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Abstract. The functional specification of any software system opera-
tionalizes stakeholder requirements. In this paper we focus on a class
of requirements that lead to feedback loop operationalizations. These
Awareness Requirements talk about the runtime success/failure of other
requirements and domain assumptions. OQur proposal includes a language
for expressing awareness requirements, as well as techniques for elicita-
tion and implementation based on the EEAT requirements monitoring
framework.

1 Introduction

There is much and growing interest in software systems that can adapt to changes
in their environment or their requirements in order to continue to fulfill their
mandate. Such adaptive systems usually consist of a system proper that deliv-
ers a required functionality, along with a monitor-analyze-plan-execute (MAPE
[18]) feedback loop that operationalizes the system’s adaptability mechanisms.
Indications for this growing interest can be found in recent workshops and con-
ferences on topics such as adaptive, autonomic and autonomous software (e.g.,
[7,23,14]).

We are interested in studying the requirements that lead to this feedback
loop functionality. In other words, if feedback loops constitute an (architectural)
solution, what is the requirements problem this solution is intended to solve?
The nucleus of an answer to this question can be gleamed from any description
of feedback loops: “... the objective ... is to make some output, say y, behave in
a desired way by manipulating some input, say u ...” [10]. Suppose then that we
have a requirement r = “supply customer with goods upon request” and let s be
a system operationalizing r. The “desired way” of the above quote for s is that it
always fulfills r, i.e., every time there is a customer request the system meets it
successfully (here, the notion of “success” depends on the type of system: for soft-
ware systems, it means completing the transaction without errors or exceptions,
whereas for socio-technical systems “success” could involve the participation of
human actors, e.g., goods are properly delivered to the customer). This means
that the system somehow manages to deliver its functionality under all circum-
stances (e.g., even when one of the requested items is not available). Such a



requirement can be expressed, roughly, as r1 = “Every instance of requirement
r succeeds”. And, of course, an obvious way to operationalize r1 is to add to the
architecture of s a feedback loop that monitors if system responses to requests are
being met, and takes corrective action if they are not. We can generalize on this:
we could require that s succeeds more than 95% of the time over any one-month
period, or that the average time it takes to supply a customer over any one week
period is no more than 2 days. The common thread in all these examples is that
they define requirements about the run-time success/failure/quality-of-service of
other requirements. We call these self-awareness requirements.

A related class of requirements is concerned with the truth / falsity of do-
main assumptions. For our example, we may have designed our customer supply
system on the domain assumption d = “suppliers for items we distribute are
always open”. Accordingly, if supplier availability is an issue for our system, we
may want to add yet another requirement r2 = “d will not fail more than 2%
of the time during any 1-month period”. This is also an awareness requirement,
but it is concerned with the truth/falsity of a domain assumption.

The objective of this paper is to study Awareness Requirements (hereafter
referred to as AwRegs), which are characterized syntactically as requirements
that refer to other requirements or domain assumptions and their success or
failure at runtime. AwReqs are represented in an existing language and can
be directly monitored by a requirements monitoring framework. Although the
technical contribution of this paper is focused on the definition and study of
AwReqs and their monitoring at runtime, we do provide a discussion on how to
go from AwRegs to adaptive systems, giving an overview of subsequent steps in
this process.

Awareness is a topic of great importance within both Computer and Cogni-
tive Sciences. In Philosophy, awareness plays an important role in several theories
of consciousness. In fact, the distinction between self-awareness and contextual
requirements seems to correspond to the distinction some theorists draw between
higher-order awareness (the awareness we have of our own mental states) and
first-order awareness (the awareness we have of the environment) [29]. In Psy-
chology, consciousness has been studied as “self-referential behavior”. Closer to
home, awareness is a major design issue in Human-Computer Interaction (HCI)
and Computer-Supported Cooperative Work (CSCW). The concept in various
forms is also of interest in the design of software systems (security / process /
context / location / ... awareness).

As part of our proposal’s evaluation, which we detail in section 5, we have
analyzed, designed and developed a simulation of a real-world system: an Am-
bulance Dispatch System (ADS), whose requirements have been documented by
students of the University of Texas at Dallas [28]. We will use this application
as running example throughout this paper.

The rest of the paper is structured as follows. Section 2 presents the research
baseline; section 3 introduces AwRegs and talks about their elicitation; section
4 discusses their specification; section 5 talks about AwReqs monitoring imple-
mentation and presents evaluation results from experiments with our proposal;



section 6 summarizes related work; section 7 discusses the role of AwReqs in a
systematic process for the development of adaptive systems based on feedback
loops; finally, section 8 concludes the paper.

2 Baseline

This section introduces background research used in subsequent sections of this
paper: Goal-Oriented Requirements Engineering (§2.1), feedback loops (§2.2)
and requirements monitoring (§2.3).

2.1 Goal-Oriented Requirements Engineering

Our proposal is based on Goal-oriented Requirements Engineering (GORE).
GORE is founded on the premise that requirements are stakeholder goals to
be fulfilled by the system-to-be along with other actors. Goals are elicited from
stakeholders and are analyzed by asking “why” and “how” questions [8]. Such
analysis leads to goal models which are partially ordered graphs with stakeholder
requirements as roots and more refined goals lower down. Our version of goal
models is based loosely on i* strategic rationale models [37]. Figure 1 shows a
goal model for an Ambulance Dispatch System (ADS).
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Fig. 1. Example goal model for an Ambulance Dispatch System.

Locate

In our example, the main goal of the system is to support ambulance dis-
patching. Goals can be AND/OR refined. An AND-refinement means that in
order to accomplish the parent goal, all sub-goals must be satisfied, while for
an OR-refinement, only one of the sub-goals has to be attained. For example,



to receive an emergency call, one has to input its information, determine its
uniqueness (have there been other calls for the same emergency?) and send it
to dispatchers, all on the assumption that “Communication networks [are] work-
ing”3. On the other hand, periodic update of an ambulance’s status can be
performed either automatically or manually.

Goals are refined until they reach a level of granularity where there are tasks
an actor (human or system) can perform to fulfill them. In the figure, goals are
represented as ovals and tasks as hexagons. Note that we represent AND/OR
refinement relations, avoiding the term decomposition as it usually carries a part-
whole semantic which would constrain its use among elements of the same kind*
(i.e., goal to goal, task to task, etc.). A refinement relation, on the other hand,
can be applied between a goal and a task or a goal and a domain assumption
and indicate how to satisfy the parent element: the goal is satisfied if all (AND)
or any (OR) of its children are satisfied. In their turns, tasks are satisfied if they
are executed successfully and domain assumptions are satisfied if they hold (the
affirmation is true) while the user is pursuing its parent goal.

Softgoals are special types of goals that do not have clear-cut satisfaction
criteria. In our example, stakeholders would like ambulance dispatching to be
fast, dispatched calls to be unambiguous and prioritized, and selected ambu-
lances to be as close as possible to the emergency site. Softgoal satisfaction can
be estimated through qualitative contribution links that propagate satisfaction
or denial and have four levels of contribution: break (- -), hurt (-), help (+) and
make (++). E.g., selecting an ambulance using the software system contributes
positively to the proximity of the ambulance to the emergency site, while using
manual ambulance status update, instead of automatic, contributes negatively
to the same criterion. Contributions may exist between any two goals (including
hard goals).

Softgoals are obvious starting points for modeling non-functional require-
ments. To make use of them in design, however, they need to be refined to mea-
surable constraints on the system-to-be. These are quality constraints (QCs),
which are perceivable and measurable entities that inhere in other entities [17].
In our example, unambiguity is measured by the number of times two ambu-
lances are dispatched to the same location, while fast assistance is refined into
two QCs: ambulances arriving within 10 or 15 minutes to the emergency site.

Finally, domain assumptions (DAs) indicate states of the world that we as-
sume to be true in order for the system to work. For example, we assume that
communication networks (telephone, Internet, etc.) are available and functional.

3 These requirements are for illustrative purposes and, thus, are quite simple. Real-
world systems would probably have multiple domain assumptions, one for each level
of communication service, or even have assumptions parameterized by control vari-
ables that can be tuned at runtime — see §7.1 for a discussion on control variables.

* One could argue that it makes no sense to consider a task or a domain assumption
a part of a goal. In effect, we have received such criticism in the past, in more than
one occasion.



If this assumption were to be false, its parent goal (“Receive emergency call”)
would not be satisfied.

2.2 Feedback Loops

The recent growth of software systems in size and complexity made it increas-
ingly infeasible to maintain them manually. This led to the development of a
new class of self-adaptive systems, which are capable of changing their behavior
at runtime due to failures as well as in response to changes in themselves, their
environment, or their requirements. While attempts at adaptive systems have
been made in various areas of computing, Brun et al. [6] argue for systematic
software engineering approaches for developing self-adaptive systems based on
the ideas from control engineering [15] with focus on explicitly specified feed-
back loops. Feedback loops provide a generic mechanism for self-adaptation. To
realize self-adaptive behavior, systems typically employ a number of feedback
controllers, possibly organized into controller hierarchies.

The main idea of feedback control is to use measurements of a system’s
outputs to achieve externally specified goals [15]. The objective of a feedback
loop is usually to maintain properties of the system’s output at or close to its
reference input. The measured output of the system is evaluated against the
reference input and the control error is produced. Based on the control error,
the controller decides how to adjust the system’s control input (parameters that
affect the system) to bring its output to the desired value. To do that, the
controller needs to possess a model of the system. In addition, a disturbance
may influence the way control input affects output. Sensor noise may be present
as well. This view of feedback loops does not concentrate on the activities within
the controller itself. That is the emphasis of another model of a feedback loop,
often called the autonomic control loop [9]. It focuses on the activities that realize
feedback: monitoring, analysis, plan, execution — MAPE [18].

The common control objectives of feedback loops are regulatory control (mak-
ing sure that the output is equal or near the reference input), disturbance re-
jection (ensuring that disturbances do not significantly affect the output), con-
strained optimization (obtaining the “best” value for the measured output) [15].
Control theory is concerned with developing control systems with properties
such as stability (bounded input produces bounded output), accuracy (the out-
put converges to the reference input), etc. While most of these guidelines are best
suited for physical systems, many can be used for feedback control of software
systems.

Using the ADS as an example, a feedback loop would: (1) monitor particular
indicators of the system which are of interest to the stakeholders — e.g., the time
it takes for ambulances to arrive at the location of the incidents; (2) compare
the monitored values of these indicators with reference values specified in the
requirements — e.g., QCs in the ADS goal model indicate ambulances should
arrive in 10 or 15 minutes; and (3) if the monitored values do not satisfy the
requirements, do something to fix the problem — e.g., increase the number of
ambulances, change their locations around the city, etc. In this paper we propose



Awareness Requirements as indicators to be monitored by the feedback loop,
whereas the other steps of the loop in the context of our research are briefly
discussed in section 7. Our view of adaptive systems as control systems has also
been featured in a recently published position paper [34].

2.3 Requirements Monitoring

Monitoring is the first step in MAPE feedback loops and, as will be characterized
in section 3, since AwRegs refer to the success/failure of other requirements, we
will need to monitor requirements at runtime.

Therefore, we have based the monitoring component of our implementation
on the requirements monitoring framework EEAT?®, formerly known as ReqMon
[24]. EEAT, an Event Engineering and Analysis Toolkit, provides a programming
interface (API) that simplifies temporal event reasoning. It defines a language
to specify goals and can be used to compile monitors from the goal specification
and evaluate goal fulfillment at runtime.

EEAT’s architecture is presented in more detail along with our implementa-
tion in section 5. In it, requirements can be specified in a variant of the Object
Constraints Language (OCL), called OCLyp — meaning OCL with Temporal
Message logic [25]. OCLyy extends OCL 2.0 [2] with:

— Flake’s approach to messages [12]: replaces the confusing ~ message(), ™
message () syntax with sentMessage/s, receivedMessage/s attributes in
class OclAny;

— Standard temporal operators: o (next), ® (prior), ¢ (eventually), ¢
(previously), O (always), B (constantly), W (always ... unless), U
(always ... until);

— The scopes defined by Dwyer et al. [11]: globally, before, after, between
and after ... until. Using the scope operators simplifies property specifica-
tion;

— Patterns, also in Dwyer et al. [11]: universal, absence, existence, bounded
existence, response, precedence, chained precedence and chained
response;

— Timeouts associated with scopes: e.g. after(Q, P, ‘3h’) indicates that P
should be satisfied within three hours of the satisfaction of Q.

Figure 2 shows an example of OCLyjs constraint on the ADS. The invariant
getsDispatched determines that if a call receives the confirmUnique message,
eventually an ambulance should get the message dispatch and both messages
should refer to the same callID argument. Given an instrumented Java im-
plementation of these objects and a program in which they exchange messages
through method calls, EEAT is able to monitor and assert this invariant at run-
time. In section 5, we describe in more detail how EEAT accomplishes this in
the context of AwRegs monitoring.

® http://eeat.cis.gsu.edu:8080/



context Call
—-- An ambulance is dispatched for each unique call received.
def: uniqueCall: LTL::OcIMessage = receivedMessage('confirmUnique")
def: ambulanceDispatched: LTL::OcIMessage = receivedMessage('ads.Ambulance’, 'dispatch’)
inv getsDispatched: after(eventually(uniqueCall <> null),
eventually(ambulanceDispatched.argument(‘'calliD’) = uniqueCall.argument('calllD")))

Fig. 2. An example of OCL7as constraint.

Although in our proposal AwRegs can be expressed in any language that
provides temporal constructs (e.g., LTL, CTL, etc.), examples of AwReq specifi-
cations in section 4 will be given using OCLyjs, which is also the language used
for our proposal’s validation, presented in section 5.

3 Awareness Requirements

As we have mentioned in section 1, feedback loops can provide adaptivity for a
given system by introducing activities such as monitoring, analysis (diagnosis),
planning and execution (of compensations) to the system proper. We are inter-
ested in modeling the requirements that lead to this feedback loop functionality.
In control system terms (see §2.2), the reference input in this case is the system
fulfilling its mandate (its requirements). Feedback loops, then, need to measure
the actual output and compare it to the reference input, in other words, verify
if requirements are being satisfied or not.

Furthermore, Berry et al. [4] defined the envelope of adaptability as the limit
to which a system can adapt itself: “since for the foreseeable future, software
is not able to think and be truly intelligent and creative, the extent to which
a [system] can adapt is limited by the extent to which the adaptation analyst
can anticipate the domain changes to be detected and the adaptations to be
performed.”

In this context, to completely specify a system with adaptive characteristics,
requirements for adaptation have to be included in the specifications. We propose
a new kind of requirement, which we call Awareness Requirement, or AwRegq, to
fill this need. AwRegs promote feedback loops for adaptive systems to first-class
citizens in Requirements Engineering.

In this section, we characterize AwReqs as requirements for feedback loops
that implement adaptivity (§3.1); propose patterns to facilitate their elicitation,
along with a way to represent them graphically in the goal model (§3.2); and
discuss the elicitation of this new type of requirements (§3.3). We illustrate all
of our ideas using our running example, the ADS (figure 1).

3.1 Characterization

AwReqs are requirements that talk about the run-time status of other require-
ments. Specifically, AwRegs talk about the states requirements can assume dur-



ing their execution at runtime. Figure 3 shows these states which, in the context
of our modeling framework, can be assumed by goals, tasks, DAs, QCs and
AwReqs themselves. When an actor starts to pursue a requirement, its result
is yet Undecided. Eventually, the requirement will either have Succeeded, or
Failed. For goals and tasks, there is also a Canceled state.

g —
Succeeded

—_—
CD >| Undecided ;I Canceled

l=‘
Failed

—

Fig. 3. States assumed by a requirement at runtime.

Table 1 shows some of the AwReqs that were elicited during the analysis
of the ADS. These examples illustrate the different types of AwRegs, which are
discussed in the following paragraphs. Table 1 also indicates the pattern of each
AwReq and we further elaborate on this matter on section 3.2.

The examples illustrate a number of types of AwReq. AR1 shows the simplest
form of AwReq: the requirement to which it refers should never fail. Considering
a control system, the reference input is to fulfill the requirement. If the actual
output is telling us the requirement has failed, the control system must act
(compensate, reconcile — out of the scope of this proposal and briefly discussed
in section 7) in order to bring the system back to an acceptable state. AR1
considers every instance of the referred requirement. An instance of a task is
created every time it is executed and the “never fail” constraint is to be checked
for every such instance. Similarly, instances of a goal exist whenever the goal
needs to be fulfilled, while DA and QC instances are created whenever their
truth /falsity needs to be checked in the context of a goal fulfillment.

Inspired by the three modes of control of the proportional-integral-differential
(PID) controller, a widely used feedback controller type [10], we propose three
types of AwReqs: Aggregate AwReqs act like the integral component, which con-
siders not only the current difference between the output and the reference in-
put (the control error), but aggregates the errors of past measurements. Delta
AwReqs were inspired by how proportional control sets its output proportional
to the control error. Trend AwReqs follow the idea of the derivative control,
which sets its output according to the rate of change of the control error. We
define and exemplify each type of AwReq in the following.

An aggregate AwReq refers to the instances of another requirement and
imposes constraints on their success/failure rate. E.g., AR2 is the simplest aggre-
gate AwReq: it demands that the referred DA be true 99% of the time the goal
Receive emergency call is attempted. Aggregate AwRegs can also specify the pe-



Table 1. Examples of AwRegs, elicited in the context of the ADS.

1d Description Type Pattern

AR1 |Input emergency information should - NeverFail (T-InputInfo)
never fail

AR2 |Communications networks working|Aggregate |SuccessRate (D-CommNets
should have 99% success rate Work, 99%)

AR3 |Search call database should have a 95%|Aggregate |SuccessRate (G-Search
success rate over one week periods CallDB, 95%, 7d)

AR4 |Dispatch ambulance should fail at most|Aggregate |MaxFailure (G-Dispatch
once a week Amb, 1, 7d)

ARb |Ambulance arrives in 10 minutes|Aggregate |@daily SuccessRate(
should succeed 60% of the time, Q-Amb10min, 60%) and
while Ambulance arrives in 15 minutes SuccessRate (Q-Amb15min,
should succeed 80%, measured daily 80%)

ARG6 |Update automatically should succeed|Aggregate |ComparableSuccess (

100 times more than the task Update T-UpdAuto, T-UpdManual,
manually 100)

ARYT |The success rate of No wunnecessary|Trend not TrendDecrease (
extra ambulances for a month should Q-NoExtraAmb, 30d, 2)
not decrease, compared to the previous
month, two times consecutively

ARS8 |Update arrival at site should be suc-|Delta ComparableDelta(
cessfully executed within 10 minutes T-UpdArrSite,
of the successful execution of Inform T-InformDriver, time,
driver, for the same emergency call 10m)

AR9 |Mark as unique or duplicate should be|Delta StateDelta(T-MarkUnique,
decided within 5 minutes Undecided, *, 5m)

ARI10|AR3 should have 75% success rate over|Meta SuccessRate (AR3, 75%,
one month periods 30d)

AR11[AR5 should never fail Meta NeverFail (AR5)
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riod of time to consider when aggregating requirement instances (e.g., AR3). The
frequency with which the requirement is to be verified is an optional parameter
for AwRegs. If it is omitted, then the designer is to select the frequency (if the
period of time to consider has been specified, it can be used as default value
for the verification frequency). AR5 is an example of an AwReq with verification
interval specified.

Another pattern for aggregate AwReq specifies the min/max success/failure
a requirement is allowed to have (e.g., AR4). AwRegs can combine different re-
quirements, like AR5, that integrates two QCs with different target rates. One
can even compare the success counts of two requirements (AR6). This captures a
desired property of the alternative selection procedure when deciding at runtime
how to fulfill a goal.

AR7 is an example of a trend AwReq that compare success rates over a
number of periods. Trend AwRegs can be used to spot problems in how suc-
cess/failure rates evolve over time. Delta AwRegs, on the other hand, can be
used to specify acceptable thresholds for the fulfillment of requirements, such as
achievement time. AR8 specifies that task Update arrival at site should be satis-
fied (successfully finish execution) within 10 minutes of completing task Inform
driver. This means that once the dispatcher has informed the ambulance driver
where the emergency is, she should arrive there within 10 minutes.

Another delta AwReg, AR9, shows how we can talk not only about success and
failure of requirements, but about changes of states, following the state machine
diagram of figure 3. In effect, when we say a requirement “should [not] succeed
(fail)” we mean that it “should [not| transition from Undecided to Succeeded
(Failed)”. AR9 illustrates yet another case: the task Mark as unique or duplicate
should be decided — i.e., should leave the Undecided state — within 5 minutes.
In other words, regardless if they succeeded or fail, operators should not spend
more than 5 minutes deciding if a call is a duplicate of another call or not.

Finally, AR10 and AR11 are the examples of meta-AwReqs: AwReqs that
talk about other AwRegs. As we have previously discussed, AwReqs are based on
the premise that even though we elicited, designed and implemented a system
planning for all requirements to be satisfied, at runtime things might go wrong
and requirements could fail, so AwRegs are added to trigger system adaptation
in these cases. In this sense, AwRegs themselves are also requirements and, there-
fore, are also bound to fail at runtime. Thus, meta-AwRegs can provide further
layers of adaptation in some cases if needed be.

One of the motivations for meta- AwReqs is the application of gradual rec-
onciliation/compensations actions. This is the case with AR10: if AR3 fails (i.e.,
Search call database has less than 95% success rate in a week), tagging the calls
as “possibly ambiguous” (reconciling AR3) might be enough, but if AR3’s suc-
cess rate considering the whole month is below 75% (e.g., it fails at least two
out of four weeks), a deeper analysis of the database search problems might be
in order (reconciling AR10). Another useful case for meta-AwRegs is to avoid
executing specific reconciliation/compensation actions too many times. For ex-
ample, AR5 states that 60% of the ambulances should arrive in up to 10 minutes
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and 80% in up to 15 and to reconcile we should trigger messages to all users of
the ADS. To avoid sending repeated messages in case it fails again, AR11 states
that AR5 should never fail and, in case it does, its reconciliation decreases AR5’s
percentages by 10 points (to 50% and 70%, respectively), which means that a
new message will be sent only if the emergency response performance actually
gets worse. If sending this message twice a month were to be avoided, AR11’s
reconciliation could be, for example, disabling AR5 for that month. As mentioned
before, reconciliation is discussed in section 7.

With enough justification to do so, one could model an AwReq that refers to a
meta- AwReq, which we would call a meta-meta- AwReq — or third-level AwReq.
There is no limit on how many levels can be created, as long as meta- AwReqs
from a given level refer strictly to AwRegs from lower levels, in order to avoid
circular references. It is important to note that the name meta-AwReq is due
only to the fact that it consists of an AwReq over another AwReq. This does not
mean, however, that multiple levels of adaptation loops are required to monitor
them. As will be presented in section 5, monitoring is operationalized by EEAT,
which does so by matching method calls to invariants described in OCLyy; (an
example of this was presented in section 2.3), regardless of the class of the object
that is receiving the message (goal, task, AwReq, meta- AwReq, etc.).

3.2 Patterns and Graphical Representation

Specifying AwReqs is not a trivial task. For this reason we propose AwReq pat-
terns to facilitate their elicitation and analysis and a graphical representation
that allows us to include them in the goal model, improving communication
among system analysts and designers.

Many AwReqs have similar structure, such as “something must succeed so
many times”. By defining patterns for AwRegs we create a common vocabulary
for analysts. Furthermore, patterns are used in the graphical representation of
AwReqs in the goal model and code generation tools could be provided to au-
tomatically write the AwReq in the language of choice based on the pattern.
In section 5.1, we provide OCLyj, idioms for this kind of code generation. We
expect that the majority (if not all) AwRegs fall into these patterns, so their use
can relieve requirements engineers from most of the specification effort.

Table 2 contains a list of patterns that we have identified so far in our research
on this topic. This list is by no means exhaustive and each organization is free to
define its own patterns (with their own names and meanings). We have already
shown the pattern representation of the AwRegs that were elicited for the ADS in
the last column of table 1. For such representation, we have used the patterns of
table 2, mnemonics to refer to the requirements and abbreviated amounts of time
like in OCL7ys timeouts [25]. Furthermore, it is important to note that when
requirements engineer create patterns, they are responsible for their consistency
and correctness and, unfortunately, our approach does not provide any tool to
help in this task.

Given that AwRegs can be shortened by a pattern we propose they be rep-
resented graphically in the goal model along with other elements such as goals,
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Table 2. A non-exhaustive list of AwReq patterns.

Pattern Meaning

NeverFail (R) Requirement R should never fail. Analogous patterns
AlwaysSucceed, NeverCanceled, etc.

SuccessRate(R, r, t) R should have at least success rate r over time t.
SuccessRateExecutions R should have at least success rate r over the latest n
(R, r, n) executions.

MaxFailure(R, x, t) R should fail at most x times over time t. Analogous

patterns MinFailure, MinSuccess and MaxSuccess.

ComparableSuccess(R, S, [R should succeed at least x times more than S over
x, t) time t.

TrendDecrease(R, t, x) |The success rate of R should not decrease x times
consecutively considering periods of time specified by
t. Analogous pattern TrendIncrease.

ComparableDelta(R, S, p,|The difference between the value of attribute p in
x) requirements R and S should not be greater than x.

StateDelta(R, s1, s2, t)|R should transition from state s1 to state s2 in less
time than what is specified in t.

Py, and / or P»; not P Conjunction, disjunction and negation of patterns.

tasks, softgoals, DAs and QCs. For that purpose, we introduce the notation
shown in figure 4, which shows the goal model of the ADS with the addition of
AwReqs, represented graphically in the model. AwReqs are represented by thick
circles with arrows pointing to the element to which they refer and the AwReq
pattern besides it. The first parameter of the pattern is omitted, as the AwReq
is pointing to it. In case an AwReq does not fit a pattern, the analyst should
write its name and document its specification elsewhere.

3.3 Sources of Awareness Requirements

Like other types of requirements, AwRegs must be systematically elicited. Since
they refer to the success/failure of other requirements, their elicitation takes
place after the basic requirements have been elicited and the goal model con-
structed. There are several common sources of AwRegs and, in this section, we
discuss some of these sources. We do not, however, propose a systematic process
for AwReq elicitation and requirements engineers should use existing requirement
elicitation techniques to discover requirements that belong to this new class.
One obvious source consists of the goals that are critical for the system-to-
be to fulfill its purpose. If the aim is to create a robust and resilient system,
then there have to be goals/tasks in the model that are to be achieved/executed
at a consistently high level of success. Such a subset of critical goals can be
identified in the process and AwRegs specifying the precise achievement rates
that are required for these goals will be attached to them. This process can
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Fig. 4. Goal model of figure 1 with AwReqs represented graphically.

be viewed as the operationalization of high-level non-functional requirements
(NFRs) such as Robustness, Dependability, etc. For example, the task Input
emergency information is critical for this process since all subsequent activities
depend on it. Also, government regulations and rules may require that certain
goals cannot fail or be achieved at high rates. Similarly, AwReqs are applied to
DAs that are critical for the system (e.g., Communications networks working).

As shown in section 3.1, AwRegs can be derived from softgoals. There, we
presented a QC Ambulance arrives in 10 minutes that metricizes a high-level
softgoal Fast assistance. Then, AwReq AR5 is attached to it requiring the success
rate of 60%. This way the system is able to quantitatively evaluate at runtime
whether the quality requirements are met over large numbers of process instances
and make appropriate adjustments if they are not.

Qualitative softgoal contribution labels in goal models capture how goals and
tasks affect NFRs, which is helpful, e.g., for the selection of the most appropriate
alternatives. In the absence of contribution links, AwRegs can be used to capture
the fact that particular goals are important or even critical to meet NFRs and
thus those goals’ high rate of achievement is needed. This can be viewed as
an operationalization of a contribution link. For example, the task Prioritize
calls in figure 1 positively affects the softgoal Prioritized information and can
even be considered critical with respect to that softgoal. So, an AwRegq, say,
SuccessRate(Prioritize Calls, 90%), can be added to the model to capture that
fact. On the other hand, if a goal has a negative effect on an NFR, then an
AwReq could demand a low success rate for it.

In Tropos [5] and other variations of goal modeling notation, alternatives
introduced by OR-decomposed goals are frequently evaluated with respect to
certain softgoals. The goal Periodic updates in figure 1 (or figure fig-specification-
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graphical) is such an example. The evaluations are qualitative and show whether
alternatives contribute positively or negatively to softgoals. In our approach,
softgoals are refined into QCs and the qualitative contribution links are removed.
However, the links do capture valuable information on the relative fitness of
alternative ways to achieve goals. AwRegs can be used as a tool to make sure
that “good” alternatives are still preferred over bad ones. For instance, the AwReq
AR6 states that automatic updates must be executed more often than manual
ones, presumably because this is better for proximity of ambulances to target
locations and due to the costs of manual updates. This way the intuition behind
softgoal contribution links is preserved. If multiple conflicting softgoals play roles
in the selection of alternatives, then a number of alternative AwReqs can be
created since the selection of the best alternative will be different depending on
the relative priorities of the conflicting NFRs.

One of the difficulties with AwRegs elicitation is coming up with precise
specifications for the desired success rates over certain number of instances or
during a certain time frame. To ease the elicitation and maintenance we rec-
ommend a gradual elicitation, first using high-level qualitative terms such as
“medium” or “high” success rate, “large” or “medium” number of instances, etc.
Thus, the AwReq may originate as “high success rate of G over medium num-
ber of instances” before becoming SuccessRate(G, 95%, 500). Of course, the
quantification of these high-level terms is dependent on the domain and on the
particular AwReq. So, “high success rate” may be mapped to 80% in one case
and to 99.99% in another. Additionally, using abstract qualitative terms in the
model while providing the mapping separately helps with the maintenance of
the models since the model remains intact while only the mapping is changing.

4 Specifying Awareness Requirements

We have just introduced AwReqs as requirements that refer to the success or fail-
ure of other requirements. This means that the language for expressing AwReqs
has to treat requirements as first class citizens that can be referred to. Moreover,
the language has to be able to talk about the status of particular requirements
instances at different time points. We have chosen to use an existing language,
namely OCLyjs, over creating a new one, therefore inheriting its syntax and
semantics. The subset of OCLy,s features available to requirements engineers
when specifying AwRegs is the subset supported by the monitoring framework,
EEAT, introduced in section 2.3. A formal definition of the syntax and the se-
mantics of AwRegs is out of the scope of this paper.

Our general approach to using it is as follows: (i) design-time requirements
— as shown in figure 1, but also the AwRegs of table 1 — are represented as
UML classes, (ii) run-time instances of requirements, such as various ambulance
dispatch requests, are represented as instances of these classes. Representing sys-
tem requirements (previously modeled as a goal model) in a UML class diagram
is a necessary step for the specification of AwReqs in any OCL-based language,
as OCL constraints refer to classes and their instances, attributes and methods.
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Even though other UML diagrams (such as the sequence diagram or the activity
diagram) might seem like a better choice for the representation of requirements
and AwReqs, having instances of classes that represent requirements at runtime
is mandatory for the OCL-based infrastructure that we have chosen.

Hence, we present in figure 5 a model that represents classes that should be
extended to specify requirements. In other words, each requirement of our system
should be represented by a UML class, extending the appropriate class from
the diagram of figure 5. These classes have the same name as the mnemonics
used in the pattern column of table 1. Moreover, the first letter of each class
name indicates which element of figure 5 is being extended (T for Task, G for
Goal and so forth). Note that the diagram of figure 5 does not represent a meta-
model for requirements due to the fact that the classes that represent the system
requirements are subclasses of the classes in this diagram, not instances of them
as it is the case with meta-models. This inheritance is necessary in order for
AwReq specifications to be able to refer to the methods defined in these classes,
as they are inherited by the requirement classes.

Another important observation is that these classes are only an abstract
representation of the elements of the goal model (figure 1) and they are part of
the monitoring framework that will be presented in section 5. They are not part
of the monitored system (i.e., the ADS). In other words, the actual requirements
of the system are not implemented by means of these classes.

Requirement
- children
1.# ] + now() : long
+ cal() : Calendar
DefineableRequirement Lﬁ
- time : Date Softgoal T
1..¥] + start() : void 7
+ end() : void
+ success() : void contributesTo
+ fail() : void
I | G I | *
AwReq PerformativeRequirement DomainAssumption QualityConstraint
* - startTime : Date
+ cancel() : void
[ & 1
O..ll Goal Task

B paren:tl - decompositionType : GoalDecompositionType
1

Fig. 5. Class model for requirements in GORE.

Figure 6 shows the specification of some AwRegqs of table 1 using OCLyy,.
For example, consider AR1, which refers to a UML Task requirement. Figure 6
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presents AR1 as an OCL invariant on the class T-InputInfo, which should be
a subclass of Task (from figure 5) and represents requirement Input emergency
information. The invariant dictates that instances of T-InputInfo should never
be in the Failed state, i.e., Input emergency information should never fail.

context T-Inputinfo inv ART: never(self.oclInState(Failed))

context G-SearchCallDB
def: week : G-SearchCallDB.allInstances()->select(g | new Date().diff(g.time, DAYS) <= 7)
def: success : week->select(d | d.oclinState(Succeeded))
inv AR3: always(success->size() / week->size() >= 0.95)

context Q-NoExtraAmb
def: all : Set = Q-NoExtraAmb.allInstances()
def: now : Date = new Date()
def: m1 : Set = all->select(q | now.diff(g.time, DAYS) <= 30)
def: m2 : Set = all->select(q | (now.diff(q.time, DAYS) <= 60) and (now.diff(g.time, DAYS > 30)))
def: m3 : Set = all->select(q | (now.diff(q.time, DAYS) <= 90) and (now.diff(g.time, DAYS > 60)))
def: success1 : Set = m1->select(q | g.oclinState(Succeeded))
def: success2 : Set = m2->select(q | q.oclInState(Succeeded))
def: success3 : Set = m3->select(q | g.oclinState(Succeeded))
inv AR7: never(((success3->size() / m3->size()) < (success2->size() / m2->size())) and
((success2->size() / m2->size()) < (success1->size() / m1->size())))

context T-InformDriver
def: related : Set = T-UpdAtSite.allinstances()->select(t | t.arguments(‘calliD') = self.arguments('calllD"))
inv AR8: eventually(related->size() == 1) and always(related->forAll(t | t.oclinState(Succeeded) and
t.time.diff(self.time, MINUTES) <= 10))

context T-MarkUnique
inv AR9: eventually(not self.oclinState(Undecided)) and never(self.time.diff(self.startTime, MINUTES) > 5)

Fig. 6. Examples of AwRegs expressed in OCL7xs.

Aggregate AwRegs place constraints over a collection of instances. In AR3,
for example, all instances of G-SearchCallDB executed in the past 7 days are
retrieved in a set named week (using date comparison as in [25]), then we use the
select () operation again to separate the subset of the instances that succeeded
and, finally, we compare the sizes of these two sets in order to assert that 95%
of the instances are successful at all times (always).

Trend AwReqs are similar, but a bit more complicated as we must separate
the requirements instances into different time periods. For AR7, the select()
operation was used to create sets with the instances of Q-NoExtraAmb for the
past three months to compare the rate of success over time.

Delta AwReqs specify invariants over single instances of the requirements. AR8
singles out the instances of T-UpdAtSite that are related to T-InformDriver in
the related set by comparing the callID argument using OCLzs’s arguments ()
operation [25]. Its invariant states that eventually the related set should have
exactly one element, which should both be successful and finish its execution
within 10 minutes of T-InformDriver’s end time.
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AR9 shows how to specify the example in which we do not talk specifically
about success or failure of a requirement, but its change of state: eventually tasks
T-MarkUnique should not be in the Undecided state and the difference between
their start and end times should be at most 5 minutes.

5 Implementation and Evaluation

To evaluate our proposal we have implemented a framework to monitor AwReqs
at runtime. Such evaluation considers three aspects of this framework:

1. Can AwRegs be monitored? Specifically, can an automated monitor evaluate
requirements types enumerated in table 2 at runtime? Applying a construc-
tive experiment, we show this is true (§5.1);

2. Can the AwRegs framework provide value for the analysis of a real system?
With simulation experiments, we demonstrate this is true for scenarios of
the ADS (§5.2);

3. What is the impact of AwReqs monitoring in the overall performance of the
monitored system? We discuss this in §5.3.

The first two items above represent the experimental and descriptive evalu-
ation methods of Design Science, as enumerated by [16]. After this initial eval-
uation, two other experiments were conducted, modeling the AwRegs of sys-
tems that are close to real-world applications: an Adaptive Computer-aided
Ambulance Dispatch system [31] that is somewhat similar to the ADS, but was
based on the requirements for the London Ambulance System Computer-Aided
Despatch (LAS-CAD) [1]; and an Automatic Teller Machine [35]. Since these ex-
periments involved simulations of running systems based on their requirements
models, future evaluation efforts include experiment with actual running systems
and conducting full-fledged case studies with partners in industry.

5.1 Monitoring Awareness Requirements Patterns

As mentioned in section 2.3, we have used EEAT to monitor AwRegs expressed
in OCL7)s. In its current version, EEAT compiles the OCLyj; expression into
a rule file that is triggered by messages exchanged by objects at runtime (i.e.,
method calls). For this reason, we have to transform the initial specification
of the AwReqs to one based on methods received by the run-time instances
which represent the requirements. Figure 7 shows some of the AwReqs previously
presented in figure 6 in their “EEAT specifications”.

For monitoring to work, then, the source code of the monitored system (in
this case, the ADS) has to be instrumented in order to create the instances of
the classes that represent the requirements at runtime and call the methods
defined in classes DefinableRequirement and PerformativeRequirement from
figure 5. Methods start () and end() should be called when the system starts
and ends the execution of a goal or task (or the evaluation of a QC or DA),



18

context T-Inputinfo
inv AR1: between(receivedMessage('start’) <> null, receivedMessage('end’) <> null, never(receivedMessage('fail') <> null))

context G-SearchCallDB
def: weekA : LTL::OcIMessage = receivedMessage('newWeek')
def: weekB : LTL::OcIMessage = receivedMessage('newWeek')
def: wS : Integer = receivedMessages('success')->select(m | now() - m.timestamp() < week())->size()
def: wF : Integer = receivedMessages('fail')->select(m | now() - m.timestamp() < week())->size()
inv AR3: between(weekA <> null, weekB <> null and cal().weekDiff(weekA.timestamp(), weekB.timestamp()),
always(wsS / (wS + wF) >= 0.95)

context goalmodel::Task
def: sTUpdSite : LTL::OcIMessage = receivedMessage('T-UpdAtSite', 'success')
def: sTInfDriv : LTL::OcIMessage = receivedMessage('T-InformDriver', 'success')
inv AR8: after(eventually(sTUpdSite <> null), eventually(sTUpdSite.argument(‘calliD’) = sTInfDriv.argument(‘calliD"), '10m")

Fig. 7. Specification of AwRegs for EEAT.

respectively. Together with the between clause (one of Dwyer et al. scopes, see
§2.3), these methods allow us to define the period in which AwRegs should be
evaluated, because otherwise the rule system could wait indefinitely for a given
message to arrive.

Given the right scope, the methods success(), fail() and cancel() are
called by the monitored system to indicate a change of state in the requirement
from Undecided to one of the corresponding final states (see figure 3). These
methods are then used in the “EEAT specification” of AwRegs. For example, we
define AR1 not as never being in the Failed state, but as never receiving the
fail() message in the scope of a single execution (between start () and end()).

An aggregate requirement, on the other hand, aggregates the calls during
the period of time defined in the AwReq. For AR3, this is done by monitoring for
calls of the newWeek () method, which are called automatically by the monitoring
framework at the beginning of every week. Similar methods for different time
periods, such as newDay (), newHour () and so forth, should also be implemented.

The last example shows the delta AwReq ARS8, which uses OCL7j; timeouts
to specify that the success() method should be called in the T-InformDriver
instance within 10 minutes after the same method is called in T-UpdAtSite,
given that both instances refer to the same call ID, an argument that can be
passed along the method. This can be implemented by having a collection of
key-value pairs passed as parameters to the methods start (), success(), etc.

An automatic translator from the AwReqs’ initial specification to their “EEAT
specification” could be built to aid the designer in this task. Another possibil-
ity is to go directly from the AwReq patterns presented in section 3.2 to this
final specification. Table 3 illustrates how some of the patterns of table 1 can
be expressed in OCL7js. These formulations are consistent with those shown in
figure 7. The definitions and invariants are placed in the context of UML classes
that represent requirements (see §4). For example, a receiveMessage(‘fail’)
for context R, denotes the called operation R.fail() for class R. Therefore, the
invariant pR in the first row of table 3 is true if R.fail() is never called.
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Table 3. EEAT/OCLry; idioms for some patterns.

Pattern OCL7)s idiom

NeverFail(R) def: rm: OclMessage = receiveMessage(‘fail’)
inv pR: never(rm)

SuccessRate(R, T, t) def: msgs: Sequence(OclMessage) = receiveMessages()->
select (range() .includes (timestamp()))
- - Note: these definitions are patterns that are assumed in
the following definitions
def: succeed: Integer = msgs->select(methodName = ‘succeed’))->size()
def: fail: Integer = msgs->select(methodName = ‘fail’))->size()
inv pR: always(succeed / (succeed + fail) > r)

ComparableSuccess |- - c1 and c2 are fully specified class names
y sp
(R S x t) inv pR: always(cl.succeed > c2.succeed * x)
) ) )

MaXFailure(R, X, t) inv pR: always(fail < x)

P and/or Pz; not P|-- arbitrary temporal and real-time logical expressions are
allowed over requirements definitions and run-time objects

Of course, the patterns of table 1 represent only common kinds of expres-
sions. AwReqs contain the range of expressions where a requirement R1 can
express properties about requirement R2, which include both design-time and
run-time requirements properties. OCLy ), explicitly supports such references,
as the following expressions illustrate:

def: pl: PropertyEvent = receivedProperty(‘p:package.class.invariant’)
inv p2: never(pl.satisfied() = false)

In OCL7)y, all property evaluations are asserted into the run-time evaluation
repository as PropertyEvent objects. The definition expression of p1 refers to
an invariant (on a UML class, in a UML package). Properties about p1 include
its run-time evaluation (satisfied()), as well as its design-time properties (e.g.,
pl.name()). Therefore, in OCLyy;, requirements can refer to their design-time
and run-time properties and, thus, AwRegs can be represented in OCLp,y.

To determine if the AwReq patterns can be evaluated at runtime, we con-
structed scenarios for each row of table 3. Each scenario includes three alterna-
tives, which should evaluate to true, false, and indeterminate (non-false) during
requirements evaluation. We had EEAT compile the patterns and construct a
monitor. Then, we ran the scenarios. In all cases, EEAT correctly evaluated the
requirements.

To illustrate how EEAT evaluates OCLyj requirements in general, the next
subsection describes in detail a portion of the evaluation of the ADS’ monitoring
system, which was generated from the requirements of table 1.

5.2 Evaluating an Awareness Requirement Scenario

The requirements of the ADS provide a context to evaluate the AwReq frame-
work. The ADS is implemented in Java. Its requirements (table 1) are repre-
sented as OCLyj, properties, using patterns like those presented in table 3 and
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figure 7. Scenarios were developed to exercise each requirement so that each of
them should evaluate as failed or succeeded. When each scenario is run, EEAT
evaluates the requirements and returns the correct value. Thus, all the scenarios
that test ADS requirements presented here evaluate correctly.

Next, we describe how this process works for one requirement and one test.

Consider a single vertical slice of the development surrounding requirement AR1,
as shown in figure 8:

Target System AwReqs
(e.g., ADS Java app) (OCLy) |_o
T-Inputinfo CBE Log
Input > Events —‘
Emergency success|() > EE'?\T |gg4J
Information fail() @ ee
form
Instrumented
/ Instrumented Property
Events
\'S€S Other /}\vleeq
L components | arure Drools rule
P of the engine
O"b'é'r_a tor controller

Feedback Loop Controller — Monitoring

Fig. 8. Overview of the AwRegqs monitoring framework.

. Analysts specify the Emergency input information task of figure 1 (i.e.,

T-InputInfo) as a task specification (e.g., input, output, processing algo-
rithm) along with AwRegs such as AR1;

Developers produce an input form and a processor fulfilling the specification.
In a workflow system architecture, T-InputInfo is implemented as a XML
form which is processed by a workflow engine. In our standard Java applica-
tion, T-InputInfo is implemented as a form that is saved to a database. In
any case, the point at which the input form is processed is the instrumenta-
tion point;

Validators (i.e., people performing requirements monitoring) instrument the
software. Five events are logged in this simple example: (a) T-InputInfo
.start(), (b) T-InputInfo.end(), (c) T-InputInfo.success(), (d) T-
InputInfo.fail(),and (e) T-InputInfo.cancel(). Of course, the develop-
ers may have chosen a different name for T-InputInfo or the five methods,
in which case, the validator must introduce a mapping from the run-time
object and methods to the requirements classes and operations. Given the
rise of domain-driven software development, in which requirements classes
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are implemented directly in code, the mapping function is often relatively
simple — even one-to-one;

4. The EEAT monitor continually receives the instrumented events and deter-
mines the satisfaction of requirements. In the case of AR1, if the T-InputInfo
form is processed as succeed or cancel, then AR1 is true.

The architecture and process of EEAT provides some context for the pre-
ceding description. EEAT follows a model-driven architecture (MDA). It relies
on the Eclipse Modeling Framework (EMF) for its meta-model and the OSGi
component specifications. This means that the OCLz), language and parser is
defined as a variant of the Eclipse OCL parser by providing EMF definitions
for operations, such as receivedMessage. The compiler generates Drools rules,
which combined with the EEAT API, provide the processing to incrementally
evaluate OCLyjs properties at runtime.

EEAT provides an Eclipse-based UI. However, the run-time operates as a
OSGi application, comprised as a dynamic set of OSGi components. For these
experiments, the EEAT run-time components consist of the OCLy s property
evaluator, compiled into a Drools rule system, and the EEAT log4j feed, which
listens for logging events and adds them to the EEAT repository. The Java
application was instrumented by Eclipse TPTP to send CBE events via log4j
to EEAT, where the event are evaluated by the compiled OCLy)s property
monitors. For a more complete description of the language and process of EEAT,
see [26, 27].

5.3 Monitor Performance

Monitoring has little impact on the target system, mostly because the target sys-
tem and the monitor typically run on separate computers. The TPTP Probekit
provides optimized byte-code instrumentation, which adds little overhead to
some (selected) method calls in the target system. The logging of significant
events consumes no more than 5%, and typically less than 1% overhead.

For real-time monitoring, it is important to determine if the target events can
overwhelm the monitoring system. A performance analysis of EEAT was con-
ducted by comparing the total monitoring runtime vs. without monitoring using
40 combinations of the Dwyer et al. temporal patterns [11]. For data, a simple
two-event sequence was the basis of the test datum; for context, consider the
events as an arriving email and its subsequent reply. These pairs were continu-
ously sent to the server 10,000 times. In the experiment, the event generator and
EEAT ran in the same multi-threaded process. The test ran as a JUnit test case
within Eclipse on a Windows Server 2003 dual core 2.8 GHz with 1G memory.
The results suggest that, within the test configuration, sequential properties (of
length 2) are processed at 137 event-pairs per second [26]. This indicates that
EEAT is reasonably efficient for many monitoring problems.
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6 Related Work

In the literature, there are many approaches for the design of adaptive systems.
A great deal of them, however, focus on architectural solutions for this prob-
lem, such as the Rainbow framework [13], the proposal of Kramer & Magee [19],
the work of Sousa et al. [30], the SASSY framework [22], among others. These
approaches usually express adaptation requirements in a quantitative manner
(e.g., utility functions) and focus on quality of service (i.e., non-functional re-
quirements). In comparison, our research is focused on early requirements (goal)
models, allowing stakeholders and requirements engineers to reason about adap-
tation on a higher level of abstraction. Furthermore, AwRegs can be associated
not only to non-functional characteristics of the system (represented by quality
constraints), but also to functional requirements (goals, tasks) and even domain
assumptions. The rest of this section focuses on recent approaches that share a
common focus with ours in early requirements models.

A number of recent proposals offer alternative ways of expressing and rea-
soning about partial requirements satisfaction. RELAX by Whittle, et al. [36] is
one such approach aimed at capturing uncertainty (mainly due to environmental
factors) in the way requirements can be met. Unlike our goal-oriented approach,
RELAX assumes that structured natural language requirements specifications
(containing the SHALL statements that specify what the system ought to do)
are available before their conversion to RELAX specifications. The modal oper-
ators available in RELAX, SHALL and MAY...OR, specify, respectively, that
requirements must hold or that there exist requirements alternatives. We, on the
other hand, capture alternative requirements refinement using OR decomposi-
tions of goals.

In RELAX, points of flexibility /uncertainty are specified declaratively, thus
allowing designs based on rules, planning, etc. as well as to support unanticipated
adaptations. Some requirements are deemed invariant — they need to be satisfied
no matter what. This corresponds to the NeverFail(R) AwReq pattern in our
approach. Other requirements are made more flexible in order to maintain their
satisfaction by using “as possible’-type RELAX operators. Because of these,
RELAX needs a logic with built-in uncertainty to capture its semantics. The
authors chose fuzzy branching temporal logic for this purpose. It is based on the
idea of fuzzy sets, which allows gradual membership functions. E.g., the function
for fuzzy number 2 peaks at 1 given the value 2 and slopes sharply towards 0
as we move away from 2, thus capturing “approximately 2”. Temporal operators
such as Ewventually and Until allow for temporal component in requirements
specifications in RELAX.

Our approach is much simpler compared to RELAX. The AwRegs constructs
that we provide just reference other requirements. Thus, we believe that it is
more suitable, e.g., for requirements elicitation activities. Our specifications do
not rely on fuzzy logic and do not require a complete requirements specification
to be available prior to the introduction of AwRegs. Also, our language does
not require complex temporal constructs. However, the underlying formalism
used for AwReqs — OCLy); — provides temporal operators, as does EEAT,
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so temporal properties can be expressed and monitored. Most of the work on
generating OCLy ;s specifications can be automated through the use of patterns.

With each relaxation RELAX associates “uncertainty factors” properties of
the environment that can or cannot be monitored, but which affect uncertainty
in achieving requirements. Our future work includes such integration of domain
models in our approach.

Using AwReqs we can express approximations of many of the RELAX-ed re-
quirements. For instance, AR5 from table 1 can be used as a rough approximation
of the requirement “ambulances must arrive at the scene AS CLOSE AS POSSI-
BLE to 10 minutes’ time”. The general pattern for approximating fuzzy require-
ments is to first identify a number of requirements that differ in their strictness,
depending on our interpretation of what “approximately” means. E.g., R1 = “am-
bulance arrives in 10 min”, R2 = “ambulance arrives in 12 min”, R3 = “ambulance
arrives in 15 min”. Then, we assign desired satisfaction levels to these require-
ments. For instance, we can set success rate for R1 to 60% (as in AR5), R2 to
80%), and R3 to 100%. This means that all ambulances will have to arrive within
10-15 min from the emergency call. The AwReq will then look like AR12 = Suc-
cessRate(R1, 60%) AND SuccessRate(R2, 80%) AND SuccessRate(R3, 100%).
On the other hand, AR13 = SuccessRate(R1, 80%) AND SuccessRate(R2, 100%)
provides a much stricter interpretation of the fuzzy duration with all ambulances
required to arrive within 12 minutes.

Another related approach called FLAGS is presented in [3]. FLAGS require-
ments models are based on the KAOS framework [20] and are targeted at adap-
tive systems. It proposes crisp (Boolean) goals (specified in linear-time temporal
logic, as in KAOS), whose satisfaction can be easily evaluated, and fuzzy goals
that are specified using fuzzy constraints. In FLAGS, fuzzy goals are mostly as-
sociated with non-functional requirements. The key difference between crisp and
fuzzy goals is that the former are firm requirements, while the latter are more
flexible. Compared to RELAX, FLAGS is a goal-oriented approach and thus is
closer in spirit to our proposal.

To provide semantics for fuzzy goals, FLAGS includes fuzzy relational and
temporal operators. These allow expressing requirements such as something be
almost always less than X, equal to X, within around t instants of time, lasts
hopefully t instants, etc. As was the case with the RELAX approach, AwReqgs can
approximate some of the fuzzy goals of FLAGS while remaining quite simple. The
example that we presented while discussing RELAX also applies here. Whenever
a fuzzy membership function is introduced in FLAGS, its shape must be defined
by considering the preferences of stakeholders. This specifies exactly what values
are considered to be “around” the desired value. As we have shown above with
AR12 and AR13, AwReqs can approximate this “tuning” of fuzzy functions while
not needing fuzzy logic and thus remaining more accessible to stakeholders.

Additionally, in FLAGS, adaptive goals define countermeasures to be exe-
cuted when goals are not attained, using event-condition-action rules. Our pro-
posal on a full-fledged compensation language has been recently submitted for
publication in a conference and is currently under review [33]. Discussion in
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section 3 illustrates how AwReqs and meta- AwRegs could be used to enact the
required compensation behavior, including relaxation of desired success rates.
We further comment on these aspects on section 7.2.

Letier and van Lamsweerde [21] present an approach that allows for specify-
ing partial degrees of goal satisfaction for quantifying the impact of alternative
designs on high-level system goals. Their partial degree of satisfaction can be
the result of, e.g., failures, limited resources, etc. Unlike FLAGS and RELAX,
here, a partial goal satisfaction is measured not in terms of its proximity to being
fully satisfied, but in terms of the probability that it is satisfied. The approach
augments KAOS with a probabilistic layer. Here, goal behavior specification (in
the usual KAOS temporal logic way) is separate from the quantitative aspects
of goal satisfaction (specified by quality variables and objective functions). Ob-
jective functions can be quite similar to AwRegs, except they use probabilities.
For instance, one such function presented in [21] states that the probability of
ambulance response time of less than 8 min should be 95%. Objective functions
are formally specified using a probabilistic extension of temporal logic. An ap-
proach for propagating partial degrees of satisfaction through the model is also
part of the method.

Overall, the method can be used to estimate the level of satisfaction of high-
level goals given statistical data about the current or similar system (from rather
low-level measurable parameters). Our approach, on the other hand, naturally
leads to high-level monitoring capabilities that can determine satisfaction levels
for AwRegqs.

There is a fundamental difference between the approaches described above
and our proposal. There, by default, goals are treated as invariants that must
always be achieved. Non-critical goals — those that can be violated from time to
time — are relaxed. Then, the aim of those methods is to provide the machinery
to conclude at runtime that while the system may have failed to fully achieve
its relaxed goals, this is acceptable. So, while relaxed goals are monitored at
runtime, invariant ones are analyzed at design time and must be guaranteed to
always be achievable at runtime.

In our approach, on the other hand, we accept the fact that a system may
fail in achieving any of its initial (stratum 0) requirements. We then suggest that
critical requirements are supplemented by AwRegs that ultimately lead to the
introduction of feedback loop functionality into the system to control the degree
of violation of critical requirements. Thus, the feedback infrastructure is there to
reinforce critical requirements and not to monitor the satisfaction of expendable
(i.e., relaxed) goals, as in RELAX/FLAGS. The introduction of feedback loops
in our approach is ultimately justified by criticality concerns.

7 From Awareness Requirements to Feedback Loops

As stated in section 1, our intention in this proposal is to identify and explore
requirements that lead to the introduction of feedback loop functionality into
adaptive systems. In section 3.3, we discussed the sources of AwRegs, while
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section 5 explained how EEAT can be used to monitor AwRegs at runtime to
determine if they are attained or not. In this section, we present the overview of
the role of Awareness Requirements in our overall approach for feedback loop-
based requirements-driven adaptive systems design.

Figure 9 shows a variant of a feedback controller diagram adapted for require-
ments-driven adaptive systems. Here, system requirements play the role of the
reference input, while indications of requirements convergence signaling if the
requirements have been met replace the traditional monitored output of the con-
troller. The controller itself is represented by a requirements-driven adaptation
framework that controls the target system through executing adaptation actions
that correspond to the control input in traditional feedback control schemes. Dy-
namically changing context corresponds to the disturbance input of the control
loop. Finally, the measure of requirements divergence is the control error.

Identify parameters and model Monitor the satisfaction of
their effects oln indicators awareness requirements

Context information

Indicators of

System S 4 . Adaptivity h 4 requirement
requirements | Adaptation| actions = Target convergence
" framework e System i’

“— Requirements

divergence ‘\
h

\ ~

|
Set targets for success . )
rates (goals, DAs, QCs) 9 Compare with the 9 De_termlne the
using AwRegs targets that have been set  adaptation strategy

Fig. 9. A feedback loop illustrating the steps of the proposed process.

Furthermore, the phases of our proposed approach are added to the feedback
loop diagram in figure 9, labeled 1 through 5. Step 1 is to set the targets for
system to achieve/maintain at runtime. AwRegs, as discussed here, are used for
this purpose. For step 2, the EEAT monitoring framework presented in section
5 is used to monitor whether the AwReqs are attained at runtime. Given the
values for the AwReq attainment at runtime, in step 3 we calculate requirements
divergence. If the targets are not met, this warrants a system adaptation. The
system identification process (step 4) is aimed at linking system configuration
parameters with indicators of requirements convergence and can be used to de-
termine possible system reconfigurations. This process is further discussed in
Section 7.1. Finally, adaptation strategies/actions (step 5 in figure 9) are used
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by the adaptation framework to actually adapt the target system. These are
further discussed in section 7.2.

7.1 System Identification

As we have shown throughout sections 3 to 5, AwRegs can be used to determine
when requirements are not being satisfied, much the same way a control system
calculates the control error, i.e., the discrepancy between the reference input (de-
sired) and the measured output (outcome). The next step, then, is to determine
the control input based on this discrepancy, i.e., determine what could be done
to adapt the target system to ultimately satisfy the requirements.

In Control Theory (e.g., [15]), the first step towards accomplishing this is
an activity called System Identification, which is the process of determining the
equations that govern the dynamic behavior of a system. This activity is con-
cerned with: (a) the identification of system parameters that, when manipulated,
have an effect on the measured output; and (b) the understanding of the nature
of this effect. Afterwards, these equations can guide the choice of the best way
to adapt to different circumstances. For example, in a control system in which
the room temperature is the measured output, turning on the air conditioner
lowers the temperature, whereas using the furnace raises it. If the heating/cool-
ing systems offer different levels of power, there is also a relation between such
power level and the rate in which the temperature in the room changes.

In [32] we propose a systematic process for conducting System Identification
for adaptive software systems, along with a language that can be used to rep-
resent how changes in system parameters affect the indicators of requirements
convergence. After AwReqs have been elicited as indicators, the System Identi-
fication process consists of three activities:

1. Identify parameters: determine points of variability in the system (OR-
decompositions, parameters related to system goals or tasks) whose change
of value affects any of the indicators. For instance, the set of required fields
(an enumerated parameter) affects AwReq AR1 (see table 1) — less required
fields makes inputting information easier; the number of ambulances, as well
as operators and dispatchers working, affects AwReq AR5 — the higher the
number, the higher the chances of fast assistance;

2. Identify relations: for each indicator—parameter pair (not only the ones
identified in the previous step, but the full {indicators} x {parameters}
Cartesian product), verify if there is a relation between changes in the param-
eter and the value of the indicator. For each existing relation, model quali-
tative information about the nature of the effect using differential equations.
For example, A (AR1/RequiredFields) < 0 indicates that decreasing the
required fields (assuming the enumerated values form a totally ordered set)
increases the success of AR1; A(AR5/NumberO f Ambulances) > 0 states
that increasing the number of ambulances also increases the success of AR5;

3. Refine relations: after identifying initial relations, the model can be refined
by comparing and combining those that refer to the same indicator. For ex-
ample, A (AR5/NumberO f Ambulances) > A (AR5/NumberO fOperators)
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tells us that buying more ambulances is more effective than hiring more op-
erators when considering how fast ambulances get to emergency sites.

A more detailed explanation of the System Identification process and the
proposed language for modeling relations between indicators and parameters
can be found in [32]. However, the basic examples above already give us the
intuition that this kind of information is very important in order to determine
the best way to adapt the target system and, therefore, the models produced by
System Identification can be used by the adaptation framework for this purpose.
Adaptation strategies are discussed next.

7.2 Adaptation Strategies

There are several ways a system can be changed as a result of its failure to at-
tain the requirements. We call one such possibility adaptation. Here, the system’s
configuration (the values of its parameters) is changed in attempt to achieve the
indicator targets. This can be viewed as parameter tuning. There can be a num-
ber of possible reconfiguration strategies based on the amount of information
available in the system identification model. The more information is available
and the more quantitative it is, the more precise and advanced the reconfigu-
ration strategies can become. The reconfigurations involve changing the values
of the system parameter(s), which affect indicator(s) that failed to achieve their
target values. With the absence of a fully quantitative model relating parameters
and indicators, an adaptation strategy may involve a number of such reconfigu-
rations that are performed in succession in attempt to bring the indictor value to
its target. When more precise information is available, quantitative approaches,
e.g., mimicking the PID controller [15] can be used. Detailed specification and
analysis of these strategies is one of the subjects of our current research.

In addition to reconfiguring a system, Evolution Requirements, which describe
evolutions of other requirements, can be used to identify specific changes to the
system requirements under particular conditions (usually requirements failures,
negative trends on achieving requirements, or opportunities for improvement).
Unlike reconfigurations discussed above, evolution requirements may change the
space of alternatives available for the system. In our recent work [33], we have
identified a number of adaptation strategies, including abort, retry, delegate to an
external agent, relaz/strengthen the requirement, etc., constructed from the ba-
sic requirements evolution operations such as initiate (a requirement instance),
rollback (changes due to an attempt to achieve a requirement), etc. These adapta-
tion strategies can be applied at the requirements instance level (thus, fixing /im-
proving a particular system instance) and/or type level (thereby changing the
behavior of all subsequent system instances). Reconfiguration is considered as
one possible adaptation strategy. It can be applied at both levels. Further, [33]
proposes an ECA-based process for executing adaptation strategies in response
to failures. Triggered by AwReq failures, this process attempts to execute the pos-
sibly many adaptation strategies associated with the AwReq in their preference
order, while defaulting to the abort strategy if others do not prove successful.
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We stress here that Awareness Requirements are absolutely crucial in our
vision for requirements-driven adaptive systems design. They serve both as the
means to specify targets to be met by the system (i.e., reference inputs for the
feedback controller) and as the indicators of requirements convergence (i.e., the
monitored outputs), with their failures triggering the above-described adaptation
strategies.

8 Conclusions

The main contribution of this paper is the definition of a new class of require-
ments that impose constraints on the run-time success rate of other require-
ments. The technical details of the contribution include linguistic constructs
for expressing such requirements (reference to other requirements, requirement
states, temporal operators), expression of such requirements in OCLyy;, as well
as portions of a prototype implementation founded on an existing requirements
monitoring framework. We have also discussed the role of AwRegs in a complete
process for the development of adaptive systems using a feedback loop-based
adaptation framework that builds on top of this monitoring framework.

Other than working towards the full feedback loop implementation discussed
in section 7, future steps in our research include the integration of domain models
in the approach (as mentioned in section 6) and improvements in the definition
and specification of AwRegs. Other questions also present themselves as opportu-
nities for future work in the context of this research: what is the role of contextual
information in this approach? How could we add predictive capabilities or prob-
abilistic reasoning in order to avoid failures instead of adapting to them? Could
this approach help achieve requirements evolution? These and other questions
show how much work there is still to be done in this research area.
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