
Dependencies between Models in the Model-driven Design
of Distributed Applications1

João Paulo A. Almeida, Luís Ferreira Pires, Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

{almeida, pires, sinderen}@cs.utwente.nl

Abstract.. In our previous work, we have defined a model-driven design approach
based on the organization of models of a distributed application according to
different levels of platform-independence. In our approach, the design process is
structured into a preparation and an execution phase. In the preparation phase,
(abstract) platforms and transformation specifications are defined. These results are
used by a designer in the execution phase to develop a specific application. In this
paper, we analyse the dependencies between the various types of models used in our
design approach, including platform-independent and platform-specific models of
the application, abstract platforms, transformation specifications and transformation
parameter values. We consider models as modules and employ a technique to
visualize modularity which uses Design Structure Matrices (DSMs). This analysis
leads to requirements for the various types of models and directives for the design
process which reduce undesirable dependencies between models.

1 Introduction

In our previous work [1, 2], we have defined a model-driven design approach (aligned
with the Model-Driven-Architecture [7]) based on the organization of models of a
distributed application according to different levels of platform-independence. In this
approach, models at a particular level of platform-independence can be realized with a
number of platforms (such as, e.g., middleware platforms), possibly through application
of successive (automated) transformations that lead ultimately to platform-specific
models, i.e., models at the lowest level of platform-independence with respect to a
particular definition of platform.

1 This work is part of the Freeband A-MUSE project. Freeband (http://www.freeband.nl) is

sponsored by the Dutch government under contract BSIK 03025.

http://www.freeband.nl/

An important architectural concept of our approach is that of an abstract platform. An
abstract platform is an abstraction of infrastructure characteristics assumed for models of
an application at a certain level of platform-independence. An abstract platform is
represented through metamodels, profiles and reusable design artefacts [1]. For example,
if a platform-independent design contains application parts that interact through operation
invocations (e.g., in UML [8]), then operation invocation is a characteristic of the abstract
platform. Capabilities of a concrete platform are used during platform-specific realization
to support this characteristic of the abstract platform. For example, if CORBA is selected
as a target platform, this characteristic can be mapped onto CORBA operation
invocations.

An indispensable activity in early stages of our development approach is to determine
the levels of models, the abstract platforms, and the (automated) transformations that are
needed. This activity is part of the preparation phase of the MDA development process
[6]. In the preparation phase, (MDA) experts define the metamodels, profiles and
transformations that are to be used in the execution phase by application developers. In
the execution phase, a specific application is developed using the generalized designs and
design knowledge captured during the preparation phase.

Figure 1 shows the various models manipulated in our approach. Three levels of
platform-independence are depicted, and the results are classified according to the phase
in which they are produced. In this figure, an arrow indicates that a model is dependent on
the existence of another model by construction. Abstract platforms have been depicted as
models, indicating that abstract platform definitions can be captured in abstract platform
models. Transformation specifications have also been depicted as models, indicating that
generalized design operations can be captured and reused. Transformation specifications
can be parameterized and values for transformation parameters are defined in the
execution phase. These values are called transformation arguments. Arguments of a
transformation are also called markings when these are associated to elements in a source
model, in which case transformation parameters are called marks.

Ideally, models in our approach (presented in Figure 1) should be independent of each
other, i.e., it should be possible to create models independently, and a modification in one
model should not impact other models. Nevertheless, models capture design decisions on
the same object of design, i.e., the same application, and hence not all models are
independent of each other. The benefits of separation of models are reduced when models
are related in such a way that modifications in a model affect other models. In this paper,
we analyse the dependencies between the various types of models used in our design
approach and strive to find techniques to avoid undesirable dependencies between models.

application

PIM M1

application
PIM M2

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

abstract
platform Π2

level 1

level 2

application
PSM M3

transformation
specification T2

transformation
arguments a2

concrete
platform Π3

level 3

preparation phase execution phase

Fig. 1. Models in our design approach

Dependencies between models restrict the opportunities for division of labour and
concurrent design. Interdependencies reduce the efficiency of the design process and often
have to be addressed in the design process by introducing iteration cycles [4]. As we
elaborate in this paper, some interdependencies can be avoided by following a number of
rules with respect to the content of the various models and with respect to the
modifications that may be applied to the various models.

In the remainder of this paper, we address the following questions with respect to the
separation of models in our approach (among others):
– can concrete platforms be modified without affecting PIMs and abstract platforms?
– can transformation specifications be modified without affecting PIMs and abstract

platforms?
– does a modification in a PIM affects a corresponding PSM?
– does a modification in a PSM affects a corresponding PIM?
– are there interdependencies between the various models that require iterations in the

design process? Can these be avoided?
This paper is further organised as follows: section 2 proposes that models should be

considered as modules whose modularity can be analysed through a technique called
Design Structure Matrices (DSMs) [9, 10]; section 3 analyses the (inter)dependencies
between the various types of models, which results in requirements and guidelines for the
separation of models; section 4 discusses how the dependencies between models affect the
design process; section 5 classifies the different models according to their various
dependencies; finally, section 6 presents some concluding remarks.

2 Models as modules

In order to examine the relations between the various models, we consider models as
modules. Typically, a module is a set of elements of a design that are grouped together
according to an architecture or plan, with three main purposes [3, 4]: to make complexity
manageable; to enable parallel work; and to accommodate future uncertainty.

While modularization is often used as a technique to split up and assign different
functions of a complex system to different system parts, we split up and assign different
design decisions to different models. A number of basic principles of modularity apply
both to the functional decomposition of system parts (within a model) and to the
separation of models in our design approach.

As is noted in [4]: “a complex engineering system is modular-in-design if (an only if)
the process of designing it can be split up and distributed across different separate
modules that are coordinated by design rules, not by ongoing consultations amongst the
designers.” This definition reveals two important features of systems that are modular-in-
design:
– Independence: The absence of ongoing consultations amongst the designers of

different modules reveals that modules should be largely independent of each other.
Modules correspond to independent activities in the design process; and

– Dependence: The relations between the different modules are defined by a set of
design rules2 to be respected. These design rules reflect the need for coordination of
design choices. Separating strongly related modules forces the number of design rules
to increase, constraining the freedom of designers of the different modules.

In the following sections, we examine independence and dependence of models in our
design approach. We employ a technique to visualize modularity-in-design which uses
Design Structure Matrices (DSMs) [9, 10]. DSMs have been used extensively in the field
of Engineering Design, both for products and production processes and design processes
[4]. In this technique, modules are arrayed along the rows and columns of a square matrix.
The matrix is filled in by determining, for each module, which other modules affect it and
which are affected by it. The result is a map of the dependencies between the modules.

3 Dependencies between models: two levels of models

We start our analysis by assuming two levels of design within a single design iteration
cycle as depicted within the rounded rectangle in Figure 2.

2 In functional decomposition, interfaces between components are considered design rules.

design activities

design activities

level 1

level 2

user requirements

design 1

design 2

design activities

design activities

design 1’

design 2’

user requirements’

design activities

design activities

design 1’’

design 2’’

user requirements’’ ...

Fig. 2. Two levels of models related by transformation

We assume further that the preparation phase results in an abstract platform Π1 for designs
at level 1, a concrete platform Π2 for designs at level 2. The design activities are
constrained by a transformation specification T1 that relates models that rely on Π1 to
models that rely on Π2. This situation is depicted in Figure 3. This figure reveals the
various models of the execution phase that are considered at this point of our analysis,
namely, an application PIM, transformation arguments, and an application PSM.

application
PIM M1

application
PSM M2

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

concrete
platform Π2

T1

design activities

…

parametrization

…

pr
ep

ar
at

io
n

ph
as

e

transfer of results

dependency by construction

Fig. 3. Two levels of models related by transformation

We discuss the dependencies between each of the models depicted in Figure 3 in the
following sections. In each section, we discuss how the various models are affected as a
result of a modification of one of the other models. After the relations between all models
are examined, a DSM is built to visualize the dependencies between the various models.

Application PIM. Table 1 shows the dependencies between the various models and an
application PIM. The ‘ ’ symbol marks the existence of some dependency. The absence
of the symbol indicates there is no dependency. We justify the existence or absence of a
dependency for each pair of models.

Table 1. Dependencies between the various models and an application PIM

 Application
PIM

Explanation

Application
PIM

N/A trivial

Abstract
platform

 An abstract platform is designed so that it can be used to design a class of
applications; the modified application PIM is still a member of this class of
applications.
This constitutes a generality requirement for abstract platform, but also sets the
constraints on possible modifications of an application PIM for a given abstract
platform.

Application
PSM

 through
transformation

The relations between application PIMs and PSMs are determined by
transformation specifications and transformation arguments; if the application
PIM is modified, it is possible that the modified PIM and the original PSM no
longer respect this relation; in this case, the PSM or transformation arguments
may be affected by change.

Concrete
platform

 The concrete platform is a member of the set of target platforms implied by
portability requirements; all application PIMs that rely on the abstract platform
must be buildable (see explanation below about buildability) in the concrete
platform, thus requiring no modifications in the concrete platform.
This constitutes requirements for the abstract platform and transformation
specification.

Transf.
arguments

 Transformation arguments are used to introduce variation in transformation
specifications, in order to capture particular design decisions; these decisions
may be application-specific or may refer to elements of the application PIM;
e.g., transformation parameters can be used to specify the physical allocation of
each application component in the application PIM.

Transf.
specification

 Transformation specifications are designed so that they can be applied to the
class of applications that can be built on top of an abstract platform; the
modified PIM is still a member of this class of applications.
This constitutes a generality requirement for transformation specification.

Buildability of a design is inversely proportional to the amount of time, effort and
resources required to build a conformant realization of the design on a particular
platform. Buildability depends on the contents of a design. The actual contents of a
platform-independent design depend partly on the abstract platform, which is defined in
the preparation phase. Therefore, in the preparation phase, buildability can only be
estimated indirectly, by analysing the impact of abstract platform characteristics in the
buildability of the class of application designs supported by the abstract platform. We

propose this is done by examining the differences and similarities in the abstract platform
and target platforms3.

Having introduced the notion of buildability, we are able to formulate a definition of
platform-independence of a design. We say that a design is platform-independent if, and
only if, it is buildable on a number of target platforms. The set of target platforms is
determined by portability requirements for the design, which are themselves determined
by technical, business and strategic arguments.

Abstract platform. Table 2 shows the dependencies between the various models and an
abstract platform.

Table 2. Dependencies between the various models and an abstract platform

 Abstract
platform

Explanation

Application
PIM

 By definition: “an abstract platform is an abstraction of infrastructure characteristics
assumed in the construction of PIMs of an application”; if these characteristics change,
the application PIM may be affected.

Abstract
platform

N/A trivial

Application
PSM

 Modifying an abstract platform may affect PIMs, transformation specifications (see
respective cells in this table), which in turn may affect application PSMs (see other
tables); however, only direct dependencies are represented in a DSM.

Concrete
platform

 The set of target platforms is determined by portability requirements; during abstract
platform definition, buildability with respect to the target platform must be observed.
This constitutes a requirement for abstract platform definition.

Transf.
arguments

 Transformation arguments depend on the transformation specification, which depends
on abstract platforms (see cell below); however, only direct dependencies are
represented.

Transf.
specification

 The abstract platform defines the common characteristics of a class of platform-
independent designs for which there should be generalized implementation relations to
different platforms; these implementation relations are captured in transformation
specifications; a change in abstract platform characteristics changes the class of
applications, invalidating assumptions on common concepts, patterns and structures
that were made to define transformations.

The separation between an abstract platform and a transformation specification is
analogous to the separation between an interface definition and a realization of the
interface in component-based design: an abstract platform defines requirements which are
satisfied by one or several transformation specifications.

3 We have explored this idea initially in [2].

Application PSM. Table 3 shows the dependencies between the various models and an
application PSM.

Table 3. Dependencies between the various models and an application PSM

 Application
PSM

Explanation

Application
PIM

 through
transformation

The relations between application PIMs and application PSMs are determined
by transformation specifications and transformation arguments; if the
application PSM is modified, it is possible that the modified PSM and the
original PIM no longer respect this relation; in this case, the PIM or
transformation arguments may be affected by change. This dependency exists
for both unidirectional and bidirectional [5] transformations. In the case of
bidirectional transformations, changes to PIM may be propagated automatically.

Abstract
platform

 A modification in an application PSM may result in a modification in the
application PIM (see cell application PIM above); the modified PIM is still a
member of this class of applications for which the abstract platform is defined.
This constitutes a generality requirement for abstract platform, but also sets the
constraints on modifications of an application PSM for a given abstract
platform.

Application
PSM

N/A trivial

Concrete
platform

 A concrete platform is designed so that is can be used to design a class of
applications; the modified PSM is still a member of this class of applications.
This constitutes a generality requirement for concrete platforms.

Transf.
arguments

 through
transformation

(see cell application PIM above)

Transf.
specification

 Transformation specifications define generalized implementation relations;
transformation specifications define a class of PSMs that conform with PIMs;
the modified PSM is still a member of this class of applications.
This constitutes a generality requirement for transformation specifications, but
also sets the constraints on possible modifications of an application PSM for a
given transformation specification and a PIM.

Concrete platform. Table 4 shows the dependencies between the various models and a
concrete platform.

Table 4. Dependencies between the various models and a concrete platform

 Concrete
platform

Explanation

Application
PIM

independence
is engineered

Independence is engineered in the definition of abstract platforms.
This constitutes a buildability requirement for abstract platforms.

Abstract
platform

independence
is engineered

Independence is engineered in the definition of abstract platforms.
This constitutes a buildability requirement for abstract platforms.

Application
PSM

 Application PSM depends on sets of concepts, patterns and structures provided by
a concrete platform; the instability of concrete platforms, and hence application
PSMs, motivates separation of platform-independent and platform-specific
concerns in our approach.

Concrete
platform

N/A trivial

Transf.
arguments

 Transformation arguments may be platform-specific, e.g., markings may define
that particular components should be transformed into Session or Message-Driven
Enterprise Java Beans.

Transf.
specification

 Transformation specifications define generalized implementation relations for a
particular target platform; change the target platform and these relations may be
invalidated. Ideally, this dependency could be reduced by using concrete platform
models as transformation arguments. However, this solution requires highly
general transformation specifications, which define generalized implementation
relations for a class of target platforms (resulting in a platform-independent
transformation specification).

Transformation arguments. Table 5 shows the dependencies between the various
models and transformation arguments.

Table 5. Dependencies between the various models and transformation arguments

 Transf.
arguments

Explanation

Application
PIM

 Abstract platforms are defined to preserve freedom of implementation, so that
different implementations of application PIMs built on top of it are possible; since
transformation arguments are used to introduce variations in generalized
implementation relations, changes in transformation arguments should not affect
application PIMs nor abstract platforms.
This constitutes a requirement for abstract platforms and transformations, and sets
the constraints on possible modifications of transformation arguments for a given
combination of abstract platform and transformation specification.

Abstract
platform

 (see cell application PIM above)

Application
PSM

 through
transformation

The relations between PIMs, transformation arguments and PSMs are determined
by transformation specifications; if transformation arguments are modified, it is
possible that the original PIM, the modified arguments and the original PSM no
longer respect this relation; in this case, the PSM may be affected by change in
transformation arguments.

Concrete
platform

 A concrete platform is designed so that is can support a class of applications; a
PSM that is affected by a change in transformation arguments is still a member of
this class of supported applications, therefore, requiring no modification of the
concrete platform.
This constitutes a requirement for transformation specification, namely that the
results of transformations are always PSMs that use the concrete platform.

Transf.
arguments

N/A trivial

Transf.
specification

 Transformation specifications have transformation parameters, which are assigned
values when the transformation specification is instantiated.

From the perspective of model transformation, the distinction between PIMs and
transformation arguments is unnecessary: both PIMs and transformation arguments may
be considered as input information for an unparameterized transformation. However, the
distinction is relevant from the perspective of the design process: PIMs are platform- and
transformation independent, while transformation arguments may be platform- and
transformation specific. Transformation arguments may be defined after PIMs have been
conceived. As a consequence, designers of PIMs may not be aware of whatever
transformation parameters may be chosen by a designer using the PIM as a starting point
to derive a PSM.

Transformation specification. Finally, Table 6 shows the dependencies between the
various models and a transformation specification.

Table 6. Dependencies between the various models and a transformation specification

 Transf.
specification

Explanation

Application
PIM

 Abstract platforms are defined to preserve freedom of implementation, so that
different implementations of application PIMs built on top of it are possible; these
different implementations are captured in transformation specifications.
This constitutes a requirement for abstract platform, but also sets the constraints
on possible modifications of transformation specifications for a given abstract
platform.

Abstract
platform

 (see cell application PIM above)

Application
PSM

 The relation between application PIM and application PSM is determined by
transformation specifications and transformation arguments; since a change in
transformation specification should not affect PIMs (see cell application PIM
above), modifications to transformation specifications must be accommodated in
the PSM or in transformation arguments.

Concrete
platform

 PSMs related by transformation specifications must be realizable on top of a
concrete platform.
This constitutes a requirement for transformation specifications.

Transf.
arguments

 Transformation parameters are used to introduce variations in generalized
implementation specifications; if a transformation specification is modified
parameters may be modified and new parameters may be introduced, affecting
transformation arguments.

Transf.
specification

N/A trivial

Since transformation arguments may be transformation-specific, transformation
arguments must be captured separately from PIMs so that PIMs do not become
transformation-specific. Therefore, in case of parameterization by marking, the unmarked

PIM must be kept separately from markings. The unmarked PIM and markings can be
combined into a marked model for the purposes of transformation if necessary.

Design Structure Matrix. Table 7 provides an overview of the dependencies between
each of the models considered in our analysis so far. The columns of this table correspond
to the columns of tables 1 to 6. When the table is read row-wise, the ‘ ’ mark indicates
that the model that names to the row is affected by the models that name each of the
columns. When the table is read column-wise, the mark shows the models that may be
affected directly as a result of a modification in the model that names the column.

Table 7. Dependencies between models: Design Structure Matrix

 Application
PIM

Abstract
platform

Application
PSM

Concrete
platform

Transf.
arguments

Transf.
specification

Application
PIM

N/A through
transformation

independence
is engineered

Abstract
platform

 N/A independence
is engineered

Application
PSM

 through
transformation

 N/A through
transformation

Concrete
platform

 N/A

Transf.
arguments

 through
transformation

 N/A

Transf.
specification

 N/A

DSMs exhibit an interesting property for our analysis: if we consider that there is a time
sequence associated with the position of the elements in the matrix, then all marks above
the diagonal are considered feedback marks [11]. Feedback marks require iterations in the
sequence of tasks executed. DSMs can be manipulated to eliminate or reduce feedback
marks, e.g., by reordering the sequence of elements in the matrix. It is also possible to
group elements of the matrix into clusters, a technique which allows us to consider the set
of elements of a cluster as a single module.

In the following section, we manipulate the DSM represented in Table 7 to show how
the dependencies between models affect the design process.

4 Dependencies between models and the design process

Preparation and execution phase concerns. Table 8 shows a reordered DSM. The
models that result from the preparation activities, namely, concrete and abstract platforms
and transformation specifications are placed in the first three positions of the matrix.
These models are grouped into a cluster, which represents the preparation phase. A second
cluster represents the execution phase, grouping application PIM, transformation
arguments and application PSM.

Table 8. Clustering dependencies with respect to preparation and execution activities

 Concrete
platform

Abstract
platform

Transf.
specification

Application
PIM

Transf.
arguments

Application
PSM

Concrete
platform

N/A

Abstract
platform

independence
is engineered

N/A

Transf.
specification

 N/A

Application
PIM

independence
is engineered

 N/A through
transformation

Transf.
arguments

 N/A through
transformation

Application
PSM

 through
transformation

 through
transformation

N/A

The absence of feedback marks above the diagonal formed by the preparation and
execution phase clusters in Table 8 shows that the preparation phase does not depend on
the execution phase. This result is made possible by requirements imposed on the
preparation phase. These requirements are described in the cells of tables 1 to 6 that
correspond to the cells positioned above the diagonal formed by the two clusters. Failure
to satisfy these requirements would imply the presence of feedback dependencies, which
would require revisiting the preparation phase. The absence of feedback marks above the
diagonal formed by the preparation and execution phase clusters can be summarized by
the following design rule:

Changes in PIM, PSM or transformation arguments must be accommodated in PIM,
PSM or transformation arguments, but not in the abstract platform, concrete platform
nor transformation specification.

Table 8 also reveals the absence of feedback dependencies within the preparation phase,
since, within the cluster, no feedback marks appear above the diagonal. The same,

however, cannot be said of the execution phase: modifications in the application PSM
may affect the PIM and transformation arguments. The presence of feedback
dependencies in the execution phase is addressed through iteration in the execution phase.
An iteration in the execution phase allows a designer to gain insight into the implications
of design decisions at the PIM-level for the application PSM, which may result in
adjusting the PIM in a subsequent iteration.

However, for the design process to advance towards a stable application PIM, it is
necessary that the dependencies between PSM and PIM should eventually decrease.
Eventually, the application PIM must be such that it does not depend on design decisions
that constrain the choice of target platform. This constitutes an important requirement for
the iterative approach in the execution phase.

Multiple levels of models. We continue our analysis by considering the dependencies
between the models at three different levels related by transformation. Table 9 shows the
dependencies between the various models. These dependencies are clustered for each pair
of consecutive levels of models, i.e., a cluster for models of levels 1 and 2 and a cluster
for models of levels 2 and 3. This DSM is build by reapplying the transformation pattern,
which explains the isomorphic nature of the dependencies in the two clusters.

Table 9. Clustering dependencies with respect to levels of models

A
bs

tra
ct

pl

at
fo

rm
 Π

1

A
pp

lic
at

io
n

PI
M

 M
1

Tr
an

sf
.

sp
ec

ifi
ca

tio
n

T 1 Tr
an

sf
.

ar
gu

m
en

ts
 a

1

A
bs

tra
ct

pl

at
fo

rm
 Π

2

A
pp

lic
at

io
n

PI
M

 M
2

Tr
an

sf
.

sp
ec

ifi
ca

tio
n

T 2 Tr
an

sf
.

ar
gu

m
en

ts
 a

2

C
on

cr
et

e
pl

at
fo

rm
 Π

3

A
pp

lic
at

io
n

PS
M

 M
3

Abstract platform Π1 N/A
Application PIM M1 N/A
Transf. specification T1 N/A
Transf. arguments a1 N/A

Abstract platform Π2 N/A
Application PIM M2 N/A

Transf. specification T2 N/A
Transf. arguments a2 N/A

Concrete platform Π3 N/A
Application PSM M3 N/A

The table shows an overlap between the two clusters. This overlap indicates that the
design activities in the different levels are not completely independent, and that the

intermediate model PIM forms the ‘interface’ between the two clusters, as could be
expected.

5 Classifications of models

This section concludes our analysis by classifying the various models and design
decisions according to the following dimensions of separation of separation of concerns:
– platform-independent and platform-specific concerns;
– application-independent and application-specific concerns, which correspond to

preparation and execution phases concerns, respectively; and,
– transformation-independent and transformation-specific concerns.
Figure 4 places the different models according to the first two dimensions. Three levels of
models are depicted.

application
PIM M2

application
PSM M3

transformation
specification T2

transformation
arguments a2

abstract
platform Π2

concrete
platform Π3

application-specific application-independent

application
PIM M1

transformation
specification T1

transformation
arguments a1

abstract
platform Π1

pl
at

fo
rm

-in
de

pe
nd

en
ce

Fig. 4. Dimensions of separation of concerns and models

In Figure 4, transformation specifications are placed in the boundary between two levels
of platform-independence. This is to denote that transformation specifications rely on the
(abstract) platforms of both source and target levels of models (see Table 2 and Table 4).
In addition, transformation specifications may also capture some transformation rules
which are independent of the target platform.

Similarly to transformation specifications, transformation arguments are also placed in
the boundary between two levels of platform-independence. In addition, transformation
arguments are placed in the boundary between the application-specific and application-
independent concerns area. This is to denote that arguments may be application-specific
(see Table 1), but may also capture application-independent design decisions.

Application-specific transformation parameterization is used to improve the generality of
transformation specifications with respect to specific applications. Application-
independent transformation parameterization is used to improve flexibility of
transformation specifications in general, e.g., to cope with to variation in user
requirements that are not captured in the source models but that are to be addressed during
transformation. An example of an application-independent transformation argument
determines that, irrespective of the application model, all application parts should be
allocated to the same unit of deployment of the target platform.

In addition to the dimensions considered in Figure 4, we can also classify models
related in a transformation step as transformation-independent or transformation-specific.
This classification is relative to a transformation specification. In a transformation step,
the source application model is transformation-independent (with respect to a
transformation specification from that level of models), since it relies on an abstract
platform, which is itself transformation-independent (see Table 6). The target application
model and the transformation arguments can be classified as transformation-specific. This
can serve as a guideline to determine whether design decisions should be captured at the
source application model level or at either transformation arguments or the target
application model level.

6 Main conclusions and directives

From the analysis of the relations between the various models, we can conclude that:
– Feedback dependencies between execution and preparation phases can be avoided by

addressing generality requirements at the preparation phase. Failure to address these
requirements results in cycles between the execution and preparation phases;

– Platform-independent and platform-specific models are interrelated, their
dependencies defined by transformation. The interrelation between PIMs and PSMs is
addressed through iteration in the execution phase. An iteration in the execution phase
allows a designer to gain insight into the implications of certain design decisions at the
PIM-level.

Our analysis leads to the following directives for the design process:
– Changes in PIM, PSM or transformation arguments must be accommodated in PIM,

PSM or transformation arguments, but not in the abstract platform, concrete platform
nor transformation specification.

– Dependencies between PIM and PSM are handled by iterations in the execution
phase, leading to a stable application PIM that does not depend on platform-specific
design decisions.

– Interdependent design decisions must be captured at the same level of platform-
independence. Since some design decisions are platform-specific, this imposes
constraints on the organization of models at different levels of platform-independence.
We have illustrated the consequences of interdependent design decisions with an
example in [1].

– The classification of models according to the various dimensions of concerns serves as
a guideline to determine in which models design decisions should be captured.

References

1. Almeida, J.P.A., Dijkman, R., van Sinderen, M., Ferreira Pires, L.: On the Notion of Abstract
Platform in MDA Development. In: Proceedings Eighth IEEE International Conference on
Enterprise Distributed Object Computing (EDOC 2004). IEEE CS Press (2004) 253–263

2. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach to
platform-independent design based on the service concept. In: Proceedings Seventh IEEE
International Conference on Enterprise Distributed Object Computing (EDOC 2003). IEEE CS
Press (2003) 112–134

3. Baldwin, C.Y, Clark, K.B.: Design Rules, Volume 1, The Power of Modularity. MIT Press,
Cambridge, MA (2000)

4. Baldwin, C.Y, Clark, K.B.: Modularity in the Design of Complex Engineering Systems, Harvard
Business School Working Paper Series, No. 04-055 (2004)

5. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0: Query / Views /
Transformations Submissions and Recommendations towards the final Standard, ad/03-08-02,
OMG (2002)

6. Gavras, A., Belaunde, M., Ferreira Pires, L., Almeida, J.P.A.: Towards an MDA-based
development methodology for distributed applications. In: Proceedings of the 1st European
Workshop on Model-Driven Architecture with Emphasis on Industrial Applications (MDA-IA
2004), CTIT Technical Report TR-CTIT-04-12, University of Twente, Enschede, The
Netherlands (2004) 43–51

7. Object Management Group: MDA-Guide, V1.0.1, omg/03-06-01, OMG (2003)
8. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02, OMG (2003)
9. Steward, D.V.: The Design Structure System: A Method for Managing the Design of Complex

Systems. In: IEEE Transactions on Engineering Management, Vol. 28 (1981) 71–74
10. Warfield, J.N.: Binary Matrices in System Modeling. In: IEEE Transactions on Systems, Man,

and Cybernetics, Vol. 3 (1973) 441–449
11. Yassine, A., Braha, D.: Complex Concurrent Engineering and the Design Structure Matrix

Method. In: Concurrent Engineering, Vol. 11, No. 3, SAGE Publications (2003) 165–176

	Application PIM. Table 1 shows the dependencies between the
	Abstract platform. Table 2 shows the dependencies between th
	Design Structure Matrix. Table 7 provides an overview of the
	Preparation and execution phase concerns. Table 8 shows a re
	Multiple levels of models. We continue our analysis by consi

