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Abstract. Conceptual models are often built with techniques that propose a strict
stratification of entities into two classification levels: a level of types (or classes)
and a level of instances. Multi-level conceptual modeling extends the conven-
tional two-level scheme by admitting that types can be instances of other types,
giving rise to multiple levels of classification. Nevertheless, the vast majority of
tools and techniques are still confined to the two-level scheme, and hence cannot
be used for multi-level models directly. We show here how a multi-level model
in ML2 can be transformed into a two-level specification in the formal modeling
technique Alloy, thereby leveraging the Alloy analyzer to multi-level models.
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1 Introduction

Conceptual modeling is usually undertaken by capturing invariant aspects of the enti-
ties in a subject domain, which is supported in most conceptual modeling approaches
through constructs such as “classes” and “types”, reflecting the use of “kinds”, “cate-
gories” and “sorts” in accounts of a subject domain by subject matter experts. In the
conventional two-level representation scheme, a conceptual model is stratified into two
levels of entities: a level of types (or classes) and a level of instances (or individuals).
The level of types captures invariants that apply exclusively to the level of instances.
In this scheme, the subject matter can be understood as consisting of individuals, and
the purpose of the conceptual model is to establish which structures of individuals are
admissible according to some (shared) conceptualization of the world [16].

The two-level scheme, however, reveals its limitations whenever we are interested
in invariants about categories themselves [8], i.e., whenever categories of categories are
part of the domain of inquiry. For example, in the biological taxonomy domain [2, 6],
living beings are classified according to biological taxa (such as, e.g., Animal, Mammal,
Carnivoran, Lion), each of which is classified by a biological taxonomic rank (e.g.,
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Kingdom, Class, Order, Species) [22]. Cecil (the lion killed in the Hwange National
Park in Zimbabwe in 2015) is an instance of Lion, which is an instance of Species.
Species, in its turn, is an instance of Taxonomic Rank. Thus, to describe the concep-
tualization in this domain, one needs to represent entities of different (yet related) clas-
sification levels, such as specific living beings (Cecil), types of living beings (Lion),
types of types of living beings (Species, Animal Species). In fact, classification lev-
els can be added as required, e.g., Taxonomic Rank classifies the types of types of living
beings. Other examples of multiple classification levels can be found in organizational
roles, software engineering [15] and product types [23].

The need to represent entities in such domains led to what is currently termed
“multi-level modeling” [4,23]. Techniques for multi-level modeling must provide mod-
eling concepts to deal with types in various classification levels and address the relations
that may occur between those types. Moreover, they must account for types behaving
as instances and, as such, respecting invariants and holding values for properties they
exemplify (in other words, types in a multi-level model have two facets: a “class” or
type facet, and an “object” or instance facet [4]).

Despite the benefits of multi-level modeling, multi-level mechanisms pose a chal-
lenge to the reuse of existing two-level techniques and tools. In this paper, we demon-
strate how multi-level models can be accommodated in a conventional two-level lan-
guage. We propose a systematic transformation of multi-level models represented in
the ML2 Multi-Level Modeling Language [13] into conventional Alloy [17] specifica-
tions, following a transformation pattern that is based on the reification of the instance
facet of a type and its systematic linking with the type facet. This allows us to lever-
age model simulation and verification support originally designed with a conventional
two-level scheme to multi-level conceptual models.

The remainder of this paper is organized as follows: Section 2 discusses a classical
workaround employed when we are confined to two levels of classification, namely,
the powertype pattern. Section 3 briefly presents the multi-level modeling language we
adopt here (ML2). Section 4 discusses how multi-level models are represented in a
corresponding two-level specification in Alloy. Section 5 presents some conclusions.

2 The Classical Two-Level Workaround – The Powertype Pattern

Let us consider the biological taxonomy domain as a paradigmatic example of a
multi-level domain [2, 6]. We are interested in this domain not only in capturing
features of certain organisms (e.g., its weight), but also features of types of organ-
isms and their properties. For example, a Species (like other taxa) is named by a
Person (the Lion species was named by Carl Linnaeus) and can be attributed a
conservation status. Further, being a member of a certain species, an organism has
certain features in virtue of being a member of the species. For example, all lions are
warm blooded, while all frogs are cold blooded.

In the conventional two-level approach, entities in the domain have to be classified
either as classes (or types) or as instances. Strictly speaking, there is no room for meta-
types such as Species or meta-meta-types such as Taxonomic Rank. Workarounds
are available as discussed in [19, 20], but these often introduce accidental complex-
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Fig. 1. The powertype pattern with a regular user-defined association

ity. For example, an early approach that has aimed to accommodate multiple domain
levels within two modeling levels is the powertype pattern proposed by [24]. In this
pattern, all types are treated as regular classes, and a “base type” (such as Organism,
Taxon) is related to a “powertype” (such as Species, Taxonomic Rank), through a
user-defined (and regular) association (such as classified by, ranked in). See Fig-
ure 1 for a model capturing this scenario using UML’s support for powertypes.

This workaround creates a number of difficulties, some of which are discussed
in [19,20]. First of all, a modeler needs to handle explicitly two notions of instantiation,
a native one provided by the modeling technique (and thus between classes and in-
stances) and another that corresponds to the user-defined association (classified by,
ranked in). In the case of the latter, since it is a regular user-defined association, no
support for its instantiation semantics is provided by the modeling technique, and hence,
instantiation semantics needs to be emulated manually by the modeler. The pattern is
based on the duplication of the instances of the powertype: this is because they must be
admitted both at the instance level (e.g., Lion as an instance of Species, carrying val-
ues for taxonAuthor, conservation status, warmblooded) and at the same time
at the class level (e.g., Lion as a specialization of Organism). The management of the
duplicated entities—although key to the pattern—is left to the model user.

3 The ML2 Multi-Level Modeling Language

The root of the problem discussed in the previous section is that two-level languages fail
to recognize classes as instances of other (meta)classes [3,14]. This has motivated some
of us in the past to propose a Multi-Level Modeling Language (ML2) [13], following
work on theoretical foundations for Multi-Level Modeling (MLT [8,10] and MLT* [1]).

The language provides support to the specification of properties of individuals, their
types (the so-called first-order types), second-order types (whose types are first-order
types) and so on. Further, the language incorporates notions of powertype in the lit-
erature (including Odell’s [24] and Cardelli’s powertypes [7]). The language supports
a number of features typical of multi-level modeling techniques, some of which are
exemplified here; we refer the reader to [12, 13] for further details.
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In Listing 1.1, we employ ML2 to revisit the example from Figure 1 presenting how
a language that is not limited to the two-level scheme captures the multi-level notions.

Listing 1.1. Fragment of ML2 model involving Lion and AnimalSpecies

1 order 2 class AnimalSpecies categorizes Animal {
2 regularity instancesAreWarmBlooded: Boolean
3 determinesValue isWarmBlooded
4 ref taxonAuthor : Person };
5 class Organism { weight : Number };
6 class Animal specializes Organism { isWarmBlooded :Boolean };
7 class Lion : AnimalSpecies specializes Animal {
8 ref taxonAuthor = CLinnaeus
9 instancesAreWarmBlooded = true };

10 class Person { name : String };
11 individual CLinnaeus : Person { name = ‘Carl Linnaeus ’ };
12 individual Cecil : Lion { isWarmBlooded = true };

Individuals (entities that are not classes) are marked individual. Simple class
declarations capture first-order classes (e.g., Animal, Lion and Person), whose in-
stances are individuals (e.g., Cecil and CLinnaeus). Higher-order classes are declared
by using a order modifier (e.g., AnimalSpecies in Line 1 is a second-order class).

Differently from the conventional powertype approach, rather than relying on do-
main relations with no specialized semantics (such as ranked in or classified by in
Fig. 1), ML2 enables the expression of instantiation between classes, which is repre-
sented by a colon. Given the specialized semantics, constraints enforce that high-order
classes can only have as instances classes at the order immediately below. Standard
modeling features of specialization, attributes and references are also present in the lan-
guage, and both attributes and references may have values assigned for their instances.
For example, ‘Carl Linnaeus’ is the name of CLinnaeus (an individual Person) and
CLinnaeus is the taxonAuthor of Lion. In addition, regularity features are used to
represent deep instantiation [2], when the attributes of a higher-order type affect entities
at lower levels. By assigning instancesAreWarmBlooded=true in the declaration of
Lion (Line 7), the value of isWarmBlooded is regulated for all its instances, including
Cecil. The determinesValue keyword (Line 3) specifies the sort of regulation and
the regulated feature. (See [12, 13] for other kinds of regulation supported in ML2.)

The powertype pattern semantics is supported with the so-called categorization
relations between classes. All instances of a class that categorizes another (in an
adjacent lower order) are (direct or indirect) specializations of the categorized class.
Thus, by declaring that AnimalSpecies categorizes Animal (Line 1), all instances
of AnimalSpecies (such as Lion) specialize Animal (a constraint enforced by ML2).

4 A Systematic Two-Level Solution and its Alloy Implementation

Similarly to the powertype pattern discussed in Section 2, we reify the instance facet of
a type in our two-level representation scheme. However, differently from the powertype
pattern, the instance and type facets are systematically linked to each other. The result is
that the expression of multi-level constraints becomes possible, and, at the same time,
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the technique-native support for instantiation, attribute assignment and specialization
is preserved. We establish the following representation rules for a two-level scheme:
(i) each ML2 class is represented as a regular class (capturing its type facet); (ii) each
ML2 class (at any order) is reified at the instance level (capturing its instance facet);
(iii) native instantiation of a class is reflected in explicit instantiation links between a
class instance and the reified class being instantiated; (iv) in addition to instantiation,
specialization is reified as links between the reified classes. In order to ensure that the
multi-level semantics is preserved, (v) all classes specialize classes in a top-level library
corresponding to ML2 notions (Type, its ordered specializations, Individual).

The established correspondence results in the representation schema shown in Fig-
ure 2. The topmost layer that corresponds to ML2 notions is represented in white. It is
extended by introducing Taxonomic Rank, Animal Species, Animal and Lion corre-
sponding to the classes in Listing 1.1 (Person was omitted due to space constraints).
The figure also shows a possible instance level. As required, it includes reified instances
of Type (e.g., lionReified) that correspond to the various classes on the left-hand
side of the figure (e.g., lionReified corresponds to the Lion class). It also shows
a possible instance of Lion, called cecil. The object level shows cecil linked to
lionReified through the instance of association. As discussed in Section 2, there
is a purposeful duplication of the Lion entity in order to reveal its instance facet at the
object level through lionReified.

We employ this principled approach to implement a transformation from ML2 into
a conventional two-level language dubbed Alloy [17]. Alloy is a formal two-level lan-
guage designed to support lightweight formal techniques for simulation and verification
of model specifications. For the implemented transformation, an Alloy specification of
the top-level ML2 layer (in fact, MLT* [9]) is imported in all of the generated Alloy
specifications, serving as the topmost layer for our transformation. We shall explore
how each representation rule discussed above is applied in the ML2 to Alloy transfor-
mation. In order to illustrate the application of the transformation, we use the example
discussed in Listing 1.1 and the corresponding Alloy fragment in Listing 1.2.

Fig. 2. Reification example.
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Listing 1.2. Fragment of Alloy specification involving Lion

1 sig Animal in Organism { isWarmblooded: Boolean }
2 one sig AnimalReified in Species {}
3 fact AnimalReifiedDefinition {
4 all e: Entity | e in AnimalReified iff
5 (all e’: Entity | iof[e’,e] iff e’ in Animal) }
6 sig Lion in Animal {}
7 one sig LionReified in AnimalSpecies {} {
8 taxonAuthor = CarlLinnaeus
9 instancesAreWarmBlooded = true }

10 fact LionReifiedDefinition {
11 all e: Entity | e in LionReified iff
12 (all e’: Entity | iof[e’,e] iff e’ in Lion) }
13 one sig Cecil in Lion {}
14 one sig CarlLinnaeus in Person {} { name = "Carl Linnaeus" }
15 sig AnimalSpecies in Species {
16 instancesAreWarmBlooded: Boolean }
17 one sig AnimalSpeciesReified in Order2Type {}
18 fact AnimalSpeciesReifiedDefinition {
19 all e: Entity | e in AnimalSpeciesReified iff
20 (all e’: Entity | iof[e’,e] iff e’ in AnimalSpecies) }
21 fact AnimalSpeciesCategorizesAnimal {
22 categorizes[AnimalSpeciesReified ,AnimalReified] }
23 fact instancesAreWarmbloodedRegulatesisWarmblooded {
24 all x:Animal |
25 x.isWarmblooded = (x.iof). instancesAreWarmblooded }

Concerning rule (i), class declarations, native specialization, typing of relations
and attributes, are all supported by Alloy directly. This allows for a direct repre-
sentation of classes, e.g., in lines 1, 6 and 15 (Animal, Lion and AnimalSpecies)
and respective specializations (Species, Organism and Person were omitted due
to space constraints). Attribute and reference declarations are supported directly (see
isWarmBlooded in line 1 and instancesAreWarmBlooded in line 16).

Concerning rule (ii), we include the instance facet of classes into the specifi-
cation. Due to the absence of native support for instance declaration in Alloy, we
make use of singletons, see lines 2, 7 and 17 (AnimalReified, LionReified,
AnimalSpeciesReified), a solution we also employ for the representation of individ-
uals in lines 13 and 14 (Cecil and CarlLinnaeus). These instance facets (for classes
and individuals alike) are the holders of any assignments and are used to declare cate-
gorizations (see lines 21 and 22 for AnimalSpecies categorizing Animal).

Concerning rule (iii), instantiation is reified through the iof predicate that is defined
in the top-level library for MLT* imported in all specifications. This rule further binds
the different facets of classes by enforcing that, whenever an entity natively instantiates
a class (as denoted with the keyword in) it also has an explicit instantiation link with
the reified class (and vice-versa). See lines 3–5, 10–12 and 18–20 which respectively
bind Animal and AnimalReified, Lion and LionReified, and AnimalSpecies and
AnimalSpeciesReified, following the same transformation pattern.
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Specialization links between reified classes (iv) do not have to be declared explic-
itly, as they are a logical consequence of rule (iii) and the definition of specialization in
the top-level library. Rule (v) results in declaration of specializations towards the library
classes (Order1Type, Order2Type). Finally, regularity attributes result in the declara-
tion of a regulation fact (lines 23–25). In this case, all animals of a certain species are
warmblooded (or not) as defined by the species instancesAreWarmBlooded attribute.

The transformation was implemented on top of the Eclipse-based ML2 editor
https://github.com/nemo-ufes/ML2-Editor. The full implementation of the
transformation and the listing of the original ML2 model and corresponding Alloy spec-
ification can be found in https://github.com/nemo-ufes/ml2-to-alloy.

5 Final Considerations

In this paper, we have shown how to capture ML2 multi-level models in a two-level
representation scheme in Alloy. The approach builds up on the powertype pattern, by
reifying the instance facet of types. Differently from the powertype pattern, we system-
atically link type and instance facets. As a result, a two-level technique such as Alloy
can be directly used in the simulation and verification of multi-level models. By incor-
porating a formally defined (MLT*-based) top-level library, we can enforce consistent
usage of ML2 notions, from instantiation and order stratification to regularity features.

The literature presents a number of approaches for dealing with multi-level domains
within the limitation of two-level schemes. We observe among these three typical cases:
(i) the application of the powertype pattern that captures relations between classes of
different orders [15]; (ii) the reification of classes as entities that capture their instance
facets [18]; (iii) and the application of metamodeling strategies consisting on stacking
two-level models to represent higher-order classes as metaclasses [21]. Each of these
approaches exhibit some limitations in the representation of multi-level domains: (i)
powertype-based approaches fail to link instance and type facets and do not capture
the specialized instantiation semantics underlying categorization relations, (ii) simple
reification approaches fail to provide level structuring mechanisms which are require
to rule out unsound models [5]; and (iii) the stacking (or cascading) approach places
corresponding entities in distinct two-level models preventing the expression of cross-
level relations (such as named by between Species and Person).

We expect the transformation approach we discuss here to be applicable to other
two-level representation languages with minor effort. We are working on a first-order
logic formalization of the approach, in order to generalize it to other techniques beyond
Alloy. It is part of our present research agenda to explore the implications of our ap-
proach to the representation of multi-level models in OWL-DL and UML, following the
work reported in [6, 11].
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