

Experiences in Using a Method for Building Domain Ontologies

Ricardo de Almeida Falbo
Computer Science Department, Federal University of Espírito Santo

Fernando Ferrari Avenue, CEP 29060-900, Vitória - ES - Brazil
falbo@inf.ufes.br

Abstract. Since 1997 we are working in building domain
ontologies. During this period of time, we have developed
several ontologies using a systematic approach for
building ontologies, first published in 1998, and now
called SABiO. In this paper we discuss strong points and
weakness of this method for building ontologies,
presenting some lessons learned and improvement
opportunities.

1. Introduction

Building domain ontologies is not a simple task. Like any
complex software modeling activity, to build quality
ontologies we need methods and tools to support their
development. In 1997, we defined a systematic approach
for building ontologies (SABiO), first published in 1998
[1]. SABiO was proposed based on Uschold and King
skeletal methodology [2], adding some features to
improve it, such as a graphical languages for expressing
ontologies, an axiom classification, and the use of
competency questions, as proposed by Gruninger and Fox
[6]. Since then, we have been using this approach to build
several domain ontologies, such as an ontology of
software process [1], an ontology of software metrics [3],
an ontology of the port domain [4], and an ontology of
steel metallurgy, among others.

In this paper we discuss our experience in building
domain ontologies using SABiO, focusing on lessons
learned and improvement opportunities. Section 2 briefly
presents SABiO, and some improvements made along
these years of use. Section 3 discusses its strengths,
weaknesses and some lessons learned. Section 4 presents
some improvement opportunities to evolve SABiO.
Finally, section 5 reports our conclusion.

2. A Systematic Approach for Building Domain
Ontologies

According to Guarino [5], an ontology is an engineering
artifact, constituted by a vocabulary used to describe a
certain reality, plus a set of explicit assumptions (formal
axioms) regarding the intended meaning of the

vocabulary words. This set of assumptions has usually the
form of a first-order logical theory, where vocabulary
words appear as unary or binary predicate names,
respectively called concepts and relations.

Like any other conceptual modeling activity, ontology
construction must be supported by software engineering
practices. Thus, we need methods and tools to support
ontology engineering. In 1997, we proposed SABiO, a
Systematic Approach for Building Ontologies [1], that
encompasses the following activities:
• Purpose identification and requirement specification:

concerns to clearly identify the ontology purpose and
its intended uses, i.e. the competence of the ontology.
To do that, competency questions are used.

• Ontology capture: the goal is to capture the domain
conceptualization based on the ontology competence.
Relevant concepts and relations should be identified
and organized. A model using a graphical language
and a dictionary of terms should be used to aid
communication with domain experts.

• Ontology formalization: aims to explicitly represent
the conceptualization captured in a formal language.

• Integration of existing ontologies: during ontology
capture or formalization, it could be necessary to
integrate the current ontology with existing ones, in
order to use previously established conceptualizations.

• Ontology evaluation: the ontology must be evaluated
to check whether it satisfies the specification
requirements. It should be evaluated in relation to the
ontology competence and some design quality criteria,
such those proposed by Gruber [7].

• Documentation: all the ontology development must be
documented.

During ontology capture, the use of a graphical
representation is essential in order to facilitate the
communication between ontology engineers and experts.
Such representation is basically a language representing a
meta-ontology, and thus this language must own basic
primitives to represent a domain conceptualization [1].

SABiO proposed the use of LINGO [1], a graphical
language for expressing ontologies. In its first version,
LINGO had notations for representing concepts, relations,

and properties, and some types of relations that have a
strong semantics, such as subsumption and whole-part
relations. For each one of these types of relations, a
specialized notation was proposed. In fact, this was the
striking feature of LINGO and what made it different
from other graphical representations: any notation,
beyond the basic notations for concepts, relations and
properties, aims to incorporate an axiomatization. During
its use, some new notations were incorporated to LINGO
to address other types of relations, always defining
explicitly the axiomatization imposed by them.

More recently, we decided to allow ontology capturing
in UML too [4], since UML has also been used as an
ontology modelling language [8], and we cannot ignore
that UML is a standard and its use is widely diffused.
Based on that, we defined a subset of UML’s elements
that plays the same role of LINGO’s notation, i.e., these
UML’s model elements are applied using the same
semantics imposed by the corresponding elements in
LINGO. For instance, the epistemological axioms
imposed by the whole-part relation are assumed to be
incorporated to the ontology when the aggregation
notation of UML is used. A lightweight extension of
UML was proposed, using stereotypes [4].

A graphical model is useful, but it is not enough to
completely capture an ontology. Axioms should be
provided in order to fix the semantics of the terms, and to
establish domain constraints. To guide axiom definition,
SABiO uses an axiom classification that considers two
classes of axioms: derivation axioms, which allow new
information to be derived from the previously existing
knowledge, and consolidation axioms that define
constraints for establishing a relation or for defining an
object as an instance of a concept.

Derivation axioms can concern the meaning of the
concepts and relations in the ontology, or the way these
concepts and relations are structured. When axioms are
defined to show constraints imposed by the way concepts
are structured, we call them epistemological axioms.
When they describe domain signification constraints, we
call them ontological axioms. This distinction is
important to guide the ontology engineering defining
axioms. Epistemological axioms can be assumed to be
captured by the graphical notation, and should not be
explicitly written. Ontological axioms, in turn, are not
captured by the graphical notation, and need to be
explicitly defined. In Figure 1, we show part of the
software process ontology defined in [1], written in UML.
In this figure, the aggregation notation imposes some
axioms, such as:
∀a ¬subActivity(a,a)
∀a1,a2 subActivity(a1,a2) → ¬ subActivity(a2,a1)
∀a1,a2,a3 subActivity(a1,a2) ∧ subActivity(a2,a3) →

 subActivity(a1,a3)

Artifact
<<Concept>>

Activity
<<Concept>>

0..*

0..*

0..*

0..*

0..*0..*
+input
0..*0..*

0..*1
+output
0..*1

0..* 0..*0..*
+preActivity
0..*

+subActivity
Figure 1 - Part of the software process ontology.

These axioms are part of the mereological theory,

which says that whole-part relations are irreflexive, anti-
symmetric and transitive, respectively, and do not need to
be written by the ontology engineer, since they are
epistemological axioms.

In the same ontology, however, there is the following
ontological axiom:
∀a1,a2,s input(s,a2) ∧ output(s,a1) → preActivity(a1,a2)

This axiom does not refer to the way concepts are
structured, and thus, cannot be captured by the graphical
notation. It is an ontological axiom and must be written
down by the ontological engineer. This way, the
distinction between epistemological and ontological
axioms indicates which axioms must be written by the
ontology engineer.

Going back to the activities of the ontology
development process shown in Figure 1, to formalize
ontologies, SABiO suggests the use of first order logics,
and gives some guidelines to perform this step [1].

In ontology evaluation, SABiO suggests checking the
ontology against its competency questions, and to verify
some quality criteria, as pointed early.

Finally, for documentation purposes, SABiO advocates
the use of hypertexts. Using a hypertext, concepts can be
easily linked to relations, properties, ontology diagrams,
dictionaries of terms, axioms, and competency questions.
This way, people can browse the ontology to learn about
the domain.

3. Strong Points, Weakness and Lessons Learned

After we had used SABiO in several ontology
developments, we can point out some benefits and some
weakness of the method.

Concerning strong points of SABiO, we can highlight:
• The set of activities, artifacts and guidelines proposed

by the ontology development process of SABiO
showed to be good. It can be considered part of a
standard software process for building ontologies, but
we need more.

• The use of competency questions showed to be very
useful to guide ontology capturing, formalization and
evaluation. Concepts, relations, properties and
axioms in an ontology should be those necessary and

sufficient to address the competency questions, as
pointed by Gruninger and Fox [6].

• The use of a graphical language for expressing
ontologies proved to be essential for ontology
capture. It is very hard to communicate with domain
experts without it. More over, the epistemological
axioms incorporated to the graphical notation free
ontology engineers to concentrate in some classes of
axioms, in spite of having to consider all of them.

• The axiom classification also proved to be a good
guideline to drive the axiom definition. Based on it,
ontology engineers can inspect the world looking for
axioms that consider the structuring of the concepts
and relations (the epistemological axioms), their
meanings and constraints (the ontological axioms)
and the integrity laws that govern them (the
consolidation axioms). But the first class of axioms
do not need to be written down.

• Hypertext proved to be an adequate format for
documenting ontologies. Using hypertexts,
ontologies can be easily browsed, and people can use
them to learn about the domain.

But SABiO has also weaknesses, such as:
• SABiO does not address important activities of a

software process, as recommended in Software
Engineering, such as planning and configuration
management. Regarding the last, in fact, SABiO says
nothing about ontology evolution.

• Concerning competency questions, SABiO says
nothing about formal competency questions. We
think they are very important. But we need tools for
verifying ontologies in the light of them.

• Although LINGO has a strong semantics, it is
“another modeling language”. This is a recurrent
claim. Many ontology engineers do not know it, and
sometimes use it in an inappropriate way. Several
times, we notice that notations were not being
correctly used, and the models were not well
interpreted by ontology engineers. When we started
to use UML as modeling language, some of these
problems attenuated. On the other hand, sometimes,
ontology engineers with background in software
engineering used some UML constructions that are
not expected in ontology building, and consequently
without precise semantics.

• As to axiom classification, sometimes ontology
engineers have doubts about how to classify an
axiom. The most common problems are about some
epistemological axioms, like those imposed by
cardinalities. Cardinalities, for instance, express
domain constraints, and thus ontology engineers tend
to classify them as ontological axioms, in spite of
they are related to structural concerns.

• A first order predicate logic language for formalizing
ontologies is good due to its expression power. But it

is difficult to evaluate an ontology formalized using
it, since we do not have inference engines capable to
do that. Other languages, such DAML+OIL [9] and
KIF [10], could be better choices, since we can use
an inference engine to verify the ontology.
Competency questions could be formalized and
submitted to the inference engine to check if the
ontology satisfies them. But some of them, like
DAML+OIL, are less expressive languages.

• Ontology integration in SABiO is extremely
superficial. Nothing is said about consistency and
coherence of the model elements imported to a new
ontology.

Finally, we can enumerate some lessons learned. First,
like any other software product, ontology building must
be conducted as a quality software process. As a software
process, we need tools to support ontology building.
Ideally, such tools have to allow competency question
definition and formalization, ontology capture using a
graphical language, axiom definition and formalization,
ontology integration, ontology verification and validation,
ontology documentation, and ontology evolution.

Second, especially in ontology capturing we need to
achieve consensus from experts. Books, papers, manuals,
web pages and other literature sources are very important
for capturing an ontology, but they are not enough. We
need experts, and need to achieve consensus between
their positions. In this process, Gruber’s minimum
ontological commitment criterion [7] is very useful. In all
work we have been done, we needed to apply this
criterion in order to achieve consensus.

Third, in ontology building, evaluation regards the set
of activities that ensure that the ontology concepts,
relations, properties and axioms answer appropriately the
competency questions. Two questions have to be answer:
“Are we building the ontology right?” and “Are we
building the right ontology?” The first one regards
ontology verification, the second ontology validation. In
both cases, evaluation implies to check each competency
question, looking if it is being correctly answered. For
this purpose, we need tools to support those activities,
since they are hard tasks to be done manually. Particularly
in ontology validation, experts are essential. In ontology
validation not only we are checking if the competency
questions are being correctly answered, but we are also
checking if the competency questions actually pose the
right questions for the ontology purpose.

Finally, although hypertexts proved to be an excellent
way to document ontologies, we need tools to automate,
at least partially, their construction. Ontology engineers
spend a substantial amount of time developing the
ontology documentation. Documentation functionalities
integrated into an ontology editor is an important
opportunity to improve productivity.

4. Improvement Opportunities

Based on the weaknesses of SABiO, we can devise
some improvements to evolve it to a better approach for
building ontologies:
• It is worthwhile to define a standard software process

for building ontologies, in the sense of Software
Engineering. Planning activities and methods to do
that should be investigated. There are few works
addressing this important issue. Metrics for
evaluating ontology development should also be
provided. Software Engineering experience can serve
as basis, but we need to adapt it to better fit ontology
development.

• Regarding a modeling language for expressing
ontology, we think that the use of a lightweight
extension of UML, such that proposed in [11] is a
promising way. We are now studying how to
incorporate it to SABiO.

• We should refine the guidelines for classifying
axioms in order to clarify the categories. Also, we are
studying how relation meta-properties, such as
transitivity and symmetry, can be integrated to our
axiom classification. These are very frequent axioms,
and so it is worthwhile to better support their capture.

• During ontology formalization, competency
questions should be formalized. In ontology
evaluation, they should be submitted to an inference
engine to check if the ontology satisfies them.

• SABiO needs to better address ontology integration.
In its current version, all important decisions are left
to the ontology engineers. We need to better study
this activity to improve the guidelines offered to it.

• SABiO does not consider ontology maintenance or
evolution. Since we are now working in some
ontology evolutions (this is the case of the software
process ontology [1]), we intend to improve SABiO
with practical guidelines to address ontology
evolution.

5. Conclusions

Building domain ontologies is not a simple task. We need
methods, tools and guidelines to drive ontology engineers
in performing their activities. Software engineering
practices should be incorporated to ontology
development, and SABiO goes a step ahead towards a
defined ontology development process.

In this paper we presented some reflections regarding
the strengths and weaknesses of SABiO, and discussed
some lessons learned and improvement opportunities.

Our experience in ontology development highlights an
important issue concerning tool support. We would not be

able to scale up ontology building without good ontology
editors. Fortunately, now there are some of them
available, such as OILEd [12]. We are also working on
ODEd [4], an ontology editor that minimizes some of the
reported problems, such as formalization and evaluation.

Acknowledgments

This work was accomplished with the support of CNPq,
an entity of the Brazilian Government reverted to
scientific and technological development.

References

[1] R.A. Falbo, C.S. Menezes, A.R.C. Rocha. “A Systematic
Approach for Building Ontologies”. Proc. of the 6th Ibero-
American Conference on Artificial Intelligence, Portugal,
Lecture Notes in Computer Science, vol. 1484, 1998.

[2] M. Uschold, M. King. “Towards a Methodology for
Building Ontologies”, Workshop on Basic Ontological
Issues in Knowledge Sharing, IJCAI’1995.

[3] R.A. Falbo, G. Guizzardi, K.C. Duarte. “An Ontological
Approach to Domain Engineering”. Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering, SEKE'2002, pp. 351- 358, Ischia,
Italy, 2002.

[4] P.G. Mian, R.A. Falbo. “ Building Ontologies in a Domain
Oriented Software Development Environment”.
Proceedings of the IX Argentine Congress on Computer
Science, pp. 930 – 941, La Plata, Argentina, 2003.

[5] N. Guarino. Formal Ontology and Information Systems. In
N. Guarino (Ed.), Formal Ontologies in Information
Systems, IOS Press, 1998.

[6] M. Grüninger, M.S., Fox. Methodology for the Design and
Evaluation of Ontologies. Technical Report, University of
Toronto, 1995.

[7] T.R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. Int. Journal Human-Computer
Studies, 43(5/6), p. 907-928, 1995.

[8] S. Cranefield, M. Purvis. UML as an Ontology Modelling
Language, In Proceedings of the IJCAI-99, Workshop on
Intelligent Information, 16th International Joint
Conference on AI, Stockholm, Sweden, July 1999.

[9] D. Connolly, F. van Harmelen, I. Horrocks, D.L.
McGuinness, P.F. Patel-Schneider, L.A. Stein.
"DAML+OIL Reference Description", December 2001.

[10] M.E. Genesreth, R.E. Fikes. “Knowledge Interchange
Format, Version 3.0 Reference Manual”. Tech. Rep. Logic-
921, Computer Science Dept., Stanford University, 1992.

[11] G. Guizzardi, H. Herre, G. Wagner, “Towards Ontological
Foundations for UML Conceptual Models”, 1st
International Conference on Ontologies, Databases and
Application of Semantics (ODBASE'2002), Irvine,
California, USA, 2002.

[12] S. Bechhofer, I. Horrocks, C. Goble, R. Stevens. “OilEd: a
Reason-able Ontology Editor for the Semantic Web”.
Working Notes of the 14th International Workshop on
Description Logics (DL-2001), pp.1-9, USA, August 2001.

