
Forward Engineering Relational Schemas and
High-Level Data Access from Conceptual Models

Gustavo L. Guidoni1,2, João Paulo A. Almeida1, and Giancarlo Guizzardi1,3

1 Ontology & Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo, Vitória, Brazil

2 Federal Institute of Espírito Santo, Colatina, Brazil
3 Free University of Bozen-Bolzano, Italy

gustavo.guidoni@ifes.edu.br, jpalmeida@ieee.org, gguizzardi@unibz.it

Abstract. Forward engineering relational schemas based on conceptual mod-
els is an established practice, with a number of commercial tools available and
widely used in production settings. These tools employ automated transforma-
tion strategies to address the gap between the primitives offered by conceptual
modeling languages (such as ER and UML) and the relational model. Despite the
various benefits of automated transformation, once a database schema is obtained,
data access is usually undertaken by relying on the resulting schema, at a level of
abstraction lower than that of the source conceptual model. Data access then re-
quires both domain knowledge and comprehension of the (non-trivial) technical
choices embodied in the resulting schema. We address this problem by forward
engineering not only a relational schema, but also creating an ontology-based data
access mapping for the resulting schema. This mapping is used to expose data in
terms of the original conceptual model, and hence queries can be written at a high
level of abstraction, independently of the transformation strategy selected.

Keywords: Forward Engineering · Model-Driven Approach · Ontology-Based
Data Access · Model Transformation.

1 Introduction

Forward engineering relational schemas based on conceptual models (such as ER or
UML class diagrams) is an established practice, with a number of commercial tools
available and widely used in production settings. The approaches employed establish
correspondences between the patterns in the source models and in the target relational
schemas. For example, in the one table per class approach [11, 16], a table is produced
for each class in the source model; in the one table per leaf class approach [21], a
table is produced for each leaf class in the specialization hierarchy, with properties
of superclasses accommodated at the tables corresponding to their leaf subclasses. An
important benefit of all these approaches is the automation of an otherwise manual and
error-prone schema design process. Automated transformations capture tried-and-tested
design decisions, improving productivity and the quality of the resulting schemas.

Despite the various benefits of automated transformation, once a database schema is
obtained, data access is usually undertaken by relying on the resulting schema, at a level



2 Guidoni et al.

of abstraction lower than that of the source conceptual model. As a consequence, data
access requires both domain knowledge and comprehension of the (non-trivial) techni-
cal choices embodied in the resulting schema. For example, in the one table per class
approach, joint access to attributes of an entity may require a query that joins several
tables corresponding to the various classes instantiated by the entity. In the one table
per leaf class approach, queries concerning instances of a superclass involve a union of
the tables corresponding to each of its subclasses. Further, some of the information that
was embodied in the conceptual model—in this case the taxonomic hierarchy—is no
longer directly available for the data user.

In addition to the difficulties in accessing data at a lower level of abstraction, there
is also the issue of the suitability of the resulting schema when considering its qual-
ity characteristics (such as usability, performance). This is because a transformation
embodies design decisions that navigate various trade-offs in the design space. These
design decisions may not satisfy requirements in different scenarios. Because of this,
there is the need to offer the user more than one transformation to choose from or to
offer some control over the design decisions in the transformation.

This paper addresses these challenges. We identify the primitive refactoring op-
erations that are performed in the transformation of conceptual models to relational
schemas, independently of the various transformation strategies. As the transformation
advances, at each application of an operation, we maintain a set of traces from source to
target model, ultimately producing not only the relational schema, but also a high-level
data access mapping for the resulting schema using the set of traces. This mapping ex-
poses data in terms of the original conceptual model, and hence queries can be written
at a high level of abstraction, independently of the transformation strategy selected.

This paper is further structured as follows: Section 2 discusses extant approaches
to the transformation of a structural conceptual model into a target relational schema,
including the definition of the primitive “flattening” and “lifting” operations that are ex-
ecuted in the various transformation strategies; Section 3 presents our approach to gen-
erating a high-level data access mapping in tandem with the transformation of the con-
ceptual model; Section 4 compares the performance of high-level data access queries
with their counterparts as handwritten SQL queries; Section 5 discusses related work,
and, finally, Section 6 presents concluding remarks.

2 Transformation of Conceptual Models into Relational Schemas

2.1 Extant Approaches

The relational model does not directly support the concept of inheritance, and, hence,
realization strategies are required to preserve the semantics of a source conceptual
model in a target relational schema [13]. Such strategies are described by several au-
thors [2, 11, 16, 18, 21] under various names. We include here some of these strategies
solely for the purpose of exemplification (other approaches are discussed in [13]).

One common approach is the one table per class strategy, in which each class gives
rise to a separate table, with columns corresponding to the class’s features. Specializa-
tion between classes in the conceptual model gives rise to a foreign key in the table that



Forward Engineering Relational Schemas and High-Level Data Access 3

corresponds to the subclass. This foreign key references the primary key of the table
corresponding to the superclass. This strategy is also called “class-table” [11], “vertical
inheritance” [21] or “one class one table” [16]. In order to manipulate a single instance
of a class, e.g., to read all its attributes or to insert a new instance with its attributes,
one needs to traverse a number of tables corresponding to the depth of the whole spe-
cialization hierarchy. A common variant of this approach is the one table per concrete
class strategy. In this case, an operation of “flattening” is applied for the abstract super-
classes. In a nutshell, “flattening” removes a class from the hierarchy by transferring
its attributes and relations to its subclasses. This reduces the number of tables required
to read or to insert all attributes of an instance, but introduces the need for unions in
polymorphic queries involving abstract classes.

The extreme application of “flattening” to remove all non-leaf classes of a taxonomy
yields a strategy called one table per leaf class. In this strategy, also termed “horizontal
inheritance” [21], each of the leaf classes in the hierarchy gives rise to a corresponding
table. Features of all (non-leaf) superclasses of a leaf class are realized as columns in the
leaf class table. No foreign keys emulating inheritance are employed in this approach.

A radically different approach is the one table per hierarchy strategy, also called
“single-table” [11] or “one inheritance tree one table” [16]. It can be understood as the
opposite of one table per leaf class, applying a “lifting” operation to subclasses instead
of the “flattening” of superclasses. Attributes of each subclass become optional columns
in the superclass table. This strategy usually requires the creation of an additional col-
umn to distinguish which subclass is (or which subclasses are) instantiated by the entity
represented in the row (a so-called “discriminator” column). The “lifting” operation is
reiterated until the top-level class of each hierarchy is reached.

Other approaches propose the combined and selective use of both “lifting” and “flat-
tening”. For example, the approach we have proposed called one table per kind [13]
uses ontological meta-properties of classes to guide the “flattening” of the so-called
non-sortals in the conceptual model and the “lifting” of all (non-kind) sortals.

2.2 Flattening and Lifting Operations

In order to support the transformation strategies discussed in the previous section and
their variations, we define our approach in this paper in terms of the “flattening” and
“lifting” operations. Here we present these operations in detail, including their conse-
quences to the existing attributes and associations in the model.

In the flattening operation, shown in the first row of Table 1, every attribute of the
class that is to be removed from the model (in gray) is migrated to each of its direct
subclasses. Association ends attached to the flattened superclass are also migrated to
the subclasses. The lower bound cardinality of the migrated association end is relaxed
to zero, as the original lower bound may no longer be satisfied for each of the subclasses.

In the lifting operation, shown in the last row of Table 1, every attribute of the class
that is lifted (in gray) is migrated to each direct superclass, with lower bound cardinality
relaxed to zero. Association ends attached to the lifted class are migrated to each direct
superclass. The lower bound cardinality constraints of the association ends attached to
classes other than the lifted class (RelatedTypei) are relaxed to zero.



4 Guidoni et al.

Table 1. Transformation Patterns.

Rule Source Graph Target Graph
Fl

at
te

ni
ng

L
ift

in
g

When no generalization set is present, a Boolean attribute is added to each super-
class, to indicate whether the instance of the superclass instantiates the lifted class
(isSubType j). If a generalization set is used, a discriminator enumeration is created
with labels corresponding to each SubType j of the generalization set. An attribute with
that discriminator type is added to each superclass. Its cardinality follows the general-
ization set: it is optional for incomplete generalization sets (and mandatory otherwise);
and multivalued for overlapping generalization sets (and monovalued otherwise).

2.3 Example Transformation

In order to illustrate the consequences of the transformation strategy selected on the
resulting relational schema and on the production of queries, we apply here two differ-
ent transformations to the model shown in Figure 1(a). The transformation approaches
selected for illustration are one table per concrete class and one table per kind, and are
used throughout the paper. The former relies on the flattening of abstract classes, and
the latter makes use of OntoUML stereotypes [14] to guide the application of flattening
and lifting. Flattening is applied to non-sortals (in this example, the classes stereotyped
«category» and «roleMixin») and lifting is applied to sortals other than kinds (in this
example, the classes stereotyped «subkind», «phase» and «role»).

Figure 1(b) presents the resulting schema in the one table per concrete class strat-
egy. The abstract classes NamedEntity and Customer have been flattened out, and a
table is included for each concrete class. Foreign keys are used to emulate inheritance
(e.g., the table HOSPITAL corresponding to the concrete class Hospital has a foreign
key organization_idwhich is the primary key of ORGANIZATION). The strategy gen-
erates a relatively large number of tables.

Figure 1(c) presents the result of applying the one table per kind strategy. Again,
NamedEntity and Customer (abstract classes) are flattened out. In addition, all con-
crete classes are lifted until only one concrete class (the kind) remains. There is no
emulation of inheritance with foreign keys; discriminators are used instead to identify
the subclasses that are instantiated by an entity. No joins are required to access jointly
attributes of an entity.



Forward Engineering Relational Schemas and High-Level Data Access 5

Fig. 1. Transformations.



6 Guidoni et al.

2.4 Data Access

Once a database schema is obtained, data access needs to take into account the resulting
schema. Consider, e.g., that the user is interested in a report with “the Brazilian citizens
who work in hospitals with Italian customers”. This information need would require two
different queries depending on the transformation strategy. Listing 1 shows the query
for the one table per concrete class strategy and Listing 2 for one table per kind.

Listing 1. Query on the schema of Figure 1(b), adopting one table per concrete class
select p.name brazilian_name , o.name organization_name ,

sc.contract_value , p2.name italian_name
from brazilian_citizen bc
join person p

on bc.person_id = p.person_id
join employment em

on p.person_id = em.person_id
join organization o

on om.organization_id = o.organization_id
join hospital h

on o.organization_id = h.organization_id
join supply_contract sc

on o.organization_id = sc.organization_id
join person p2

on sc.person_id = p2.person_id
join italian_citizen ic

on p2.person_id = ic.person_id

Listing 2. Query on the schema of Figure 1(c), adopting one table per kind
select p.name brazilian_name , o.name organization_name ,

sc.contract_value , p2.name italian_name
from person p
join nationality n

on p.person_id = n.person_id
and n.nationality_enum = ’BRAZILIANCITIZEN ’

join employment em
on p.person_id = em.person_id

join organization o
on em.organization_id = o.organization_id
and o.organization_type_enum = ’HOSPITAL ’

join supply_contract sc
on o.organization_id = sc.organization_id

join person p2
on sc.person_id = p2.person_id

join nationality n2
on p2.person_id = n2.person_id
and n2.nationality_enum = ’ITALIANCITIZEN ’

Note that the second query trades some joins for filters. In the one table per concrete
class strategy, many of the joins are used to reconstruct an entity whose attributes are
spread throughout the emulated taxonomy. In the one table per kind strategy, filters are
applied using the discriminators that are added to identify the (lifted) classes that are
instantiated by an entity. The different approaches certainly have performance implica-
tions (which will be discussed later in this paper). Regardless of those implications, we
can observe that the database is used at a relatively low level of abstraction, which is
dependent on the particular realization solution imposed by the transformation strategy.
This motivates us to investigate a high-level data access mechanism.



Forward Engineering Relational Schemas and High-Level Data Access 7

3 Synthesizing High-Level Data Access

We reuse a mature Ontology-Based Data Access (OBDA) technique [19] to realize data
access in terms of the conceptual model. OBDA works with the translation of high-level
queries into SQL queries. Users of an OBDA solution are required to write a mapping
specification that establishes how entities represented in the relational database should
be mapped to instances of classes in a computational (RDF- or OWL-based) ontology.
The OBDA solution then enables the expression of queries in terms of the ontology, e.g.,
using SPARQL. Each query is automatically rewritten by the OBDA solution into SQL
queries that are executed at the database. Results of the query are then mapped back to
triples and consumed by the user using the vocabulary established at the ontology.

In our approach, instead of having the OBDA mapping specification written man-
ually, we incorporate the automatic generation of this mapping specification into the
transformation. Therefore, our transformation not only generates a target relational
schema, but also generates an OBDA mapping specification to accompany that schema.
Although the source models we consider are specified here with UML (or OntoUML),
a transformation to OWL is used as part of the overall solution; this transformation
preserves the structure of the source conceptual model, and hence SPARQL queries re-
fer to classes in that model. The overall solution is implemented as a plugin to Visual
Paradigm4 (also implementing the one table per kind transformation from [13]).

3.1 Tracing Flattening and Lifting

In order to generate the OBDA mapping specification, we keep a set of traces at each
application of the operations of flattening and lifting. In sum, a trace establishes the
class that is flattened or lifted and the target class to which its attributes are migrated.
With the final set of traces, we are able to synthesize the OBDA mapping for Ontop [5],
the OBDA solution we adopt.

As discussed in Section 2.2, the flattening operation consists of removing a super-
class and migrating its attributes to each subclass, with association ends attached to the
flattened superclass also migrated to each subclass. Each time the flattening operation
is executed, one trace is produced for each pair of flattened superclass and subclass.
For example, the flattening of NamedEntity, depicted by the green dashed arrows in
Figure 2, creates one trace from this class to Person and another to Organization.
Likewise, the flattening of Customer, creates one trace from this class to Personal-
Customer and another to CorporateCustomer.

Naturally, tracing for lifting occurs in the opposite direction in the hierarchy. For ev-
ery class lifted, traces are created from the lifted subclass to its superclasses. Differently
from flattening, the traces for lifting require the specification of a “filter” determining
the value of the discriminator. This filter is used later to preserve information on the
instantiation of the lifted subclass. For example, the lifting of Child creates a trace
from that class to Person (represented in blue arrows in Figure 2). However, not every
Person instance is a Child instance. The added filter thus requires the discriminator
lifePhase=‘Child’.

4 http://purl.org/guidoni/ontouml2db

http://purl.org/guidoni/ontouml2db


8 Guidoni et al.

Fig. 2. Tracing example for each execution of Flattening and Lifting.

3.2 Generating the Data Mapping

For each tracing path from a class in the source model to a ‘sink’ class (one with
no outgoing traces), a mapping is generated by composing all the traces along the
path. Any discriminator filters in a path are placed in a conjunction. For example,
there are two end-to-end traces for Customer, mapping it to (i) the PERSON table
(through PersonalCustomer and Adult), provided isPersonalCustomer=true and
lifePhase=‘Adult’ and also to (ii) the ORGANIZATION table, provided isCorpo-
rateCustomer=true. Table 2 shows all composed traces in the application of the one
table per kind strategy in the running example.

For each end-to-end trace and for each class that is neither flattened nor lifted, an
Ontop mapping is produced. Mappings are specified in Ontop as target Turtle templates
for the creation of an instance of the ontology corresponding to source tuples that are
obtained by simple SQL queries in the relational database. In the following, we present
examples of these mappings generated for three classes of the running example in the
one table per kind strategy: (i) a class that is neither flattened nor lifted (Person); (ii) a
class that is flattened (NamedEntity) and (iii) a class that is lifted (ItalianCitizen).

Listing 3 shows the Ontop mapping generated for the kind Person. Given the ab-
sence of flattening and lifting, the mapping establishes the straightforward correspon-
dence of a source entry in the PERSON table and a target instance of Person; the primary
key of the PERSON table is used to derive the URI of the instance of Person corre-
sponding to each entry of that table. Labels between brackets in the target template of
the mapping ({person_id} and {birth_date}) are references to values in the source
pattern select clause. Corresponding attributes (birthDate) are mapped one-to-one.

Listing 3. OBDA mapping for the Person class in Ontop.
mappingId RunExample -Person
target :RunExample/person /{ person_id} a :Person ;

:birthDate {birth_date }^^xsd:dateTime .
source SELECT person.person_id , person.birth_date

FROM person



Forward Engineering Relational Schemas and High-Level Data Access 9

Table 2. End-to-end traces involving flattened or lifted classes.

Trace Source Class Target Table Discriminator Conditions
1 NamedEntity PERSON -
2 NamedEntity ORGANIZATION -
3 Customer ORGANIZATION is_corporate_customer = true

4 Customer PERSON
is_personal_customer = true
life_phase_enum = ’ADULT’

5 BrazilianCitizen PERSON
nationality_enum =
’BRAZILIANCITIZEN’

6 ItalianCitizen PERSON
nationality_enum =
’ITALIANCITIZEN’

7 Child PERSON life_phase_enum = ’CHILD’

8 Adult PERSON life_phase_enum = ’ADULT’

9 Employee PERSON
is_employee = true

life_phase_enum = ’ADULT’

10 PersonalCustomer PERSON
is_personal_customer = true
life_phase_enum = ’ADULT’

11 PrimarySchool ORGANIZATION
organization_type_enum =

’PRIMARYSCHOOL’

12 Hospital ORGANIZATION
organization_type_enum =

’HOSPITAL’

13 CorporateCustomer ORGANIZATION is_corporate_customer = true

14 Contractor ORGANIZATION is_contractor = true

Listing 4 shows the mappings generated for a class that is flattened: NamedEntity.
Because the class is flattened to two subclasses, two mappings are produced, one for
each table corresponding to a subclass (PERSON and ORGANIZATION). Since attributes
of the flattened superclass are present in each table, one-to-one mappings of these at-
tributes are produced.

Listing 4. OBDA mapping for the flattened NamedEntity class in Ontop.
mappingId RunExample -NamedEntity
target :RunExample/person /{ person_id} a :NamedEntity ;

:name {name }^^xsd:string .
source SELECT person.person_id , person.name

FROM person

mappingId RunExample -NamedEntity2
target :RunExample/organization /{ organization_id} a :NamedEntity;

:name {name }^^xsd:string .
source SELECT organization.organization_id , organization.name

FROM organization

Listing 5 shows the mapping generated for a class that is lifted (ItalianCitizen)
to the Person class, again in the one table per kind strategy. Here, the filter captured
during tracing are included in the SQL query to ensure that only instances of the lifted
superclass are included. Because of the multivalued discriminator employed to capture
the overlapping generalization set Nationality, a join with a discriminator table is
required (otherwise, a simple filter would suffice). For performance reasons, an index



10 Guidoni et al.

is created in the transformation for enumerations corresponding to generalization sets.
The complete specification with resulting mappings for this example can be obtained in
https://github.com/nemo-ufes/forward-engineering-db.

Listing 5. OBDA mapping for the lifted class ItalianCitizen in Ontop.
mappingId RunExample -ItalianCitizen
target :RunExample/person /{ person_id} a

:ItalianCitizen ; :CI {ci}^^xsd:string .
source SELECT person.person_id , person.ci

FROM person
JOIN nationality
ON person.person_id = nationality.person_id
AND nationality.nationality_enum = ’ITALIANCITIZEN ’

4 Performance of Data Access

In order to evaluate the performance of data access in our approach, we have created a
randomly populated database using the models in Figure 1. We have employed the two
transformation strategies as discussed before. Our main objective was to consider the
overhead of the high-level data access approach. Because of that, we have contrasted the
time performance of handwritten SQL queries with those automatically rewritten from
SPARQL. A secondary objective was to validate our motivating assumption that the
different transformation strategies lead to different time performance characteristics.

The database was populated with synthetic instances, including: 50k organizations
(30.6k hospitals and 19.4k primary schools); 200k persons (about 45% Brazilian citi-
zens, 45% Italian citizens and 10% with double nationality, over 161k adults, 38k chil-
dren, 129k employees); about 252k supply contracts; 170k employments (30% of the
employees with more than one employment) and 61k enrollments (40% of the children
with more than one employment). The database size was 91.34 MB for the one table
per concrete class strategy and 77.22 MB for the one table per kind strategy, in MySql
8.0.23. Measurements were obtained in a Windows 10 notebook with an i3 1.8 GHz
processor, 250 GB SSD and 8 GB RAM.

The following queries were written to retrieve: (1) the credit rating of each cus-
tomer; (2) the name of each child, along with the playground size of the schools in
which the child is enrolled; (3) the names of Brazilian citizens working in hospitals
with Italian customers; this query reveals also the names of these customers and the
contract values with the hospital; (4) all data of organizations regardless of whether it
is registered as a Hospital or Primary School; (5) given the CI of an Italian citizen, the
name of the Hospital with which he/she has a contract and the value of that contract.

The queries were designed to capture different query characteristics. Query 1 repre-
sents an example of polymorphic query with reference to the abstract class Customer
and retrieves an attribute defined at that abstract class. Queries 2 and 3 involve navi-
gation through associations in the conceptual model. Query 3 is the most complex one
and corresponds to the realizations we have shown earlier in Listings 1 and 2. Its repre-
sentation in SPARQL is shown in Listing 6. Query 4 is polymorphic with reference to
Organization and, differently from query 1, retrieves all attributes of organizations,
including those defined in subclasses. Query 5 retrieves data of a specific person.

https://github.com/nemo-ufes/forward-engineering-db


Forward Engineering Relational Schemas and High-Level Data Access 11

Listing 6. SPARQL query
PREFIX : <https :// example.com#>
SELECT ?brazilianName ?organizationName ?value ?italianName {
?brazilianPerson a :BrazilianCitizen ;

:name ?brazilianName .
?employment a :Employment ;

:hasEmployee ?brazilianPerson;
:hasOrganization ?hospital .

?hospital a :Hospital .
?hospital a :Contractor ;

:name ?organizationName .
?contract a :SupplyContract ;

:hasContractor ?hospital ;
:hasCustomer ?personalCustomer ;
:contractValue ?value.

?personalCustomer a :PersonalCustomer .
?personalCustomer a :ItalianCitizen ;

:name ?italianName .}

Table 3 shows the results obtained, comparing the performance of manually written
queries with those rewritten from SPARQL by Ontop (version 2.0.3 plugin for Protégé
5.5.0). In order to exclude I/O from the response time, which could mask the difference
between the approaches, we have performed a row count for each query effectively
“packaging” it into a “select count (1) from (query)”. Further, in order to remove any
influence from caching and other transient effects, each query was executed in a freshly
instantiated instance of the database three times; the values presented are averages of
these three measurements. Values in bold represent the best performing alternative.

The results indicate the performance varies as expected for the two transformation
strategies, depending on the characteristics of the queries. In the one table per con-
crete class strategy, the performance of the automatically transformed queries is roughly
equal to the manual queries (2, 3 and 5), and some overhead is imposed for queries 1
and 4. This overhead is imposed whenever unions are required in polymorphic queries,
as Ontop needs to add columns to the select to be able to translate the retrieved data back
to instances of classes in the high-level model. In the one table per kind strategy, signif-
icant overhead is imposed for queries 1, 4 and 5. Upon close inspection of the generated
queries, we were able to observe that the automatically rewritten queries include filters
which are not strictly necessary and that were not present in the manual queries. For
example, in query 1, we assume in the manual query that only adults enter into supply
contracts, as imposed in the conceptual model. However, Ontop adds that check to the
query, in addition to several IS NOT NULL checks. As a result, the Ontop queries are

Table 3. Performance comparison of relational schemas (in seconds).

Query One Table per Concrete Class One Table per Kind
Manual Query Ontop Query Manual Query Ontop Query

1 0.286 0.333 (+16.4%) 0.385 1.906 (+394.63%)
2 7.436 7.523 (+1.3%) 1.906 2.245 (+17.8%)
3 121.797 122.943 (+0.9%) 102.646 134.318 (+30.9%)
4 0.610 0.625 (+2.5%) 0.078 0.094 (+19.6%)
5 0.166 0.167 (+0.4%) 0.271 1.526 (+463.8%)



12 Guidoni et al.

‘safer’ than the manual ones. Removing the additional check from the rewritten queries
significantly reduces the overhead: query 1 reduces to 0.463s (now +20.2% in compar-
ison to the manual query), query 2 to 1.942s (+1.9%), query 3 to 106.573s (+3.8%),
query 4 to 0.078s (0.0%) and query 5 to 0.338s (+25.0%). This makes the imposed
overhead always lower than 25% of the response time.

5 Related Work

There is a wide variety of proposals for carrying out data access at a high level of
abstraction. Some of these rely on native graph-based representations, instead of rela-
tional databases. These include triplestores such as Stardog, GraphDB, AllegroGraph,
ArangoDB, InfiniteGraph, Neo4J, 4Store and OrientDB. A native graph-based solution
has the advantage of requiring no mappings for data access. However, they depart from
established relational technologies which are key in many production environments and
on which we aim to leverage with our approach.

Some other OBDA approaches such as Ultrawrap [20] and D2RQ [3], facilitate
the reverse engineering of a high-level representation model from relational schemas.
Ultrawrap [20] works as a wrapper of a relational database using a SPARQL terminal as
an access point. Similarly to Ontop it uses the technique of rewriting SPARQL queries
into their SQL equivalent. It includes a tool with heuristic rules to provide a starting
point for creating a conceptual model through the reverse engineering of a relational
schema. D2RQ [3] also allows access to relational databases through SPARQL queries.
It supports automatic and user-assisted modes of operation for the ontology production.
Virtuoso [10] also supports the automatic conversion of a relational schema into an
ontology through a basic approach. It allows complex manual mappings which can be
specified with a specialized syntax. There are also a range of bootstrappers like [6, 15]
that perform automatic or semi-automatic mapping between the relational schema and
the ontology. However, these bootstrappers assume that the relational schema exists and
provide ways to map it into an existing ontology or help to create an ontology.

Differently from these technologies, we have proposed a forward engineering trans-
formation, in which all mapping is automated. Combining both reverse and forward
engineering is an interesting theme for further investigation, which could serve to sup-
port a conceptual model based reengineering effort.

Calvanese et. al. propose in [4] a two-level framework for ontology-based data ac-
cess. First, data access from a relational schema to a domain ontology is facilitated with
a manually written OBDA mapping. A second ontology-to-ontology mapping—also
manually specified—further raises the level of data access to a more abstract reference
ontology. An interesting feature of this approach is that, based on the two mappings,
a direct mapping from the abstract reference ontology to the relational schema is pro-
duced. Such a two-level schema could be combined with our approach to further raise
the level of abstraction of data access.

There are also different approaches that aim at supporting forward engineering of
relational databases from logical languages typically used for conceptual modeling.
These include approach that propose mappings from OCL to SQL, but also approaches
that propose mappings from OWL to relational schemas. In the former group, some



Forward Engineering Relational Schemas and High-Level Data Access 13

of these approaches, e.g., OCL2SQL [7], Incremental OCL constraints checking [17]
and OCLFO [12] are restricted to just mapping Boolean expressions, while others such
as SQL-PL4OCL [8] and MySQL4OCL [9] are not limited in this way; in the latter
group, we have approaches such as [1] and [23], which implement a one table per class
strategy, thus, mapping each OWL class to a relational table.

Our proposal differs from these approaches as it is applicable to different trans-
formation strategies. In particular, by leveraging on the ontological semantics of On-
toUML, it is unique in implementing the one table per kind strategy. Moreover, as em-
pirically shown in [22], this language favors the construction of higher-quality concep-
tual models—quality attributes that can then be transferred by design to the produced
relational schemas. Finally, unlike [1, 23], our proposal also generates an ontology-
based data access mapping for the transformed database schema.

6 Conclusions and Future Work

We propose an approach to automatically forward engineer a data access mapping to ac-
company a relational schema generated from a source conceptual model. The objective
is to allow data representation in relational databases and its access in terms of the con-
ceptual model. Since the approach is defined in terms of the operations of flattening and
lifting, it can be applied to various transformation strategies described in the literature.
The approach is based on the tracing of the transformation operations applied to classes
in the source model. It is implemented as a plugin to Visual Paradigm; it generates a
DDL script for relational schemas and corresponding mappings for the Ontop OBDA
platform. Ontop uses the generated mappings to translate SPARQL queries to SQL, ex-
ecute them and translate the results back. Although we adopt OBDA technology, it is
only part of our solution. This is because by using solely OBDA, the user would have to
produce an ontology and data access mappings manually. Instead, these mappings are
generated automatically in our approach, and are a further result of the transformation
of the conceptual model.

We present a pilot study of the performance aspects of the approach. We show that
the overhead imposed by the generated mappings and Ontop’s translation varies for
a number of queries, but should be acceptable considering the benefits of high-level
data access. Further performance studies contrasting various transformation strategies
should be conducted to guide the selection of a strategy for a particular application. In
any case, the writing of queries in terms of the conceptual model can be done indepen-
dently of the selection of a transformation strategy.

We also intend to support operations other than reads (creation, update and deletion
of entities), which are currently not supported by Ontop. Our plan is to generate SQL
templates that can be used for these operations. We expect performance of update oper-
ations to reveal interesting differences between transformation strategies, in particular,
as dynamic classification comes into play.

Acknowledgments

This research is partly funded by Brazilian funding agencies CNPq (grants numbers
313687/2020-0, 407235/2017-5) and CAPES (grant number 23038.028816/2016-41).



14 Guidoni et al.

References

1. Afzal, H., Waqas, M., Naz, T.: OWLMap: Fully automatic mapping of ontology into rela-
tional database schema. Int. J. Advanced Computer Science and Applications 7(11) (2016)

2. Ambler, S.W.: Agile database techniques: effective strategies for the agile software devel-
oper. Wiley (2003)

3. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs. In: ISWC
2004 (posters) (2004)

4. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A., van der Aalst, W.M.P.: Conceptual
schema transformation in ontology-based data access. In: European Knowledge Acquisition
Workshop. Lecture Notes in Computer Science, vol. 11313, pp. 50–67. Springer (2018)

5. Calvanese, D., et al.: Ontop: Answering SPARQL queries over relational databases. Semantic
Web 8(3), 471–487 (2017). https://doi.org/10.3233/SW-160217

6. de Medeiros, L.F. et al.: MIRROR: automatic R2RML mapping generation from relational
databases. In: Proc. 15th ICWE. vol. 9114, pp. 326–343. Springer (2015)

7. Demuth, B., Hußmann, H.: Using UML/OCL constraints for relational database design. In:
Proc. UML‘99. LNCS, vol. 1723, pp. 598–613. Springer (1999)

8. Egea, M., Dania, C.: SQL-PL4OCL: an automatic code generator from OCL to SQL proce-
dural language. In: Proc. MODELS’17, Austin, TX, USA, Sep.17-22, 2017. p. 54 (2017)

9. Egea, M., Dania, C., Clavel, M.: Mysql4ocl: A stored procedure-based mysql code generator
for OCL. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 36 (2010)

10. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Auer, S., Bizer, C., Müller,
C., Zhdanova, A.V. (eds.) Proc. CSSW‘07, Leipzig, Germany. LNI, vol. P-113. GI (2007)

11. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Longman Pub-
lishing Co., Inc. (2002)

12. Franconi, E. at al.: Logic foundations of the OCL modelling language. In: Proc. 14th Euro-
pean Conf. Logics in Artificial Intelligence (JELIA). vol. 8761, pp. 657–664 (2014)

13. Guidoni, G., Almeida, J.P.A., Guizzardi, G.: Transformation of ontology-based conceptual
models into relational schemas. In: Proc. ER 2020. pp. 315–330. Springer (2020)

14. Guizzardi, G. et al.: Endurant Types in Ontology-Driven Conceptual Modeling: Towards
OntoUML 2.0. In: Proc. ER 2018. pp. 136–150. Springer (2018)

15. Jiménez-Ruiz, E. et al.: Bootox: Practical mapping of RDBs to OWL 2. In: Proc. 14th Int.
Semantic Web Conf. ISWC 2015 - Part II. vol. 9367, pp. 113–132. Springer (2015)

16. Keller, W.: Mapping objects to tables: A pattern language. In: EuroPLoP 1997: Proc. 2nd
European Conf. Pattern Languages of Programs. Siemens Tech. Report 120/SW1/FB (1997)

17. Oriol, X., Teniente, E.: Incremental checking of OCL constraints through SQL queries. In:
Proc. MODELS 2014). CEUR Workshop Proceedings, vol. 1285 (2014)

18. Philippi, S.: Model driven generation and testing of object-relational mappings. Journal of
Systems and Software 77, 193–207 (2005)

19. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data
to ontologies. J. Data Semantics 10, 133–173 (2008)

20. Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. J. Web Se-
mant. 22, 19–39 (2013)

21. Torres, A. et al.: Twenty years of object-relational mapping: A survey on patterns, solutions,
and their implications on application design. Information & Software Technology 82 (2017)

22. Verdonck, M. et al.: Comparing traditional conceptual modeling with ontology-driven con-
ceptual modeling: An empirical study. Information Systems 81, 92–103 (2019)

23. Vyšniauskas, E. et al.: Reversible lossless transformation from owl 2 ontologies into rela-
tional databases. Information technology and control 40(4), 293–306 (2011)

https://doi.org/10.3233/SW-160217

	Forward Engineering Relational Schemas and High-Level Data Access from Conceptual Models

