no information about the completeness of 

representation of the higher-order type instances is assumed. This is intended to keep 

compatibility with models build with plain UML. 

Figure 59 revisits the example in Figure 58, removing the ambiguity that was present, 

setting isEnumerated to false to represent that there are other instances of “Social Role” beyond 

the ones represented in the model. This is represented with the “non-enumerated” generalization 

set constraint. 

 
Figure 59 - Using the isEnumerated attribute to disambiguate a model. 



133 

The definition of isEnumerated attribute increases the language’s expressiveness and 

enables us to provide some additional syntactic constraints to guide the modeler. For example, in 

Figure 54 we could infer that “Man” and “Woman” are the only admissible instances of “Person 

Gender”, i.e., it is implicit that the generalization set is enumerated. Thus, the diagram in Figure 

60 applies an inconsistent combination of generalization set constraints and dependency 

stereotype being syntactically invalid. 

  
Figure 60 - An example of inconsistent use of the isEnumerated attribute making the model syntactically 

invalid. 

Table 8 augments Table 7 summarizing the syntactical rules concerning the combination 

of the dependency stereotypes with the possible generalization sets constraints considering the 

isCovering, isDisjoint and isEnumerated attributes. This table replaces Table 7 if the modelers 

choose to use isEnumerated. The non-admissible combinations are identified with “” while “✓” 

identify the admissible ones.  

Table 8 - Syntact constraints for combined dependency stereotypes and generalization sets constraints 

(using isEnumerated). 

 

Association 

Multiplicities 

Generalization sets constraints 

Lower Upper 

enumerated non-enumerated 

disjoint overlapping disjoint overlapping 

complete incomplete complete incomplete complete incomplete complete incomplete 

1 1 ✓     ✓   
0 1  ✓    ✓   
1 *   ✓  ✓ ✓ ✓ ✓ 
0 *    ✓  ✓  ✓ 

6.2.3 The «powerType» Stereotype  

Our third recommendation is to use the «powerType» stereotype to represent Cardelli’s notion of 

power type (CARDELLI, 1988). If a class stereotyped «powerType» is the target of an 

«instantiation» association this means that this type is power type of the source type, i.e. the source 

type and all its specializations are instances of the target element. For example, in Figure 61, all 

types that (directly or indirectly) specialize “Person” are instances of “Person Type”. 

According to Cardelli’s notion of power type the base type itself is instance of the higher-

order type. Thus, in these cases, the lower bound multiplicity of the «instantiation» association 

must be set to one and the upper bound to many (*). Moreover, models in which the «powerType» 

stereotype is applied to types (classifiers) that are not target of any «instantiation» association are 

deemed syntactically invalid. 
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Another important syntactic constraint involving «powerType» is that, since a power type 

(in MLT) does not define a classification criteria to be applied to instances of the base type, there 

should be no generalization set anchored in types stereotyped «powerType» (i.e. power type 

relations do not give rise to generalization sets). For example, considering the scenario illustrated 

in Figure 61, a generalization set named “:Person Type” is not admissible. However, all subtypes 

of “Person”, despite the generalization sets in which they are involved, are instances of “Person 

Type”. Thus, all instances of “Person Gender” and “Social Role” are instances of “Person Type”. 

 
Figure 61 - Using «powerType» and «instantiation» to denote is power type of relations. 

6.2.4 Syntactic Constraints Motivated by MLT Rules 

An important aspect of the proposed interpretation is that it allows us to define syntactic 

constraints that reflect in the profile the axioms and theorems of the MLT formalization. These 

constraints having the purpose of reflecting the reference theory rules in the abstract syntax of a 

language are called semantically-motivated syntactic constraints (CARVALHO; ALMEIDA; 

GUIZZARDI, 2014). The main purpose of semantically-motivated syntactic constraints is to 

guarantee that the syntactically admissible models are sound according to the reference theory 

(CARVALHO; ALMEIDA; GUIZZARDI, 2014). Thus, the constraints presented in this section 

play a key role on guiding the modelers in producing sound models using the UML profile we 

propose. 

For instance, given the definition of the is power type of relation of MLT, a type may not 

have more than one power type and a higher order type may be a power type of at most one other 

type. This suggests a clear syntactic constraint: a class stereotyped «powerType» can only be 

target of at most one «instantiation» association and a regular class can only be the source of at 

most one «instantiation» association having as target a class stereotyped «powerType». Further, 

the MLT theorem stating that if a type t specializes a type t’ then the power type of t specializes 

the power type of t’ may be used to check the syntax of power type hierarchies, and to generate 

the power types hierarchy corresponding to the base types hierarchy. For example, in Figure 62 

the conjunction of the facts that: (i) “Employee” specializes “Person”, (ii) “Person Type” is power 

type of “Person” and (iii) “Employee Type” is power type of “Employee” implies that “Employee 

Type” must specialize “Person Type”. 
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Considering the MLT definitions of power type, categorization and proper specialization 

we conclude that if a type t’ is power type of a type t and a type t’’ categorizes the same base type 

t then all instances of t’’ are also instances of t’ and, thus, t’’ proper specializes t’. This theorem 

also suggests a syntactic constraint. For example, in Figure 62 “Management Role” categorizes 

“Employee” and specializes “Employee Type”, whereas “Person Gender” categorizes “Person” 

and specializes “Person Type”. In this case, if the modeler fails to include any of the 

specializations between the higher-order types, it would be possible to infer them automatically. 

 
Figure 62 - Illustrating syntactic constraints concerning hierarchies of higher-order types. 

Another MLT theorem states that if two types t’ and t’’ both partition the same type t then 

it is not possible for t’ to specialize t’’. Again this suggests a clear syntactic constraint. For 

example, in Figure 63, “Person Age Phase” partitions “Person” according to their age having 

“Child” and “Adult” (and other non-represented types) as instances. “Person Gender”, in turn, 

partitions “Person” according to their gender having “Man” and “Woman” as instances. Thus, to 

be syntactically valid, the model may not include a specialization between “Person Age Phase” 

and “Person Gender”. 

Recall that the MLT cross-level relations (categorization and is power type of) hold 

between a higher-order type and another type at one order lower. Thus, if two types are linked 

through an «instantiation» association, the type at the source association end is at an order lower 

than the one in the target (e.g. in Figure 63 “Person” is one order lower than “Person Age Phase”). 

Hence, cycles of associations stereotyped «instantiation» are not allowed. For example, suppose 

A is the target in an «instantiation» association in which B is the source, while B is the target in 

another «instantiation» association in which A is the source. This scenario is absurd since A must 

be at one order lower than B and, simultaneously, B must be at one order lower than A.  

Finally, we consider that all higher-order types represented in diagrams must have cross-

level relations with other types. Thus, we can determine the order of a type considering the 

«instantiation» associations in which they are involved as target. Types that are not targets of any 

«instantiation» association are first-order types (e.g. “Person”, “Man”, “Woman”, “Adult” and 
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“Child” in Figure 63). Types that are target in «instantiation» associations in which the sources 

are first-order types are second-order types (e.g. “Person Gender” and “Person Age Phase” in 

Figure 63), and so on. The MLT axiom that states that each domain type must be instance of 

exactly one MLT basic type (being thus at only one order) can be syntactically verified in our 

models. Further, the MLT theorem saying that specialization relations may only hold between 

two types at the same order may also be syntactically verified. For example, in Figure 63 there 

may not be specialization relations between a first-order type (i.e., “Person”, “Man”, “Woman”, 

“Adult” or “Child”) and a second-order type (i.e. “Person Gender” or “Person Age Phase”). 

Otherwise, the model would be considered syntactically invalid.  

 
Figure 63 - Illustrating syntactic constraints concerning types orders. 

A prototype plugin for the Visual Paradigm modeling tool that implements the proposed 

profile and performs syntactic verification of MLT rules is available at http://github.com/nemo-

ufes/MLT-VP-plugin. 

6.3 Final Considerations 

In this chapter, we have used MLT as a reference theory to support the analysis and revision of 

the UML support to model the power type pattern, demonstrating that the current support lacks 

expressivity, clarity, and parsimony. By employing the results of this analysis, we propose a UML 

profile to address the exposed limitations and a tool set implementing the proposed profile. The 

proposal of the UML profile illustrates the application of MLT as a reference theory in the 

redesign of a modeling language while the implemented tool set enables the practical application 

of MLT by the conceptual modeling community. 

The profile proposed here define constructs having specialized semantics to denote the 

cross-level relations between types defined in MLT, being, thus, able to distinguish properties of 

the relation between higher-order and base types that are required to represent multi-level 

classification schemes but that cannot be expressed in plain UML. The definition of these 

constructs with specialized semantics also allows us to systematically incorporate syntactic 
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constraints to reflect, in the profile, the formal rules of MLT. These syntactic constraints guide 

the modeler to produce sound multi-level models. 

The analysis conducted here is focused on enhancing the UML support to the 

representation of the power type pattern. A natural extension is the incorporation of the MLT 

notion of subordination to the proposed UML profile. Our strategy to denote the MLT cross-level 

relation is based on the use of stereotypes to mark associations that have instantiation semantics. 

A similar approach can be adopted to denote subordination relations by defining a special 

stereotype as, for example, «specialization», to mark the associations between types involved in 

subordination relations. In this setting, an association stereotyped «specialization» would 

represent that instances of the target type are specialized by instances of the source type and, thus, 

it would denote a subordination relation between the involved types. This new extension must 

encompass the inclusion of new syntactic constraints to prevent inconsistencies in models 

applying the notion of subordination. 

Other important issue for further investigation concerns the support to the representation 

of regularity attributes in UML. As previously discussed, regularity attributes are features of 

higher-order types that influences the intension of its instances, which can be reflected as 

constraints over the possible values for attributes of the base type. Future investigation may focus 

on providing mechanisms to capture the relations between attributes defined by types in one order 

and attributes of types in one order lower. Desirable features to represent this phenomena includes 

language constructs to provide visual representation of the relations between attributes as well as 

support to the formal expression of the constraints involving the related attributes. 

In (GUIZZARDI, 2005), a fragment of UML has been evaluated at light of the Unified 

Foundational Ontology (UFO). Based on this analysis, a UML extension for the purposes of 

conceptual modeling (dubbed OntoUML) has been proposed. The ontology was used as a theory 

to inform the definition of a profile with syntactic constraints that reflect the UFO axioms. In this 

chapter, we have applied a similar approach to extend UML class diagrams using MLT as a theory 

to incorporate distinctions and constraints for multi-level modeling. We believe that a similar 

approach can be applied using MLT to analyze and enrich the semantics of other multi-level 

modeling approaches as, for example, the so-called deep modeling approaches (ATKINSON; 

KÜHNE, 2008; NEUMAYR; GRÜN; SCHREFL, 2009). Furthermore, a natural extension of this 

work is to enrich OntoUML with the support for the power type pattern as discussed here. 
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Chapter 7.  Final Considerations 

In this work, we have explored the synergy between ontology-based conceptual modeling and 

multi-level modeling, with contributions for both areas. First, we developed MLT: a well-founded 

theory that captures the conceptualization underlying multi-level phenomena. Aiming to provide 

a precise conceptual foundation to multi-level modeling, we formalized MLT into an axiomatic 

theory and applied a lightweight formal method to verify the theory’s consistency and the validity 

of its theorems.  

Second, we combined MLT with UFO to leverage the benefits of ontology-based 

conceptual modeling to domains that include categories of categories, providing support to what 

we call multi-level ontology-based conceptual modeling. We have shown how the elements of 

MLT can be used: (i) to serve as the topmost layer of a hierarchy of multi-level conceptual models, 

from a foundational ontology to conceptual domain models (a contribution to ontology-based 

modeling area); and (ii) to explain the UFO’s taxonomies in terms of higher-order types 

(contributing, thus, to the engineering of UFO). 

Finally, following a systematic approach commonly applied in the ontology-based 

conceptual modeling community, we used MLT as a reference theory to analyze and improve the 

UML support for representing multi-level domains. We believe that similar approaches can be 

applied to analyze other multi-level modeling languages, bringing benefits to the multi-level 

modeling community. Section 7.1 summarizes the contributions of this thesis, and Section 7.2 

discusses some research opportunities that arise from it. 

7.1 Contributions 

More specifically, the contributions of the work described here can be summarized as 

follows: 

• The design of an axiomatic theory for multi-level modeling (MLT). The theory 

formally characterizes the nature of classification levels, and precisely defines structural 

relations that may occur between elements in the same classification level and relations 

that may occur between elements of different classification levels (addressing thereby the 

specific objective SO1). MLT can be considered a reference top-level ontology for types 

in multi-level conceptual modeling, providing basic concepts and patterns to articulate 

domains that require multiple levels of classification, as well as to inform the 

development or redesign of well-founded languages for multi-level conceptual modeling. 

In this sense, the theory fills a gap in the literature of multi-level modeling, contributing 

to the establishment of a more rigorous foundation for the discipline. 
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• The proposal of a modeling approach founded on the combination of MLT and 

UFO. The MLT-UFO combination serves as a foundation for conceptual models that can 

benefit from the ontological distinctions of UFO as well as MLT’s basic concepts and 

patterns for multi-level modeling. Therefore, the proposed modeling approach extends 

the ontology-based conceptual modeling foundations to consider multiple classification 

issues, and contributes with multi-level modeling field by proposing a multi-level 

approach that addresses ontological distinctions (addressing the specific objective SO2). 

To the best of our knowledge, this is the first initiative that considers ontological 

distinctions such as existential dependence, rigidity and sortality on identifying patterns 

and constraints for higher-order types.  

• The design of a core organizational structure ontology founded on MLT-UFO 

combination. The proposed core ontology contributes to the enterprise modeling area, 

defining a semantic foundation for the organizational structure domain that reflects the 

domain’s multi-level nature and provides the required support to cope with the large 

diversity in organizational structures and structuring approaches. Further, it illustrates 

how the application of our modeling approach leads to a core ontology that can be 

extended with more specific conceptual models giving rise to a hierarchy of models in a 

spectrum of generality (addressing the specific objective SO3).  

• The proposal of a UML extension that enhances the language’s support for the 

representation of multi-level phenomena. This extension is the result of a principled 

approach to language revision, where MLT serves as a reference theory to analyze UML’s 

support for the representation of the power type pattern (addressing the specific objective 

SO4). The proposed UML profile incorporates MLT rules, and is accompanied by tool 

support that automates the verification of rules. This initiative has two main contributions 

in the overall context of this work: (i) it demonstrates how MLT can be used as a reference 

theory to analyze the support modeling languages provide to represent multi-level 

phenomena, and (ii) it enables the practical application of MLT by the conceptual 

modeling community. 

All the aforementioned research contributions were published (or are accepted to be 

published) in peer-review conferences or journals. Such publications are the following: 

CARVALHO, Victorio Albani; ALMEIDA, João Paulo A. Toward a Well-Founded 

Theory for Multi-Level Conceptual Modeling. Software & Systems Modeling, 2016. 

DOI:10.1007/s10270-016-0538-9. 

CARVALHO, Victorio Albani; ALMEIDA, João Paulo A.; FONSECA, Claudenir Morais; 

GUIZZARDI, Giancarlo. Extending the Foundations of Ontology-based Conceptual 

Modeling with a Multi-Level Theory. In: Proceedings of the 35th International 
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Conference on Conceptual Modeling, ER 2015. DOI: 10.1007/978-3-319-25264-3_9. 

(Best Paper Award) 

CARVALHO, Victorio Albani; ALMEIDA, João Paulo A.; FONSECA, Claudenir Morais; 

GUIZZARDI, Giancarlo. Multi-Level Ontology-based Conceptual Modeling. Data 

& Knowledge Engineering (accepted for publication, in review process). 

CARVALHO, Victorio Albani; ALMEIDA, João Paulo A. A Semantic Foundation for 

Organizational Structures: A Multi-level Approach. In: Proceedings of the 19th 

International Enterprise Distributed Object Computing Conference, EDOC 2015. DOI: 

10.1109/EDOC.2015.18. 

CARVALHO, Victorio Albani; ALMEIDA, João Paulo A.; GUIZZARDI, Giancarlo 

Using a Well-Founded Multi-Level Theory to Support the Analysis and 

Representation of the Powertype Pattern in Conceptual Modeling. In: Proceedings 

of the 28th International Conference on Advanced Information System Engineering, 

CAiSE 2016. DOI: 10.1007/978-3-319-39696-5_19. 

Other work developed in the scope of this doctoral research include: 

CARVALHO, Victorio Albani; ALMEIDA, João Paulo A.; GUIZZARDI, Giancarlo. 

Using Reference Domain Ontologies to Define the Real-World Semantics of 

Domain-Specific Languages. In: Proceedings of the 26th International Conference on 

Advanced Information System Engineering, CAiSE 2014. DOI: 10.1007/978-3-319-

07881-6_33. 

GUIZZARDI, Giancarlo; ALMEIDA, João Paulo A.; GUARINO, Nicola; CARVALHO, 

Victorio Albani. Towards an Ontological Analysis of Powertypes. In: Proceedings of 

the International Workshop on Formal Ontologies for Artificial Intelligence, FOFAI 

2015. 

BRASILEIRO, Freddy; ALMEIDA, João Paulo A.; CARVALHO, Victorio Albani; 

GUIZZARDI, Giancarlo. Applying a Multi-Level Modeling Theory to Assess 

Taxonomic Hierarchies in Wikidata. In: Proceedings of the 5th International 

Conference Companion on World Wide Web, Wiki Workshop 2016. DOI: 

10.1145/2872518.2891117 

BRASILEIRO, Freddy; ALMEIDA, João Paulo A.; CARVALHO, Victorio Albani; 

GUIZZARDI, Giancarlo. Expressive Multi-level Modeling for the Semantic Web. 

In: Proceedings of the 15th International Semantic Web Conference, ISWC 2016. DOI: 

10.1007/978-3-319-46523-4_4 
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The last two publications deal with the implications of MLT to Data on the Web and 

Semantic Web technologies and have been the result of joint work whose bulk has been reported 

in a master’s thesis (BRASILEIRO, 2016). 

In (BRASILEIRO et al., 2016a), we show that MLT rules can be used to detect a large 

number of problems in multi-level taxonomies in Wikidata (VRANDEČIĆ; KRÖTZSCH, 2014), 

a large structured knowledge base on the web. We have queried Wikidata for three anti-patterns 

that violate the strict stratification schema defined in MLT. Over 22,000 occurrences of these anti-

patterns were found. The identified violations are usually associated with semantic problems in 

the models. For example, one of the hierarchies that violate the stratification rules states that 

“Computer Scientist” is, simultaneously, a specialization of “Profession” and an instance of 

“Profession”. Thus, according to this, every instance of “Computer Scientist” (e.g. “Tim Berners-

Lee”) can be also considered an instance of “Profession”, which clearly violates our sense of what 

a Profession is. The high number of violations identified in Wikidata clearly indicates the need of 

an expressive support for multi-level conceptual modeling in Semantic Web. Further, in 

(BRASILEIRO et al., 2016b), we propose an OWL vocabulary that can be used as a basis for 

multi-level (operational) ontologies in Semantic Web. The proposed vocabulary is founded on 

MLT: the axioms and theorems of MLT are used to derive integrity constraints for multi-level 

vocabularies, offering guidance to prevent the construction of inconsistent vocabularies. Further, 

MLT rules are used to infer knowledge about the relations between types that are not explicitly 

stated. By defining a taxonomy of reusable relations between types founded in MLT, the 

vocabulary enables the expression of domain rules that would otherwise not be captured. A 

comparison with Semantic Web technologies that have some support for the representation of 

multi-level domains is available in (BRASILEIRO, 2016) and (BRASILEIRO et al., 2016b), 

showing the fruitfulness of MLT beyond the conceptual modeling community. 

7.2 Future Perspectives 

In this section we discuss some research opportunities that arise from this work: 

• Accounting for types with instances at different orders. The current version of MLT 

regiments types into neatly stratified orders, and does not admit types that have instances 

at different orders. While this creates useful guidelines for domain modelers, it excludes 

from the domain of enquiry abstract notions such as a universal “Type” and, an even more 

abstract notion such as “Thing”. These notions may be relevant in abstract models, and 

in fact are widely employed in language engineering and in semantic web. A natural 

extension to this work is to provide an extended version of MLT that can account for 

these types. We believe that such an extended theory should distinguish between 

individuals and types, classifying the types as “stratified” or “non-stratified”. All the rules 
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discussed in the current version of MLT would apply to the “stratified” types. Rules 

concerning the behavior of “non-stratified” types as well as the possible relations 

involving “non-stratified” and “stratified” types are issues for further investigation. 

• Providing support to formally capture the intension of types. The formalization of 

MLT presented here considers instantiation as a primitive notion, not appealing to the 

“internals” of intensions. This choice results in a less complex theory which is 

independent of modeling choices or ontological commitments concerning the nature of 

intensions of types. Nevertheless, because the “internals” of intensions are not addressed 

formally, the analysis concerning the influence of structural relations over the intensions 

of types could only be conducted informally. For example, although we discuss that in a 

proper specialization the intension of the specializing type adds some constraint(s) to the 

intension of the specialized type, it is not captured in MLT axiomatization. We believe 

that an extension of MLT providing support to capture the nature of the intension of types 

may allow us to identify and (formally) discuss patterns that arise from the influence of 

structural relations over the intensions of types. 

• Using MLT as a reference theory to inform analysis of multi-level modeling 

approaches. As discussed in this thesis, we have applied MLT to revisit the UML support 

to represent the power type pattern. In the future, we expect to apply MLT to evaluate the 

notions underlying prominent multi-level modeling approaches. It may allow us to clarify 

the semantics of these multi-level modeling approaches, to position and harmonize 

different approaches and to propose enhancements in their mechanism to support multi-

level modeling. Given its relevant influence in the multi-level modeling community, we 

have special interest in analyzing deep instantiation-based approaches. Further, we aim 

at evaluating the semantics of the modeling language defined by the Melanie framework 

(ATKINSON; GERBIG, 2012; KENNEL, 2012). We aim at clarifying its real-world 

semantics and at proposing the incorporation of some MLT concepts to the modeling 

language to enhance its expressivity. 

• Extending the MLT-UFO combination to encompass the UFO portion dealing with 

events as well as UFO’s social layer. In this thesis, we have focused on the UFO portion 

dealing with endurants (objects). A future research agenda includes extending the 

proposed modeling approach to encompass the UFO portion dealing with events as well 

as UFO’s social layer. Such an extended approach could provide appropriate ontological 

support to the development of ontologies dealing with types of events, types of 

participations in an event, types of agents, types of intentions, types of situations, and so 

on. It could also be used to found the ontological analysis of modeling languages dealing 

with these concepts, such as goal-oriented modeling languages (QUARTEL et al., 2009; 

VAN LAMSWEERDE; LETIER, 2004; YU, 2009). 
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• Improving the formalization of UFO-based ontologies. The modeling approach 

proposed in this thesis can be applied to improve the formalization of UFO-based 

ontologies whose conceptualizations span multiple levels of classifications, as, for 

example, the O3 ontology (PEREIRA; ALMEIDA, 2014).  Further, we believe that our 

modeling approach can be used to expand some UFO-based ontologies, such as UFO-S 

(NARDI et al., 2015), to include in their conceptualization second-order notions that are 

not discussed in their current versions. Finally, we believe the E-OPL pattern language 

(FALBO et al., 2014) may also benefit from our modeling approach, since it encompass 

higher-order concepts. 

• Designing a multi-level ontology-based modeling language. A natural application for 

the MLT-UFO combination is to inform the design of an ontologically well-founded 

multi-level conceptual modeling language or to promote the redesign of a language, such 

as OntoUML, into a multi-level modeling language. Considering that OntoUML is 

proposed as a UML profile, this could be approaching by extending OntoUML to 

incorporate the improvements to the UML support to the representation of the power type 

pattern we propose in this thesis. Further, the rules and patterns for the introduction of 

second-order types in ontology-based domain conceptual models we discuss in Chapter 

4.  may be incorporated by a multi-level version of OntoUML. 
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Appendix A. Specification of MLT 

in Alloy – The basic theory 

This appendix presents a specification of MLT in Alloy. This encompasses the axioms, definitions 

and theorems discussed in Sections 3.2, 3.3, and 3.4. Therefore, it does not address dynamic 

classification. An Alloy specification of MLT addressing dynamic classification is presented in 

Appendix B. 

The whole specification is defined in one Alloy module. A signature “Entity” is defined to 

represent all entities in the domain of enquiry. Further, one signature is created to represent each 

basic type. Both axioms and definitions are represented as facts while the theorems are 

represented as predicates. Finally, assertions are created to group all the axioms to be checked. 

module mlt 

 

sig Entity{ 

  iof: set Entity, 

  specializes: set Entity, 

  properSpecializes: set Entity, 

  isSubordinateTo: set Entity, 

  powertypeOf: set Entity, 

  categorizes: set Entity, 

  compCategorizes: set Entity, 

  disjCategorizes: set Entity, 

  partitions: set Entity 

} 

//----------------------Basic types represented as singletons--------------------

- 

//Representing the basic type "Individual" 

 

one sig Individual extends Entity{} 

 

//Representing the basic type "1stOT" 

one sig FOT extends Entity{} 

 

//Representing the basic type "2ndOT" 

one sig SOT extends Entity{} 

 

//Representing the basic type "3rdOT" 

one sig TOT extends Entity{} 
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//----------------------End of Basic types representions-------------------------

- 

 

//----------------Axioms and Definitions represented as facts--------------------

-- 

/*Axiom A1 - An entity is an instance of “Individual” iff does not possibly play 

the role of type in instantiation relations.*/ 

fact individualDef{ 

   all x:Entity, i:Individual | ( i in x.iof iff no iof.x) 

} 

 

/*Axiom A2 - Two types are equal iff the sets of all their possible instances are 

the same*/ 

fact typesEqualityDef{ 

   all x,y:Entity, i:Individual| 

      i not in y.iof and i not in x.iof implies (iof.x = iof.y iff x=y) 

} 

 

/*Axiom A3 - An entity t is an instance first-order type ("FOT") iff all its 

instances are Individuals (i.e., instances of “Individual”)*/ 

fact firstOrderTypeDef{ 

   all t:Entity, f:FOT| f in t.iof iff (all x:Entity, i:Individual|  

      some iof.t and (t in x.iof implies i in x.iof))  

} 

 

/*Axiom A4 - An entity t is an instance second-order type ("SOT") iff all its 

instances are first-order types (i.e., instances of “FOT”)*/ 

fact secondOrderTypeDef{ 

   all t:Entity, s:SOT| s in t.iof iff (all t':Entity, f:FOT| 

      some iof.t and (t in t'.iof implies f in t'.iof)) 

} 

 

/*Axiom A5 - An entity t is an instance third-order type ("TOT") iff all its 

instances are second-order types (i.e., instances of “SOT”)*/ 

fact thirdOrderTypeDef{ 

   all t:Entity, th:TOT| th in t.iof iff (all t':Entity, s:SOT|  

      some iof.t and (t in t'.iof implies s in t'.iof)) 

} 

 

/*Axiom A6 - Each entity in our domain of enquiry is necessarily an instance of 

“Individual”, “1stOT”, “2ndOT” or “3rdOT” (except “3rdOT” whose type is outside 

the scope of the formalization).*/ 

fact completenessAxiom{ 

   all s:SOT, f:FOT, i:Individual, t:TOT, x:Entity| 
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      f in x.iof or i in x.iof or s in x.iof or  t in x.iof or x=t 

} 

 

/*Definition D1 - Specialization Definition: t1 specializes t2 iff all instances 

of t1 are also instances of t2.*/ 

fact specializationDef{ 

    all t1,t2:Entity | t2 in t1.specializes iff all e:Entity, i:Individual | 

      i not in t1.iof and i not in t2.iof and (t1 in e.iof implies t2 in e.iof) 

} 

 

/*Definition D2 - Proper Specialization Definition: t1 proper specializes t2 iff 

t1 specializes t2 and is different from it.*/ 

fact properSpecializationDef{ 

   all t1,t2:Entity |  

      t2 in t1.properSpecializes iff (t2 in t1.specializes and t1!=t2) 

} 

 

/*Definition D3 - Subordination Definition: t1 is subordinate to t2 iff every 

instance of t1 specializes an instance of t2.*/ 

fact subordinationDef{ 

   all t1,t2:Entity | t2 in t1.isSubordinateTo iff (all i:Individual| 

      i not in t1.iof and (all t3:Entity | (t1 in t3.iof implies (some t4:Entity|  

         t2 in t4.iof and t4 in t3.properSpecializes)))) 

} 

 

/*Definition D4 - Powertype Definition: iff a type t1 is power type of a type t2 

all instances of t1 are specializations of t2 and all possible specializations of 

t2 are instances of t1.*/ 

fact powertypeOfDef{ 

   all t1,t2:Entity | t2 in t1.powertypeOf iff (all t3:Entity, i:Individual | 

      i not in t1.iof and (t1 in t3.iof iff t2 in t3.specializes)) 

} 

 

/*Definition D5 - Categorization Definition: a type t1 categorizes a type t2 iff 

all instances of t1 are properSpecializations of t2.*/ 

fact categorizationDef{ 

   all t1,t2:Entity | t2 in t1.categorizes iff (all t3:Entity , i:Individual | 

      i not in t1.iof and (t1 in t3.iof implies t2 in t3.properSpecializes)) 

} 

 

/*Definition D6 – Complete Categorization Definition: a type t1 completely 

categorizes a type t2 iff t1 categorizes t2 and every instance of t2 is instance 

of some instance of t1.*/ 

fact completeCategorizationDef{ 
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   all t1,t2:Entity | t2 in t1.compCategorizes iff  

      (t2 in t1.categorizes and (all e:Entity | t2 in e.iof implies  

         (some t3:Entity | t3 in e.iof and t1 in t3.iof))) 

} 

 

/*Definition D7 – Disjoint Categorization Definition: a type t1 disjointly 

categorizes a type t2 iff t1 categorizes t2 and every instance of t2 is instance 

of, at most, one instance of t1.*/ 

fact disjointCategorizationDef{ 

   all t1,t2:Entity | t2 in t1.disjCategorizes iff  

      (t2 in t1.categorizes and (all e,t3,t4:Entity |  

         (t1 in t3.iof and t1 in t4.iof and t3 in e.iof and t4 in e.iof) implies  

            (t3=t4))) 

} 

 

/*Definition D8 – Partition Definition: a type t1 partitions a type t2 iff t1 

completely categorizes t2 and t1 disjointly categorizes t2.*/ 

fact partitionsDef{ 

   all t1,t2:Entity | t2 in t1.partitions iff  

      (t2 in t1.disjCategorizes and t2 in t1.compCategorizes) 

} 

//----------------End of Axioms and Definitions representations------------------

-- 

 

//Command to simulate the theory considering a scope of 20 elements 

run {} for 20 

 

//--------------------Theorems represented as predicates-------------------------

-- 

//Theorems T1, T2 and T3 

pred theoremsT1T2T3{ 

 //T1: “Individual” is an instance of “1stOT” 

   all i:Individual, f:FOT | f in i.iof 

 //T2: “1stOT” is an instance of “2ndOT” 

   all f:FOT, s:SOT | s in f.iof 

 //T3: “2ndOT” is an instance of “3rdOT” 

   all t:TOT, s:SOT | t in s.iof 

} 

 

/*Theorem T4: “Individual”, “1stOT”, “2ndOT” and “3rdOT” have no instances in 

common (i.e., their extensions are disjoint).*/ 

pred theoremT4{ 

   all t:TOT, s:SOT, f:FOT, i:Individual| no x:Entity|  

      (f in x.iof and i in x.iof) or (s in x.iof and i in x.iof) or  
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      (t in x.iof and i in x.iof) or (f in x.iof and s in x.iof) or  

      (f in x.iof and t in x.iof) or (t in x.iof and s in x.iof) 

} 

/*Theorems T5 and T6: The instance of relation is irreflexive, asymmetric and 

anti-transitive */ 

pred theoremsT5T6{ 

 //Assymetric 

   all x,y:Entity | x in y.iof => y not in x.iof 

 //Irreflexive 

   all x:Entity | x not in x.iof 

 //Anti-transitive 

   all x,y,z:Entity | (y in x.iof and z in y.iof) => z not in x.iof 

 //Acyclic 

   all x:Entity | x not in x.^iof 

} 

 

/* Theorems T7, T8 and T9: Any instance of a higher-order type (any instance of 

“1stOT”, “2ndOT”, and “3rdOT”) specializes the basic type at an immediately lower 

order.*/ 

pred theoremsT7T8T9{ 

 //T7: Every instance of “1stOT” specializes “Individual” 

   all t:Entity, i:Individual, f:FOT | f in t.iof iff i in t.specializes 

 //T8: Every instance of “2ndOT” specializes “1stOT” 

   all t:Entity, f:FOT, s:SOT | s in t.iof iff f in t.specializes 

 //T9: Every instance of “3rdOT” specializes “2ndOT” 

   all t:Entity, s:SOT, th:TOT | th in t.iof iff s in t.specializes 

} 

 

// Theorems T10, T11 and T2 

pred theoremsT10T11T12{ 

 //T10: “1stOT” is powertype of “Individual” 

   all i:Individual, f:FOT | i in f.powertypeOf 

 //T11: “2ndOT” is powertype of “1stOT” 

   all f:FOT, s:SOT | f in s.powertypeOf 

 //T12: “3rdOT” is powertype of “2ndOT” 

   all s:SOT, t:TOT | s in t.powertypeOf 

} 

 

//Theorem T13: each type has at most one power type  

pred theoremT13{ 

   all t:Entity| lone powertypeOf.t 

} 

 

//Theorem T14: each type is power type of, at most, one other type  
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pred theoremT14{ 

   all t:Entity| lone t.powertypeOf 

} 

 

/*Theorem T15: if a type t2 specializes a type t1 then the power type of t2 

specializes the power type of t1.*/ 

pred theoremT15{ 

   all t1,t2,t3,t4:Entity |  

      (t1 in t2.specializes and t2 in t4.powertypeOf and t1 in t3.powertypeOf) 

         implies t3 in t4.specializes 

} 

 

/*Theorem T17: If a type t2 is power type of a type t1 and a type t3 categorizes 

the same base type t1 then all instances of t3 are also instances of the power 

type t2 and, thus, t3 proper specializes t2.*/ 

pred theoremT17{ 

   all t1,t2,t3:Entity | (t1 in t2.powertypeOf and t1 in t3.categorizes)  

      implies t2 in t3.properSpecializes 

} 

 

/*Theorem T18: if two types t1 and t2 both partitions the same type t3 then it is 

not possible for t1 to specialize t2*/ 

pred theoremT18{ 

   all t1,t2,t3:Entity | (t3 in t1.partitions and t3 in t2.partitions)  

      implies (t2 not in t1.properSpecializes) 

} 

//----------------------End of theorems representation---------------------------

-- 

/*Assertion to verify all theorems*/ 

assert allTheorems{ 

   theoremsT1T2T3 

      and theoremT4 

      and theoremsT5T6 

      and theoremsT7T8T9 

      and theoremsT10T11T12 

      and theoremT14 

      and theoremT15 

      and theoremT17 

      and theoremT18 

} 

 

//Command to check the theorems considering a scope of 20 elements 
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/*To run the verification, uncomment the line bellow and comment the command used 

to simulate the model as well as the command to run the verification of the other 

theorems.*/ 

 

//check allTheorems for 20 

 

/*----- Rules cited on the text but not formally stated as Theorems are tested 

here as theorems-----------------------------------------------------------------

-----*/ 

 

/*Instantiation relations hold between two elements such that the last is one 

order higher than the former.*/ 

pred iofCrossLevel{ 

   all x,y:Entity, i:Individual, f:FOT, s:SOT, t:TOT | y in x.iof implies  

      ((i in x.iof and f in y.iof) or (f in x.iof and s in y.iof) or  

         (s in x.iof and t in y.iof) or (t in x.iof))  

} 

 

/*Specialization is a partial order relation (i.e., a reflexive, transitive and 

antisymmetric relation). */ 

pred specializationProperties{ 

 //Antissymetric 

   all x,y:Entity | (x in y.specializes and x!=y) => y not in x.specializes 

 //Reflexive 

   all x:Entity, i:Individual | i not in x.iof => x in x.specializes 

 //Transitive 

   all x,y,z:Entity |  

      (y in x.specializes and z in y.specializes) => z in x.specializes 

} 

 

/*Specializations and proper Specializations may only hold between types of the 

same order*/ 

pred specializationIntraLevel{ 

   all x,y:Entity, f:FOT, s:SOT, t:TOT | y in x.specializes implies  

      ((f in x.iof and f in y.iof) or (s in x.iof and s in y.iof) or  

      (t in x.iof and t in y.iof) or (t in x.specializes and t in y.specializes))  

} 

 

//Subordinations can only hold between higher-order types of equal order  

pred subordinationIntraLevel{ 

   all x,y:Entity, s:SOT, t:TOT | y in x.isSubordinateTo implies  

      ((s in x.iof and s in y.iof) or (t in x.iof and t in y.iof) or  

      (t in x.specializes and t in y.specializes))  

} 
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// PowertypeOf relations only occur between types of adjacent levels  

pred powertypeOfCrossLevel{ 

   all x,y:Entity, f:FOT, s:SOT, t:TOT | x in y.powertypeOf implies  

      ((f in x.iof and s in y.iof) or (s in x.iof and t in y.iof) or  

      (t in x.iof and t in y.specializes))  

} 

 

//Categorization relations only occur between types of adjacent levels  

pred categorizationCrossLevel{ 

   all x,y:Entity, f:FOT, s:SOT, t:TOT | x in y.categorizes implies  

      ((f in x.iof and s in y.iof) or (s in x.iof and t in y.iof) or  

      (t in x.iof and t in y.specializes))  

} 

 

//Individual, FOT, SOT and TOT do not have supertypes 

pred supertypesOfBasicTypes{ 

   all i:Individual, s:SOT, f:FOT, t:TOT | some i.specializes or  

      some f.specializes or some s.specializes or some t.specializes 

} 

//-------------------End of additional theorems representation-------------------

-- 

/*Assertion to verify all additional theorems*/ 

assert allAdditionalTheorems{ 

   iofCrossLevel 

      and specializationProperties 

      and specializationIntraLevel 

      and subordinationIntraLevel 

      and powertypeOfCrossLevel 

      and categorizationCrossLevel 

      and supertypesOfBasicTypes 

} 

 

//Command to check all the additional theorems considering a scope of 20 elements 

/*To run the verification, uncomment the line bellow and comment the command used 

to simulate the model as well as the command to run the verification of the other 

theorems.*/ 

 

//check allAdditionalTheorems for 20 
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Appendix B. Specification of MLT 

in Alloy - Addressing Dynamic 

Classification 

This appendix presents a specificationof MLT, in Alloy, which addresses dynamic classification. 

This encompasses the axioms, definitions and theorems discussed in Section 3.7.  

The whole specification is defined in one Alloy module. A signature “Entity” is defined to 

represent all entities in the domain of enquiry and a signature “World” is defined to represent the 

possible worlds (states-of-affairs). To capture the notion that the instantiation relation is world-

indexed, we define a set of instantiations in each world, i.e. a world is seen as a set of instantiation 

relations holding between entities. On the other hand, since the other structural relations are not 

world-indexed, they are represented as properties of entities. 

Further, one signature is created to represent each basic type. Both axioms and definitions 

are represented as facts while the theorems are represented as predicates. Finally assertions are 

created to group all the axioms to be checked. 

module mltDynamicClassification 

 

sig Entity{ 

  specializes: set Entity, 

  properSpecializes: set Entity, 

  isSubordinateTo: set Entity, 

  powertypeOf: set Entity, 

  categorizes: set Entity, 

  compCategorizes: set Entity, 

  disjCategorizes: set Entity, 

  partitions: set Entity 

} 

 

some sig World{ 

   iof: set Entity -> Entity 

} 

//----------------------Basic types represented as singletons--------------------- 

//Representing the basic type "Individual" 

one sig Individual extends Entity{} 

 

//Representing the basic type "1stOT" 

one sig FOT extends Entity{} 
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//Representing the basic type "2ndOT" 

one sig SOT extends Entity{} 

 

//Representing the basic type "3rdOT" 

one sig TOT extends Entity{} 

//----------------------End of Basic types representions-------------------------- 

 

//----------------Axioms and Definitions represented as facts---------------------- 

/*Axiom A1 - To be considered an instance of “Individual”, an entity must have no 

possible instance in any admissible world.*/ 

fact individualDef{ 

   all x:Entity, w1:World, i:Individual |  

      (x in (w1.iof).i) iff (all w2:World | no (w2.iof).x) 

} 

 

/*Axiom A2 - Two types are considered the same iff they have the same instances in 

all possible worlds */ 

fact typesEqualityDef{ 

   all t1,t2:Entity|  

   ((some w1:World| some (w1.iof).t1) and (some w2:World| some (w2.iof).t2)) 

implies  

      (t1 = t2 iff (all w:World, x:Entity| x in (w.iof).t1 iff x in (w.iof).t2)) 

} 

 

/*Axiom A3 - An entity t is an instance first-order type ("FOT") iff all its instances 

in all possible worlds are Individuals (i.e., instances of “Individual”)*/ 

fact firstOrderTypeDef{ 

   all t:Entity, w1:World, f:FOT| (t in (w1.iof).f) iff  

      ((some w2:World | some (w2.iof).t) and (all w3:World, x:Entity, i:Individual| 

         x in (w3.iof).t implies x in (w3.iof).i)) 

} 

 

/*Axiom A4 - An entity t is an instance second-order type ("SOT") iff all its instances 

in all possible worlds are first-order types (i.e., instances of “FOT”)*/ 

fact secondOrderTypeDef{ 

   all t:Entity, w1:World, s:SOT| (t in (w1.iof).s) iff  

      ((some w2:World | some (w2.iof).t) and (all w3:World, x:Entity, f:FOT|  

         x in (w3.iof).t implies x in (w3.iof).f)) 

} 

 

/*Axiom A5 - An entity t is an instance third-order type ("TOT") iff all its instances 

in all possible worlds are second-order types (i.e., instances of “SOT”)*/ 

fact thirdOrderTypeDef{ 
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   all t:Entity, w1:World, th:TOT| (t in (w1.iof).th) iff  

      ((some w2:World | some (w2.iof).t) and (all w3:World, x:Entity, s:SOT|  

         x in (w3.iof).t implies x in (w3.iof).s)) 

} 

 

/*Axiom A6 - Each entity in our domain of enquiry is necessarily an instance of 

“Individual”, “1stOT”, “2ndOT” or “3rdOT” in all possible worlds(except “3rdOT” whose 

type is outside the scope of the formalization).*/ 

fact completenessAxiom{ 

   all t:TOT, s:SOT, f:FOT, i:Individual, x:Entity, w:World|  

     x in (w.iof).i or x in (w.iof).f or  x in (w.iof).s or  x in (w.iof).t  or  x=t} 

 

/*Definition D1 - Specialization Definition: t1 specializes t2 iff, in all possible 

worlds, all instances of t1 are also instances of t2.*/ 

fact specializationDef{ 

   all t1,t2:Entity | t2 in t1.specializes  

      iff (all e:Entity, i:Individual, w:World |  

         t1 not in (w.iof).i and t2 not in (w.iof).i and  

          (e in (w.iof).t1 implies e in (w.iof).t2)) 

} 

 

/*Definition D2 - Proper Specialization Definition: t1 proper specializes t2 iff t1 

specializes t2 and is different from it.*/ 

fact properSpecializationDef{ 

   all t1,t2:Entity |  

      t2 in t1.properSpecializes iff (t2 in t1.specializes and t1!=t2) 

} 

 

/*Definition D3 - Subordination Definition: t1 is subordinate to t2 iff, in all 

possible worlds, every instance of t1 specializes an instance of t2.*/ 

fact subordinationDef{ 

   all t1,t2:Entity | t2 in t1.isSubordinateTo iff (all i:Individual, w:World|  

      t1 not in (w.iof).i and (all t3:Entity | (t3 in (w.iof).t1 implies  

         (some t4:Entity| t4 in (w.iof).t2 and t4 in t3.properSpecializes)))) 

} 

 

/*Definition D4 - Powertype Definition: iff a type t1 is power type of a type t2 all 

instances of t1 are specializations of t2 and all possible specializations of t2 are 

instances of t1.*/ 

fact powertypeOfDef{ 

   all t1,t2:Entity | t2 in t1.powertypeOf iff (all t3:Entity, i:Individual, w:World| 

      t1 not in (w.iof).i and (t3 in (w.iof).t1 iff t2 in t3.specializes)) 

} 
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/*Definition D5 - Categorization Definition: a type t1 categorizes a type t2 iff, in 

all possible worlds, all instances of t1 are properSpecializations of t2.*/ 

fact categorizationDef{ 

   all t1,t2:Entity | t2 in t1.categorizes iff (all t3:Entity, i:Individual, w:World| 

      t1 not in (w.iof).i and (t3 in (w.iof).t1 implies t2 in t3.properSpecializes)) 

} 

 

/*Definition D6 – Complete Categorization Definition: a type t1 completely categorizes 

a type t2 iff t1 categorizes t2 and, in all possible worlds, every instance of t2 is 

instance of some instance of t1.*/ 

fact completeCategorizationDef{ 

   all t1,t2:Entity | t2 in t1.compCategorizes iff  

      (t2 in t1.categorizes and (all e:Entity, w:World| e in (w.iof).t2 implies  

         (some t3:Entity | e in (w.iof).t3 and t3 in (w.iof).t1))) 

} 

 

/*Definition D7 – Disjoint Categorization Definition: a type t1 disjointly categorizes 

a type t2 iff t1 categorizes t2 and, in all possible worlds, every instance of t2 is 

instance of, at most, one instance of t1.*/ 

fact disjointCategorizationDef{ 

   all t1,t2:Entity | t2 in t1.disjCategorizes iff  

      (t2 in t1.categorizes and (all e:Entity, w:World|  

            e in (w.iof).t2 implies  

               (lone t3:Entity |e in (w.iof).t3 and t3 in (w.iof).t1))) 

} 

 

/*Definition D8 – Partition Definition: a type t1 partitions a type t2 iff t1 

completely categorizes t2 and t1 disjointly categorizes t2.*/ 

fact partitionsDef{ 

   all t1,t2:Entity | t2 in t1.partitions iff  

      (t2 in t1.disjCategorizes and t2 in t1.compCategorizes) 

} 

//----------------End of Axioms and Definitions representations-------------------- 

 

//Command to simulate the theory considering a scope of 20 elements 

run {} for 20 

 

//--------------------Theorems represented as predicates--------------------------- 

//Theorems T1, T2 and T3 

pred theoremsT1T2T3{ 

 //T1: “Individual” is an instance of “1stOT” 

   all i:Individual, f:FOT, w:World| i in w.iof.f 

 //T2: “1stOT” is an instance of “2ndOT” 

   all f:FOT, s:SOT, w:World| f in w.iof.s 
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 //T3: “2ndOT” is an instance of “3rdOT” 

   all t:TOT, s:SOT , w:World| s in w.iof.t 

} 

 

/*Theorem T4: In all possible worlds, “Individual”, “1stOT”, “2ndOT” and “3rdOT” have 

no instances in common (i.e., their extensions are disjoint).*/ 

pred theoremT4{ 

   all t:TOT, s:SOT, f:FOT, i:Individual, w:World | no x:Entity|  

      (x in (w.iof).i and x in (w.iof).f) or (x in (w.iof).i and x in (w.iof).s) or  

      (x in (w.iof).i and x in (w.iof).t) or (x in (w.iof).f and x in (w.iof).s) or  

      (x in (w.iof).f and x in (w.iof).t) or (x in (w.iof).s and x in (w.iof).t) 

} 

/*Theorems T5 and T6: The instance of relation is irreflexive, asymmetric and anti-

transitive */ 

pred theoremsT5T6{ 

 //Assymetric 

   all x,y:Entity, w:World | x in w.iof.y => y not in w.iof.x 

 //Irreflexive 

   all x:Entity, w:World | x not in w.iof.x 

 //Anti-transitive 

   all x,y,z:Entity, w:World | (y in w.iof.x and z in w.iof.y) => z not in w.iof.x 

} 

 

/* Theorems T7, T8 and T9: Any instance of a higher-order type (any instance of 

“1stOT”, “2ndOT”, and “3rdOT”) specializes the basic type at an immediately lower 

order.*/ 

pred theoremsT7T8T9{ 

 //T7: Every instance of “1stOT” specializes “Individual” 

   all t:Entity, i:Individual, f:FOT, w:World | t in w.iof.f iff i in t.specializes 

 //T8: Every instance of “2ndOT” specializes “1stOT” 

   all t:Entity, f:FOT, s:SOT, w:World | t in w.iof.s iff f in t.specializes 

 //T9: Every instance of “3rdOT” specializes “2ndOT” 

   all t:Entity, s:SOT, th:TOT, w:World | t in w.iof.th iff s in t.specializes } 

 

/* Theorems T10, T11 and T2 

pred theoremsT10T11T12{ 

 //T10: “1stOT” is powertype of “Individual” 

   all i:Individual, f:FOT | i in f.powertypeOf 

 //T11: “2ndOT” is powertype of “1stOT” 

   all f:FOT, s:SOT | f in s.powertypeOf 

 //T12: “3rdOT” is powertype of “2ndOT” 

   all s:SOT, t:TOT | s in t.powertypeOf 

} 
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//Theorem T13: each type has at most one power type  

pred theoremT13{ 

   all t:Entity| lone powertypeOf.t 

} 

 

//Theorem T14: each type is power type of, at most, one other type  

pred theoremT14{ 

   all t:Entity| lone t.powertypeOf 

} 

 

/*Theorem T15: if a type t2 specializes a type t1 then the power type of t2 specializes 

the power type of t1.*/ 

pred theoremT15{ 

   all t1,t2,t3,t4:Entity |  

      (t1 in t2.specializes and t2 in t4.powertypeOf and t1 in t3.powertypeOf) 

         implies t3 in t4.specializes 

} 

 

/*Theorem T17: If a type t2 is power type of a type t1 and a type t3 categorizes the 

same base type t1 then all instances of t3 are also instances of the power type t2 

and, thus, t3 proper specializes t2.*/ 

pred theoremT17{ 

   all t1,t2,t3:Entity | (t1 in t2.powertypeOf and t1 in t3.categorizes)  

      implies t2 in t3.properSpecializes 

} 

 

/*Theorem T18: if two types t1 and t2 both partitions the same type t3 then it is 

not possible for t1 to specialize t2*/ 

pred theoremT18{ 

   all t1,t2,t3:Entity | (t3 in t1.partitions and t3 in t2.partitions)  

      implies (t2 not in t1.properSpecializes) 

} 

//----------------------End of theorems representation----------------------------- 

/*Assertion to verify all theorems*/ 

assert allTheorems{ 

   theoremsT1T2T3 

      and theoremT4 

      and theoremsT5T6 

      and theoremsT7T8T9 

      and theoremsT10T11T12 

      and theoremT14 

      and theoremT15 

      and theoremT17 

      and theoremT18 
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} 

 

//Command to check the theorems considering a scope of 15 elements 

/*To run the verification, uncomment the line bellow and comment the command used to 

simulate the model as well as the command to run the verification of the other 

theorems.*/ 

 

//check allTheorems for 15 

 

/*----- Rules cited on the text but not formally stated as Theorems are tested here 

as theorems----------------------------------------------------------------------*/ 

 

/*Instantiation relations hold between two elements such that the last is one order 

higher than the former.*/ 

pred iofCrossLevel{ 

   all x,y:Entity, i:Individual, f:FOT, s:SOT, t:TOT, w:World |  

      y in (w.iof).x implies  

         ((y in (w.iof).i and x in (w.iof).f) or  

          (y in (w.iof).f and x in (w.iof).s) or 

          (y in (w.iof).s and x in (w.iof).t) or (y in (w.iof).t and x=t)) 

} 

 

/*Specialization is a partial order relation (i.e., a reflexive, transitive and 

antisymmetric relation). */ 

pred specializationProperties{ 

 //Antissymetric 

   all x,y:Entity | (x in y.specializes and x!=y) => y not in x.specializes 

 //Reflexive 

   all x:Entity| (some w:World, y: Entity | y in (w.iof).x) => x  in x.specializes 

 //Transitive 

   all x,y,z:Entity |  

      (y in x.specializes and z in y.specializes) => z in x.specializes 

} 

 

/*Specializations and proper Specializations may only hold between types of the same 

order*/ 

pred specializationIntraLevel{ 

   all x,y:Entity, f:FOT, s:SOT, t:TOT, w:World | y in x.specializes implies  

      ((x in (w.iof).f and y in (w.iof).f ) or (x in (w.iof).s and y in (w.iof).s) 

or  

       (x in (w.iof).t and y in (w.iof).t) or  

       (t in x.specializes and t in y.specializes)) 

} 
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//Subordinations can only hold between higher-order types of equal order  

pred subordinationIntraLevel{ 

   all x,y:Entity, s:SOT, t:TOT, w:World| y in x.isSubordinateTo implies  

      ((x in (w.iof).s and y in (w.iof).s) or (x in (w.iof).t and y in (w.iof).t) or  

       (t in x.specializes and t in y.specializes)) 

} 

 

// PowertypeOf relations only occur between types of adjacent levels  

pred powertypeOfCrossLevel{ 

   all x,y:Entity, f:FOT, s:SOT, t:TOT, w:World| x in y.powertypeOf implies  

      ((x in (w.iof).f and y in (w.iof).s) or (x in (w.iof).s and y in (w.iof).t) or 

       (x in (w.iof).t and t in y.specializes)) 

} 

 

//Categorization relations only occur between types of adjacent levels  

pred categorizationCrossLevel{ 

   all x,y:Entity, f:FOT, s:SOT, t:TOT, w:World | x in y.categorizes implies  

      ((x in (w.iof).f and y in (w.iof).s) or (x in (w.iof).s and y in (w.iof).t) or 

       (x in (w.iof).t and t in y.specializes)) 

} 

 

//Individual, FOT, SOT and TOT do not have supertypes 

pred supertypesOfBasicTypes{ 

   all i:Individual, s:SOT, f:FOT, t:TOT | some i.specializes or  

      some f.specializes or some s.specializes or some t.specializes 

} 

//-------------------End of additional theorems representation--------------------- 

/*Assertion to verify all additional theorems*/ 

assert allAdditionalTheorems{ 

   iofCrossLevel 

      and specializationProperties 

      and specializationIntraLevel 

      and subordinationIntraLevel 

      and powertypeOfCrossLevel 

      and categorizationCrossLevel 

      and supertypesOfBasicTypes 

} 

 

//Command to check all the additional theorems considering a scope of 20 elements 

/*To run the verification, uncomment the line bellow and comment the command used to 

simulate the model as well as the command to run the verification of the other 

theorems.*/ 

 

//check allAdditionalTheorems for 20 
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