
Developing Software for and with Reuse: An Ontological Approach

Ricardo A. Falbo1, Giancarlo Guizzardi2, Katia C. Duarte1, Ana Candida C. Natali1

1Computer Science Department, Federal University of Espírito Santo

Fernando Ferrari Avenue, CEP 29060-900, Vitória - ES - Brazil
falbo@inf.ufes.br

2Centre for Telematics and Information Technology, University of Twente

Enschede, The Netherlands
guizzard@cs.utwente.nl

Abstract

Software reuse has been pointed as one of the most
promising technique to deal with quality and productivity
problems. To support reuse, software processes have to
consider two facets: developing for reuse and developing
with reuse. In this paper we present an ontology-based
approach for software reuse and discuss how ontologies
can support several tasks of a reuse-based software
process.

Keywords: Software Reuse, Software Engineering Tools
and Techniques, Software Process, Ontologies.

1. Introduction

 Software reuse is considered to be one of the most
promising techniques to improve software quality and
productivity. Effective software reuse requires collections
of designed-for-reuse software components and
mechanisms to retrieve reuse candidates, adapt them and
even create new ones using the information provided by
similar components [1]. Moreover, we need to bind those
elements using a software process that really let to
software reuse. This process must consider two different
perspectives: developing reusable assets (developing for
reuse) and developing using those reusable assets
(developing with reuse).
 In this context, ontologies can play an important role.
An ontology can promote common understanding among
developers, and can be used as a basis for software
specification and development. Also, it can be used to
improve access to information. However, one of the major
drawbacks to a wider use of ontologies in Software
Engineering is the lack of approaches to insert ontologies
in a more conventional software development process.
 In this paper, we propose an ontology-based approach
for developing software for and with reuse. Section 2
discusses ontology applications and their relation with
software reuse. In section 3, we discuss briefly a method
for engineering ontologies and some aspects that you

believe are essential to get the major benefits of the use of
ontologies in software development. Since the current
leading paradigm in Software Engineering is the object
technology, we also present a systematic approach to
derive object models from ontologies in order to derive
reusable assets. A study case using our approach in the
software quality domain is presented in sections 4 and 5.
Section 6 discusses related works. Finally, in section 7,
we report our conclusions.

2. Ontologies and software reuse

Ontologies are becoming an important mechanism for
building software, since they can be used to overcome
barriers created by disparate vocabularies, representations
and tools.

According to Uschold [2], “an ontology may take a
variety of forms, but necessarily it will include a
vocabulary of terms, and some specification of their
meaning. This includes definitions and an indication of
how concepts are inter-related which collectively impose
a structure on the domain and constrain the possible
interpretations of terms”. Thus, an ontology consists of
concepts and relations, and their definitions, properties
and constrains expressed as axioms. An ontology is not
only an hierarchy of terms, but a fully axiomatized theory
about the domain [3].

Jasper and Uschold [4] classified applications of
ontologies in four main categories, emphasizing that an
application may integrate more than one of these
categories:

• Neutral Authoring: an ontology is developed in a
single language and it is translated into different
formats and used in multiple target applications.

• Ontology as Specification: an ontology of a given
domain is created and it provides a vocabulary for
specifying requirements for one or more target
applications. In fact, the ontology is used as a
basis for specification and development of some
software, allowing knowledge reuse.

mailto:falbo@inf.ufes.br

• Common Access to Information: an ontology is
used to enable multiple target applications (or
humans) to have access to heterogeneous sources
of information that are expressed using diverse
vocabulary or inaccessible format.

• Ontology-based Search: an ontology is used for
searching an information repository for desired
resources, improving precision and reducing the
overall amount of time spent searching.

Although we are most interested in the use of
ontologies as specification, we also agree that an ontology
almost always has multiple purposes. This is specially
highlighted in the case of software reuse. It is clear that
the use of ontology as a specification is the basis for
software reuse. But we have to regard other scenarios.

The neutral authoring scenario is also important,
mainly when applications will be developed using
different technology (e.g., objects and logics). This
insight shows that we need to define different approaches
to implement ontologies, each one suitable to the
corresponding technology.

Common access to information scenario is essential to
avoid misunderstanding among developers. It is vital for
reuse tasks, such as adapting components and creating
new assets based on existing ones, as well as for selecting
black-box components and for providing access to shared
data and services.

Finally, an ontology-based search has great potential to
improve structuring and searching in component libraries.
As pointed by Jasper and Uschold [4], an ontology may
play several roles to assist search: (i) it can be used for
semantically structuring and organizing the information
repository (in our case, a component library); (ii) it may
be used as a conceptual framework to developers think
about this repository and formulate queries; (iii) it can be
used for refining queries; and (iv) it may be used to
perform inference to improve the query.

Analyzing these scenarios, we can notice that software
reuse can take several advantages from the use of
ontologies. However, the ontology development process
must be flexible enough to consider all these scenarios.

3. Using ontologies in domain engineering

Several process models have been proposed for
software reuse, almost always establishing parallel tracks
for domain engineering and software engineering.
Domain engineering concerns the work required to
establish a set of software artifacts that can be reused by
the software engineer [5], as shown in figure 1.
 The purpose of domain engineering is to identify,
model, construct, catalog and disseminate a set of
software artifacts that can be applied to existing and
future software in a particular application domain [5]. In
the domain engineering track, ontologies can act as both a

domain model and a component in the repository. It can
also be used for structuring the repository, as mentioned
above.

In this paper we are particularly interested in the use of
an ontology as a domain model and how to derive
components from it. Then, in the following subsections
we discuss an approach for building ontologies and for
deriving object frameworks from them. It should be
noticed that, to regard all potential scenarios discussed in
section 2, we need an approach that guides the ontology
developer to achieve these goals.

Figure 1 - A process model that emphasizes reuse [5].

3.1 A systematic approach for building ontologies

 Basically, the proposed approach encompasses the
following activities [3] as shown in figure 2: purpose
identification and requirement specification, ontology
capture, ontology formalization, integrating existing
ontologies, and ontology evaluation and documentation.
The dotted lines indicate that there is a constant

Domain
analysis

Software
architecture
development

Reusable
artifact

development

Repository
of

Components

Domain
model

Structural
model

Domain Engineering
Track

System
analysis

Analysis
model

Design

Design
model

Construction

Software
application

Software Engineering
Track

interaction, albeit weaker, between the associated steps.
The filled lines show the main work flow in the ontology
building process. The box involving the capture and
formalization steps enhances the strong interaction, and
consequently iteration, between these steps.
 The first activity - Purpose identification and
requirement specification - concerns to clearly identify
the ontology purpose and its intended uses, that is, the
competence of the ontology. To do that, we suggest the
use of competency questions [6].

Figure 2 - Steps in the ontology development process.

 In ontology capture, the goal is to capture the domain
conceptualization based on the ontology competence. The
relevant concepts and relations should be identified and
organized. A model using a graphical language, with a
dictionary of terms, should be used to facilitate the
communication with the domain experts. As a graphical
language for expressing ontologies, we proposed LINGO
[3]. LINGO basically represents a meta-ontology, and
thus, it defines the basic notations to represent a domain
conceptualization. That is, in its simplest form, its
notations represent only concepts and relations.
Nevertheless, some types of relations have a strong
semantics and, indeed, hide a generic ontology. In such
cases, specialized notations have been proposed. This is
the striking feature of LINGO and what makes it different
from other graphical representations: any notation beyond
the basic notations for concepts and relations aims to
incorporate a theory. This way, axioms can be
automatically generated. These axioms concern simply
the structure of the concepts and are said epistemological
axioms. Figure 3 shows part of LINGO notation and some
of the axioms imposed by the whole-part relation. These

axioms form the core of the mereological theory as
presented in [7].

Besides the epistemological axioms, other axioms can
be used to represent knowledge at a signification level.
These axioms can be of two types: consolidation axioms
and ontological axioms [3]. The former aims to impose
constraints that must be satisfied for a relation to be
consistently established. The latter intends to represent
declarative knowledge that is able to derive knowledge
from the factual knowledge represented in the ontology,
describing domain signification constraints.

Purpose Identification
and Requirement

Specification

concept relation

Aggregation

Figure 3 - LINGO main notation and some axioms.

Someone could argue that another graphical language
is unnecessary. Cranefield and Purvis [8], for example,
advocate the use of UML as an ontology modeling
language. We partially agree with their arguments, but we
decided not to use some existing graphical language due
two main related reasons. First, an important criterion to
evaluate ontology design quality is minimum ontological
commitments [9]. Based on this principle, a graphical
language in this context must embody only notations that
are necessary to express ontologies. This is not the case of
UML and majority graphical languages available. Second,
since an ontology intends to be a formal model of a
domain, it is important that the language used to describe
it has formal semantics. Again, this is not the case of the
majority graphical languages available, including UML.
However, we cannot ignore that UML is a standard and
its use is widely diffused. Moreover, there are efforts to
define UML semantics, such as pUML [10]. Based on
that, we are now studying to define a subset of UML that
can play the same role of LINGO following the same
thread of [8].

Backing to our ontology development process, the
formalization activity aims to explicitly represent the
conceptualization captured in a formal language. Again,
based on the minimum ontological commitment criterion,

Ontology
Capture

Ontology
Formalization

Formal
Ontology

Integrating
Existing

Ontologies

Evaluation and
Documentation

(A1) ∀x ¬partOf(x,x)
(A2) ∀x,y partOf(y,x) ↔ wholeOf(x,y)
(A3) ∀x,y partOf(y,x) → ¬ partOf(x,y)
(A4) ∀x,y,z partOf(z,y) ∧ partOf(y,x) → partOf(z,x)
(A5) ∀x,y disjoint(x,y) → ¬∃z partOf(z,x) ∧ partOf(z,y)
(A6) ∀x atomic(x) → ¬∃y partOf(y,x)

Part 1

Part N

Super-type

Sub-type 1

Sub-type N

we argue that, when it is not necessary any special
commitment with a specific meta-ontology that proves
itself to be adequate to the ontology in development, first
order logic should be the preferred formalism, since it is
such a formalism that embeds less ontological
commitments.
 During the capture and/or formalization steps, it could
be necessary to integrate the current ontology with
existing ones, in order to seize previously established
conceptualizations. Indeed, it is a good practice to
develop general modular ontologies, more widely
reusable, and to integrate them, when necessary, to obtain
the desired result.
 Finally, the ontology must be evaluated to check
whether it satisfies the specification requirements. It
should also be evaluated in relation to the ontology
competence and some design quality criteria, such those
proposed by Gruber [9]. It should be noticed that the
competency questions play an essential role in the
evaluation of the completeness of the ontology, specially
when considering its axioms.
 All the ontology development must be documented,
including purposes, requirements and motivating
scenarios, textual descriptions of the conceptualization,
the formal ontology and the adopted design criteria. A
potential approach to document an ontology is to use a
hypertext, allowing browsing along term definitions,
examples and its formalization, including the axioms. The
use of XML can be worthwhile.
 We advocate, based on our experience in ontology
development, that the approach described easies the
development of quality ontologies, specially in those
aspects concerning minimum ontological commitments
criterion. However, when considering ontology as a
specification, this striking feature is also a problem, since
the ontology is built generally in a high abstraction level
to be directly reused in software development. We have
experimented to reuse ontologies in the development of
knowledge-based systems, information systems (using
object technology) and hypermedia systems. Except for
the first case, we identify a need to lower the abstraction
level of our ontologies to actually put them in practice. To
deal with this problem, we have been working in ways to
create more reusable assets from the ontologies. Next, we
present our approach to derive object-based artifacts from
ontologies.

3.2 From domain ontologies to objects

To support ontologies to Java-objects mapping, we
proposed a systematic approach that is composed of a set
of directives, design patterns and transformation rules
[11]. The directives are used to guide the mapping from
the epistemological structures of the domain ontology
(concepts, relations, properties and roles) to their

counterparts in the object-oriented paradigm (classes,
associations, attributes and roles). Contrariwise, design
patterns and transformation rules are applied in the
ontological and consolidation axioms mapping,
respectively. The application of these guidelines is also
supported by a Java-framework that implements the
mathematical type Set.

To derive objects from domain ontologies, it is
worthwhile to adopt a formalism that lies at an
intermediate abstraction level between first-order logics
and objects. For this purpose, we used a hybrid approach
based on pure first-order logic, relational theory and,
predominantly, set theory [11]. So, the first step in our
approach is the complete axiomatization of the domain
theory using the set-based formalism.

Once defined the Set-based axioms, we can initiate the
object mapping. Concepts and relations are naturally
mapped to classes and associations in an object model,
respectively. Furthermore, methods are created in both
classes involved in an association. Properties of a concept
shall be mapped to attributes of the class that is mapping
the concept. Although this approach works well in most
cases, it is important to point some exceptions that we
have found:

• some concepts can be better mapped to attributes
of a class in an object model because they do not
have a meaningful state in the sense of an object
model;

• some concepts should not be mapped to an object
model because they were defined only to clarify
some aspect of the ontology, but they do not enact
a relevant role in an object model;

• relations involving a concept that is mapped to an
attribute (or that is not considered in the mapping)
should not be mapped to the object model.

Subsumption relations do not require any additional
implementation, i.e., subtype-of relations among concepts
can be directly mapped to generalization/specialization
relations among classes. However, it is not the case of
Whole-Part relations. The UML notation for aggregation
does not guarantee the fulfillment of the mereology theory
constraints. To deal with this problem, we developed a
design-pattern (whole-part design pattern) [11].

Considering consolidation axioms, we identified two
cases to address. First, consolidation axioms that concern
to object types, do not need any mapping since we are
working with a strongly typed language – Java. Second,
we developed a design pattern (consolidation pattern) to
deal with consolidation axioms whose purpose is to
describe preconditions that must be satisfied or properties
that must hold so that a relation could be established
between two elements.

Finally, it is necessary to map ontological axioms to
the object model. These axioms are formalized to answer
to the competency questions of the ontology. Methods are

derived from ontological axioms, using a set of
transformation rules [11].

3.3 Final regards about our approach

We have been using the approach described in several
domains, such as software process modeling [11],
software quality and video on demand. To show the
application of our approach, in the next two sections we
present part of the work done in the software quality
domain. Different CASE tools can be thought in this
domain, such as tools for quality planning and tracking
and a knowledge management system. In fact, we have
already developed two applications using the
infrastructure derived: a tutorial to guide novice software
in learning about software quality and ControlQ, a tool to
support quality planning and tracking.

4. Developing for reuse: an experience in
software quality domain

As pointed by Crosby, cited by Pressman [5], “the
problem of quality management is not what people don’t
know about it. The problem is what they think they do
know”. Before we can devise a strategy for producing
quality software, we must understand what software
quality means. But this is not an easy task. There are
several information sources (books, standards, papers,
experts, and so on) using many different terms with no
clear semantics established. There is not a consensus
about the terminology used, what causes
misunderstanding and several problems in the definition
of a quality program. To deal with these problems, we
developed an ontology of software quality. Several books,
standards, and experts were consulted during the ontology
development process and a consensus process was
conducted. Due to limitations of space, we present only
part of this ontology, concerning only the following
competency questions:

1. Which is the nature of a quality characteristic?
2. In which sub-characteristics can a quality

characteristic be decomposed?
3. Which characteristics are relevant to evaluate a

given software artifact?
4. Which metrics can be used to quantify a given

characteristic?
To address these competency questions, the concepts

and relations shown in figure 4 were considered. As
shown in this figure, a software quality characteristic can
be classified according to two criteria. The first one says
if a quality characteristic can be directly measured or not.
A non mensurable characteristic must be decomposed into
subcharacteristics to be computed by the aggregation of
their subcharacteristic measures. A mensurable
characteristic can be directly measured applying some

metric. The second classification enforces that product
characteristics should only be used to evaluate software
artifacts. Artifact is highlighted since it is a concept from
the software process ontology [3], which were integrated
with the quality ontology been presented.

From LINGO notation, the following epistemological
axioms can be derived:
(∀ qc) (nmensqc(qc) → qchar(qc)) (E1)
(∀ qc) (mensqc(qc) → qchar(qc)) (E2)
(∀ qc) (prodqc(qc) → qchar(qc)) (E3)
(∀ qc1, qc2) (subqc(qc1, qc2) → ¬ subqc(qc2 , qc1)) (E4)
(∀ qc1, qc2) (subqc(qc1, qc2) ↔ superqc(qc2 , qc1)) (E5)
(∀ qc1, qc2, qc3) (subqc(qc1, qc2) ∧ subqc(qc2, qc3) →

subqc(qc1 , qc3)) (E6)
(∀ qc) (mensqc (qc) ↔ ¬ (∃ qc1) (subqc(qc1, qc))) (E7)
(∀ qc) (nmensqc(qc) → (∃ qc1) (subqc(qc1, qc))) (E8)
(∀qc,m)(mensqc(qc) → (∃ m) (quant(m, qc)) (E9)
(∀qc,a)(prodqc(qc) → (∃ a) (relev(a, qc)) (E10)

where the predicates qchar, nmensqc, mensqc and prodqc
formalize the concepts of quality characteristic, non
mensurable quality characteristic, mensurable quality
characteristic and product quality characteristic,
respectively, and the predicates subqc/superqc, quant and
relev formalize the whole-part, quantification and
relevance relations, respectively.
 Axioms (E1) to (E3) are derived by the subsumption
theory. Axioms (E4) to (E7) are some imposed by the
whole-part relation. Finally, axioms (E8) to (E10) are
given by cardinality constraints.

 1,n

Figure 4 – Part of the software quality ontology.

Several consolidation axioms were defined, such as:
(∀qc,qc1)(subqc(qc1,qc)∧ prodqc(qc)→ prodqc(qc1)) (C1)

Quality
characteristic

Non mensurable
quality

characteristic subcharacteristic

1,n

1,1

Metric

quantification

Mensurable
quality

characteristic

1,n

relevance

Product quality
characteristic

Artifact

 This axiom says that if a product quality characteristic
(qc) is decomposed in subcharacteristics (qc1), then these
subcharacteristics should also be product characteristics.
 From the ontology presented, we derived a framework,
shown in Figure 5, following the approach described in
subsection 3.2. All classes derived directly from the
ontology are prefixed by the character “K”, indicating that
their objects represent knowledge about the software
quality domain. The remainder classes are from the
Whole-Part design pattern used. The Whole class, for
instance, is a handler that maintains a reference to the
parts associated to this whole. The interfaces IWhole and
IPart must be implemented by the concrete classes
(KNonMeasurableQC and KQualityCharacteristic,
respectively). The methods whole() and part() on these
interfaces provide access to its respective handlers (Whole
and Part).

Figure 5 – Part of the Knowledge Package.

 The consolidation axiom (C1) was implemented by the
method addSuperQC, using the consolidation pattern, as
shown in Figure 6. Due to space limitation, we do not
discuss the ontological axioms mapping here.

addSuperQC (KNonMeasurableQC: qc): boolean
{
 boolean result = false;
 if (result = (qc.isProductQC && this.isProductQC))
 {
 superQC.add(qc);
 qc.addSubQC(this);
 }
 return result;
}

Figure 6 – Consolidation axiom mapping.

5. Developing with reuse: a tool to support
quality planning

In this section, we discuss briefly how the quality
framework was used in the development of ControlQ, a
tool that supports quality control. The goal is to allow
quality planning and tracking. ControlQ’s functionality
includes:

• quality characteristic and metric knowledge
management;

• quality planning, allowing to define quality
evaluation activities that will be carried along the
project. The quality manager defines for each
one of these activities: when and what will be
evaluated, which quality characteristics will be
evaluated and from which metrics these
characteristics will be computed;

Knowledge

• quality control, allowing to register the
measurement results.

As pointed above, ControlQ was developed from the
quality framework. Based on this framework, the tool
architecture was composed of two packages: Knowledge
package, shown in Figure 5, and Quality Evaluation
package, shown in Figure 7.

The Knowledge package directly reflects the concepts
of the ontology, representing the common knowledge of
this domain. However, to support quality planning and
control, other classes are necessary beyond those shaped.
To address the specific ControlQ’s requirements, we
developed the Quality Evaluation package. The classes of
this package represent specific concepts of the
application, necessary to accomplish its goals.

As shown in Figure 7, a quality control plan defines all
quality evaluation activities of a project. Theses activities
define not only what will be evaluated (an artifact), but
also how this evaluation will occur, i.e. which quality
characteristics will be used to evaluate the artifact.

A non measurable characteristic must be decomposed
into subcharacteristics to be computed by the aggregation
of their subcharacteristic measures. For each one of these
subcharacteristics, it is necessary to define its weight in
the measurement. A measurable characteristic can be
directly measured choosing a metric to quantify it. For
each choice, indicating which metric will be used to
quantify each measurable characteristic, the
corresponding measure value is stored.

We can notice that the Quality Evaluation Package
requests services from the Knowledge Package, as shown
in Figure 8. It is not only a hazard. In fact, we claim that
this two-layered architectural style is at the core of a
developing with reuse approach. The application level
concerns application classes which address the application

KMetric

quantification()

KMeasurableQC

quantification()

0..*0..*

11

name IPart
<<Interface>>

description

part() : Part

KArtifact
0.. *0..* 0..*0..*

KQualityCharacteristic
 isProductQC : boolean relevance() superQC() : Set t relevance() : Se Part

IWhole

whole() : Whole

<<I nterface>>

Whole
part : Set

KNonMeasurableQC

subQC() : Set

part() : Part whole : SetaddSuperQC() : boolean
1..*1..*

0..*0..*

requirements. The knowledge level defines domain
knowledge, which can be used by several applications.

Figure 7 – Part of the Quality Evaluation Package.

Figure 8 – ControlQ’s two-layered architecture.

6. Related work

There are several works that are related to some part of
our approach, mainly when considering ontologies
development. Uschold and King [12] proposed what they
called “a skeletal methodology for building ontologies”,
defining a small number of stages that they believed
would be required for any future comprehensive
methodology. In this sense, the method here proposed
followed some of their guidelines and stretched it towards
a more systematic approach for building ontologies.

In the TOVE (TOronto Virtual Enterprise) Project,
Grüninger and Fox [13] proposed a method for building
ontologies that presents some features that are very proper
to its context, the enterprise modeling. In fact, we
considered it an applied approach and not a general one.
Nevertheless, many guidelines suggested by this method
are interesting, such as the use of competency questions to
guide the development, and were incorporated in the
proposal presented here.

In [14] a set of design patterns for constraint
representation in JavaBeans components is presented.
Constraints are equivalent to what we call consolidation
axioms and our approach to implement these axioms is
also based on design patterns. However, these axioms
represent only a subset of the knowledge that must be
made explicit at the ontological level. Thus we need other
mechanisms to capture, for example, ontological axioms,
such as the transformation rules we have proposed [11].

7. Conclusions

Ontologies have great potential to deal with software
reuse problems. In this paper we presented an approach to
systematically develop ontologies and to derive object
frameworks from them. This approach is, in fact, an
ontology-based approach for developing for reuse. We
show its application in the software quality domain. We
also discussed how to develop with reuse when using a
framework derived from this approach.

References

[1] P.A. González and C. Fernández, “A Knowledge-based
Approach to Support Software Reuse in Object-oriented
Libraries”, in Proceedings of the SEKE’97, 1997.
[2] M. Uschold, “Knowledge level modelling: concepts and
terminology”, Knowledge Engineering Review, vol. 13, no. 1,
1998.
[3] R.A. Falbo, C.S. Menezes, and A.R.C. Rocha, “A Systematic
Approach for Building Ontologies”, in Proceedings of the
IBERAMIA’98, Lisbon, Portugal, 1998.
[4] R. Jasper, and M. Uschold, “A Framework for
Understanding and Classifying Ontology Applications”, in Proc.
of the 12th Workshop on Knowledge Acquisition, Modeling and
Management (KAW’99), Alberta, Canada, 1999.
[5] R.S. Pressman, "Software Engineering: A Practitioner's
Approach", 5th Edition, New York: McGraw-Hill, 2000.
[6] M. Grüninger and M.S. Fox, “Methodology for the Design
and Evaluation of Ontologies”, Technical Report, University of
Toronto, April 1995.
[7] W.N. Borst, "Construction of Engineering Ontologies for
Knowledge Sharing and Reuse", PhD Thesis, University of
Twente, Enschede, The Netherlands, 1997.
[8] S. Cranefield and M. Purvis, “UML as an Ontology
Modelling Language”, in Proc. of the IJCAI’99 Workshop on
Intelligent Information Integration, Stockholm, Sweden, 1999.

Application Level

Knowledge Level
Knowledge

Quality
Evaluation

0..*

Artifact

+evaluatedArtifact 1
QualityControlPlan

KMetric
(from Knowledge) 1

0..* 0..*
1 1 QualityEvaluationActivity

1 0..* 0..*
Choice Weight KQualityCharacteristic 0..*

measure value (from Knowledge)
1

0..*0..*

1 1
KNonMeasurableQC KMeasurableQC

(from Knowledge) (from Knowledge)

[9] T.R. Gruber; “Towards principles for the design of
ontologies used for knowledge sharing”, Int. Journal of Human-
Computer Studies, vol. 43, no. 5/6, 1995.
[10] A.S.Evans and S.Kent, “Meta-modelling semantics of
UML: the pUML approach”, in Proc. of the 2nd International
Conference on the Unified Modeling Language. Editors:
B.Rumpe and R.B.France, Colorado, LNCS 1723, 1999.
[11] G. Guizzardi, R. A. Falbo and J.G. Pereira Filho, “Using
Objects and Patterns to Implement Domain Ontologies”, in Proc.
of the 15th Brazilian Symposium on Software Engineering, Rio
de Janeiro, Brazil, 2001.
[12] M. Uschold and M. King, “Towards a Methodology for
Building Ontologies”, in Proc. Workshop on Basic Ontological
Issues in Knowledge Sharing, IJCAI’95, 1995.
[13] M. Grüninger and M.S. Fox, “Methodology for the Design
and Evaluation of Ontologies”, Technical Report, University of
Toronto, April 1995.
[14] H. Knublauch, M. Sedlmayr and T. Rose, “Design Patterns
for the Implementation of Constraints on JavaBeans”, in Proc. of
the Net Object Days 2000, Erfurt, Germany, 2000.

	Abstract
	Software reuse has been pointed as one of the most promising technique to deal with quality and productivity problems. To support reuse, software processes have to consider two facets: developing for reuse and developing with reuse. In this paper we pres

	References

