
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3453185

Designing Interaction Systems for Distributed Applications

Article in IEEE Distributed Systems Online · April 2005

DOI: 10.1109/MDSO.2005.13 · Source: IEEE Xplore

CITATIONS

7

READS

27

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Interoperabilidade Semântica de Informações em Segurança Pública View project

ArchiMate View project

João Paulo A. Almeida

Universidade Federal do Espírito Santo

148 PUBLICATIONS 1,550 CITATIONS

SEE PROFILE

Dick Quartel

133 PUBLICATIONS 1,364 CITATIONS

SEE PROFILE

Luis Ferreira Pires

University of Twente

239 PUBLICATIONS 1,906 CITATIONS

SEE PROFILE

All content following this page was uploaded by João Paulo A. Almeida on 09 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/3453185_Designing_Interaction_Systems_for_Distributed_Applications?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3453185_Designing_Interaction_Systems_for_Distributed_Applications?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interoperabilidade-Semantica-de-Informacoes-em-Seguranca-Publica?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ArchiMate?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dick_Quartel?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dick_Quartel?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dick_Quartel?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Ferreira_Pires?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Ferreira_Pires?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Ferreira_Pires?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-c939a103abfdb50f79a85504678e6586-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMxODU7QVM6MTAxMDcyOTM2ODk4NTY5QDE0MDExMDkwNzQ2ODg%3D&el=1_x_10&_esc=publicationCoverPdf

IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2005 Published by the IEEE Computer
Society
Vol. 6, No. 3; March 2005

Designing Interaction Systems for Distributed
Applications

João Paulo Almeida, Centre for Telematics and Information Technology, University of
Twente
Marten van Sinderen, Centre for Telematics and Information Technology, University of
Twente
Dick A.C. Quartel, Centre for Telematics and Information Technology, University of
Twente
Luís Ferreira Pires, Centre for Telematics and Information Technology, University of
Twente

Application designers should explicitly design interaction systems that
support application-level interactions. Designers can do this using
middleware-centered and protocol-centered development approaches.

In recent years, software infrastructures such as middleware platforms have dominated
distributed applications development. Typical design methods based on the reuse of these
infrastructures partition an application into parts and interconnect them through constructs
provided directly by the infrastructure.

However, because application interaction requirements vary, a gap often exists between the
interactions that software infrastructures provide and those required for interconnecting
application parts. This argues for explicitly designing interactions between application parts.

Seminal work in systems and protocol design have acknowledged the importance of
explicitly designing such interaction mechanisms in distributed systems.1 More recent
software architecture efforts2 have identified the connector construct, which emphasizes the

IEEE Distributed Systems Online March 2005
1

importance of describing and analyzing the interaction aspects of software components.

In this article, we discuss the explicit design of interaction mechanisms for developing
distributed applications. When interactions between system parts require an explicit design,
the concept of an interaction system comes into play. We define criteria that designers can
use to decide whether an interaction system requires an explicit design. We also show that
designers can apply both middleware-centered and protocol-centered development
approaches in designing an application-level interaction system.

Interaction systems

An interaction system supports the set of related interactions between two or more system
parts (see Figure 1). In general, interaction systems can support arbitrarily complex
interaction needs. An interaction system's complexity can vary depending on the interactions
it supports. For example, connectors are interaction systems that satisfy basic communication
needs between software components.

Figure 1. An interaction system.

We call a system's external perspective a service.1 A service defines a system's observable
behavior in terms of its interactions at the interfaces between the system and the environment,
and these interactions' relationships. A service doesn't disclose internal organization details
that designers can define in the system's implementations.

IEEE Distributed Systems Online March 2005
2

Because a system part is a system in itself, designers can apply the service concept
recursively in system design. This recursive application lets a designer consider a system's
behavior at different related decomposition levels. In general, the number of decomposition
levels and the particular decomposition choices depend on system requirements and the
designer's objectives. Because an interaction system is a system, designers can also describe
it as a service.

Protocol-centered paradigm

In the protocol-centered paradigm, user parts interact locally with a service provider. A
service provider comprises a lower-level service provider and protocol entities, which
interact to provide the required service to user parts. A distributed application's model
comprises service users, a layer of protocol entities, and a lower-level service provider.3
Protocols such as those standardized by the International Organization for Standardization
and the Internet Engineering Taskforce use models that resemble this one.

The lower-level service provides physical interconnection and (reliable or unreliable) data
transfer between protocol entities. Lower-level services can support different interaction
patterns between the protocol entities, varying from connectionless data transfer (for
example, "send and pray") to complex control facilities (for example, handshaking with three-
party negotiation).

Protocol entities communicate with each other by exchanging messages, often called protocol
data units, through a lower-level service. PDUs define the syntax and semantics for
unambiguous understanding of the information exchanged between protocol entities. A
protocol entity's behavior defines the service primitives between this entity and the service
users, the service primitives between the protocol entity and the lower-level service, and the
relationships between these primitives. The protocol entities cooperate to provide the
requested service.

Designers can define protocols at various layers, from the physical layer to the application
layer. An application protocol defines distributed interactions that directly support the
establishment of information values relevant to the application service users.

Middleware-centered paradigm

In the middleware-centered paradigm, system parts interact through a limited set of
interaction patterns offered by a middleware platform. A distributed application model

IEEE Distributed Systems Online March 2005
3

comprises the middleware platform and a collection of interacting parts, often called objects
or components.

Several different types of middleware platforms exist, each offering different types of
interaction patterns between objects or components. We can further characterize the
middleware-centered paradigm according to the types of interaction patterns that the platform
supports, such as request/response, message passing, and message queues. Examples of
available middleware platforms are CORBA , the CORBA Component Model, .NET, and
Web Services.

The middleware-centered paradigm promotes reuse of the middleware infrastructure,
facilitating development of distributed applications. Furthermore, middleware infrastructures
provide facilities to define application-level information attributes and to exchange these
attributes' values through the supported interaction patterns.

Interestingly, the middleware-centered paradigm depends on the protocol-centered paradigm
in that protocols eventually realize interactions between application parts.4 For example,
CORBA object request brokers interact through the General Inter-ORB Protocol.

Design methods based on middleware platform reuse often involve partitioning the
application into parts and defining interconnection aspects by defining interfaces between
these parts (for example, by using object-oriented techniques and abstracting from
distribution aspects). The interaction patterns supported by the targeted platform constrain the
available constructs for building interfaces. Example constructs include operation invocation,
event sources and sinks, and message queues. This structuring strategy encourages a
decomposition level that emphasizes interaction systems that the software infrastructure
(middleware platforms) provides directly.

This structuring strategy implies that interaction patterns provided by a particular middleware
platform directly influence the application structure. The application design is therefore
platform-specific, in that the design depends on particular technological conventions adopted
by the middleware platform and that the application's structure depends on the provided set of
interaction patterns.

Using predefined software connector5 implementations for developing distributed
applications leads to results similar to those obtained by using middleware platforms. We can
say the same about infrastructures that implement coordination models, such as Linda and its
variants.6 In both cases, the application's structure depends on the set of interaction patterns
provided.

IEEE Distributed Systems Online March 2005
4

Interaction system design

Instead of defining the interconnection of application parts directly in terms of a protocol or
in terms of the interaction systems provided by a middleware platform, we can identify
application interaction systems that support application-level interactions between
application parts (see Figure 2a). Figure 2b shows interaction systems that the middleware or
protocols provide.

Figure 2. (a) Application interaction systems and (b) interaction systems provided by

IEEE Distributed Systems Online March 2005
5

middleware or protocols.

Whether a designer should consider an explicit design of an application interaction system
depends on the application's requirements and the designer's objectives. We define the
following determining criteria:

 The relation between system parts is complex. In this case, designers should
pay attention to the design of the relation between system parts. Designers can
make this relation a separate design object that is, considering the system
parts' interaction system separately. Designers can consider the interaction
system at different abstraction levels to cope with the relation's complexity. The
middleware-provided interaction system plays an important role at lower
abstraction levels.

 Interactions are changed rather than just the contributions to interactions by
individual system parts. This occurs if a designer envisions several different
middleware platforms as alternatives to support the interactions. A designer can
only replace an interaction mechanism by another equivalent interaction
mechanism if the design clearly indicates the mechanism's relevant
characteristics. Interaction system design naturally supports this.

 The interaction system is general-purpose, offering opportunity for reuse.

 Different design authorities are responsible for the process of designing the
interaction system and system parts. Specifying the interaction system's service
serves as a contract for the communication between system part and interaction
system designers.

 Explicit attention to design choices that concern the effectiveness and
efficiency of interactions is required. In this case, designers can address quality
of service aspects influenced by distribution aspects separately.

A starting point in designing an application interaction system is the application service
specification, capturing a description of the required application interaction system from an
external perspective. The design of the application interaction system could, in principle,
have any internal structure as long as it provides the required service. For example, it could
directly use a data transport service as in a protocol approach. Nevertheless, we observe that
the middleware leverages the reuse of a large building block, providing an interoperability
architecture across programming languages, operating systems, and network technologies and

IEEE Distributed Systems Online March 2005
6

offering facilities for defining application-level information attributes. So, designers should
also consider the interaction systems provided by the middleware as alternatives for building
application interaction systems.

A systematic interaction system design method based on the protocol-centered paradigm
comprises two parts. First, a designer defines the service to be supported in terms of the
service primitives that occur at service access points and the relationships between service
primitives. Second, he or she decomposes this service in terms of a structure of protocol
entities and a lower-level service. This resulting structure, which we call a protocol, must be
a correct implementation of the service. Designers can access this formally if they specify
both the service and protocol in some formal language.3,7

A systematic interaction system design method based on the middleware-centered paradigm
also starts with the definition of the service to be supported (as in the case for the protocol-
centered paradigm). After that, the designer decomposes this service in terms of a structure of
service components and the interaction systems provided by a middleware platform. This
resulting structure must correctly implement the service. Again, designers can assess this
formally, if they specify both the service and its design (service components and platform)
using some formal language.

Example: Auction service

We use an auction application to illustrate the use of an application interaction system and its
service specification in a design trajectory. In this example, a set of application parts
participates in auctions in which products are sold to the highest bidder. Any application parts
can auction off and bid for products. To simplify the example, we use a fixed and predefined
number of participants.

Service definition

We start with the definition of the auction service. The service relates the following
interactions:

 offer and offer_ind, both with attributes product_id and
opening_value. The product_id uniquely identifies a product being
auctioned.

 bid and bid_ind, both with attributes product_id and bid_value.

IEEE Distributed Systems Online March 2005
7

 outcome_ind, with attributes product_id, final_value, and
participant_id. The participant_id uniquely identifies an auction
participant. In this interaction, it identifies the winning bidder.

These interactions occur at the interfaces between the auction interaction system and the
application parts. An interaction's occurrence results the establishment of values for its
attributes. In addition to the attributes just listed, for each interaction, the
participant_id is implied by the location where the interaction occurs.

A useful technique for specifying a service is defining it as a conjunction of different
interaction constraints.7 Particularly , a useful structuring principle is to identify local and end-
to-end (or remote) constraints. In this example, a local constraint exists for each participant:
bid can only occur after offer_ind and before outcome_ind (for a given
product_id). The remote constraints between participants are that

 an occurrence of offer_ind for each auction participant follows the
occurrence of offer;

 an occurrence of bid_ind for each auction participant follows the
occurrence of bid; and

 outcome_ind occurs •t seconds after the last bid_ind occurs (for a given
product_id).

Designers should specify the service so that interaction requirements between application
parts are satisfied without unnecessarily constraining implementation freedom. This freedom
includes the structure of the application interaction system (the system that eventually
supports the auction service) and other technology aspects such as operating systems and
programming languages.

Middleware-centered design

In a typical middleware-centered design method, we would've started by enumerating
potential alternative solutions based on the identification of application parts and interfaces
between these parts. Such an approach focuses on the design of application parts structured
with constructs provided by the middleware platform.

This leads to numerous alternative solutions for the auction application, of which we consider

IEEE Distributed Systems Online March 2005
8

a few. We can characterize these solutions basically as either asymmetric or symmetric. In
asymmetric solutions, an application part acts as a controller, centralizing the auction's
coordination. Some other application parts play the role of auction participants, offering and
bidding for products. In symmetric solutions, no controller exists, and all application parts
have identical coordination roles.

In this example, we assume a component middleware that supports remote invocation. We
consider two asymmetric solutions. The first is callback-based. The controller is a singleton
component that has an interface with operations register_offer and register_bid.
These operations' parameters are product identification, the product's opening value or a bid,
and the reference to the participant's interface (seller in the case of register_offer or
bidder in the case of register_bid). Participants offer the following operations:
offer_callback, bid_callback, and outcome_callback. The controller invokes
offer_callback and bid_callback on each participant's interface when offers and
bids are registered. Eventually, when no bids are registered for a period of time, the controller
invokes the outcome_callback operation on each participant's interface. Figure 3a
shows this solution, where the arrows depict invocation dependencies.

IEEE Distributed Systems Online March 2005
9

Figure 3. Alternative solutions in the middleware-centered paradigm (arrows depict
invocation dependencies): (a) callback-based, (b) polling-based, and (c) token-based.

IEEE Distributed Systems Online March 2005
10

The second asymmetric solution is polling-based (see Figure 3b). The controller is also a
singleton component offering operations register_offer and register_bid as well
as get_current_offers, get_current_bids, and get_outcome. The
participants poll the controller for offers and bids by invoking the operations
get_current_offers and get_current_bids, which returns sets of current offers
and bids. The participants also poll the controller for the outcome of a particular product's
auction, with the operation get_outcome .

We also consider a symmetric token-based solution (see Figure 3c). In this case, a list with
the current product offers, their status, and highest bids circulates among the participants.
Each participant examines the list, places offers or bids and forwards the list invoking an
operation on the following participant's interface. The participant that introduces an offer is
responsible for changing the offer's status in the list to closed when no bids are made for a
period of time. This participant must also remove the closed offer after it circulates the ring
once. For simplicity's sake, we assume the set of participants is known a priori, so we can
ignore ring management functionality. We additionally assumed that participants don't fake
offers and bids and that the time it takes for the list to rotate the ring should be significantly
shorter than the bidding time •t.

Protocol-centered design

We would structure a protocol-centered design in terms of protocol entities and a lower-level
service. For this example, let's suppose we select a lower-level service that offers reliable
transfer of a sequence of octets. The protocol entities are responsible for encoding PDUs and
delivering these to the lower-level service.

Several possible alternative protocols include

 an asymmetric protocol similar to the callback-based solution (see Figure 4a),

 an asymmetric protocol similar to the polling-based solution (see Figure 4b),
and

 a symmetric protocol similar to the token-based solution (see Figure 4c).

IEEE Distributed Systems Online March 2005
11

Figure 4. Alternative solutions in the protocol-centered paradigm: an asymmetric protocol (a)
similar to the call-back based solution or (b) similar to the polling-based solution and (c) a
symmetric protocol similar to the token-based solution.

Discussion

The solutions we've presented for the middleware- and protocol-centered paradigms could be
used as particular implementations of the auction service (see Figure 5). These alternatives
introduce abstractions that are bound to particular design solutions, such as the controller, an
abstraction that the symmetric design doesn't identify. In contrast, the auction service is a
stable abstraction and shields subscribers from a service's particular implementation, both
with respect to commitments to particular design solutions (callback-, polling-, or token-
based) and with respect to commitments to a particular interaction pattern provided by the
infrastructure (a middleware platform or a lower-level service provider). This agrees with
other work that claims that middleware shouldn't determine nor be mistaken for an
application's architecture. 8

IEEE Distributed Systems Online March 2005
12

Figure 5. The auction service as a stable abstraction.

Using middleware for application development without considering the required application
service explicitly is like designing a protocol without considering the required service
explicitly. As pointed out elsewhere,1 service definition should precede protocol
specification. Using the service concept leads to careful consideration of the interaction
problem at hand. For systems verification, using service specifications lets designers compare
service specifications to implementations of specified services.3,7 For system structure, using
the service concept promotes an appropriate application of the layering principle.

IEEE Distributed Systems Online March 2005
13

Starting with a service specification lets designers choose between a protocol- or middleware-
centered paradigm when designing application interaction systems. The choice of
development paradigm doesn't affect the design of the application parts that use the
supporting interaction system. We've shown elsewhere9 that you can use interaction system
design and the service concept to enable middleware-platform-independent design and
platform-specific realization in Model-Driven Architecture development.10

We've presented here a top-down design trajectory for interaction systems, starting from
service definition to service design. However, this doesn't exclude using bottom-up
knowledge. Bottom-up experience lets designers reuse middleware infrastructures and lower-
level services and find appropriate service designs that implement the required service.
Designers should derive stable abstractions for service design from knowledge obtained from
the solution space.

Our notion of interaction systems corresponds to the concept of connectors in software
architecture. However, most software architecture work has focused either on providing
implementations of basic connectors as software infrastructures5 or on the description of
connectors2,11 as opposed to identifying connectors' roles in the development process and
addressing the connectors' design. Designers can also use the criteria we defined for
justifying the design of interaction systems to justify the explicit design of connectors.

Eric Cariou and his colleagues12 have explored the notion of medium, which corresponds to
our application interaction system concept, focusing on the use of the Unified Modeling
Language13 to represent such mediums. In our future research we intend to extend or
complement UML with respect to the service concept representation, particularly when
specifying complex application interaction systems from different related viewpoints and
levels of abstraction.

Acknowledgments

This work is part of the Freeband A-MUSE project (www.a-muse.freeband.nl), which is
sponsored by the Dutch government under contract BSIK 03025. The European Commission
within the MODA-TEL IST project (www.modatel.org) has also partly supported this work.
We acknowledge Chris Vissers, who provided the foundation upon which we built this work.

Conclusion

IEEE Distributed Systems Online March 2005
14

References

1. C.A. Vissers and L. Logrippo , "The Importance of the Service Concept in the Design
of Data Communications Protocols,"Proc. 5th IFIP WG6.1 Int'l Conf. Protocol Specification,
Testing and Verification,North-Holland,1985,pp. 3 17.

2. R.J. Allen and D. Garlan, , "A Formal Basis for Architectural Connection,"ACM Trans.
Software Eng. and Methodology, vol. 6, no. 3, 1997, pp. 213 219.

3. G.J. Holzmann, , Design and Validation of Computer Protocols, Prentice Hall, 1991.
4. M. van Sinderen and L. Ferreira Pires, , "Protocols Versus Objects: Can Models for

Telecommunications and Distributed Processing Coexist?"Proc. 6th IEEE Computer Soc.
Workshop Future Trends of Distributed Computing Systems, IEEE CS Press, 1997,pp. 8 13.

5. N. Medvidovic , P. Oreizy, and R.N. Taylor, , "Reuse of Off-the-Shelf Components in
C2-Style Architectures,"Proc. 1997 Symp. Software Reusability (SSR 97), ACM Press, 1997.

6. A. Papadopoulos and F. Arbab, , "Coordination Models and Languages,"Advances in
Computers (The Engineering of Large Systems, vol. 46), Academic Press, New York,1998.

7. C.A. Vissers , et al., "Specification Styles in Distributed Systems Design and
Verification,"Theoretical Computer Science, vol. 89, Elsevier, 1991, pp. 179 206.

8. J. Wileden and A. Kaplan, , "Middleware as Underwear: Toward a More Mature
Approach to Compositional Software Development ,"Workshop Compositional Software
Architectures, http://www.objs.com/workshops/ws9801/papers/paper061.html, 1998.

9. J.P.A. Almeida , et al., "A Systematic Approach to Platform-Independent Design
Based on the Service Concept,"Proc. 7th IEEEInt'l Conf. Enterprise Distributed Object
Computing (EDOC 2003), IEEE CS Press, 2003, pp. 112 134.

10. MDA Guide Version 1.0.1, omg/2003-06-01, Object Management Group, June 2003.
11. N. Medvidovic and R.N. Taylor, , "A Classification and Comparison Framework for

Software Architecture Description Languages,"
http://csdl.computer.org/comp/trans/ts/2000/01/e0070abs.htm, IEEE Trans. Software Eng.,
vol. 26, no. 1, 2000,pp. 70 93.

12. E. Cariou , A. Beugnard, and J. M. Jézéquel, , "An Architecture and a Process for
Implementing Distributed Collaborations,"Proc. 6th Int'l Conf. Enterprise Distributed Object
Computing (EDOC 2002), IEEE CS Press, 2002, pp. 132 143.

13. Unified Modeling Language (UML), v. 1.5, formal/2003-03-01, Object Management
Group, Mar. 2003.

IEEE Distributed Systems Online March 2005
15

João Paulo A. Almeida is a PhD candidate in computer science at the University of
Twente. His research interests include design methods, architectures and concepts for
distributed systems, and model-driven and service-oriented design. He has an MSc in
telematics from the University of Twente. He is a member of the ACM and the IEEE. Contact
him at the Faculty of Electrical Eng., Mathematics and Computer Science, Univ. of Twente,
PO Box 217, 7500 AE Enschede, Netherlands; j.p.andradealmeida@utwente.nl.

Marten J. van Sinderen is an associate professor of the Faculty of Electrical Engineering,
Mathematics, and Computer Science and manager of the research program on telematics
systems and services at the Centre of Telematics and Information Technology (CTIT), both at
the University of Twente. His research interests include design methods and architectures for
telematics systems. He received his PhD in computer science from the University of Twente.
He is a member of the IEEE. Contact him at the Faculty of Electrical Eng., Mathematics and
Computer Science, Univ. of Twente, PO Box 217, 7500 AE Enschede, Netherlands;
m.j.vansinderen@utwente.nl.

Dick A.C. Quartel is an assistant professor in the Faculty of Electrical Engineering,
Mathematics and Computer Science at the University of Twente. His research interests
include distributed system architecture, architectural modeling, service-oriented design,
service-oriented computing technologies, and context-aware services. He received his PhD in
computer science from the University of Twente. Contact him at the Faculty of Electrical
Engineering, Mathematics, and Computer Science, Univ. of Twente, PO Box 217, 7500 AE
Enschede, Netherlands; d.a.c.quartel@utwente.nl.

IEEE Distributed Systems Online March 2005
16

Cite this article: João Paulo Almeida, Marten van Sinderen, Dick A.C. Quartel, and Luís
Ferreira Pires, "Designing Interaction Systems for Distributed Applications," IEEE
Distributed Systems Online, vol. 6, no. 3, 2005.

Luís Ferreira Pires is an associate professor in the Faculty of Electrical Engineering,
Mathematics and Computer Science at the University of Twente. His research interests
include design methods and architectures for telematics systems, especially for context-aware
and mobile applications. He received his PhD degree in electrical engineering from the
University of Twente. Contact him at the Faculty of Electrical Eng., Mathematics and
Computer Science, Univ. of Twente, PO Box 217, 7500 AE Enschede, Netherlands;
pires@cs.utwente.nl.

IEEE Distributed Systems Online March 2005
17

View publication statsView publication stats

https://www.researchgate.net/publication/3453185

