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Abstract—In recent years, there has been a growth in the use of
reference conceptual models, in general, and domain ontologies,
in particular, to capture information about complex and critical
domains. These models play a fundamental role in different types
of critical semantic interoperability tasks. Therefore, it is essential
that domain experts are able to understand and reason using the
models’ content. In other words, it is important that conceptual
models are cognitively tractable. However, it is unavoidable that
when the information of the represented domain grows, so
does the size and complexity of the artifacts and models that
represent them. For this reason, more sophisticated techniques for
complexity management in ontology-driven conceptual models,
need to be developed. Some approaches are based on the notion of
model modularization. In this paper, we follow the work on model
modularization to present an approach for view extraction for the
ontology-driven conceptual modeling language OntoUML. We
provide a formal definition for ontological views over OntoUML
conceptual models that completely leverages on the ontologically
well-grounded real-world semantics of that language. Moreover,
we present a plug-in tool, particularly developed for an OntoUML
model-based editor that implements this formal view structure
in terms of queries defined over the OntoUML metamodel
embedded in that tool.

Index Terms—Conceptual Model Modularization, Ontological
Views, Complexity Management in Conceptual Modeling, On-
toUML

I. INTRODUCTION

In recent years, there has been a growth in the use of refer-
ence conceptual models, in general, and domain ontologies, in
particular, to capture information about complex and critical
domains [11]. However, as the complexity of these domains
grows, often so does the sheer size and complexity of the
artifacts that represent them. Moreover, in sensitive domains
(e.g., finance, healthcare), these models play a fundamental
role in different types of critical semantic interoperability
tasks, therefore, it is essential that domain experts are able
to understand and accurately reason with the content of
these models. The human capacity for processing unknown
information is very limited, containing bottlenecks in visual
short-term memory and causing problems to identify and held

stimuli [20]. Therefore, there is an evident need for developing
adequate engineering complexity management for reference
conceptual models.

One type of such complexity management mechanisms
is Conceptual Model Modularization (henceforth CMM), in-
cluding the so-called Ontology Modularization. CMM is the
process in which the model is fragmented into smaller in-
terconnected parts [17]. The biggest challenge in CMM is
the process for module extraction, namely, coming up with
adequate criteria for dividing the model into modules.

Traditionally, different CMM techniques have been used
for module extraction. However, almost the totality of these
approaches address modularization in ontologically-neutral
languages [12] such as UML, ER diagrams or OWL. These
languages are either purely abstract syntax or have at most a
formal (logical) semantics. As a result of the lack of real-world
semantics in these modeling languages, the modularization
techniques developed for them rely on criteria that leverage
almost exclusively on the syntactical properties of the models,
typically, topological ones [26].

In this paper, we take a different approach by developing
a modularization technique that leverages on the ontological
semantics behind the modeling constructs of the OntoUML
language [10], [14]. OntoUML is an ontology-driven con-
ceptual modeling language, whose modeling constructs and
metamodel constraints reflect the ontological distinctions and
axiomatization put forth by the Unified Foundational Ontology
[10], [14]. OntoUML is employed here because it is the only
conceptual modeling language that has explicitly defined real-
world (ontological) semantics. Additionally, addressing this
language is also of significant relevance given its growing base
of users, who apply the language in a multitude of critical
domains and in models of large complexity [23]. Moreover,
as discussed in [11], OntoUML has been recently considered
as a candidate for addressing OMG’s Request for Proposal
for Semantic Model for Information Federation (SMIF) and,
as discussed therein, in scenarios of information federation,



we frequently have the conjunction of critical domains and
models of significant complexity.

The contributions of this paper are two-fold: (i) firstly,
we propose a structure of modules that can “break down”
OntoUML models into model “pieces” that, on one hand,
respect the underlying ontological semantics of the model
elements involved and, on the other hand, strive to remain cog-
nitively tractable. In this structure, the modules are formally
defined as Ontological Views1; (ii) secondly, we provide an
implementation of this structure in terms of queries defined
over a metamodel embedded in a model-based OntoUML tool
[9].

The remainder of the paper is organized as follows. Section
II positions our work in reference to related efforts; Section III
briefly presents the OntoUML language and some of the
ontological notions underlying it; Section IV presents the
first contribution of this paper by defining the aforementioned
structure of ontological views. This is done both formally, in
terms of a precise definition of the views, as well as intuitively
by making use of a running example in the domain of Ship
Transportation; Section V presents the second contribution
of this paper, which is plug-in to a model-based editor in
which this structure was implemented over the OntoUML
metamodel. So this implementation itself counts as a first
validation of the approach (claim to practical realizability).
The section VI includes positioning our work in relation to
previous approaches that closely resembles our method, such
as the work of Lozano et al. [1], [17]; finally, Section VII
presents some conclusions of the presented approach and some
intended directions for future work.

II. RELATED WORK

The ideas behind conceptual model (including domain on-
tology) modularization have been around for some time and
have been represented by a series of different approaches and
techniques. This section aims to present a review of the state of
the art in this area, both to contextualize the work presented
here as well as putting it in contrast with other alternative
approaches.

The problem of ontology modularization has received much
attention in recent years. A number of approaches that aim
to solve this problem have been proposed. One such ap-
proach was introduced by Khan [16]. His work introduces a
framework that brings together a set of known modularization
techniques. However, this work proposes more a methodol-

1Frequentely, in the literature, the term modularization is reserved to the
process of breaking down a model into a set of non-overlapping parts but
which together preserve the information content of the original artifact. In
contrast, the term view extraction is typically used for the process of producing
proper parts of the original model that are targeted at supporting specific
tasks but that (being proper parts) do not preserve the information content of
the original model. We here use the term modularization in a more liberal
sense as a process of fragmenting the model into parts, each of which is an
extracted view but which together preserve the information content of the
original artifact. Perhaps a more appropriate name for what we are proposing
here is Conceptual Model Recoding, for reasons that we will explain in section
VII.

ogy for modularization, without presenting any practical and
automated approach to supporting that.

Villegas [26] provides a general overview of the techniques
for model clustering. His approach proposes model-filtering
mechanisms implemented as OCL queries over UML models.
One limitation is that the approach solely relies on graph
properties (e.g., visual distance, hierarchical distance, etc.) of
the syntactical structures of the model.

In Dorans work [5] the extraction approach is based on
domain ontologies following the work by Galen [21]. From a
domain ontology codification, SPARQL queries are executed
for module extraction. One limitation in this implementation
is that the queries are connected to pre-configured domain on-
tologies, meaning that the approach is not generally applicable.

Seidenberg [24] proposes an approach for extracting parts
of an ontology. However, the approach basically consists
of syntactic rules, which means that the semantic relations
between the involved elements are not fully considered therein.
The rules are based on syntactical relations (e.g., generaliza-
tion, part-of) or in the formal semantics of certain modeling
constructs (e.g., transitivity of relationships).

Further work by Doran [6] focuses on extracting parts of
an ontology for reuse by using an algorithm for traversing a
graph. Here again, the technique completely relies on analyz-
ing syntactical properties of a model as a graph.

Egyed [7] addresses an approach to automatic class model
abstraction. Using the combination of some existing tech-
niques, an algorithm for automatic abstraction was created.
The algorithm is based on a set of rules that transforms
the model into a graph and tries to infer abstractions of the
model by means of the connectivity of the nodes. However,
this approach has some limitations. One is the problem of
treating multiple inheritance, since a relation of a subclass
cannot always be abstracted to a relation with the superclass.
As shown in [4], not supporting multiple classification is itself
something that increases the complexity of models. Another
problem is that, once more, the method relies on topological
properties of the graph for analyzing the relevance of concepts
in a model (e.g., the number of edges arriving in a node as a
measure of domain relevance).

Coskun [3] proposes an approach for ontology partitioning
through graph-based algorithms. The user instructs the ontol-
ogy and the purpose to be analyzed by the tool. The ontology
analyzer verifies the informed ontology while the configurator
(a part of the system responsible for setting the goal, i.e. the
user informs the goal and the configurator is responsible for
the adjustments necessary to perform the goal) configures the
tool according to the objective. Both these components inform
the graph creator about the purpose and the analyzed structured
ontology to create the graph. From the created graph, the
partitioner uses the graph-based algorithms to partition the
ontology.

We previously discussed, the aforementioned approaches
were developed focusing on ontologically-neutral languages
[12]. For this reason, they must rely either on purely syntacti-
cal properties of the models (e.g., topological properties of the



graph) or on basic formal semantic notions (e.g., formal meta-
properties of relations such as transitivity or (a)symmetry). An
approach that is an exception this rule is the one proposed by
Lozano et al. in [1], [17]. In that approach, the authors develop
a sub-ontology extraction algorithm, guided by ontological
meta-properties for a new Visual Query System. This is the
related work that is closest to our approach, not only because
the authors make systematic use of ontological notions (e.g.,
identity, existential dependence, essential parthood) to develop
their approach but, more specifically, because their filtering
approach has also been developed for UFO and OntoUML.

III. A WHIRLWIND INTRODUCTION TO UFO AND
ONTOUML

OntoUML is a language whose meta-model has been de-
signed to comply with the ontological distinctions and axioma-
tization of a theoretically well-grounded foundational ontology
named UFO (Unified Foundational Ontology) [10], [14]. UFO
is an axiomatic formal theory based on contributions from For-
mal Ontology in Philosophy, Philosophical Logics, Cognitive
Psychology, and Linguistics. OntoUML has been successfully
employed in several industrial projects in different domains,
such as petroleum and gas, digital journalism, complex digital
media management, off-shore software engineering, telecom-
munications, retail product recommendation, and government
[14]. A recent study shows that UFO is the second-most
used foundational ontology in conceptual modeling and the
one with the fastest adoption rate [25]. Moreover, the study
also shows that OntoUML is among the most used languages
in ontology-driven conceptual modeling (together with UML,
(E)ER, OWL, and BPMN). In the sequel, we briefly explain
a selected subset of the ontological distinctions put forth by
the Unified Foundational Ontology (UFO). We also show how
these distinctions are represented by the modeling primitives
of OntoUML. For an in-depth discussion, philosophical jus-
tifications, formal characterization and empirical support for
these categories one should refer to [8], [10].

Take a domain in reality restricted to endurants [10] (as
opposed to events or occurrents). Central to this domain
we will have a number of object Kinds, i.e., the genuine
fundamental types of objects that exist in this domain. The
term “kind” is meant here in a strong technical sense, i.e.,
by a kind, we mean a type capturing essential properties of
the things it classifies. In other words, the objects classified
by that kind could not possibly exist without being of that
specific kind.

Kinds tessellate the possible space of objects in that domain,
i.e., all objects belong to exactly one kind and do so necessar-
ily. Typical examples of kinds include Person, Organization,
Ship, and Harbor (see Figure 2). We can, however, have other
static subdivisions (or subtypes) of a kind. These are naturally
termed Subkinds. As an example, the kind ‘Person’ can be
specialized in the subkinds ‘Man’ and ‘Woman’, likewise a
kind ‘Ship’ can be specialized in the subkinds ‘Cargo Ship’
and ‘Passenger Ship’ (Figure 2).

Object kinds and subkinds represent essential properties of
objects (they are also termed rigid or static types [10]). We
have, however, types that represent contingent or accidental
properties of objects (termed anti-rigid types [10]). These
include Phases (for example, in the way that ‘being a living
person’ captures a cluster of contingent properties of a person,
in the way that ‘being a puppy’ captures a cluster of contingent
properties of a dog, or in the way that ‘being an active harbor’
captures contingent properties of a harbor, see Figure 2) and
Roles (for example, in the way that ‘being a husband’ captures
a cluster of contingent properties of a man, or that ‘being
a captain’ captures contingent properties of a person, see
Figure 2). The difference between the contingent properties
represented by a phase and a role is the following: phases
represent properties that are intrinsic to entities (e.g., ‘being
a puppy’ is being a dog that is in a particular developmental
phase; ‘being a living person’ is being a person who has the
intrinsic property of being alive; ‘being an active harbor’ is
being a harbor that is functional); roles, in contrast, represent
properties that entities have in a relational context, i.e., con-
tingent relational properties (e.g., ‘being a husband’ is to bear
a number of commitments and claims towards a spouse in the
scope of a marital relationship; ‘being a student’ is to bear a
number of properties in the scope of an enrollment relationship
with an educational institution; ‘being a captain’ is to bear
a number of legal obligations and powers in the scope of a
captain designation relationship to a ship, see Figure 2).

Kinds, Subkinds, Phases, and Roles are categories of object
Sortals. In the philosophical literature, a sortal is a type
that provides a uniform principle of identity, persistence,
and individuation for its instances [10]. To put it simply, a
sortal is either a kind (e.g., ‘Person’) or a specialization of a
kind (e.g., ‘Student’, ‘Teenager’, ‘Woman’), i.e., it is either
a type representing the essence of what things are or a sub-
classification applied to the entities that “have that same type
of essence”.

Objects can relate to each other via parthood relations
forming partonomic structure (e.g., a passenger ship can
be composed of a business compartment and an economy
compartment).

Relators (or relationships in a particular technical sense
[8]) represent clusters of relational properties that “hang
together” by a nexus (provided by a relator kind). Moreover,
relators (e.g., marriages, enrollments, employments, presiden-
tial mandates, citizenships, but also transportation contracts,
trips, administration assignments and captain designations, see
Figure 2) are full-fledged Endurants. In other words, entities
that endure in time bearing their own essential and accidental
properties and, hence, first-class entities that can change in a
qualitative manner while maintaining their identity.

As discussed in depth in [8], relators are the truth-makers
of relational propositions and relations (as classes of n-tuples)
can be completely derived from relators [10]. For instance, it
is ‘the marriage’ (as a complex relator composed of mutual
commitments and claims) between ‘John’ and ‘Mary’ that
makes true the proposition that “John is the husband of Mary”.



Relators are existentially dependent entities (e.g., the marriage
between John and Mary can only exist if John and Mary
exist) that bind together entities (their relata) by the so-called
mediation relations, a particular type of existential dependence
relation [10].

Objects participate in relationships (relators) playing certain
“roles”. For instance, people play the role of spouse in a
marriage relationship; a person plays the role of president in a
presidential mandate; a harbor plays the role of a destination
harbor in the scope of a trip, see Figure 2. ‘Spouse’ and
‘President’ (but also typically student, teacher, pet, destination
harbor, captain, and traveling ship) are examples of what we
technically term a role in UFO, i.e., a relational contingent
sortal (since these roles can only be played by entities of
a unique given kind). There are, however, relational and
contingent role-like types that can be played by entities of
multiple kinds. An example is the role ‘Customer’ (which
can be played by both people and organizations). Another
example is the role ‘Ship Administrator’ (which, again can
be played by both people and organizations, see Figure 2).
We call these role-like types that classify entities of multiple
kinds RoleMixins.

In general, types that represent properties shared by entities
of multiple kinds are termed Non-Sortals. In UFO, besides
rolemixins, we have two other types of non-sortals, namely
Categories and Mixins. Categories represent necessary prop-
erties that are shared by entities of multiple kinds (e.g., the
category ‘Physical Object’ represent properties of all kinds of
entities that have masses, spatial extensions, etc.). In contrast,
mixins represent shared properties that are necessary to some
of its instances but accidental to others (e.g., the mixin ‘Red
Object’ can be thought as representing properties that are
necessary to entities of certain kinds for instance, ‘rubies’,
while being accidental to entities of other kinds for instance,
‘apples’). Categories and mixins are, in contrast to rolemixins,
considered as Relationally Independent Non-Sortals.

As previously mentioned, relators are existentially depen-
dent entities. In fact, they are entities that are existentially
dependent on a multitude of individuals. There entities that
are, in contrast, existentially dependent on a single individual.
These are termed here modes. Take, for instance, ‘Johns
Dengue Fever’, ‘Marys knowledge of Greek’ or ‘Pauls belief
that Rome is the capital of Italy’. These are also full-fledged
endurants that can exist in time maintaining their identity
while changing in a qualitative manner (e.g., John’s Dengue
Fever can become a hemorrhagic fever) and which existentially
depends on single individuals (e.g., John’s Dengue Fever
cannot exist without John existing). To connect modes to
their bearers, OntoUML uses a relation of characterization (an
exclusive type of existential dependence relation) [10].

IV. ONTOLOGICAL VIEWS

In this section, we present a formal definition of our
structure of views. Built over UFO’s distinctions and for
the OntoUML language, the approach presented here pro-
pose rules to extract modules from a conceptual model or

domain ontology expressed in OntoUML. As discussed in
depth in [22] and formally demonstrated in [27], OntoUML
is a pattern-language, i.e., the actual modeling primitives of
this language are not primitives of low-granularity such as
class, attribute, associations but clusters of constructs forming
ontology patterns. As explained in the sequel, the definition
of our ontological views follow closely the definition of these
ontology patterns comprising the language. We advocate that
these ontology patterns/views provide for a natural mechanism
for “breaking” OntoUML models into cognitively tractable
“pieces”.

The Subsections A, B, and C below include some important
pre-definitions to extract views, and the following items will
describe formal rules for each ontology view. In the formal
definition that follows, we here also approach an OntoUML
model as a graph in which classes are nodes and relations
(e.g., mediation, characterization, parthood and subtyping) are
edges. The differences between this approach and the bulk of
the literature in CMM are: (i) we consider that these graph
elements have an interpretation (real-world semantics) defined
in terms of a foundational ontology (UFO); (ii) we make
systematic use of this ontological interpretation in order to
defined the structure of our views.

A. Basic Definitions

Let a Model M be a graph defined such that M=< Θ,Σ >
and Θ={C1..Cn} (a non-empty set of concepts in the model
M) and Σ= {r1..rn} (set of directed relations in the model M).
Let CT (Concept Type) and RT (Relation Type) be domains
of types such that: CT = {SORTAL, NON-SORTAL, KIND,
SUBKIND, PHASE, ROLE, CATEGORY, ROLEMIXIN,
MIXIN}, RT = {SUBTYPING, PARTHOOD, MEDIA-
TION}. Now, let < be partial order relation defined in
CT in the following way: KIND < SORTAL, SUBKIND
< SORTAL, ROLE < SORTAL, PHASE < SORTAL,
CATEGORY < NON-SORTAL, ROLEMIXIN < NON-
SORTAL, MIXIN < NON-SORTAL. Finally, we define a
number of auxiliary functions as follows:

1) C(M) is a function that maps a model M to its associated
set Θ;

2) R(M) is a function that maps a model M to its associated
set Σ;

3) E HasType T is a relation connecting an element E to
a type T in the following manner: if E is a concept then
T ∈ CT . Otherwise, if E is a relation then T ∈ RT . We
should also add that for any two types T and T’ such
that T < T’, if (E HasType T) then (E HasType T’);

4) t(r) is a function that maps a relation r to the target
(destination) of that directed relation;

5) s(r) is the complementary function that maps a relation
r to the source (origin) of that directed relation.

As expected, we have that for every model M and every
relation such that r ∈ R(M), we have that both s(r) ∈ C(M)
and t(r) ∈ C(M).



Figure 1. A Conceptual Model in the domain of Ship Transportation

For example, for the model of Figure 1, C(M) amounts to
exactly the classes represented there, while R(M) includes all
the mediation and UML subtyping relations.

B. Direct Subtyping and (Indirect) Subtyping

Let the functions ST(C,C’) (symbolizing that C is a direct
subtype of C’), ST*(C,C’) (symbolizing that C is a subtype
of C’) and IST*(C,C’) (symbolizing that C is an improper
subtype of C’) be defined as follows:
• ST(C,C’) iff there is an r such that (r HasType SUB-

TYPYING) and such that (s(r) = C AND t(r) = C’)
• ST*(C,C’) iff ST(C,C’) OR (there is a C” such that

ST(C,C”) AND ST*(C”,C’))
• IST*(C,C’) iff ST*(C,C’) OR (C = C’)
We also define the following auxiliary function:
• K(C) mapping a sortal C to its unique supertyping KIND:

we have that K(C) = C’ iff (C’ HasType KIND) AND
IST*(C,C’) (Notice that if C is a KIND then C = C’)

Again, using the model M of Figure 1 as an example, we have
that, for instance, K(Corporate Administrator) = Organization
and K(Destination Harbor) = Harbor.

We can now define our views as follows:

C. View

Let M and M’ be models as previously defined. It follows
that M is a view of M’ (symbolized as V(M,M’)) iff:
• C(M) ⊆ C(M ′)
• R(M) ⊆ R(M ′)

Notice that, given our definition of a model, we have that
all r ∈ R(M) are such that s(r) ∈ C(M) and t(r) ∈ C(M).
In other words, M is necessarily an original subgraph of M’.

D. Sortal Taxonomy View

We define that M is a taxonomic view of M’ based on a
salient base type T (symbolized as STV(M,M’,T), where (T
< SORTAL) iff:
• V(M,M’)
• c ∈ C(M) iff there is a c’ such that (c’ HasType T) AND

(IST*(c’,c) AND IST*(c,K(c’))))
• r ∈ R(M) iff ((r HasType SUBTYPING) AND (s(r) ∈

C(M)) AND (t(r) ∈ C(M)))
STV is a generic parameterizable procedure that takes any
sortal type and produces a view that includes classes of that
type and the taxonomic structures of its supertypes (if any)
until the level of kinds is reached.

E. Kind View

We define that M is a Kind view of M’ (symbolized as
KV(M,M’)) iff:
• STV(M,M’,KIND)

One should notice that, in this case, STV will generate a
set C(M) with exactly the kinds existing in model M’ and
R(M) = ∅.

The result of filtering the model of Figure 1 according to this
definition, produces a view containing only the fundamental
kinds of things that exist in that domain, namely, people,
ships, organizations and harbors (see Figure 2). This view
is constituted by terminal symbols of the OntoUML pattern
language as defined in [22], [27].

F. Subkind View

We define that M is a subkind view of M’ (symbolized as
SKV(M,M’)) iff:
• STV(M,M’,SUBKIND)

The result of filtering the model of Figure 1 according to this
definition, produces a view that takes the two subkinds present
in that model (PassengerShip and CargoShip) and produces a
view that includes these subkinds and the classes and relations
in this path until their (accidentally, in this case, common) kind
is reached (see Figure 2).

This view is constituted by instances of the Subkind Pattern
of the OntoUML pattern language as defined in [22], [27].

G. Phase View

We define that M is a phase view of M’ (symbolized as
PHV(M,M’)) iff:
• STV(M,M’,PHASE)

The result of filtering the model of Figure 1 according to this
definition, produces a view that takes the three phases present
in that model (ExtinctHarbor, TemporarilyClosedHarbord and
Active Harbor) and produces a view that includes these phases
and the classes and relations in this path until their (acciden-
tally, in this case, common) kind is reached (see Figure 2).

This view is constituted by instances of the Phase Pattern
of the OntoUML pattern language as defined in [22], [27].

H. Role View

We define that M is a subkind view of M’ (symbolized as
RV(M,M’)) iff:
• STV(M,M’,ROLE)



The result of filtering the model of Figure 1 according to this
definition, produces a view that takes the the roles present in
that model (see Figure 1) and produces a view that includes
these roles and the classes and relations in this path until their
respective kind is reached (see Figure 2).

This view is constituted by fragments that represent the core
the Role Pattern of the OntoUML pattern language as defined
in [22], [27]. These instances do not fully coincide with the
instances of the entire role pattern because the latter includes
a relational dependence pattern, which in our approach is
dislocated to the Relational Context View.

I. Relational Context View

We define that M is a phase view of M’ based on a salient
base type T (symbolized as RCV(M,M’,T)) iff:
• V(M,M’)
• r ∈ R(M) iff ((r HasType T) OR ((r HasType SUB-

TYPYING) AND s(r) ∈ C(M) AND t(r) ∈ C(M)))
• c ∈ C(M) iff (there is a r ∈ R(M) such that (r HasType

T) AND (c = s(r) OR c = t(r)))
RCV is a generic parameterizable procedure that takes a
relation type T and produces a view that includes classes
related by relations of that type. It also includes subtyping
relations connecting the types that are related by relations of
type T.

J. Partonomy View

We define that M is a partonomy view of M’ (symbolized
as PV(M,M’)) iff:
• RCV(M,M’,PARTHOOD)
PV is a relational context view in which the salient relation

type T is a relation of parthood.

K. Mode View

We define that M is a mode view of M’ (symbolized as
MV(M,M’)) iff:
• RCV(M,M’,CHARACTERIZATION)
MV is a relational context view in which the salient relation

type T is a relation of characterization.

L. Relators and Mediation View

We define that M is a phase view of M’ (symbolized as
RMV(M,M’)) iff:
• RCV(M,M’,MEDIATION)

RMV is a relational context view in which the salient relation
type T is a relation of mediation. This view includes all
relator types in the model as well as the mediation relations
connecting them to other types in the model. Taking the model
of Figure 1 as an example, we have the RMV depicted in
Figure 2. In this view, we have the relators Transportation
Contracts (connecting Transportation Contract Clients and
Ship Administrations), Ship Administration (connecting Ship
Administrators and Ships), Captain Designation (connecting
Captain and Ship) and Trip (connecting Departing Harbor,
Destination Harbor and Traveling Ship).

This view is constituted by instances of a version of the
relator pattern of the OntoUML pattern language. This version
includes the first three variants of this pattern as defined in
[27] but also considers that relators can mediate endurants in
general and not only objects (substantials).

M. Non-Sortal View

We define that M is a non-sortal view of M’ (symbolized
as NSV(M,M’)) iff:
• V(M,M’)
• c ∈ C(M) iff (c HasType NON-SORTAL) OR ((there

is c′ ∈ C(M ′) such that (c’ HasType NON-SORTAL))
AND (there is a c” such that (c” HasType SORTAL))
AND ST(c”,c’) AND IST*(c”,c) AND IST*(c,K(c”)))

• r ∈ R(M) iff ((r HasType SUBTYPING) AND (s(r) ∈
C(M)) AND (t(r) ∈ C(M)))

The intention of the NSV can explained as follows. Take
any non-sortal in the model (rolemixin, mixin or category), the
view should include: (i) this non-sortal and all its non-sortal
supertypes, including these subtyping relations connecting
them; (ii) the first sortal specializing this non-sortal as well
as the patch from this sortal to the unique kind providing
its identity principle [10]. Taking the model of Figure 1 as
an example, we have the NSV depicted in Figure 2. In this
view, we have, for instance, the rolemixin ShipAdministrator,
the sortals that immediately specialize it (the roles Individual
Administrator and Corporate Administrator) as well as the
supertypes of each of these sortals that are in the path between
them and their kinds (Person and Organization, respectively,
in this case).

The Non-Sortal view generated for our running example
is constituted by two instances of the core fragment of the
RoleMixin Pattern as defined in [22], [27]. These instances do
not fully coincide with the instances of the entire RoleMixin
pattern because the latter includes a relational dependence
pattern, which in our approach is dislocated to the Relational
Context View.

V. A TOOL FOR ONTOLOGICAL VIEWS EXTRACTION

In this section, we describe the tool for Ontological Views
Extraction. This feature was built in Menthor Editor, an open-
source ontology-driven conceptual modeling platform which
incorporates the theories of Unified Foundational Ontology
(UFO). The tool supports modeling, verification, validation,
and implementation of OntoUML models.

Following the strategy proposed in Section IV, full sup-
port for pattern detection and view extractions have been
implemented for this editor. In other words, by employing
the explicitly defined MOF metamodel on which this editor
is based, we have implemented algorithms to: automatically
detect pattern occurrences, accessible through a detection
dialog window (see example in Figure 3); extract views from
OntoUML models comprising instances of these patterns. For
instance, for the model of Figure 1, the tool will generate a
structure of views that is equivalent to the one depicted in
Figure 2.



Figure 2. The modularized ship transportation model



OntoUML is a pattern-driven modeling language. As a
consequence, we have that in an OntoUML model each ele-
ment participates in at least one pattern. Moreover, the model
elements can only appear in the models in the context of these
patterns. Given that the ontological views as defined here are
aggregation of these patterns from existing models, we have
that the sum of generated views contains the same information
as the original model. However, while preserving the informa-
tion contained in the original model, our approach provides
for a completely automated procedure that, by leveraging on
the ontological semantics of the OntoUML language, breaks
down that information in cognitively manageable chunks.
These chunks are themselves composed of even finer-grained
chunks, namely, the aforementioned ontology design patterns.
As one can observe in Figure 2, these resulting building blocks
stay within the threshold of human-cognitive capacity and
manipulation in short-term memory [19].

VI. DISCUSSION

As discussed in Section II, most of the approaches presented
there are restricted to using syntactic analysis techniques for
conceptual model modularization. As a consequence, since the
meanings of the represented elements are not taken into con-
sideration, one risks semantically insensitive extraction results.
In fact, most of the techniques presented in Section II are based
on modeling languages that lack ontological expressiveness
and, as such, are unable to differentiate between, for example,
different sorts of types. For instance, when working with
a UML class diagram, all types are simply represented as
CLASSES and, as such, they stand in the same footing. In
this way, it becomes significantly complex to identify domain
relevance for the represented concepts.

To illustrate this point, take for example a class diagram in
which we have an ADDRESS class and several other classes
such as EMPLOYEE, ORGANIZATION and CLIENT that are
connected to it (since conceptually all these types of entities
can have one or more addresses). When this model is converted
into a graph, a purely syntactical technique could consider that
the most relevant node in that graph should be ADDRESS.
However, concluding that this represents the most relevant
concept in the domain would be mistake.

An undesirable conclusion such as this one is trivially
avoided in our approach, since the different ontological cat-
egories applied to domain types is made explicit by the
OntoUML stereotypes. So, here, different views are generated
by focusing on different sorts of types that become salient for
that view. So, for example, if we are interested in knowing the
fundamental Kinds of things that exist in that domain, we can
simply produce a view containing types with that sterotype
(the Kind View); if we are interested in knowing in which
sorts of relationships things of these kinds can participate and
which roles they play in these relationships, we can simply
produce a view organized around that information (a Relator
View composed of instances of the Relator Pattern), and so on.

The approach presented by Lozano et al. [18] [17] uses the
same modeling language (OntoUML) and the same underlying

foundational ontology (UFO) considered in our work. For this
reason, this is the approach in the literature that is of most
relevance to the work presented here. The authors propose
an algorithm that aims at producing models that: (1) preserve
types carrying identity information and taxonomic relations;
(2) find the identity Provider for types; (3) preserve qualities
and existential dependency relations; (4) isolate essential part-
hood relations in the model; (5) preserve relational dependency
as well as types related by formal relations. In this approach,
the view extraction algorithm is based on a pre-selection of
concepts informed by a user: firstly, the user selects one or
more concepts in the model, then the algorithm identifies all
elements in the model related to the selected ones such that
together they maintain properties (1-5) above. The approach
is effective in achieving its goals but strongly relies on users
making sensible choices of pre-selected elements. In other
words, if the elements selected by a user are not the most
relevant for understanding the domain at hand, the view
obtained from the extraction process would suffer from the
same deficiency. In contrast, in the approach we are proposing
here, the set of generated views is equivalent in terms of
information to the complete model. Moreover, in our approach,
the generated views are naturally constituted by the ontology
design patterns of the OntoUML language. As a consequence,
our approach automatically generates natural building blocks
of finer-grained cognitively tractable chunks withing other
cognitively tractable chunks.

VII. FINAL CONSIDERATIONS

In this paper, we propose an approach for extracting views
from conceptual models represented in the ontology-driven
conceptual modeling language OntoUML. This approach
makes systematic use of the real-world (ontological) semantics
of this language to propose a structure of views that, on one
hand, preserves all the information content of the original
model but, on the other hand, ”breaks down” this information
in different modules centered around different ontological
concerns. These concerns can be loosely summarized as: (a)
the fundamental kinds of things that exist in a domain; (ii)
the subkinds into which these kinds of things are specialized;
(iii) the phases that things of these kinds can go through; (iv)
the fundamental types of relationships (relators) existing in
that domain as well as the roles played in the scope of these
relationships; (v) the kinds of things that can play each of
these roles; (vi) the different abstract refactoring types that
capture properties shared by things of multiple kinds (non-
sortals); (vii) partonomical structures involving different types
of entities in this domain; (viii) the modes that characterize
different types of entities in this domain.

We have fully implemented this approach as a plug-in for a
Model-Based OntoUML Editor. We have tested the scalability
of this implementation against two artificially generated On-
toUML models of large size. In the first test, against a model
with 1317 classes, our implementation was able to compute
the views and detect their constituting patterns in less than a
second. In a second test, against a much larger model with



Figure 3. Screenshot of a Dialog Window for Pattern Detection in the Menthor Editor

12.474 classes, 6606 relations and 9504 subtyping relations,
our implementation was able to perform the same operations
in circa 1.8 minutes.

As one can observe in figure 2, the view extraction approach
we propose here creates views that are composed of chunks
derived from OntoUML ontology design patterns. In prelim-
inary tests of our implementation against existing OntoUML
models of different sizes and representing different domains,
we observed that indeed the number of chunks within these
views stay (in nearly the totally of cases) within the so-
called Miller’s Magic Number (7 ± 2 items) [19]. As we
previously mentioned, each of these chunks tend also to be
cognitively tractable in this sense (i.e., tend not to significantly
deviate from this limit number of subcomponents). Notice,
however, that memory span is not limited in terms of the
most basic presented ingredients but rather in terms of chunks,
where a chunk is the largest meaningful unit in the presented
material that the user recognizes. As put by Miller: ”we must
recognize the importance of grouping or organizing the input
sequence into units or chunks. Since the memory span is a
fixed number of chunks, we can increase the number of bits
of information that it contains simply by building larger and
larger chunks, each chunk containing more information than

before” [19]. We advocate that grouping conceptual models
in terms of the patterns organized within the views proposed
here provide for ontology-based mechanism for ”recoding” of
conceptual models in Miller’s sense. In fact, as we briefly
mentioned before, a better term for what we are proposing
here is perhaps Conceptual Modeling Recoding (as opposed
to Modularization or View Extraction) as the striking feature
of this process is to re-arrange conceptual models in higher-
granularity chunks with high-semantic cohesion to improve
model comprehensibility and recall but preserving information
content.

As a follow up of this work, we plan to complete the defini-
tion of views proposed here to address all the ontology patterns
and constructs of OntoUML [10], [22]. In fact, we intend to
go even beyond the original version of the language to include
new constructs and patterns that have been considered for the
evolution of the language [8], [14] dealing, for example, with
the modeling of events [13], [15] or multi-level structures [2].
We also plan to perform a more comprehensive and systematic
series of tests for the plug-in implementation presented here.

Finally, we plan to empirically evaluate the adequacy of
this approach. The very preliminary steps towards such a
research program has been initiated with a pilot study that used



four models and their modularized equivalence, and included
participants of different levels of conceptual modeling experi-
ence. While that pilot in itself was unable to provide concrete
support for the hypothesis, it showed a trend that those not
experienced with OntoUML had higher accuracy with the
modularized ontology view. An additional consideration is to
investigate the time duration needed to extract information
from the models. Reasonably, it could be hypothesized that
modularized models are easier to overview, and thus, also
quicker to acquire information from. However, in order to
confirm these hypotheses and the speculations of the efficiency
of ontology modularization further investigations are required.
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