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Abstract. Goal models have been used in Requirements 
Engineering (RE) to elicit, model and analyse stakeholder 
requirements. In a goal model, stakeholder requirements 
are represented as root-level goals that are iteratively 
refined through AND/OR-refinements to eventually yield 
a specification consisting of functions the system-to-be 
needs to implement, as well non-functional requirements 
and domain assumptions. The association of a function to 
a goal is called operationalization in the sense that the 
function specifies how a goal can be made operational. 
We focus on the concept of operationalization and 
propose several extensions to account for 
operationalizations of non-functional and adaptation 
requirements, as well as behavioural specifications.. 
Keywords: Goal-oriented requirements engineering, goal 
model, operationalization.  
 

1 Introduction 
Goal orientation in Requirements Engineering (hereafter 
RE) is founded on the premise that requirements are goals 
that stakeholders want fulfilled by the system-to-be. Goal 
orientation was proposed about 20 years ago in 
(Dardenne et al., 1993) as an improvement over 
traditional RE techniques that focused on the 
identification of functions that the system-to-be needs to 
implement. A goal model explains why are these 
functions needed and how they contribute to the 
fulfillment of what the stakeholders want. Moreover, each 
goal model defines a problem space that includes 
alternative ways of fulfilling root-level goals. Research 
on goal-oriented requirements engineering has been 
conducted in many research groups around the world, for 
example (Anton and Potts, 1998), (Kaiya et al, 2002), Yu 
and Mylopoulos, 1998), (Kavakli, 2002). An early survey 
of research on the topic can be found in (van 
Lamsweerde, 2001). 

These ideas extended the software engineering process 
upstream, so that it starts with stakeholder wants/needs, 
rather than the functions the system-to-be needs to 
perform. Thanks to its acknowledged advantages, goal 
orientation has captured centre stage in RE research, as 
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the dominant technique for requirements elicitation, 
modeling and analysis. 

A goal model is constructed by iteratively refining the 
goals elicited from stakeholders into simpler goals 
through AND/OR refinements with obvious semantics: If 
a goal G is AND/OR-refined into subgoals G1, G2, …, Gn, 
then fulfillment of all/at least one of G1, G2, …, Gn, leads 
to fulfillment of G. Eventually, the subgoals obtained 
through refinements are simple enough (atomic or leaf-
level) that they can be fulfilled by a function (aka 
action/task) that an external agent or the system-to-be can 
perform. Such functions operationalize leaf-level goals. 
Operationalizations cross the boundary between problem 
space (requirements modeled as goals) and the solution 
space (functional specification).  

The main objective of this position paper is to focus on 
the concept of operationalization and propose extensions 
that have been found useful in using goal models to 
capture non-functional requirements (rather than 
functional ones) (Mylopoulos et al., 1992), also 
requirements for adaptive systems (Souza et al., 2013a,b) 
and behavioural specifications of requirements (Dalpiaz 
et al., 2013).  

Our study reviews the fundamental concepts that goal 
models are founded on (Section 2), then sketches the 
history of operationalization in Natural and Social 
Sciences and proposes an extension intended to support 
the operationalization of non-functional requirements 
(Section 3). Section 4 proposes another extension to deal 
with adaptation requirements that introduce the monitor-
analyze-plan-execute functionality that characterizes 
adaptive/autonomic software systems. In Section 5 we 
note the fundamental distinction between functional and 
behavioural specifications and introduce a new form of 
operationalization that maps a goal into a set of 
behaviours. Finally, Section 6 concludes. 

2 Goal Models 
Figure 1 shows a simple example consisting of a goal 
model obtained through refinements and 
operationalizations for a meeting scheduling system with 
a single stakeholder goal ScheduleMtg. In the example, 
fulfillment of the root-level goal can come about by 
fulfilling three subgoals. In turn, each one of these is OR-
refined into two alternatives.  

The three OR-refinements define choice points in the 
design and are labelled cp1, cp2, cp3 respectively. For 
example, the fulfillment of goal CollectTMtables 
might be done by assigning the responsibility to a person 
who manually collects them, or to the system-to-be. In 
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the former case, the responsible person has to execute 
function P-Collect with the system only providing 
database support. In the latter case, the system has to 
carry out S-Collect, which may involve automatically 
generated email messages for all anticipated participants, 
and sending reminders where appropriate. 

The fulfillment of goal FindFreeRm also has two 
alternatives. The first one is a domain assumption: we can 
fulfill FindFreeRm by simply assuming that there will 
always be free rooms for a requested meeting. 
Alternatively, we can fulfill the goal GetRm that locates a 
free room. Domain assumptions simplify the design 
problem by assuming that some of the sub-problems will 
be solved by actors in the system’s environment, so the 
designer doesn’t have to worry about them. 

Goal refinement (AND/OR) transforms a goal into one 
or more simpler ones. Eventually, these goals need to be 
operationalized (“made operational”) either through the 
assignment of a function or the assignment of a domain 
assumption. In the former case, the designer is taking a 
proactive stance: “use this function to fulfill that goal”. In 
the latter, the stance is opportunistic: “Something will 
happen to fulfill the goal, so we need not worry about it 
in our design”. Operationalizations relate functions/ 
domain assumptions to the goals they operationalize. We 
call such operationalizations functional to distinguish 
them from what will be proposed in latter sections.  

Another kind of link in Figure 1 is a conflict link 
(marked by “X”), which says that two goals/tasks/domain 
assumptions are in conflict to each other, so they can’t be 
together part of a single solution. For instance, having a 
person collect timetables is in conflict with having the 
system choose a schedule for the meeting because not all 
collected timetables can be assumed to be in machine-
readable form.  

The goal model of Figure 1 suggests 6 possible 
solutions to the problem of scheduling meetings. The 
prefix of each element of the solution indicates whether it 
is a function (F) or a domain assumption (DA): {F:P-
Collect, DA:RoomsAv, F:P-Schedule}, {F:P-
Collect, F:GetRm, F:P-Schedule}, {F:S-
Collect, DA:RoomsAv, F:P-Schedule}, {F:S-

Collect, DA:RoomsAv, F:S-Schedule}, {F:S-
Collect, F:GetRm, F:P-Schedule}, {F:S-
Collect, F:GetRm, F:S-Schedule}. Such solutions 
are known as functional specifications.  

A critical feature of goal models is that given a 
problem, e.g., fulfilling the goal ScheduleMtg, they 
define a space of alternative solutions, rather than a single 
solution. In this respect goal models (and feature models 
used to specify product families) are unique among 
models used in Software Engineering. 

3 Qualitative Operationalization 
The practice of operationalization (operationalism) was 
first proposed in Physics by Percy Williams Bridgman in 
1927 (Bridgman, 1927). In short, operationalism calls for 
scientists to define their concepts, however abstract and 
intangible, in measurable terms. For example, “mass” 
might be operationalized in a gravity-oriented way as 
affinity to gravity measured by a weight scale. It can also 
be operationalized as resistance to force. Operationalism 
was subsequently adopted by the Life and Social Sciences 
where it provides measurable definitions for concepts 
such as “health” and “free and fair judiciary”. For 
instance, “health” might be operationalized into a 
combined function of blood pressure, sugar level and 
number of drinks per day. “Free and fair judiciary” might 
be operationalized, on the other hand, in terms of the 
number of times there is government interference to 
judiciary functions, how often are members of the 
judiciary convicted of crime, etc.   

For our purposes, operationalization of non-functional 
requirements amounts to adopting a precise measure by 
which an ill-defined non-functional requirement 
(“softgoal”) can be measured as to the degree of its 
satisfaction. This is consistent with RE practice, where 
non-functional requirements are supposed to be 
“metricized” in terms of a metric. For example, a 
performance non-functional requirement might be 
metricized as “System shall process 1,000 transactions 
per second”, and a usability requirement as “Users will be 
able to use the system after 3 hours of instruction”. 

 
Figure 1: a simple goal model for the meeting scheduler 
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Figure 2 shows an extended version of the meeting 
scheduler goal model with two softgoals representing 
non-functional requirements LowCostSch and 
GoodQuaMtg. These are operationalized into quality 
constraints (“metrics”) ‘Each meeting scheduling will 
cost ≤ €20’ and ‘Each meeting will have > 70% 
participation’. We call this type of operationalization 
qualitative, to distinguish it from its functional cousin. 

 

4 Operationalizing Adaptation Requirements 
The increasing complexity of software-intensive systems, 
combined with the uncertainty of the environments 
wherein they operate has made adaptive software systems 
a popular topic for researchers and practitioners alike (De 
Lemos et al., 2013).  

To design adaptive systems, we need not only vanilla 
functional and non-functional requirements, but also 
adaptation requirements, such as “Meeting scheduling 
should not fail more than 2% during any one month 
period”, or “If the collection of timetables fails because 
some participants did not respond, go ahead and schedule 
the meeting with the timetables you have”. Such 
requirements are operationalized by a feedback loop that 
monitors the performance of the system and takes action 
when the requirement is not being met, i.e., meeting 
scheduling fails more than 2% of the time, or timetables 
haven’t been collected from all participants. 

Adaptation requirements come in two flavours. 
Awareness requirements (Souza et al., 2013a) impose 
constraints on the states (succeeded, failed, cancelled, 
etc.) of other requirements (i.e., goal model elements). 
For example, suppose that for the meeting scheduler three 
elements were found to be critical: ChooseSched, 
DA:RoomsAv and QC:70%Part. Further, each 
requirement has a different level of importance: 
ChooseSched should never fail, whereas we can tolerate 
one failure per week for DA:RoomsAv and would like a 
75% success rate for QC:70%Part. These requirements 
for the monitoring component of the feedback loop are 
represented in Figure 3.  

At runtime, the meeting scheduler should log changes 
of state of the instances of its goal model, e.g., “T:S-
Sched has started”, “T:S-Sched has succeeded/failed”, 
etc. The feedback controller reads from this log, 
propagating the information up the model (following 
Boolean semantics of operationalization links), which 
may cause other elements to also change their state. 
These changes may eventually cause awareness 
requirements to fail, thereby triggering the system’s 
adaptation mechanism.  

Evolution requirements (Souza et al., 2013b) 
constitute another kind of adaptation requirement. Such 
requirements specify changes to other requirements when 
certain conditions apply. Evolution requirements are 
defined as Event-Condition-Action rules, taking relevant 
events from the monitoring component of the feedback 
loop and applying adaptation actions to the managed 
system, depending on certain conditions. 

Figure 3 shows three evolution requirements for the 
meeting scheduler example. The first one uses failures of 
AR5 as the triggering event and is associated with two 
possible actions: (a) have the system retry the function 
that caused the failure; or (b) reconfigure the system. The 
condition for (a) is that it can only be applied once, 
whereas the condition for (b) is that (a) has been 
attempted but has failed to solve the problem. 

The above example illustrates two kinds of adaptation 
action: evolution and reconfiguration. Evolution is used 
when stakeholders know exactly what the system should 
do in order to adapt. In this case, adaptation is defined as 
a series of modifications to the goal model, evolving it to 
represent a new problem space. Such modifications can 
take place at the instance level, which changes the system 
for a single user session (e.g., the retry case illustrated for 
ChooseSched), or at the requirement/class level, which 
changes the system from that point on (e.g., if 
requirement R fails more than we can tolerate, replace it 
with a less strict version R-). 

Reconfiguration, on the other hand, can be applied 
when stakeholders do not have a specific solution to the 
problem, but would like the system itself to search in its 
solution space for alternative solutions (or specifications, 
as explained in Section 2). The three choice points of 

 
Figure 2: a goal model with softgoals and their operationalizations 
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Figure 1 (cp1, cp2, cp3) allow the feedback controller to 
try different ways of satisfying system goals, therefore 
adapting to specific situations. 

Control variables can also be identified as means for 
system reconfiguration. Figure 3 shows variable FhM 
connected to goal CollectTMtables. It prescribes From 
how Many participants one should collect timetables 
before moving on to schedule a meeting. It should be 
clear that changing the value of this variable could affect 
the satisfaction not only of goal CollectTMtables, but 
also of other requirements (e.g., the less timetables you 
collect, the higher the chance of poor quality meetings as 
participants find they can’t attend a meeting they are 
supposed to). The relation between changes in these 
parameters (i.e., choice points and control variables) and 
the effect in satisfaction of requirements should also be 
elicited in order for the adaptation component of the 
feedback loop to be able to use this information properly. 

Different reconfiguration algorithms have been 
proposed in the literature, each requiring different 
information to be included in a requirements model. 
(Dalpiaz et al., 2012) and (Souza et al., 2012) are two 
such examples from our own work. 

5 Behavioural operationalization 
Specifying a function through which a goal is 
operationalized is one way to move from the problem to 
the solution space, but there are also others. Behavioural 
specifications constitute one such alternative. 
Behavioural operationalizations define the possible 
behaviours of a system as the set of allowable sequences 
of executions of its functions (Dalpiaz et al., 2013). 

Behavioural and functional operationalizations are 
complementary. Functional operationalization is applied 
to every leaf goal of a goal model and it defines the 
function through it can be fulfilled. Behavioural 
operationalization, on the other hand, applies to non-leaf 
goals and specifies in what order subgoals are to be 

fulfilled. For example, If goal G is AND-refined into 
subgoals G1, G2, a possible behavioural operationalization 
is ‘G1 ; G2‘, meaning that G1 must be fulfilled first, 
followed by G2. Alternatively, we may specify ‘G1 | G2‘, 
exactly one of the two subgoals needs to be fulfilled. 
More generally, we can use regular expressions of 
subgoals for behavioural operationalization. For instance, 
we may want to say that in order to schedule a meeting, 
we need to collect timetables one or more times until all 
timetables have been collected, then proceed with the 
scheduling 

 CollectTMtables+ ; Schedule 

Here ‘+’ stands for Kleene closure of regular expressions, 
while ‘;’ indicates temporal ordering. 

Behavioural expressions are actually more than regular 
expressions since we sometimes want to specify that two 
subgoals need to be fulfilled concurrently. This is 
indicated by the shuffle operator ‘#’. For example in 
Figure 4, meeting scheduling (G1) is operationalized with 
‘G2; (G3 # G4)’, indicating that CollectTMtables must 
be fulfilled first, followed by the interleaved fulfillment 
of G3 and G4. Likewise, the goal for collecting timetables 
(G2) is annotated with ‘(G4 | G5)#’, indicating that 1 or 
more versions of G4 and G5 can be fulfilled concurrently. 

Functional operationalization tells us how to fulfill a 
leaf goal in terms of a function. On the other hand, 
behavioural operationalization tells us how to fulfill a 
non-leaf goal by using together solutions for its subgoals.  

6 Discussion 
Operationalization is about making something 
operational, either by providing a function that defines its 
operation, or by making it measurable. For goal models, 
these forms of operationalization cover the two basic 
types of requirements: functional and non-functional. In 
this paper we have examined other forms of 
operationalization that account for adaptation 
requirements and non-leaf goals.  

 
Figure 3: adaptation requirements operationalized by Awareness and Evolution Requirements 
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These extensions reflect different stances that a 
designer can take to the fulfillment of a requirement. A 
proactive stance amounts to providing the means to 
fulfillment through a function. An opportunistic stance 
assumes the problem away. A scientific stance delivers 
the means of measuring its degree of fulfillment. Finally, 
a reactive stance amounts to offering a mechanism 
(feedback loop) to cope with failures.  

In conclusion, operationalization is a rich concept that 
has been in use in the Sciences for almost a century. It 
manifests itself in different ways for different classes of 
requirements. More importantly perhaps, it reflects 
multiple strategies to problem solving and design that go 
far beyond what has been explored and deployed in 
Requirements Engineering.  
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