See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228367495

Evolving a Software Configuration Management Ontology

Article - January 2007

CITATIONS READS

13 24

5 authors, including:

Ricardo de Almeida Falbo Giancarlo Guizzardi
Universidade Federal do Espirito Santo Universidade Federal do Espirito Santo
172 PUBLICATIONS 1,661 CITATIONS 234 PUBLICATIONS 4,096 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Formalization of OntoUML View project

Project Breaking into Pieces: An Ontological Approach to Conceptual Model Complexity Management View project

All content following this page was uploaded by Ricardo de Almeida Falbo on 01 June 2014.

The user has requested enhancement of the downloaded file.

ResearchGate


https://www.researchgate.net/publication/228367495_Evolving_a_Software_Configuration_Management_Ontology?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228367495_Evolving_a_Software_Configuration_Management_Ontology?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formalization-of-OntoUML?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Breaking-into-Pieces-An-Ontological-Approach-to-Conceptual-Model-Complexity-Management?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giancarlo_Guizzardi2?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giancarlo_Guizzardi2?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giancarlo_Guizzardi2?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-c107bddcd661c9aa1de284021d16c71f-XXX&enrichSource=Y292ZXJQYWdlOzIyODM2NzQ5NTtBUzoxMDMzODIyMzY3OTQ4OTJAMTQwMTY1OTY1NDYwNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Evolving a Softwar e Configuration M anagement Ontology
Lucas de Oliveira Arantes™?, Ricardo de Almeida Falbo?®, Giancarlo Guizzardi®®

1zAgiIe Inc., San Francisco, California, USA
ZInformatics Dept., Federal University of Espirito Santo (UFE&}ria, Brazil

3Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy
| ucasdeo@agil e.com fal bo@nf.ufes.br, guizzardi @oa-cnr.it

Abstract. Software Configuration Management (SCM) can be defined as the
control of the evolution of complex software systems. It is a supgorti
software life cycle process that benefits several activitieshe software
process. SCM proved to be one of the most successful software engineeri
technologies, and there are many tools available to support it. In spitatof t
SCM has some challenges to face. One of them is the limited capability
SCM tools to interoperate. In this paper, we present an evolution of a SCM
Ontology that can be used as a reference model for understanding this domain
and also to build an infrastructure to allow semantic interoperability betwee
SCM tools and other software engineering tools.

1. Introduction

Software Configuration Management (SCM) is the discipline thables a software
development organization to keep evolving software products under control,lpad he
in accomplishing software quality assurance goals [Estublier 2B0BE[2004].

According to the Guide to the Software Engineering Body of Knowledge
(SWEBOK) [IEEE 2004], SCM aims to control the evolution and integrita product
by identifying its elements, managing and controlling changes, aifginvg, recording,
and reporting on configuration information. It is a supporting softwédee cycle
process, which benefits project management, development and maintanawities,
guality assurance activities, and the customers and users ofahgréduct.

Many researchers consider SCM as one of the most succesdfwhreof
engineering practices [Estublier 2000]. But to be well implemerdathmated tool
support is essential, in spite of being increasingly difficulestablish it as projects
grow in size and as project environments become more complex BB&H. Without
some sort of automated support, it is very difficult (if not imgas$ito successfully
implement a SCM process.

Different types of tool capabilities are necessary to supicivt &ctivities, such
as [IEEE 2004]: a SCM Library; software change request and apppoveddures;
work products (including different types of artifacts, such as docwnéistgrams and
code) and change management tasks; reporting software configuraticn stdtware
configuration auditing; managing and tracking software documentatiofpripérg
software builds; managing and tracking software releases andi¢tiegary.



Depending on the situation, these tool capabilities can be madabdeailith
some combination of manual tools, automated tools providing some SCMIitegsabi
automated tools integrating a range of SCM (and perhaps other) litagsabor
integrated tool environments [IEEE 2004]. This scenario leads to @ortamt
requirement for SCM tools: interoperability. In fact, in gehesa the use of software
tools to support software development efforts has evolved, the capalbikgftware
tools to interoperate has become increasingly important.

Some sort of interoperability can be achieved by translation pregranenable
communication from one specific tool to another. But this approach prgz@fiiems.
As the number of tools increases and the information becomes moresgpinid more
difficult for software developers to provide translators betweenyeyar of software
tools that need to exchange information [Schlenoff et al. 2000].

Obstacles to interoperability arise from the fact that twdstare generally
created independently, and do not share the same semantics fomiheltgy used to
describe its domain of interest. Different terms can be beindjtosepresent the same
concept. Without an explicit definition for the terms involved, idifficult to see how
these concepts in each tool correspond to each other. On the other inghdsksaring
terminology is insufficient to support interoperability. The tools tmsisare their
semantics, i.e., the meanings of their respective terminsl¢8aehlenoff et al. 2000].

One way to deal with this problem is to establish a formalifsgeon of the
semantics of the domain, using ontologies [Schlenoff et al. 2000]. Asloggitis a
formal description of the entities within a given domain: the pragsettiey possess, the
relationships they participate in, the constraints they are subjeand the patterns of
behavior they exhibit [Uschold and Gruninger 1996]. It provides a commomtdogy
that helps to capture key distinctions among concepts in a given domaishould
emphasize that the focus of an ontology is not only on terms, but ateeiomeaning.
We can include an arbitrary set of terms in our ontology, but taeynly be shared if
we agree on their meaning. It is the intended semantics adrthe that is being shared,
not simplythe terms [Schlenoff et al. 2000].

Thus, ontologies can be used to establish a common conceptualizatiothabout
SCM domain in order to support SCM tools integration. Using a SCMamyt@s an
interlingua, we aim to facilitate tools interoperability byang of the development of
translators between native formats of those tools and the SCM ontdlugyapproach
has potential to easy the process of integrating tools that foadiffenent activities of
the SCM process and therefore it can be used for creating a f@pkenvironment.

Nunes and Falbo (2006) have already proposed a SCM ontology. It coviers wel
some activities of the SCM process, such as configuration itdemtification and
change request control, but it lacks some important concepts mglgilgd to change
and version control. Concepts such as repository, branch and copy anteor@senost
all SCM tools, but are not addressed by the ontology. In order td thi§ gap, we
evolved this ontology, and this paper presents the resulting ontology.

This paper is organized as follows. Section 2 talks about SCM anbbgiet
and shows briefly the SCM ontology proposed by Nunes and Falbo (2006).iém S=ct



we present an evolution of the SCM ontology. Section 4 discusses slateel works
and finally, section 5 describes our conclusions and future works.

2. Softwar e Configuration M anagement and Ontologies

According to the CMMI (SEI, 2006), the purpose of SCM is to establsl maintain
the integrity of the work products using configuration identificatioonfiguration
control, configuration status accounting, and configuration audits. SCiflqes taken
as a whole define how an organization builds and releases productdeatifies and
tracks changes [Berczuk and Appleton 2002].

The importance of SCM is widely recognized. For example, saticeeded
quality models and standards, such as CMMI [SEI 2006] and ISO/IEC 1defiie
processes and practices related to it. In the CMMI, theee generic practice (2.6 -
Manage Configurations) that is entirely focused on SCM. Addition@IMMI defines
Configuration Management as a Support Process Area at Mataxig) 2. In ISO/IEC
12207 [ISO/IEC 1995] the Configuration Management Process is a suppibeiygle
process, which purpose is to establish and maintain the integaliytbé work products
of a process or project and make them available to concerned g&@d&EC 2002].

Looking at ISO/IEC 12207, CMMI, SWEBOK [IEEE 2004], and books such as
[Pressman 2005], the activities of a SCM process can be surethagz

1 SCM Process Implementation: a plan should be developed describing: the
configuration management activities; procedures and schedule fornpiedor
these activities; the organization(s) responsible for perfornfiaget activities;
and their relationship with other organizations, such as softwaréogewent or
maintenance. The plan shall be documented and implemented [ISO/IEC 1995].

2 Software Configuration Identification: identifies items to be culed (called
Software Configuration ltems — SCIs), establishes identificagchemes for the
items and their versions, and establishes the tools and techniquesdedbim
acquiring and managing controlled items [IEEE 2004].

3 Version Control: combines procedures and tools in order to manage rdiffere
versions of SCls that are created during the software proaessififan 2005].

4 Change Control: is concerned with managing changes during the sofifiware
cycle [IEEE 2004]. A change management process should be established
including activities for: (i) requesting changes; (ii) evaluatihg@nge requests;

(i) checkout; (iv) change execution; (v) change review and (v) clrea
modified items.

5 Configuration Audit: checks, among other things: if the change spaadifithe
request has been made, and if any additional modifications have been
incorporated; if a technical review was conducted to assess toessg if
organizational standards have been properly applied; if relatedh@@sbeen
properly updated [Pressman 2005].

6 Configuration Status Report: is the recording and reporting of infamat
needed for effective management of the software configuratideE[IE004].
These reports include information about SCIs and changes made on them, in



order to answer questions such as: what happened? Who did it? When did it
happen? What else would be affected? [Pressman 2005].

On an organizational perspective, the set of libraries, oftied-components
and software tools, and their respective versions, are importarfutime product
maintenance and for this reason, they could also be seen as SCls.

Software items evolve as a software project proceeds. OortgEng process,
versions of the SCI are stored in order to keep track of the diffesebetween the
starting point and the current state of a given SCI. A versiam software item is a
particular identified and specified item. It can be thought of ami@ of an evolving
item [IEEE 2004]. For each version a unique identifier is given.

A revisionis a new version of an item that is intended to replace an oldrersi
of the item. A varianis a new version of an item that will be added to the configuration
without replacing an old version [IEEE 2004]. This way, we can haver€lift lines of
development, grouping a set of versions with a particular goal. 8nesethere must be
more than one line of development to support, for instance, a product aatomibr
to fix a given bug. Different lines of development are also @dllanches.

On a SCM environment, branches are grouped on repositories. A repsdor
set of mechanisms and data structures that allow softwars teamanage changes on
an effective way [Pressman 2005]. Generally, organizationgecddéerent repositories
for different purposes (a repository for programming code, anotlaedeilo contracts
and agreements, other to organization guidelines, and so on).

When a given SCI or a set of SCIs achieves a desiredo$tataturity or an
important point of the development is achieved, a baseline is cr&atselines provide
a stable basis for continuing evolution of SCIs [SEI 2006]. AccordinGNtMI a
baseline is a set of SCI versions that has been formally regiewd agreed on, that
thereafter serves as the basis for further development or delivedythat can be
changed only through change control procedures. As a product evolves, several
baselines may be used to control it [SEI 2006]. In other words, hnesisea set of SCls
formally designated and fixed at a specific time during the soévife cycle [IEEE
2004].

An artifact can depend on another one (for example, a requiremeiiicspien
can depend on a use case diagram), and thus the same appliescfurdaspeonding
SCls. Thus, when a change on a version of a given Cl is requastuhlgsis has to be
done in order to look for possible impacts on versions of other SCls. Age@iion
manager shall analyze if a change should be done, and which aresibes/evolved
that should be checked out [IEEE 2004]. loheckoutaction, copies of each requested
version are generated. Once the copies are changed, they shouldcher dhe The
configuration manager should evaluate the changes and according to dé&iseon,
new versions can be created.

As we can see, SCM is essential to every software oag@mz Thus, the
concepts that surround it should be well defined and people and tools shoulé share
common conceptualization about this domain. In this context, ontologies cesedb¢o
avoid misunderstanding and for establishing a common conceptualization.



The majority of SCM-related tools normally focus on a particsgdiof activities
of the SCM process. Thus, a proper SCM environment cannot be achi¢wvedsivigle
tool. A solution for this problem lies on integrating different totsighis scenario, tools
focused on different activities of SCM process can be combined wsihgiques for
interoperation. Commonly used techniques, such as translation mechaheves
simplified integration for software developers in various domains ¢8offfl et al.
2000]. But this approach can be problematic if it is done for eachopdiools,
especially as the number of tools to be integrated grows and whey diféerent
interpretations can emerge due to the complexity of the domain oéshtdn this
context, ontologies can be used as a reference model for achiemngntg
interoperability.

2.1. Ontologies

According to Guizzardi (2007), an ontology is a conceptual specificitairdescribes
knowledge about a domain on a language-independent way. Moreover, an ontokgy a
to restrict vocabulary interpretations so that its logical mogletis as near as possible to
the set of structures that conceptualize that domain.

As any software engineering artifact, ontologies must be develofieding
software engineering practices. To build the SCM ontology, we ®&BIO
(Systematic_Approach for_Bilding Ontologies) [Falbo 2004]. SABIO encompasses the
following activities:

» Purpose identification and requirement specification: concerns tdydkentify
the ontology purpose and its intended uses, i.e. the competence ofolbgyont

« Ontology Capture: the goal is to capture the domain conceptualizased ba
the ontology competence. Relevant concepts, relations, properties and
constraints should be identified and organized. A model using a graphical
language (a UML profile) and a dictionary of terms should be useaidto
communication with domain experts;

* Ontology Formalization: aims to explicitly represent the concépaien
captured in a formal language,;

» Integration of existing ontologies: during ontology capture or forratdin, it
could be necessary to integrate the current ontology with existieg, in order
to reuse previously established conceptualizations;

* Ontology evaluation: the ontology must be evaluated to check whether it
satisfies the requirements;

» Documentation: all the ontology development must be documented.

2.2. TheFirst Version of a SCM Ontology

The first version of a SCM ontology, which we use as basis fomouk, was also
developed using SABIO. The following competency questions were taleadobunt
[Nunes and Falbo 2006]:

1. What are the items placed under SCM?
2. What are the variations of a given configuration item?



How does a configuration item’s variation is decomposed?

Which other variations can be impacted when a given change on a particul
variation takes place?

A variation of an item derived from an artifact is adherent tstheture of that
artifact?

Which variations can be modified on a given change?

Which are the variations produced by a given change?

Which variations do compose a baseline?

. Which SClIs does a human resource has access to? What is the &iodss?
10.Who is responsible for a given change?

11.Is a given variation of a configuration item available to be changed?

how

o1

©oNOo

To answer these questions, the concepts and relations shown in Figare 1
modeled as part of the ontolddilunes and Falbo 2006].

artifactDependency
0.* 0.
==concept== N ==concept== - subArtitact
processiSoftwareTool 0. process:Artifact 0
1 1 D..*
- approval
exclusive OR - superdrifact
derivation [ -~ T T T T L
derivation

0.1 o1 n.*

=<Cconcept== ==relgtions== =<Concept==
Configurationitem o j 1 processiHumanResource
» X .
==Conceptss 1 X 1.5 o 0.*
Baseline ==relation==
— state Access
- \\ - subvariation kind recuest authorfzation exec|tion
£
i 1. 0.*
» or

==concepts= 0.*

Variation - superyariation o.* 0.+

0.t . 1.5 ==concept== -
Numaer Change
— o o RS
variationDependency subrnission checkin
checkOut
resutt o.*
==cancept== ==concept==
Variant Yersion

Figure 1 - The SCM Ontology proposed in [Nunes and Falbo 2006].

According to this model, artifacts and software tools can beeglamder
configuration management and therefore they are treated asCa@lyy its lifecycle, a
SCI can have many variations, tracing the SCI's evolution. A twariaof a
configuration item can be decomposed or it can depend on another variabiaselfe

! Due to space limitations, axioms and dictionaryenins are not presented.



is a set of variations grouped for some purpose. Variations can siengerwhich are
variations that are intended to replace an old one, or variants, areiciot intended to
replace an old one. Configuration item's variations are submittedatoges, and the
dates of checkout and check in actions are treated as propertiescloinge.
Responsibilities for requesting, authorizing and performing a changdsaréaken into
account. Finally, kinds of access to SCls (read/write rightsle assigned to human
resources.

3. Evolving the SCM Ontology

As mentioned before, most SCM tools focus on a sub-set of theiastioitthe SCM
process. For example, CVS and Subversion focus only on version contro).t@hus
adequately support the SCM process, we need to use several toolsjmwiirn should
be integrated. The integrated tools must be able to understandaheathiced by each
other, and should be able to communicate. Therefore, they need toasbamemon
conceptualization about the SCM domain. This is our main motivation ftairmia
SCM ontology. With this ontology, an integration middleware could bé, lmoinposed
by adaptors for different tools transform their data according smgle model (the
ontology). In this approach the conceptual model of a tool should be extawat¢hen
mapped to the ontology.

We started trying to use the SCM ontology proposed in [Nunes and Z206d
as our reference model. First we excavated the conceptual moidé€ld/S and
Subversion using the approach proposed in [Hsi 2005] and an approach based on XML
schema excavation, respectively. Then, we tried to map thepterioghe ontology, but
we found some gaps, namely:

» Different lines of development were not addressed by the ontologythee.
concept of branch is missing;

» The concept of repository is also missing, and it is an essentiakpt, being
part of the SCM common sense;

* Once a change is approved, a checkout action is done to retrievesioas¢o
be modified. Discarding a checked out version is a possible sceAsm.
introducing a new artifact and changing existing versions areedssituations.
Thus, the concept of version copy is necessary;

» This ontology does not deal properly with the problem of locking versions of
SCls;

« This ontology uses a term unfamiliar to experts in the SCM domairation.

Based on the gaps identified at Nunes and Falbo’s SCM ontology,cided¢o
work on its evolution. Firstly, we decided to use the term *“versiostead of
“variation”, and to use the definitions given in the SWEBOK [IEEE 2004]version
of a software item is a particular identified and specifiethitlt can be thought of as a
state of an evolving item. Aevisionis a new version of an item that is intended to
replace the old version of the item.vAriantis a new version of an item that will be
added to the configuration without replacing the old version”.

Second, we augment the set of competency questions with the follomésg



12.1s a version available to be changed (unlocked) in a given moment?
13.If a version is locked, which person has rights to handle it?
14.What are the SCM repositories of a given project?
15. Which are the branches of a given SCM repository?
16.Which are the versions in a given branch?
17.Which are the new items (unversioned items) that are added duiiramge?
18.Who are the persons that have copies of a given version?

19.Which are the copies generated by a checkout action?
20.What are the copies that are checked in?

To answer these questions, we had to consider four main new aspéuts
ontology: locking versions (questions 12 and 13), repository structure (nse4d to
16), adding unversioned items (question 17), and copies (questions 18 to 24)ture c
these aspects, new concepts, relations, properties and constrasgsFigure 2 shows
the resulting model. In this figure, new concepts are in gragc€pts remaining from
[Nunes and Falbo, 2006] are in white. Concepts that we changed théoteefier to
them (version and revision) or that we introduced from other ontologiéswira
reused (project and person) are in yellow.

‘depends on

0=
==<concept== <=concepts= | g Ahas access to
Software Tool Artifact
* 0.
0.
1 1 p.* - subartifact
==concept== A A
organization:Project detives fram | VORT derives fram o
y 0.1 0.1 organization::Person 0
==concept== =
has ftem authorizes
v 1. 0. v
0" executes
SSBE requests
Repositol
P v | v
1 ==concept== 0.1 0 ==concept== 0
1 Configuration tem Unversioneditem 0*| o*|o=*
==concept>> e gives rise to -
Base Line
0r A is added in > 0.1
"V relates ==concept==
0.* is submitted to 0.*]  Change
1 o+ | subVersion
* - * 1 1
0 1.7 DY = 0.1
=<concept== SCRMEERRE « =<concept==
* i 0. results in 0.1 i
Branch 0. Version i is done after . A
1 0.* | - identifier _ 0.1 is made for
1 s a copy of
depends an > 0+ drelates ‘D..1 1 0.r
1 o 0 4 | ssconcept-=
- - Checkout
| ==concept=> | 1.7 A yenerates
==cancept== =<concept== Copy _
Variant Rewvision occurs in
0. |
==concept==
=<concept==
Ahblocks n.x Lackp Unlock
refers to 0.1

Figure 2 — The new version of the SCM Ontology.




Versions of SCls are maintained in a project repository. A repgss a set of
mechanisms and data structures that allow changes to be managedefiecive
manner [Pressman 2005]. To allow multiple lines of development, repesitare
organized in branches that contain versions of SCIs (questions 14 to 16).

When a change request is approved, the versions involved can be checked out.
In a checkout, copies of each requested version are generated torsbe et
requested them (questions 18 and 19). In this moment, the developegoest e lock
on a given version to guarantee that only he/she is modifying it.der @0 have a
version locked, the developer must be authorized to do a certain chamge wersion,
and only after the approval and checkout he/she may have the version lAcked.
developer holding a locked version may say when this version is unlockeddiag to
his/her will. In other words, he/she should explicitly unlock a lockedime (questions
12 and 13).

During a change, not only copies of existing versions of itemmadified but
also the first version of an unversioned item can be created (qué&sgjion

After modifying the copies and adding new unversioned items or requesting
removing versions, aheck inis done. New versions that resulted from the last check in
are created on the repository and are now ready to be checked out.

In this domain, there are several constraints that were faedaby writing
axioms. Some of them are presented below, using the following atestic
isMadeFor(co,ch)denotes a checkouto is made in the context of a changh;
isCopyOf(cp, vilenotes thatp is a copy of the version generates(co,cpjenotes that
a checkoutco generates a copgp; isSubmittedTo(v,cilenotes that a version is
submitted to a change; blocks(l, v)denotes that a lock blocked a versiorv;
occursin(l,ch)denotes a lock occurs in the context of a changk; refersTo(ul, 1)
denotes that an unlock refers to a lock and thus it unlocks the corresponding version.

Axiom 1: A copy generated by a checkout must be copy of a version sedhmit
to the corresponding change.

(L ch,co,v,cp) isMadeFor(co,cil) generates(co,cp)/
isCopyOf(cp,v)y~ isSubmittedTo(v,ch)
Axiom 2: A lock can only block a version submitted for the corresponding
change in which the lock has occurred.
(Zch,Lv) occursin(l,ch)’ blocks(l,v)— isSubmittedTo(v,ch)

Axiom 3: A version is considered as being currently locked iffethera lock
blocking that version and there isn’t an unlock that refers to this lock

(Z71,v) blocks(l,v)7=(ul) refersTo(ul,l) - isCurrentlyLocked(v)



4. Related Works

Several works claims that ontologies are a promising way te\aEhnteroperability
between tools, but we did not found a SCM ontology other than the one wasusasis
for the one we presented in this paper.

In the context of the OASIS methodology for software maintenahoeand
Cordy (2005) propose an architecture for interoperating software snadysl
reengineering tools. In their work, domain ontologies are also usededsrence model
along with conceptual service adaptors, which make the connection betweeéool
specific conceptual model and the ontology. But the ontology itselbtigresented.
Their purpose and approach are quite similar to ours, but the domaatifferent, and
in this paper we focused on presenting the ontology that we willousg¢egrate SCM
tools.

PSL (Process Specification Language) [Schlenoff et al. 206€§ to treat the
semantic interoperability problem in the context of the manufactymiagess domain.
In short terms, the purpose of PSL is to address this problem &étyngrex neutral,
standard language for process specification to serve as an intarlingintegrate
multiple process-related applications throughout the manufacturingydiée This
language is underlined by formal semantic definitions, given by segsoontology.
Again, the purpose of PSL is the same of ours, but the domaindfarerdi While PSL
describes the basic conceptualization of the manufacturing procesmdammduilt an
ontology for the SCM domain.

Also driven by the lack of interoperability between tools, but now maoae
general perspective, Kappel et al. (2005) aim to provide a semiainéistructure for
model-based tool integration. To keep this infrastructure evolvablecatable
architecture for realizing tool integration is provided that mingsithe effort necessary
for integrating new tools while maximizing reuse of integrakoowledge. Integration
is specified both at syntactic and semantic levels. The siyntestel deals with
metamodels which define the structures and data types of modetsawliee semantic
level uses ontologies which describe the semantics of modeling cencept

To serve as both a research vehicle and a test bed for explppicatons of
semantic technologies in model-based tool integration, they built Kvdel a
prototype of a system implementing the main ideas described ablowecofe of the
system is based on the versioning system CVS. ModelCVS istalgerform tool
metamodel integration on basis of semantics covered by tool ontolagéethus these
individual tool ontologies have to be integrated. For integrating theogmsl they use
a hybrid approach, involving a direct mapping between ontologies, an iniapping
via an upper level ontology, and a mapping based on a library of alneapged
ontologies.

Although the purpose of ModelCVS is the same of ours, our approach is
different. Instead of using a hybrid approach based on direct mappingebetw
ontologies, indirect mapping via an upper level ontology, and a mapping taszd
library of already mapped ontologies, we decided to use a domain onadagierence
model, like OASIS and PSL. Thus, in this paper we presented thigidamiology, the
SCM ontology.



5. Conclusions and Future Work

Different types of tool capabilities are necessary to suppo&@i process. Therefore,
to provide a widely automated support for this process, it is negdssase different
tools, which should be integrated in order to interoperate. In thisxtpm@tedomain
ontology can be used to establish a common conceptualization about ther8B@kse
of discourse, serving as a reference model to map the conceptudd onudierling SCM
tools.

In this paper we presented a SCM ontology that is an evolution abrie
proposed in [Nunes and Falbo 2006]. New concepts, such as repository, brench a
copy, were introduced, as well as, new relations related to. thkim evolution was
motivated by the inspection of the conceptual models extracted frdmkmewn
version control systems, such as CVS and Subversion.

Now we are working on an ontology-based architecture that allows ©6GIM
integration. The ontology establishes a common conceptualization abo@&Cikle
domain that the tools must share, although they can focus on diffetmitiess of the
SCM process (for example, one focusing on version control, another fanusbédnge
control). We are also interested to allow a tool that tresgeaific activity of the SCM
process to be replaced by another one that also treats the dantg adthout data
loss. As a starting point for this perspective, we are tryingise both CVS and
Subversion (two widely used tools), allowing the user to switch th@se two different
version control systems.

Finally, according to Guizzardi (2006), many benefits can be obtafnad i
domain ontology is developed based on a foundational ontology. Thus, concerning the
SCM ontology itself, we are studying how we can reuse an uppédmeletiatogy in order
to benefit from its conceptualization.

Acknowledgments

The work of the first author in this article has been financallyported by zAgile Inc.
As consequence, the extension of the SCM ontology presented herellesctnal
property of zAgile Inc but with free use for all academic purposes

Refer ences

Berczuk, S. and Appleton, B. (200Fpftware Configuration Management Patterns:
Effective Teamwork, Pratical Integratioiiddison Wesley, %1 Edition.

Estublier, J. (2000), Software Configuration Management: A RoadimaBroc. of the
Future of Software Engineering, ICSE’2000, Ireland.

Falbo, R.A. (2004), Experiences in Using a Method for Building Dortaitologies
Proc. of the 18 International Conference on Software Engineering and Knowledge
Engineering, International Workshop on Ontology In Action, Banff, Canada.

Guizzardi, G. (2006) “The Role of Foundational Ontology for Conceptual Madahd
Domain Ontology Representation”, Companion Paper for the Invited Keynote

Speech, # International Baltic Conference on Databases and Informationnsy;ste
Vilnius, Lithuania.



Guizzardi, G. (2007), On Ontology, ontologies, Conceptualizations, Madeli
Languages, and (Meta)Models, Frontiers in Artificial Intelige and Applications,
Databases and Information Systems IV, I0S Press, Amsterdam.

Hsi, 1. (2005), Analyzing the Conceptual Integrity of Computing Agians Through
Ontological Excavation, PhD Thesis, USA.

IEEE (2004) SWEBOK - Guide to the Software Engineering Body of Kedgd, 2004
Version, IEEE Computer Society.

ISO/IEC (1995), ISO/IEC 12207)nformation Technology — Software lifecycle
processes

ISO/IEC (2002), ISO/IEC 12207 Amendment Iiformation Technology — Software
lifecycle processes

Jin, D., Cordy, J.R., (2005), Ontology-Based Analysis and Reemgiged ool
Integration: The OASIS Service-Sharing Methodology, Proceedinte®f' IEEE
International Conference on Software Maintenance (ICSM'05), New, USA.

Kappel, G., Kramler, G., Kapsammer, E., Reiter, TisB&tzegger, W., Schwinger,
W. (2005) ModelCVS - A Semantic Infrastructure for Model-based Traegration,
Technical Report.

Nunes, V.B., Falbo, R.A. (2006) “Uma Ferramenta de Gerénci&adiguracéo
Integrada a um Ambiente de Desenvolvimento de Software”, V Simpéagileiro
de Qualidade de Software, Vila Velha, Brazil.

Pressman, R.S. (2005), Software Engineering: A Practitiohppsoach, McGraw-Hill,
6" Edition.

Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubéll, Lee, J., (2000), The
Process Specification Language (PSL) Overview and Version 1.0fiSsutémn,
NISTIR 6459, National Institute of Standards and Technology, Gaitherddi.

SEI (2006) CMMI for Development Version 1.2, CMU/SEI-2006-TR-008, So#wa
Engineering Institute, Carnegie Mellon University.

Uschold, M and Gruninger, M. (1996), Ontologies: Principles, Methods and
Applications, Knowledge Engineering Review, vol. 11, pp. 96-137.


https://www.researchgate.net/publication/228367495

