
Can BPMN Be Used for Making Simulation Models?

Giancarlo Guizzardi1 and Gerd Wagner2,

1 Computer Science Department, Federal University of Espírito Santo (UFES),

Av. Fernando Ferrari, s/n29060-970 Vitória, Espírito Santo, BRAZIL
gguizzardi@inf.ufes.br

2 Institute of Informatics, Brandenburg University of Technology,
P.O.Box 101344, 03013 Cottbus, GERMANY

G.Wagner@tu-cottbus.de

Abstract. We investigate the question if BPMN can be used for simulation
modeling by evaluating it against ABDESO, a foundational ontology for agent-
based discrete event simulation. Since a simulation model is intended to capture
a real-world system, BPMN, if used as the modeling language for making the
simulation model, should have a “real-world semantics” based on a founda-
tional ontology for agent-based discrete event simulation.

Keywords: BPMN, agent-based simulation, foundational ontology.

1 Introduction

Business process management (BPM) includes both business process modeling and
business process simulation. Often, the animation of a business process model is
considered to be a business process simulation. However, such a simulation is not
really business simulation in the full sense, since this is rather understood as a
simulation of the business system, and not of just one of its processes. A business
system is a social system (an organization) having one or more actors that are
involved in zero or more business processes at any time. Since actors are essential for
business systems, it is natural to use agent-based simulation for business simulation.

The Business Process Modeling Notation [1] is today’s de-facto business process
modeling standard. It is considered to be understandable by all kinds of users, from
the business analysts who create the initial drafts of the business processes, to the
technical developers responsible for writing the software applications that will
perform those processes, and finally, to the business people who will manage and
monitor them. BPMN can be used both for making intuitive, non-executable business
process models and for making executable models, such as needed for business
process simulation.

In this paper, we investigate the question if a business system simulation model can
be obtained by a set of executable BPMN models, which exhaustively describe its
process types together with the actors participating in them. We approach this
question by evaluating BPMN against ABDESO, a foundational ontology for agent-

mailto:gguizzardi@inf.ufes.br
mailto:G.Wagner@tu-cottbus.de

based discrete event simulation that has been proposed in [11]. Since a simulation
model is intended to capture a real-world system, BPMN, if used as the modeling
language for making the simulation model, should have a “real-world semantics”
based on a foundational ontology for agent-based discrete event simulation.

In recent years, there has been a growing interest in the application of foundational
ontologies (also known as upper level, or top-level ontologies) for providing real-
world semantics for conceptual modeling languages, and theoretically sound
foundations and methodological guidelines for evaluating and improving the models
made using these languages. While the value of an ontologically well-founded
conceptual modeling language is widely acknowledged in the areas of information
system and software system engineering, as indicated by the great number of recent
publications in this area, the issue of investigating the ontological foundations of
simulation languages did not yet receive much attention in the scientific literature.

While there are several research papers on the ontological foundations of
organization and business process modeling (see section 2), there has been no attempt
yet to demonstrate the value of an ontologically well-founded modeling language for
ABS. The main benefit obtained from establishing the onto-logical foundations of the
core concepts of agent-based modeling languages is a clarification of their real world
semantics. An ontological semantics of a simulation modeling language leads to a
higher overall quality of the simulation models expressed in that language with
respect to comprehensibility, maintain-ability, interoperability and evolvability.

In a series of publications [6], [7], [8], [9] we have reported about our project for
developing a foundational ontology called “UFO” (for Unified Foundational
Ontology) by employing theories from Formal Ontology, Cognitive Psychology,
Linguistics, Philosophy of Language and Philosophical Logics. The core of UFO has
been established through the development of an ontology of endurants by the first
author in [5] This foundational ontology has been successfully applied in the analysis
of several important conceptual modeling constructs such as Roles, Types, Part-
Whole Relations, Attributes, and Datatypes, among others.

While the ontological foundations of basic DES have been analyzed in [10], using
the discrete event system ontology DESO based on the UFO layers A and B (about
objects and events), the ontological foundations of agent-based DES have been
analyzed in [11], using the agent-based discrete event system ontology ABDESO
based on the UFO layer C about agents.

The remaining of this article is organized as follows. In section 2, we discuss some
related work. Section 3 contains a summary of UFO, and of ABDESO. Then, in sec-
tion 4, we summarize the essentials of BPMN, and finally, in section 5, we use
ABDESO for evaluating the suitability of BPMN as a business simulation modeling
language.

3 Related Work

In [3], using the Web ontology language OWL, an ontology defining an agent-
based simulation framework is presented and possibilities for using OWL’s
automated reasoning capabilities are discussed.

In [12], it is proposed to use ontologies (in the sense of conceptual domain models)
for making the scientists’ conceptual models more coherent with the simulation
program code. This amounts to making an explicit conceptual model (using UML
and/or OWL) before starting to code a simulation. However, although the paper refers
to philosophical work on ontologies, foundational ontologies are not considered.

There is a large body of work, in which foundational ontologies are used for
evaluating business process modeling languages, see, e.g [4]. As an example of more
recent work on investigating the ontological foundations of multi-agent systems, see
[2], in which the ontological modeling of organizations is discussed.

So, while there have been several proposals about how to use ontology engineering
technologies, such as OWL, in agent-based simulation engineering, and there is a
large body of work on using foundational ontologies for evaluating business process
modeling languages, including BPMN, we were not able to find any work on the
evaluation of BPMN as a business simulation language.

4 UFO and ABDESO

Since the development of UFO is an ongoing project, we use a simplified version
of it, called Essential Unified Foundational Ontology (eUFO), which restricts both
the breadth and the depth of UFO, and simplifies its philosophical terminology,
harmonizing it with informatics terminology as much as possible.

In this section, for making the present paper self-contained, we briefly summarize
the base layer of eUFO, called eUFO-0, as well as its layer eUFO-A about substance
individuals and trope individuals, and its layer eUFO-B about events, using UML
class diagrams. These layers of eUFO have been more extensively discussed in [10].

eUFO-0 defines a number of basic ontological categories, as depicted in Figure 1
below, making a fundamental distinction between individuals, which are things that
exist in time and space in “the real world” and have a unique identity, and universal,
which are feature-based classifiers that classify, at any moment in time, a set of
individuals with common features.

Set

Individual
*

extension

1

Thing

member

*

*

part

*

*

subset 1..**

Abstract
Thing

Datatype

valueSpace1

*
lexicalSpace1

*

SymbolSet

UFO-B::Event

Universal

UFO-A::Object

UFO-A::Trope
Individual

UFO-A::Substance
Individual

Fig. 1. eUFO-0 − the base layer of eUFO

We distinguish between three kinds of individuals: substance individuals, trope
individuals and events. As opposed to substance individuals, trope individuals can

only exist in other individuals, i.e., they are existentially dependent on other
individuals. The distinction between substance individuals and events can be
understood in terms of their relationship to time. Substance individuals are wholly
present whenever they are present, i.e., they are in time. Events happen in time, they
may have temporal parts.

4.1 Substance Individuals, Attributions, Relationships and References

Examples of substance individuals are: the person with name “Gerd Wagner”, the
moon, or an amount of sand. Examples of events are: today’s rise of the sun, my
confirmation of an e-commerce purchase order through clicking the OK button, or the
Second World War. Examples of trope individuals are: the redness of John’s T-shirt,
Giancarlo’s employment with UFES, or my daughter’s belief in God.

The ontology of substance individuals and trope individuals forms the UFO layer
A, which is depicted in Figure 2, while the ontology of events forms the UFO layer B,
which is depicted in Figure 3.

There are two kinds of trope individuals: (a) Intrinsic trope individuals can be
qualities such as an individualized color or a temperature, and modes such as a skill, a
belief, or an intention; (b) Relational trope individuals or relators: a medical
treatment, a purchase order, or a social commitment. While qualities and modes
depend on one single individual (their bearer), in which they inhere, relators depend
on two or more individuals (their relata), which they mediate.

We distinguish between the color of a particular apple (as a quality of the apple)
and the color data value that we associate with this quality in an attribution (with the
help of an attribute). This data value is a member of the value space of the data type
of the attribute. As an example, consider the attribute hairColor, which is applicable
to persons, and associated to a datatype with a value space consisting of color names.
Then, the triple <john, hairColor, grey> represents an attribution that makes the
sentence “The hair color of John is grey” true.

While a formal relationship, such as [Brandenburg is part of Germany], holds
directly, for a material relationship, such as [Paul is being treated in the medical unit
M], to exist, something else, which mediates the involved individuals (Paul and M),
must exist. Such a mediating individual with the power of connecting individuals is
called a relator. For example, a medical treatment connects a patient with a medical
unit; an enrollment connects a student with an educational institution; a covalent bond
connects two atoms. In general, relators are founded on events.

Fig. 2. eUFO-A − an ontology of substance individuals.

In a correspondence theory of truth (such as Tarski’s semantics of predicate logic),
attributions, references and relationships are considered as “truth makers” (“facts”)
that make corresponding sentences true.

4.2 Events

Events are individuals that may be composed of temporal parts. They happen in
time in the sense that they may extend in time accumulating temporal parts. An event
cannot exhibit change in time like a substance individual.

Fig. 3. eUFO-B − an ontology of events.

Figure 3 depicts the core fragment of the eUFO-B ontology of events, which can
be atomic or complex, depending on their mereological structure. Events existentially

depend on their participants in order to exist. For instance, in the event of Caesar
being stabbed by Brutus, we have the participation of Caesar himself, of Brutus and
of the knife. Each of these participations is itself an event (an object participation
event), which existentially depends on a single object. Special cases of object
participation events are object creation, object change and object destruction events.

Events may change the real world by changing the state of affairs from a pre-state
situation to a post-state situation. Each situation is determined by a set of associated
object snapshots and a set of associated material relationships holding between the
involved objects, where an object snapshot is a set of attributions and references of a
particular object.

4.3 Universals

Universals classify individuals, which are said to be their instances. The set of all
instances of a universal is called its extension. We consider seven kinds of universals:
event types, object types, quality universals, attributes, relator universals, reference
properties and material relationship types. There are other kinds of universals, but
these seven are the most relevant for conceptual modeling.

Fig. 4. eUFO-U − an ontology of universals (types).

While the notions of attribute, relationship type and reference property are well-
known in computer science in the area of information and database modeling, their
ontological foundation in connection with quality universals and relator universals is
not well-known.

Different Kinds of Object Types
We distinguish between the different kinds of object types shown in Figure 5.

Fig. 5. The different kinds of object types of eUFO-U.

While all object types carry a principle of application, only sortal types carry a
principle of identity for their instances. A principle of application allows to judge
whether an individual is an instance of that object type. In contrast, a principle of
identity allows to judge whether two individuals are the same. Non-sortal types, such
as RedThing, are called mixin types.

Within the category of sortal types, we make a further distinction based on the
formal notions of rigidity and anti-rigidity: A sortal type U is rigid if for every
instance x of U, x is necessarily (in the modal sense) an instance of U. In other words,
if x instantiates U in a given world w, then x must instantiate U in every possible
world w’. In contrast, a sortal type U is anti-rigid if for every instance x of U, x is
possibly (in the modal sense) not an instance of U. In other words, if x instantiates U
in a given world w, then there must be a possible world w’ in which x does not
instantiate U. We call a rigid sortal type a base type.

For any anti-rigid object type A, there is a unique ultimate base type B, such that:
(i) A is a subtype of B; (ii) B supplies the unique principle of identity obeyed by the
instances of A. There is a specialization condition SC such that x is an instance of A
iff x is an instance of B that satisfies SC. A further clarification on the different types
of specialization conditions allows us to distinguish between two different kinds of
anti-rigid object types: roles and phase types. Phase types constitute possible stages in
the history of an individual.

For any role (e.g. Student) there is an underlying binary material relationship
type or reference property (e.g. students) such that the extension of the role (e.g.
the set of current students of an educational institution) is the range of that reference
property.

Quality Universals and Attributes
A quality universal classifies individual qualities of the same type. A quality

universal can be associated with one or more datatypes, such that any particular
quality corresponds to a specific data value from the value space of the datatype. The
association between qualities from some quality universal and the corresponding data
values from an associated datatype is provided by an attribute, which is a universal
that classifies attributions. A quality universal can be captured by one or more
corresponding attributes, each of them based on a different datatype.

E.g., the quality universal “hair color” could be captured by an attribute with the
range of RGB byte triples or by an attribute with the range of natural language color

names. Consequently, we may have more than one attribution for a particular quality,
one for each associated attribute.

Relator Universals, Material Relationship Types and Reference Properties
A relator universal classifies individual relators of the same type. The material

relationship type R induced by a relator universal R classifies all material
relationships induced by relators from R. Since each material relationship corresponds
to a tuple, R also has a tuple extension (i.e. a relation in the sense of set theory). A
material relationship type is a universal that classifies material relationships, which
are ‘truth makers’ for material relationship statements.

A reference property represents a binary material relationship type, corresponding
to a relator universal whose instances mediate exactly two individuals. Its tuple
extension is a subset of the Cartesian product of the extensions of the two involved
types. The first type is called the domain, and the second one the range of the
reference property.

4.4 DESO - A Foundational Ontology for Basic DES

We summarize DESO, a foundational Discrete Event System Ontology on the
basis of eUFO, proposed in [10].

The Run-Time Ontology DESO-I

EventSituation

pre-state

1 *

post-state 1 *

Object

*

participants

*

ObjectSnapshot

1..*
1..*

*
1

PhysicalObject

ObjectCreationEvent

0..1

1

ObjectChangeEvent

*

ObjectDestructionEvent

0..1

AtomicFact

1..*

1

Attribution

AtomicEvent
*

referent

1

*

referer

1

*

bearer 1

DataValue

1

*

Reference

Fig. 6. The categories of individuals, as defined by DESO-I.

In DESO-I, for simplicity, we assume that there are only binary relationships,
which are represented by references specifying an object as the value of a reference
property. An atomic fact is either a reference or an attribution, as depicted in Figure
6.

Notice that in conceptual modeling, and in simulation modeling, we are not really
interested to consider all the things that constitute a real-world system. We call those
things, in which we are interested, entities, including: physical objects, events and
certain material relationships. This choice implies that we do not want to include
more abstract concepts, like relators or qualities, in a simulation model.

All these kinds of entities are classified with the help of entity types, as explained
in the next Subsection. Entity types allow describing the entities classified by them
with the help of attributes and reference properties. Since we also want to be able to
describe certain material relationships in this way, it is natural to subsume them under
the concept of entities.

The Design-Time Ontology DESO-U
At design-time, we describe a discrete event system by defining the various entity
types, the instances of which are part of the running system. In addition to the base
concept data type from eUFO-0, also the concepts of (physical) object types,
attributes and reference properties from eUFO-U are needed in DESO for allowing to
represent abstractions of discrete event systems. In particular, the concepts of object
types and event types are needed. Being special kinds of entity types, both object
types and event types have attributes and reference properties, as depicted in Figure
7.

Fig. 7. The categories of types, as defined by DESO-U

4.4 ABDESO - A Foundational Ontology for ABS

We now summarize ABDESO, our agent-based discrete event system ontology,
which extends DESO by adding the concept of agents and other concepts related to
agency. Clearly, agents are special objects subsuming not only human beings, but also
all kinds of living beings (including insects and bacteria), social systems (such as
organizations), and also certain artificial systems (such as robots). All these objects

are interactive systems that are able to interact with passive objects in their
environment, or with each other, in a purposeful way. The question what constitutes
interaction is closely related to the question of what is an action.

In philosophy, this question has been approached by asking how to distinguish “the
things that merely happen to people − the events they undergo − and the various
things they genuinely do”, as [13] has put it. We define actions to be those events that
are the direct result of the purposeful behavior of an interactive system. Notice that
this definition does not exclude higher-level action concepts such as intentional
actions, which we consider to be a special case of our more general action concept.
So, we do not require an agent to have a mental state with beliefs and intentions, as it
is common in ‘realistic’ philosophical theories of humans as cognitive subjects, and
also in Artificial Intelligence approaches to multi-agent systems, in particular in the
popular Belief-Desire-Intention (BDI) approach. Rather, we want to be able to
characterize interactive systems as special objects that are distinct from passive
objects, no matter if an interactive system can be considered intentional or not. It is
obvious that we have to include in our account of interactive systems the concepts of
perception and action. We include both of them as special kinds of events, viz
perception events and action events. For being able to model communication as a
special kind of interaction between agents, we introduce the concepts of a message
and a communication event.

The influence of perceptions on the actions of an agent is given by its reactive
behavior, which is based on behavior patterns in the form of reaction rules. A
perception event may lead, via a reaction rule, to a resulting action of the agent in
response to the event, or to an update of the agent’s information state, which may
include beliefs. We assume that beliefs are expressed as belief statements in the
agent’s belief representation language. The influence of actions, and other events, on
the perceptions of an agent is given by the causal laws of the agent’s environment,
taking the form of transition rules, (depicted in Fig. 7 about DESO-U), which
determine the caused perception events.

Fig. 8. The basic categories of ABDESO.

Beliefs are part of the agent’s information state, which is the agent’s basis for
making action decisions. Simple belief statements take the form of entity-property-

value triples, which are special cases of atomic sentences of predicate logic. These
concepts are depicted in Figure 8.

A communication event is a complex event consisting of an in-message event
(being a special case of a perception event) and an out-message event (being a special
case of an action event). This is described in Figure 9.

Fig. 9. In-message events and out-message events.

We claim that these seven concepts: perception events, action events, messages
and communication events, consisting of out-message events and in-message events,
as well as beliefs, as depicted in Figures 8 and 9, form the foundation of an
ontological account of agents as interactive systems, no matter if agents are
intentional or not.

In the next section, we add a few more concepts to this foundation, for being able
to account for business systems, or organizations, as institutional agents.

Organizations as Institutional Agents
An agent type is associated with reaction rules, which define the reactive behavior

of agents of that type. When a reaction rule is triggered by a perception event, this
may result in zero or more action events.

Any agent has exactly one agent base type and, in addition, may have zero or more
agent roles representing roles defined by an institutional agent (such as an
organization) and played by the agent as a subagent of the institutional agent. The
role's reactive behavior rules define implicit duties to react to certain events (resp.
incoming messages).

The institutional agent's reactive behavior rules define the delegation of processing
incoming messages to subagents.

UFO-C::Agent

AgentType

InstitutionalAgent

AgentRoleAgentBaseType

baseType1

*
role*

*

definedRole

*

0..1
subagent

*

*

UFO-U::ObjectType

ReactionRule

PerceptionEventType

ActionEventType

1*

*
triggering event type

1

*

resulting event type

*

Fig. 10. Agent role types and institutional agents.

5 Soundness and Completeness of Simulation Languages

In order for an ABS model M to faithfully represent an agent-based discrete event
system abstraction A, the simulation language L used to make M should faithfully
represent the conceptualization of -based discrete event systems used to conceive the
abstraction A. An ABS language can be evaluated by comparing a representation of
its concepts (typically provided by a metamodel of the language) to an ontology of
agent-based discrete event systems. The stronger the match between them, the easier
it is to communicate and reason with models made in that language.

Since ABDESO represents a general conceptualization of agent-based discrete
event systems, it can also serve as a reference ontology for evaluating the simulation
languages of ABS frameworks. For any given ABS language L, we may consider (1)
a representation mapping from the concepts of ABDESO to the elements (or
modeling primitives) of L and (2) an interpretation mapping from the elements of L to
the concepts of ABDESO. If these mappings are far from being isomorphisms, this
may indicate deficiencies (soundness and completeness problems) of L.

There are four properties of an ABS language to be checked in its evaluation:

1. Soundness: L is sound wrt ABDESO iff every element of L has an
interpretation in terms of a domain concept from ABDESO. The degree of
soundness can be measured relatively as the number of L elements that have
an ABDESO interpretation divided by the total number of L elements.

2. Completeness: L is complete wrt ABDESO iff every ABDESO concept is
represented by a modeling primitive of L. The degree of completeness can
be measured relatively as the number of ABDESO concepts that are
represented by an element of L divided by the total number of ABDESO
concepts.

3. Lucidity: L is lucid wrt ABDESO iff every element of L has at most one
interpretation in ABDESO. The degree of lucidity can be measured
relatively as the number of L elements that have at most one interpretation in
ABDESO divided by the total number of L elements.

4. Laconicity: L is laconic wrt ABDESO iff every domain concept from
ABDESO is represented by at most one element of L. The degree of
laconicity can be measured relatively as the number of ABDESO concepts
that are represented by at most one element of L.

The lower these degrees are for a given ABS language, the more problems may be
expected from using a model expressed in it, e.g. by communicating incorrect
information and inducing the user to make incorrect inferences about the semantics of
the domain.

We now apply the described method for providing a brief evaluation of the
soundness and lucidity of BPMN.

6 BPMN

In this section, we provide a brief summary of the essential BPMN constructs
(which are described in the metamodel shown in Figure 8). BPMN defines Business
Process Diagrams, which may describe processes of different types. We focus on
modeling proprietary (also called “private”) business processes, i.e. processes that
allow a complete pre-scriptive specification of their workflow since they happen
within one domain of control. Notice that what is called a Process in BPMN, is, in
fact, rather a process type or process specification. The same terminological looseness
also holds for most other BPMN terms (e.g. an Event is an event type).

A Process may be associated with a Pool, which is visually rendered as a
rectangular container and corresponds to the business actor, or Participant, “owning”
the process. A Pool may be compartmented into several Lanes, informally
representing associated actors, each containing some part of the Process associated
with the actor under the same domain of control. A Process essentially consist of
‘flow objects’ (Events, Activities and Gateways), ‘connectivity objects’ (Sequence
Flows, Message Flows and Associations) and ‘artifacts’ (like Messages and Data
Objects).

Fig. 8. BPMN core elements

Events (rendered as circles) and Activities (rendered as rectangles with rounded
corners) are sequenced with the help of Sequence Flows (rendered as solid arrows)
and Gateways (rendered as diamonds), which allow for AND, XOR as well as OR
splits and joins of control flow branches.

Activities subsume Tasks, which represent atomic Activities (defined with the help
of an attribute called taskType), and Sub-Processes. Tasks can be assembled into Sub-
Processes, for allowing reuse. Pools are connected through Message Flows that
represent message exchange patters.

Since BPMN is a process modeling language, a full simulation model may be
obtained by combining an information model (e.g. in the form of a UML class model)
with one or more BPMN process models.

7 Evaluation of BPMN

We evaluate BPMN by considering 1) the interpretation of its core elements in

ABDESO, and 2) the representation of the ABDESO core concepts with BPMN.
Since we do not consider the issue of event composition in this preliminary analysis,
we exclude Sequence Flows and Gateways from the core concepts under
consideration. We also exclude the abstract super-concepts Flow Object, Event,
Activity and Connectivity Object, which are non-terminals in the abstract syntax tree
defined by the BPMN metamodel, and, therefore, do not really count.

7.1 Evaluating Soundness and Lucidity

As a result of our preliminary evaluation of BPMN, Table 1 lists the elements of a
relevant BPMN subset together with their interpretation in ABDESO.

Table 1: The ABDESO interpretation of BPMN elements

BPMN element ABDESO concept(s)
Pool Agent (Type), Physical Agent (Type)
Participant Agent (Type), Physical Agent (Type)
Lane Sub-Agent (Type)
Process Complex Event Type
Task Action Event Type
Sub-Process Activity Complex Event Type
Start Event Event Type
Intermediate Event Event Type
End Event Event Type
Message Message Type
Message Event In-Message Event Type, Out-Message Event Type
Message Flow Communication Event Type
Data Object Object Type
Soundness (Lucidity) 100% (70%)

As we can see from this table, the considered core subset of BPMN is 100% sound
wrt ABDESO, since all elements of it have an ABDESO interpretation. It is 70%
lucid with respect to ABDESO, since 4 out of 13 elements have more than one
ABDESO interpretation.

7.2 Evaluating Completeness and Laconicity

When evaluating the completeness and laconicity of BPMN with the help of a
representation mapping, we do not include the abstract concepts of ABDESO (Entity,
Fact Triple, Entity Type, Agent Type and Mental Mode). In general, such abstract
concepts (or language elements) correspond to non-terminals in the abstract syntax
tree defined by the ontology metamodel. They serve as auxiliary super-concepts, so
they do not count as much as the concrete concepts, which are terminals.

As we can see from Table 2 below, the considered core subset of BPMN is 60%
complete wrt ABDESO, since 15 out of 25 ABDESO concepts can be represented in
BPMN. It is 32% laconic wrt ABDESO, since 8 out of 25 ABDESO concepts have a
unique representation.

The high degree of incompleteness of BPMN results mainly from BPMN’s
shortcomings in its information modeling capabilities. Unfortunately, the designers of
BPMN decided to ignore object-oriented information modeling concepts, as defined
by UML class diagrams. Therefore, BPMN does not support the concepts of attributes
and reference properties for its Data Objects, which correspond to object types in
weak sense, only.

Table 2: The representation of ABDESO concepts in BPMN

DESO concepts (11) BPMN (4/2)
Object type Data object
Physical object type Data object
Attribute
Datatype
Reference property

Atomic event type Start Event, Intermediate Event,
End Event

Complex event type Process, Sub-Process Activity
Object destruction event type
Object change event type
Object creation event type
Transition rule

ABDESO concepts (14) BPMN (11/6)
Agent (base type) Participant, Pool
Agent role Participant, Pool
Physical agent (base type) Participant, Pool
Physical agent role Participant, Pool
Institutional agent (type) Participant, Pool
Sub-Agent (Type) Lane
Action event type Task
Perception event type
Message type Message
Communication event type Message Flow
Out-message event type Message Event
In-message event type Message Event
Belief (entity) type
Reaction rule
Completeness (Laconicity) 60% (32%)

8 Conclusions

Using the Agent-Based Discrete Event Simulation Ontology (ABDESO), extending
the Discrete Event Simulation Ontology (DESO), and derived from the Unified
Foundational Ontology (UFO), we have evaluated the suitability of BPMN as a
business simulation language. The preliminary result of 100% soundness suggests that
the core elements of BPMN have been well-chosen. However, the results of only 70%
lucidity, 60% completeness and 32% laconicity suggest that there are quite a few
ambiguous elements, missing concepts, and redundant elements in BPMN.

Our results are preliminary, since we did not yet investigate all relevant BPMN 2
elements, but only a core part of BPMN. In future work, we plan to extend our
analysis to a more complete core fragment of BPMN and also discuss each identified
deficiency in some detail.

Acknowledgments. The research of the first author has been partially supported by
FAPES (Grant #45444080/09) and CNPq (Grant #481906/2009-6 and Productivity
Grant #309382/2008).

References

1. BPMN, The Business Process Modeling Notation, http://www.omg.org/spec/BPMN/
2. Bottazzi E., Ferrario, R.: Preliminaries to a DOLCE Ontology of Organizations, In:

International Journal of Business Process Integration and Management, vol. 4, no. 4, pp.
225–238, (2009)

3. Christley, S., Xiang, X., Madey, G.: An Ontology for Agent-Based Modeling and
Simulation. In Proceedings of the Agent 2004 Conference, (2004)

4. Green, P., Rosemann, M.: Business Systems Analysis with Ontologies. Idea Group
Publishsing, (2005)

5. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, PhD Thesis,
University of Twente, The Netherlands, (2005)

6. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S.: Grounding Software Domain Ontologies in
the Unified Foundational Ontology (UFO): The Case of the ODE Software Process
Ontology. In XI Ibero-American Workshop on Requirements Engineering and Software
Environments (IDEAS’2008), Recife, (2008)

7. Guizzardi, G., Wagner, G.: A Unified Foundational Ontology and some Applications of it
in Business Modeling. In: Janis Grundspenkis and Marite Kirikova (eds.), In Proceedings
of the CAiSE'04 Workshops. Faculty of Computer Science and Information Technology,
Riga Technical University, Riga, Latvia, June 7–11, vol.3, pp.129–143. Riga, Latvia,
(2004)

8. Guizzardi, G., Wagner, G.: Towards Ontological Foundations for Agent Modeling
Concepts using UFO. In Agent-Oriented Information Systems (AOIS), selected revised
papers of the Sixth International Bi-Conference Workshop on Agent-Oriented Information
Systems 2005. Lecture Notes in Computer Science, vol. 3508, pp.110–124, Springer
Berlin/Heidelberg, (2005)

9. Guizzardi, G., Wagner, G.: Using the Unified Foundational Ontology (UFO) as a
Foundation for General Conceptual Modeling Languages. In: Poli, R. (Ed.), Theory and
Application of Ontologies. Springer Berlin/Heidelberg, (2010)

10. Guizzardi, G., Wagner, G.: Towards an Ontological Foundation of Discrete Event
Simulation. In B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan and E. Yücesan (eds.)
In Proceedings of the 2010 Winter Simulation Conference. December 2010, Baltimore
(MD), USA. pp. 652–664, (2011), http://www.informs-sim.org/wsc10papers/059.pdf

11. Livet, P., Müller, J.-P., Phan, D., Sanders, L.: Ontology, a Mediator for Agent-Based
Modeling in Social Science. Journal of Artificial Societies and Social Simulation vol.13,
no.1, (2010), http://jasss.soc.surrey.ac.uk/13/1/3.html

12. Wilson, G.: Action. In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy
(Fall 2009), http://plato.stanford.edu/archives/fall2009/entries/action/

13. Guizzardi, G.,Wagner, G.: Towards an Ontological Foundation of Agent-Based
Simulation. In: S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu (eds.)
Proceedings of the 2011 Winter Simulation Conference, (December 2011), Phoenix,
Arizona, USA

	7.1 Evaluating Soundness and Lucidity
	7.2 Evaluating Completeness and Laconicity

