
Awareness Requirements for Adaptive SystemsVítor E. Silva Souza1, Alexei Lapou
hnian1, William N. Robinson2, and JohnMylopoulos1
1 Department of Inf. Engineering and Computer S
ien
e, University of Trento, Italy{vitorsouza,lapou
hnian,jm}�disi.unitn.it

2 Department of Computer Information Systems, Georgia State University, USAwrobinson�gsu.eduAbstra
t. The fun
tional spe
i�
ation of any software system opera-tionalizes stakeholder requirements. In this paper we fo
us on a 
lassof requirements that lead to feedba
k loop operationalizations. TheseAwareness Requirements talk about the runtime su

ess/failure of otherrequirements and domain assumptions. Our proposal in
ludes a languagefor expressing awareness requirements, as well as te
hniques for eli
ita-tion and implementation based on the EEAT requirements monitoringframework.1 Introdu
tionThere is mu
h and growing interest in software systems that 
an adapt to 
hangesin their environment or their requirements in order to 
ontinue to ful�ll theirmandate. Su
h adaptive systems usually 
onsist of a system proper that deliv-ers a required fun
tionality, along with a monitor-analyze-plan-exe
ute (MAPE[18℄) feedba
k loop that operationalizes the system's adaptability me
hanisms.Indi
ations for this growing interest 
an be found in re
ent workshops and 
on-feren
es on topi
s su
h as adaptive, autonomi
 and autonomous software (e.g.,[7, 23, 14℄).We are interested in studying the requirements that lead to this feedba
kloop fun
tionality. In other words, if feedba
k loops 
onstitute an (ar
hite
tural)solution, what is the requirements problem this solution is intended to solve?The nu
leus of an answer to this question 
an be gleamed from any des
riptionof feedba
k loops: �... the obje
tive ... is to make some output, say y, behave ina desired way by manipulating some input, say u ...� [10℄. Suppose then that wehave a requirement r = �supply 
ustomer with goods upon request� and let s bea system operationalizing r. The �desired way� of the above quote for s is that italways ful�lls r, i.e., every time there is a 
ustomer request the system meets itsu

essfully (here, the notion of �su

ess� depends on the type of system: for soft-ware systems, it means 
ompleting the transa
tion without errors or ex
eptions,whereas for so
io-te
hni
al systems �su

ess� 
ould involve the parti
ipation ofhuman a
tors, e.g., goods are properly delivered to the 
ustomer). This meansthat the system somehow manages to deliver its fun
tionality under all 
ir
um-stan
es (e.g., even when one of the requested items is not available). Su
h a



2requirement 
an be expressed, roughly, as r1 = �Every instan
e of requirementr su

eeds�. And, of 
ourse, an obvious way to operationalize r1 is to add to thear
hite
ture of s a feedba
k loop that monitors if system responses to requests arebeing met, and takes 
orre
tive a
tion if they are not. We 
an generalize on this:we 
ould require that s su

eeds more than 95% of the time over any one-monthperiod, or that the average time it takes to supply a 
ustomer over any one weekperiod is no more than 2 days. The 
ommon thread in all these examples is thatthey de�ne requirements about the run-time su

ess/failure/quality-of-servi
e ofother requirements. We 
all these self-awareness requirements.A related 
lass of requirements is 
on
erned with the truth / falsity of do-main assumptions. For our example, we may have designed our 
ustomer supplysystem on the domain assumption d = �suppliers for items we distribute arealways open�. A

ordingly, if supplier availability is an issue for our system, wemay want to add yet another requirement r2 = �d will not fail more than 2%of the time during any 1-month period�. This is also an awareness requirement,but it is 
on
erned with the truth/falsity of a domain assumption.The obje
tive of this paper is to study Awareness Requirements (hereafterreferred to as AwReqs), whi
h are 
hara
terized synta
ti
ally as requirementsthat refer to other requirements or domain assumptions and their su

ess orfailure at runtime. AwReqs are represented in an existing language and 
anbe dire
tly monitored by a requirements monitoring framework. Although thete
hni
al 
ontribution of this paper is fo
used on the de�nition and study ofAwReqs and their monitoring at runtime, we do provide a dis
ussion on how togo from AwReqs to adaptive systems, giving an overview of subsequent steps inthis pro
ess.Awareness is a topi
 of great importan
e within both Computer and Cogni-tive S
ien
es. In Philosophy, awareness plays an important role in several theoriesof 
ons
iousness. In fa
t, the distin
tion between self-awareness and 
ontextualrequirements seems to 
orrespond to the distin
tion some theorists draw betweenhigher-order awareness (the awareness we have of our own mental states) and�rst-order awareness (the awareness we have of the environment) [29℄. In Psy-
hology, 
ons
iousness has been studied as �self-referential behavior�. Closer tohome, awareness is a major design issue in Human-Computer Intera
tion (HCI)and Computer-Supported Cooperative Work (CSCW). The 
on
ept in variousforms is also of interest in the design of software systems (se
urity / pro
ess /
ontext / lo
ation / ... awareness).As part of our proposal's evaluation, whi
h we detail in se
tion 5, we haveanalyzed, designed and developed a simulation of a real-world system: an Am-bulan
e Dispat
h System (ADS), whose requirements have been do
umented bystudents of the University of Texas at Dallas [28℄. We will use this appli
ationas running example throughout this paper.The rest of the paper is stru
tured as follows. Se
tion 2 presents the resear
hbaseline; se
tion 3 introdu
es AwReqs and talks about their eli
itation; se
tion4 dis
usses their spe
i�
ation; se
tion 5 talks about AwReqs monitoring imple-mentation and presents evaluation results from experiments with our proposal;



3se
tion 6 summarizes related work; se
tion 7 dis
usses the role of AwReqs in asystemati
 pro
ess for the development of adaptive systems based on feedba
kloops; �nally, se
tion 8 
on
ludes the paper.2 BaselineThis se
tion introdu
es ba
kground resear
h used in subsequent se
tions of thispaper: Goal-Oriented Requirements Engineering (�2.1), feedba
k loops (�2.2)and requirements monitoring (�2.3).2.1 Goal-Oriented Requirements EngineeringOur proposal is based on Goal-oriented Requirements Engineering (GORE).GORE is founded on the premise that requirements are stakeholder goals tobe ful�lled by the system-to-be along with other a
tors. Goals are eli
ited fromstakeholders and are analyzed by asking �why� and �how� questions [8℄. Su
hanalysis leads to goal models whi
h are partially ordered graphs with stakeholderrequirements as roots and more re�ned goals lower down. Our version of goalmodels is based loosely on i⋆ strategi
 rationale models [37℄. Figure 1 shows agoal model for an Ambulan
e Dispat
h System (ADS).

Fig. 1. Example goal model for an Ambulan
e Dispat
h System.In our example, the main goal of the system is to support ambulan
e dis-pat
hing. Goals 
an be AND/OR re�ned. An AND-re�nement means that inorder to a

omplish the parent goal, all sub-goals must be satis�ed, while foran OR-re�nement, only one of the sub-goals has to be attained. For example,



4to re
eive an emergen
y 
all, one has to input its information, determine itsuniqueness (have there been other 
alls for the same emergen
y?) and send itto dispat
hers, all on the assumption that �Communi
ation networks [are℄ work-ing�3. On the other hand, periodi
 update of an ambulan
e's status 
an beperformed either automati
ally or manually.Goals are re�ned until they rea
h a level of granularity where there are tasksan a
tor (human or system) 
an perform to ful�ll them. In the �gure, goals arerepresented as ovals and tasks as hexagons. Note that we represent AND/ORre�nement relations, avoiding the term de
omposition as it usually 
arries a part-whole semanti
 whi
h would 
onstrain its use among elements of the same kind4(i.e., goal to goal, task to task, et
.). A re�nement relation, on the other hand,
an be applied between a goal and a task or a goal and a domain assumptionand indi
ate how to satisfy the parent element: the goal is satis�ed if all (AND)or any (OR) of its 
hildren are satis�ed. In their turns, tasks are satis�ed if theyare exe
uted su

essfully and domain assumptions are satis�ed if they hold (thea�rmation is true) while the user is pursuing its parent goal.Softgoals are spe
ial types of goals that do not have 
lear-
ut satisfa
tion
riteria. In our example, stakeholders would like ambulan
e dispat
hing to befast, dispat
hed 
alls to be unambiguous and prioritized, and sele
ted ambu-lan
es to be as 
lose as possible to the emergen
y site. Softgoal satisfa
tion 
anbe estimated through qualitative 
ontribution links that propagate satisfa
tionor denial and have four levels of 
ontribution: break (- -), hurt (-), help (+) andmake (++). E.g., sele
ting an ambulan
e using the software system 
ontributespositively to the proximity of the ambulan
e to the emergen
y site, while usingmanual ambulan
e status update, instead of automati
, 
ontributes negativelyto the same 
riterion. Contributions may exist between any two goals (in
ludinghard goals).Softgoals are obvious starting points for modeling non-fun
tional require-ments. To make use of them in design, however, they need to be re�ned to mea-surable 
onstraints on the system-to-be. These are quality 
onstraints (QCs),whi
h are per
eivable and measurable entities that inhere in other entities [17℄.In our example, unambiguity is measured by the number of times two ambu-lan
es are dispat
hed to the same lo
ation, while fast assistan
e is re�ned intotwo QCs: ambulan
es arriving within 10 or 15 minutes to the emergen
y site.Finally, domain assumptions (DAs) indi
ate states of the world that we as-sume to be true in order for the system to work. For example, we assume that
ommuni
ation networks (telephone, Internet, et
.) are available and fun
tional.3 These requirements are for illustrative purposes and, thus, are quite simple. Real-world systems would probably have multiple domain assumptions, one for ea
h levelof 
ommuni
ation servi
e, or even have assumptions parameterized by 
ontrol vari-ables that 
an be tuned at runtime � see �7.1 for a dis
ussion on 
ontrol variables.4 One 
ould argue that it makes no sense to 
onsider a task or a domain assumptiona part of a goal. In e�e
t, we have re
eived su
h 
riti
ism in the past, in more thanone o

asion.



5If this assumption were to be false, its parent goal (�Re
eive emergen
y 
all�)would not be satis�ed.2.2 Feedba
k LoopsThe re
ent growth of software systems in size and 
omplexity made it in
reas-ingly infeasible to maintain them manually. This led to the development of anew 
lass of self-adaptive systems, whi
h are 
apable of 
hanging their behaviorat runtime due to failures as well as in response to 
hanges in themselves, theirenvironment, or their requirements. While attempts at adaptive systems havebeen made in various areas of 
omputing, Brun et al. [6℄ argue for systemati
software engineering approa
hes for developing self-adaptive systems based onthe ideas from 
ontrol engineering [15℄ with fo
us on expli
itly spe
i�ed feed-ba
k loops. Feedba
k loops provide a generi
 me
hanism for self-adaptation. Torealize self-adaptive behavior, systems typi
ally employ a number of feedba
k
ontrollers, possibly organized into 
ontroller hierar
hies.The main idea of feedba
k 
ontrol is to use measurements of a system'soutputs to a
hieve externally spe
i�ed goals [15℄. The obje
tive of a feedba
kloop is usually to maintain properties of the system's output at or 
lose to itsreferen
e input. The measured output of the system is evaluated against thereferen
e input and the 
ontrol error is produ
ed. Based on the 
ontrol error,the 
ontroller de
ides how to adjust the system's 
ontrol input (parameters thata�e
t the system) to bring its output to the desired value. To do that, the
ontroller needs to possess a model of the system. In addition, a disturban
emay in�uen
e the way 
ontrol input a�e
ts output. Sensor noise may be presentas well. This view of feedba
k loops does not 
on
entrate on the a
tivities withinthe 
ontroller itself. That is the emphasis of another model of a feedba
k loop,often 
alled the autonomi
 
ontrol loop [9℄. It fo
uses on the a
tivities that realizefeedba
k: monitoring, analysis, plan, exe
ution � MAPE [18℄.The 
ommon 
ontrol obje
tives of feedba
k loops are regulatory 
ontrol (mak-ing sure that the output is equal or near the referen
e input), disturban
e re-je
tion (ensuring that disturban
es do not signi�
antly a�e
t the output), 
on-strained optimization (obtaining the �best� value for the measured output) [15℄.Control theory is 
on
erned with developing 
ontrol systems with propertiessu
h as stability (bounded input produ
es bounded output), a

ura
y (the out-put 
onverges to the referen
e input), et
. While most of these guidelines are bestsuited for physi
al systems, many 
an be used for feedba
k 
ontrol of softwaresystems.Using the ADS as an example, a feedba
k loop would: (1) monitor parti
ularindi
ators of the system whi
h are of interest to the stakeholders � e.g., the timeit takes for ambulan
es to arrive at the lo
ation of the in
idents; (2) 
omparethe monitored values of these indi
ators with referen
e values spe
i�ed in therequirements � e.g., QCs in the ADS goal model indi
ate ambulan
es shouldarrive in 10 or 15 minutes; and (3) if the monitored values do not satisfy therequirements, do something to �x the problem � e.g., in
rease the number ofambulan
es, 
hange their lo
ations around the 
ity, et
. In this paper we propose



6Awareness Requirements as indi
ators to be monitored by the feedba
k loop,whereas the other steps of the loop in the 
ontext of our resear
h are brie�ydis
ussed in se
tion 7. Our view of adaptive systems as 
ontrol systems has alsobeen featured in a re
ently published position paper [34℄.2.3 Requirements MonitoringMonitoring is the �rst step in MAPE feedba
k loops and, as will be 
hara
terizedin se
tion 3, sin
e AwReqs refer to the su

ess/failure of other requirements, wewill need to monitor requirements at runtime.Therefore, we have based the monitoring 
omponent of our implementationon the requirements monitoring framework EEAT5, formerly known as ReqMon[24℄. EEAT, an Event Engineering and Analysis Toolkit, provides a programminginterfa
e (API) that simpli�es temporal event reasoning. It de�nes a languageto spe
ify goals and 
an be used to 
ompile monitors from the goal spe
i�
ationand evaluate goal ful�llment at runtime.EEAT's ar
hite
ture is presented in more detail along with our implementa-tion in se
tion 5. In it, requirements 
an be spe
i�ed in a variant of the Obje
tConstraints Language (OCL), 
alled OCLTM � meaning OCL with TemporalMessage logi
 [25℄. OCLTM extends OCL 2.0 [2℄ with:� Flake's approa
h to messages [12℄: repla
es the 
onfusing ˆ message(), ˆ̂message() syntax with sentMessage/s, re
eivedMessage/s attributes in
lass O
lAny;� Standard temporal operators: ◦ (next), • (prior), ♦ (eventually), �(previously), � (always), � (
onstantly), W (always ... unless), U(always ... until);� The s
opes de�ned by Dwyer et al. [11℄: globally, before, after, betweenand after ... until. Using the s
ope operators simpli�es property spe
i�
a-tion;� Patterns, also in Dwyer et al. [11℄: universal, absen
e, existen
e, boundedexisten
e, response, pre
eden
e, 
hained pre
eden
e and 
hainedresponse;� Timeouts asso
iated with s
opes: e.g. after(Q, P, `3h') indi
ates that Pshould be satis�ed within three hours of the satisfa
tion of Q.Figure 2 shows an example of OCLTM 
onstraint on the ADS. The invariantgetsDispat
hed determines that if a 
all re
eives the 
onfirmUnique message,eventually an ambulan
e should get the message dispat
h and both messagesshould refer to the same 
allID argument. Given an instrumented Java im-plementation of these obje
ts and a program in whi
h they ex
hange messagesthrough method 
alls, EEAT is able to monitor and assert this invariant at run-time. In se
tion 5, we des
ribe in more detail how EEAT a

omplishes this inthe 
ontext of AwReqs monitoring.5 http://eeat.
is.gsu.edu:8080/



7
Fig. 2. An example of OCLTM 
onstraint.Although in our proposal AwReqs 
an be expressed in any language thatprovides temporal 
onstru
ts (e.g., LTL, CTL, et
.), examples of AwReq spe
i�-
ations in se
tion 4 will be given using OCLTM , whi
h is also the language usedfor our proposal's validation, presented in se
tion 5.3 Awareness RequirementsAs we have mentioned in se
tion 1, feedba
k loops 
an provide adaptivity for agiven system by introdu
ing a
tivities su
h as monitoring, analysis (diagnosis),planning and exe
ution (of 
ompensations) to the system proper. We are inter-ested in modeling the requirements that lead to this feedba
k loop fun
tionality.In 
ontrol system terms (see �2.2), the referen
e input in this 
ase is the systemful�lling its mandate (its requirements). Feedba
k loops, then, need to measurethe a
tual output and 
ompare it to the referen
e input, in other words, verifyif requirements are being satis�ed or not.Furthermore, Berry et al. [4℄ de�ned the envelope of adaptability as the limitto whi
h a system 
an adapt itself: �sin
e for the foreseeable future, softwareis not able to think and be truly intelligent and 
reative, the extent to whi
ha [system℄ 
an adapt is limited by the extent to whi
h the adaptation analyst
an anti
ipate the domain 
hanges to be dete
ted and the adaptations to beperformed.�In this 
ontext, to 
ompletely spe
ify a system with adaptive 
hara
teristi
s,requirements for adaptation have to be in
luded in the spe
i�
ations. We proposea new kind of requirement, whi
h we 
all Awareness Requirement, or AwReq, to�ll this need. AwReqs promote feedba
k loops for adaptive systems to �rst-
lass
itizens in Requirements Engineering.In this se
tion, we 
hara
terize AwReqs as requirements for feedba
k loopsthat implement adaptivity (�3.1); propose patterns to fa
ilitate their eli
itation,along with a way to represent them graphi
ally in the goal model (�3.2); anddis
uss the eli
itation of this new type of requirements (�3.3). We illustrate allof our ideas using our running example, the ADS (�gure 1).3.1 Chara
terizationAwReqs are requirements that talk about the run-time status of other require-ments. Spe
i�
ally, AwReqs talk about the states requirements 
an assume dur-



8ing their exe
ution at runtime. Figure 3 shows these states whi
h, in the 
ontextof our modeling framework, 
an be assumed by goals, tasks, DAs, QCs andAwReqs themselves. When an a
tor starts to pursue a requirement, its resultis yet Unde
ided. Eventually, the requirement will either have Su

eeded, orFailed. For goals and tasks, there is also a Can
eled state.
Fig. 3. States assumed by a requirement at runtime.Table 1 shows some of the AwReqs that were eli
ited during the analysisof the ADS. These examples illustrate the di�erent types of AwReqs, whi
h aredis
ussed in the following paragraphs. Table 1 also indi
ates the pattern of ea
hAwReq and we further elaborate on this matter on se
tion 3.2.The examples illustrate a number of types of AwReq. AR1 shows the simplestform of AwReq : the requirement to whi
h it refers should never fail. Consideringa 
ontrol system, the referen
e input is to ful�ll the requirement. If the a
tualoutput is telling us the requirement has failed, the 
ontrol system must a
t(
ompensate, re
on
ile � out of the s
ope of this proposal and brie�y dis
ussedin se
tion 7) in order to bring the system ba
k to an a

eptable state. AR1
onsiders every instan
e of the referred requirement. An instan
e of a task is
reated every time it is exe
uted and the �never fail� 
onstraint is to be 
he
kedfor every su
h instan
e. Similarly, instan
es of a goal exist whenever the goalneeds to be ful�lled, while DA and QC instan
es are 
reated whenever theirtruth/falsity needs to be 
he
ked in the 
ontext of a goal ful�llment.Inspired by the three modes of 
ontrol of the proportional-integral-di�erential(PID) 
ontroller, a widely used feedba
k 
ontroller type [10℄, we propose threetypes of AwReqs : Aggregate AwReqs a
t like the integral 
omponent, whi
h 
on-siders not only the 
urrent di�eren
e between the output and the referen
e in-put (the 
ontrol error), but aggregates the errors of past measurements. DeltaAwReqs were inspired by how proportional 
ontrol sets its output proportionalto the 
ontrol error. Trend AwReqs follow the idea of the derivative 
ontrol,whi
h sets its output a

ording to the rate of 
hange of the 
ontrol error. Wede�ne and exemplify ea
h type of AwReq in the following.An aggregate AwReq refers to the instan
es of another requirement andimposes 
onstraints on their su

ess/failure rate. E.g., AR2 is the simplest aggre-gate AwReq : it demands that the referred DA be true 99% of the time the goalRe
eive emergen
y 
all is attempted. Aggregate AwReqs 
an also spe
ify the pe-



9
Table 1. Examples of AwReqs, eli
ited in the 
ontext of the ADS.Id Des
ription Type PatternAR1 Input emergen
y information shouldnever fail � NeverFail(T-InputInfo)AR2 Communi
ations networks workingshould have 99% su

ess rate Aggregate Su

essRate(D-CommNetsWork, 99%)AR3 Sear
h 
all database should have a 95%su

ess rate over one week periods Aggregate Su

essRate(G-Sear
hCallDB, 95%, 7d)AR4 Dispat
h ambulan
e should fail at moston
e a week Aggregate MaxFailure(G-Dispat
hAmb, 1, 7d)AR5 Ambulan
e arrives in 10 minutesshould su

eed 60% of the time,while Ambulan
e arrives in 15 minutesshould su

eed 80%, measured daily Aggregate �daily Su

essRate(Q-Amb10min, 60%) andSu

essRate(Q-Amb15min,80%)AR6 Update automati
ally should su

eed100 times more than the task Updatemanually Aggregate ComparableSu

ess(T-UpdAuto, T-UpdManual,100)AR7 The su

ess rate of No unne
essaryextra ambulan
es for a month shouldnot de
rease, 
ompared to the previousmonth, two times 
onse
utively Trend not TrendDe
rease(Q-NoExtraAmb, 30d, 2)AR8 Update arrival at site should be su
-
essfully exe
uted within 10 minutesof the su

essful exe
ution of Informdriver, for the same emergen
y 
all Delta ComparableDelta(T-UpdArrSite,T-InformDriver, time,10m)AR9 Mark as unique or dupli
ate should bede
ided within 5 minutes Delta StateDelta(T-MarkUnique,Unde
ided, *, 5m)AR10 AR3 should have 75% su

ess rate overone month periods Meta Su

essRate(AR3, 75%,30d)AR11 AR5 should never fail Meta NeverFail(AR5)



10riod of time to 
onsider when aggregating requirement instan
es (e.g., AR3). Thefrequen
y with whi
h the requirement is to be veri�ed is an optional parameterfor AwReqs. If it is omitted, then the designer is to sele
t the frequen
y (if theperiod of time to 
onsider has been spe
i�ed, it 
an be used as default valuefor the veri�
ation frequen
y). AR5 is an example of an AwReq with veri�
ationinterval spe
i�ed.Another pattern for aggregate AwReq spe
i�es the min/max su

ess/failurea requirement is allowed to have (e.g., AR4). AwReqs 
an 
ombine di�erent re-quirements, like AR5, that integrates two QCs with di�erent target rates. One
an even 
ompare the su

ess 
ounts of two requirements (AR6). This 
aptures adesired property of the alternative sele
tion pro
edure when de
iding at runtimehow to ful�ll a goal.AR7 is an example of a trend AwReq that 
ompare su

ess rates over anumber of periods. Trend AwReqs 
an be used to spot problems in how su
-
ess/failure rates evolve over time. Delta AwReqs , on the other hand, 
an beused to spe
ify a

eptable thresholds for the ful�llment of requirements, su
h asa
hievement time. AR8 spe
i�es that task Update arrival at site should be satis-�ed (su

essfully �nish exe
ution) within 10 minutes of 
ompleting task Informdriver. This means that on
e the dispat
her has informed the ambulan
e driverwhere the emergen
y is, she should arrive there within 10 minutes.Another delta AwReq, AR9, shows how we 
an talk not only about su

ess andfailure of requirements, but about 
hanges of states, following the state ma
hinediagram of �gure 3. In e�e
t, when we say a requirement �should [not℄ su

eed(fail)� we mean that it �should [not℄ transition from Unde
ided to Su

eeded(Failed)�. AR9 illustrates yet another 
ase: the task Mark as unique or dupli
ateshould be de
ided � i.e., should leave the Unde
ided state � within 5 minutes.In other words, regardless if they su

eeded or fail, operators should not spendmore than 5 minutes de
iding if a 
all is a dupli
ate of another 
all or not.Finally, AR10 and AR11 are the examples of meta-AwReqs : AwReqs thattalk about other AwReqs. As we have previously dis
ussed, AwReqs are based onthe premise that even though we eli
ited, designed and implemented a systemplanning for all requirements to be satis�ed, at runtime things might go wrongand requirements 
ould fail, so AwReqs are added to trigger system adaptationin these 
ases. In this sense, AwReqs themselves are also requirements and, there-fore, are also bound to fail at runtime. Thus, meta-AwReqs 
an provide furtherlayers of adaptation in some 
ases if needed be.One of the motivations for meta-AwReqs is the appli
ation of gradual re
-on
iliation/
ompensations a
tions. This is the 
ase with AR10: if AR3 fails (i.e.,Sear
h 
all database has less than 95% su

ess rate in a week), tagging the 
allsas �possibly ambiguous� (re
on
iling AR3) might be enough, but if AR3's su
-
ess rate 
onsidering the whole month is below 75% (e.g., it fails at least twoout of four weeks), a deeper analysis of the database sear
h problems might bein order (re
on
iling AR10). Another useful 
ase for meta-AwReqs is to avoidexe
uting spe
i�
 re
on
iliation/
ompensation a
tions too many times. For ex-ample, AR5 states that 60% of the ambulan
es should arrive in up to 10 minutes



11and 80% in up to 15 and to re
on
ile we should trigger messages to all users ofthe ADS. To avoid sending repeated messages in 
ase it fails again, AR11 statesthat AR5 should never fail and, in 
ase it does, its re
on
iliation de
reases AR5'sper
entages by 10 points (to 50% and 70%, respe
tively), whi
h means that anew message will be sent only if the emergen
y response performan
e a
tuallygets worse. If sending this message twi
e a month were to be avoided, AR11'sre
on
iliation 
ould be, for example, disabling AR5 for that month. As mentionedbefore, re
on
iliation is dis
ussed in se
tion 7.With enough justi�
ation to do so, one 
ould model an AwReq that refers to ameta-AwReq, whi
h we would 
all a meta-meta-AwReq � or third-level AwReq.There is no limit on how many levels 
an be 
reated, as long as meta-AwReqsfrom a given level refer stri
tly to AwReqs from lower levels, in order to avoid
ir
ular referen
es. It is important to note that the name meta-AwReq is dueonly to the fa
t that it 
onsists of an AwReq over another AwReq. This does notmean, however, that multiple levels of adaptation loops are required to monitorthem. As will be presented in se
tion 5, monitoring is operationalized by EEAT,whi
h does so by mat
hing method 
alls to invariants des
ribed in OCLTM (anexample of this was presented in se
tion 2.3), regardless of the 
lass of the obje
tthat is re
eiving the message (goal, task, AwReq, meta-AwReq, et
.).3.2 Patterns and Graphi
al RepresentationSpe
ifying AwReqs is not a trivial task. For this reason we propose AwReq pat-terns to fa
ilitate their eli
itation and analysis and a graphi
al representationthat allows us to in
lude them in the goal model, improving 
ommuni
ationamong system analysts and designers.Many AwReqs have similar stru
ture, su
h as �something must su

eed somany times�. By de�ning patterns for AwReqs we 
reate a 
ommon vo
abularyfor analysts. Furthermore, patterns are used in the graphi
al representation ofAwReqs in the goal model and 
ode generation tools 
ould be provided to au-tomati
ally write the AwReq in the language of 
hoi
e based on the pattern.In se
tion 5.1, we provide OCLTM idioms for this kind of 
ode generation. Weexpe
t that the majority (if not all) AwReqs fall into these patterns, so their use
an relieve requirements engineers from most of the spe
i�
ation e�ort.Table 2 
ontains a list of patterns that we have identi�ed so far in our resear
hon this topi
. This list is by no means exhaustive and ea
h organization is free tode�ne its own patterns (with their own names and meanings). We have alreadyshown the pattern representation of the AwReqs that were eli
ited for the ADS inthe last 
olumn of table 1. For su
h representation, we have used the patterns oftable 2, mnemoni
s to refer to the requirements and abbreviated amounts of timelike in OCLTM timeouts [25℄. Furthermore, it is important to note that whenrequirements engineer 
reate patterns, they are responsible for their 
onsisten
yand 
orre
tness and, unfortunately, our approa
h does not provide any tool tohelp in this task.Given that AwReqs 
an be shortened by a pattern we propose they be rep-resented graphi
ally in the goal model along with other elements su
h as goals,



12 Table 2. A non-exhaustive list of AwReq patterns.Pattern MeaningNeverFail(R) Requirement R should never fail. Analogous patternsAlwaysSu

eed, NeverCan
eled, et
.Su

essRate(R, r, t) R should have at least su

ess rate r over time t.Su

essRateExe
utions(R, r, n) R should have at least su

ess rate r over the latest nexe
utions.MaxFailure(R, x, t) R should fail at most x times over time t. Analogouspatterns MinFailure, MinSu

ess and MaxSu

ess.ComparableSu

ess(R, S,x, t) R should su

eed at least x times more than S overtime t.TrendDe
rease(R, t, x) The su

ess rate of R should not de
rease x times
onse
utively 
onsidering periods of time spe
i�ed byt. Analogous pattern TrendIn
rease.ComparableDelta(R, S, p,x) The di�eren
e between the value of attribute p inrequirements R and S should not be greater than x.StateDelta(R, s1, s2, t) R should transition from state s1 to state s2 in lesstime than what is spe
i�ed in t.
P1 and / or P2; not P Conjun
tion, disjun
tion and negation of patterns.tasks, softgoals, DAs and QCs. For that purpose, we introdu
e the notationshown in �gure 4, whi
h shows the goal model of the ADS with the addition ofAwReqs, represented graphi
ally in the model. AwReqs are represented by thi
k
ir
les with arrows pointing to the element to whi
h they refer and the AwReqpattern besides it. The �rst parameter of the pattern is omitted, as the AwReqis pointing to it. In 
ase an AwReq does not �t a pattern, the analyst shouldwrite its name and do
ument its spe
i�
ation elsewhere.3.3 Sour
es of Awareness RequirementsLike other types of requirements, AwReqs must be systemati
ally eli
ited. Sin
ethey refer to the su

ess/failure of other requirements, their eli
itation takespla
e after the basi
 requirements have been eli
ited and the goal model 
on-stru
ted. There are several 
ommon sour
es of AwReqs and, in this se
tion, wedis
uss some of these sour
es. We do not, however, propose a systemati
 pro
essfor AwReq eli
itation and requirements engineers should use existing requirementeli
itation te
hniques to dis
over requirements that belong to this new 
lass.One obvious sour
e 
onsists of the goals that are 
riti
al for the system-to-be to ful�ll its purpose. If the aim is to 
reate a robust and resilient system,then there have to be goals/tasks in the model that are to be a
hieved/exe
utedat a 
onsistently high level of su

ess. Su
h a subset of 
riti
al goals 
an beidenti�ed in the pro
ess and AwReqs spe
ifying the pre
ise a
hievement ratesthat are required for these goals will be atta
hed to them. This pro
ess 
an



13

Fig. 4. Goal model of �gure 1 with AwReqs represented graphi
ally.be viewed as the operationalization of high-level non-fun
tional requirements(NFRs) su
h as Robustness, Dependability, et
. For example, the task Inputemergen
y information is 
riti
al for this pro
ess sin
e all subsequent a
tivitiesdepend on it. Also, government regulations and rules may require that 
ertaingoals 
annot fail or be a
hieved at high rates. Similarly, AwReqs are applied toDAs that are 
riti
al for the system (e.g., Communi
ations networks working).As shown in se
tion 3.1, AwReqs 
an be derived from softgoals. There, wepresented a QC Ambulan
e arrives in 10 minutes that metri
izes a high-levelsoftgoal Fast assistan
e. Then, AwReq AR5 is atta
hed to it requiring the su

essrate of 60%. This way the system is able to quantitatively evaluate at runtimewhether the quality requirements are met over large numbers of pro
ess instan
esand make appropriate adjustments if they are not.Qualitative softgoal 
ontribution labels in goal models 
apture how goals andtasks a�e
t NFRs, whi
h is helpful, e.g., for the sele
tion of the most appropriatealternatives. In the absen
e of 
ontribution links, AwReqs 
an be used to 
apturethe fa
t that parti
ular goals are important or even 
riti
al to meet NFRs andthus those goals' high rate of a
hievement is needed. This 
an be viewed asan operationalization of a 
ontribution link. For example, the task Prioritize
alls in �gure 1 positively a�e
ts the softgoal Prioritized information and 
aneven be 
onsidered 
riti
al with respe
t to that softgoal. So, an AwReq, say,Su

essRate(Prioritize Calls, 90%), 
an be added to the model to 
apture thatfa
t. On the other hand, if a goal has a negative e�e
t on an NFR, then anAwReq 
ould demand a low su

ess rate for it.In Tropos [5℄ and other variations of goal modeling notation, alternativesintrodu
ed by OR-de
omposed goals are frequently evaluated with respe
t to
ertain softgoals. The goal Periodi
 updates in �gure 1 (or �gure �g-spe
i�
ation-



14graphi
al) is su
h an example. The evaluations are qualitative and show whetheralternatives 
ontribute positively or negatively to softgoals. In our approa
h,softgoals are re�ned into QCs and the qualitative 
ontribution links are removed.However, the links do 
apture valuable information on the relative �tness ofalternative ways to a
hieve goals. AwReqs 
an be used as a tool to make surethat �good� alternatives are still preferred over bad ones. For instan
e, the AwReqAR6 states that automati
 updates must be exe
uted more often than manualones, presumably be
ause this is better for proximity of ambulan
es to targetlo
ations and due to the 
osts of manual updates. This way the intuition behindsoftgoal 
ontribution links is preserved. If multiple 
on�i
ting softgoals play rolesin the sele
tion of alternatives, then a number of alternative AwReqs 
an be
reated sin
e the sele
tion of the best alternative will be di�erent depending onthe relative priorities of the 
on�i
ting NFRs.One of the di�
ulties with AwReqs eli
itation is 
oming up with pre
isespe
i�
ations for the desired su

ess rates over 
ertain number of instan
es orduring a 
ertain time frame. To ease the eli
itation and maintenan
e we re
-ommend a gradual eli
itation, �rst using high-level qualitative terms su
h as�medium� or �high� su

ess rate, �large� or �medium� number of instan
es, et
.Thus, the AwReq may originate as �high su

ess rate of G over medium num-ber of instan
es� before be
oming Su

essRate(G, 95%, 500). Of 
ourse, thequanti�
ation of these high-level terms is dependent on the domain and on theparti
ular AwReq. So, �high su

ess rate� may be mapped to 80% in one 
aseand to 99.99% in another. Additionally, using abstra
t qualitative terms in themodel while providing the mapping separately helps with the maintenan
e ofthe models sin
e the model remains inta
t while only the mapping is 
hanging.4 Spe
ifying Awareness RequirementsWe have just introdu
ed AwReqs as requirements that refer to the su

ess or fail-ure of other requirements. This means that the language for expressing AwReqshas to treat requirements as �rst 
lass 
itizens that 
an be referred to. Moreover,the language has to be able to talk about the status of parti
ular requirementsinstan
es at di�erent time points. We have 
hosen to use an existing language,namely OCLTM , over 
reating a new one, therefore inheriting its syntax andsemanti
s. The subset of OCLTM features available to requirements engineerswhen spe
ifying AwReqs is the subset supported by the monitoring framework,EEAT, introdu
ed in se
tion 2.3. A formal de�nition of the syntax and the se-manti
s of AwReqs is out of the s
ope of this paper.Our general approa
h to using it is as follows: (i) design-time requirements� as shown in �gure 1, but also the AwReqs of table 1 � are represented asUML 
lasses, (ii) run-time instan
es of requirements, su
h as various ambulan
edispat
h requests, are represented as instan
es of these 
lasses. Representing sys-tem requirements (previously modeled as a goal model) in a UML 
lass diagramis a ne
essary step for the spe
i�
ation of AwReqs in any OCL-based language,as OCL 
onstraints refer to 
lasses and their instan
es, attributes and methods.



15Even though other UML diagrams (su
h as the sequen
e diagram or the a
tivitydiagram) might seem like a better 
hoi
e for the representation of requirementsand AwReqs, having instan
es of 
lasses that represent requirements at runtimeis mandatory for the OCL-based infrastru
ture that we have 
hosen.Hen
e, we present in �gure 5 a model that represents 
lasses that should beextended to spe
ify requirements. In other words, ea
h requirement of our systemshould be represented by a UML 
lass, extending the appropriate 
lass fromthe diagram of �gure 5. These 
lasses have the same name as the mnemoni
sused in the pattern 
olumn of table 1. Moreover, the �rst letter of ea
h 
lassname indi
ates whi
h element of �gure 5 is being extended (T for Task, G forGoal and so forth). Note that the diagram of �gure 5 does not represent a meta-model for requirements due to the fa
t that the 
lasses that represent the systemrequirements are sub
lasses of the 
lasses in this diagram, not instan
es of themas it is the 
ase with meta-models. This inheritan
e is ne
essary in order forAwReq spe
i�
ations to be able to refer to the methods de�ned in these 
lasses,as they are inherited by the requirement 
lasses.Another important observation is that these 
lasses are only an abstra
trepresentation of the elements of the goal model (�gure 1) and they are part ofthe monitoring framework that will be presented in se
tion 5. They are not partof the monitored system (i.e., the ADS). In other words, the a
tual requirementsof the system are not implemented by means of these 
lasses.

Fig. 5. Class model for requirements in GORE.Figure 6 shows the spe
i�
ation of some AwReqs of table 1 using OCLTM .For example, 
onsider AR1, whi
h refers to a UML Task requirement. Figure 6



16presents AR1 as an OCL invariant on the 
lass T-InputInfo, whi
h should bea sub
lass of Task (from �gure 5) and represents requirement Input emergen
yinformation. The invariant di
tates that instan
es of T-InputInfo should neverbe in the Failed state, i.e., Input emergen
y information should never fail.

Fig. 6. Examples of AwReqs expressed in OCLTM .Aggregate AwReqs pla
e 
onstraints over a 
olle
tion of instan
es. In AR3,for example, all instan
es of G-Sear
hCallDB exe
uted in the past 7 days areretrieved in a set named week (using date 
omparison as in [25℄), then we use thesele
t() operation again to separate the subset of the instan
es that su

eededand, �nally, we 
ompare the sizes of these two sets in order to assert that 95%of the instan
es are su

essful at all times (always).Trend AwReqs are similar, but a bit more 
ompli
ated as we must separatethe requirements instan
es into di�erent time periods. For AR7, the sele
t()operation was used to 
reate sets with the instan
es of Q-NoExtraAmb for thepast three months to 
ompare the rate of su

ess over time.Delta AwReqs spe
ify invariants over single instan
es of the requirements. AR8singles out the instan
es of T-UpdAtSite that are related to T-InformDriver inthe related set by 
omparing the 
allID argument using OCLTM 's arguments()operation [25℄. Its invariant states that eventually the related set should haveexa
tly one element, whi
h should both be su

essful and �nish its exe
utionwithin 10 minutes of T-InformDriver's end time.



17AR9 shows how to spe
ify the example in whi
h we do not talk spe
i�
allyabout su

ess or failure of a requirement, but its 
hange of state: eventually tasksT-MarkUnique should not be in the Unde
ided state and the di�eren
e betweentheir start and end times should be at most 5 minutes.5 Implementation and EvaluationTo evaluate our proposal we have implemented a framework to monitor AwReqsat runtime. Su
h evaluation 
onsiders three aspe
ts of this framework:1. Can AwReqs be monitored? Spe
i�
ally, 
an an automated monitor evaluaterequirements types enumerated in table 2 at runtime? Applying a 
onstru
-tive experiment, we show this is true (�5.1);2. Can the AwReqs framework provide value for the analysis of a real system?With simulation experiments, we demonstrate this is true for s
enarios ofthe ADS (�5.2);3. What is the impa
t of AwReqs monitoring in the overall performan
e of themonitored system? We dis
uss this in �5.3.The �rst two items above represent the experimental and des
riptive evalu-ation methods of Design S
ien
e, as enumerated by [16℄. After this initial eval-uation, two other experiments were 
ondu
ted, modeling the AwReqs of sys-tems that are 
lose to real-world appli
ations: an Adaptive Computer-aidedAmbulan
e Dispat
h system [31℄ that is somewhat similar to the ADS, but wasbased on the requirements for the London Ambulan
e System Computer-AidedDespat
h (LAS-CAD) [1℄; and an Automati
 Teller Ma
hine [35℄. Sin
e these ex-periments involved simulations of running systems based on their requirementsmodels, future evaluation e�orts in
lude experiment with a
tual running systemsand 
ondu
ting full-�edged 
ase studies with partners in industry.5.1 Monitoring Awareness Requirements PatternsAs mentioned in se
tion 2.3, we have used EEAT to monitor AwReqs expressedin OCLTM . In its 
urrent version, EEAT 
ompiles the OCLTM expression intoa rule �le that is triggered by messages ex
hanged by obje
ts at runtime (i.e.,method 
alls). For this reason, we have to transform the initial spe
i�
ationof the AwReqs to one based on methods re
eived by the run-time instan
eswhi
h represent the requirements. Figure 7 shows some of the AwReqs previouslypresented in �gure 6 in their �EEAT spe
i�
ations�.For monitoring to work, then, the sour
e 
ode of the monitored system (inthis 
ase, the ADS) has to be instrumented in order to 
reate the instan
es ofthe 
lasses that represent the requirements at runtime and 
all the methodsde�ned in 
lasses DefinableRequirement and PerformativeRequirement from�gure 5. Methods start() and end() should be 
alled when the system startsand ends the exe
ution of a goal or task (or the evaluation of a QC or DA),



18

Fig. 7. Spe
i�
ation of AwReqs for EEAT.respe
tively. Together with the between 
lause (one of Dwyer et al. s
opes, see�2.3), these methods allow us to de�ne the period in whi
h AwReqs should beevaluated, be
ause otherwise the rule system 
ould wait inde�nitely for a givenmessage to arrive.Given the right s
ope, the methods su

ess(), fail() and 
an
el() are
alled by the monitored system to indi
ate a 
hange of state in the requirementfrom Unde
ided to one of the 
orresponding �nal states (see �gure 3). Thesemethods are then used in the �EEAT spe
i�
ation� of AwReqs. For example, wede�ne AR1 not as never being in the Failed state, but as never re
eiving thefail()message in the s
ope of a single exe
ution (between start() and end()).An aggregate requirement, on the other hand, aggregates the 
alls duringthe period of time de�ned in the AwReq. For AR3, this is done by monitoring for
alls of the newWeek()method, whi
h are 
alled automati
ally by the monitoringframework at the beginning of every week. Similar methods for di�erent timeperiods, su
h as newDay(), newHour() and so forth, should also be implemented.The last example shows the delta AwReq AR8, whi
h uses OCLTM timeoutsto spe
ify that the su

ess() method should be 
alled in the T-InformDriverinstan
e within 10 minutes after the same method is 
alled in T-UpdAtSite,given that both instan
es refer to the same 
all ID, an argument that 
an bepassed along the method. This 
an be implemented by having a 
olle
tion ofkey-value pairs passed as parameters to the methods start(), su

ess(), et
.An automati
 translator from theAwReqs ' initial spe
i�
ation to their �EEATspe
i�
ation� 
ould be built to aid the designer in this task. Another possibil-ity is to go dire
tly from the AwReq patterns presented in se
tion 3.2 to this�nal spe
i�
ation. Table 3 illustrates how some of the patterns of table 1 
anbe expressed in OCLTM . These formulations are 
onsistent with those shown in�gure 7. The de�nitions and invariants are pla
ed in the 
ontext of UML 
lassesthat represent requirements (see �4). For example, a re
eiveMessage(`fail')for 
ontext R, denotes the 
alled operation R.fail() for 
lass R. Therefore, theinvariant pR in the �rst row of table 3 is true if R.fail() is never 
alled.



19Table 3. EEAT/OCLTM idioms for some patterns.Pattern OCLTM idiomNeverFail(R) def: rm: O
lMessage = re
eiveMessage(`fail')inv pR: never(rm)Su

essRate(R, r, t) def: msgs: Sequen
e(O
lMessage) = re
eiveMessages()->sele
t(range().in
ludes(timestamp()))- - Note: these definitions are patterns that are assumed inthe following definitionsdef: su

eed: Integer = msgs->sele
t(methodName = `su

eed'))->size()def: fail: Integer = msgs->sele
t(methodName = `fail'))->size()inv pR: always(su

eed / (su

eed + fail) > r)ComparableSu

ess(R, S, x, t) - - 
1 and 
2 are fully spe
ified 
lass namesinv pR: always(
1.su

eed > 
2.su

eed * x)MaxFailure(R, x, t) inv pR: always(fail < x)
P1 and/or P2; not P - - arbitrary temporal and real-time logi
al expressions areallowed over requirements definitions and run-time obje
tsOf 
ourse, the patterns of table 1 represent only 
ommon kinds of expres-sions. AwReqs 
ontain the range of expressions where a requirement R1 
anexpress properties about requirement R2, whi
h in
lude both design-time andrun-time requirements properties. OCLTM expli
itly supports su
h referen
es,as the following expressions illustrate:def: p1: PropertyEvent = re
eivedProperty(`p:pa
kage.
lass.invariant')inv p2: never(p1.satisfied() = false)In OCLTM , all property evaluations are asserted into the run-time evaluationrepository as PropertyEvent obje
ts. The de�nition expression of p1 refers toan invariant (on a UML 
lass, in a UML pa
kage). Properties about p1 in
ludeits run-time evaluation (satisfied()), as well as its design-time properties (e.g.,p1.name()). Therefore, in OCLTM , requirements 
an refer to their design-timeand run-time properties and, thus, AwReqs 
an be represented in OCLTM .To determine if the AwReq patterns 
an be evaluated at runtime, we 
on-stru
ted s
enarios for ea
h row of table 3. Ea
h s
enario in
ludes three alterna-tives, whi
h should evaluate to true, false, and indeterminate (non-false) duringrequirements evaluation. We had EEAT 
ompile the patterns and 
onstru
t amonitor. Then, we ran the s
enarios. In all 
ases, EEAT 
orre
tly evaluated therequirements.To illustrate how EEAT evaluates OCLTM requirements in general, the nextsubse
tion des
ribes in detail a portion of the evaluation of the ADS' monitoringsystem, whi
h was generated from the requirements of table 1.5.2 Evaluating an Awareness Requirement S
enarioThe requirements of the ADS provide a 
ontext to evaluate the AwReq frame-work. The ADS is implemented in Java. Its requirements (table 1) are repre-sented as OCLTM properties, using patterns like those presented in table 3 and



20�gure 7. S
enarios were developed to exer
ise ea
h requirement so that ea
h ofthem should evaluate as failed or su

eeded. When ea
h s
enario is run, EEATevaluates the requirements and returns the 
orre
t value. Thus, all the s
enariosthat test ADS requirements presented here evaluate 
orre
tly.Next, we des
ribe how this pro
ess works for one requirement and one test.Consider a single verti
al sli
e of the development surrounding requirement AR1,as shown in �gure 8:

Fig. 8. Overview of the AwReqs monitoring framework.1. Analysts spe
ify the Emergen
y input information task of �gure 1 (i.e.,T-InputInfo) as a task spe
i�
ation (e.g., input, output, pro
essing algo-rithm) along with AwReqs su
h as AR1;2. Developers produ
e an input form and a pro
essor ful�lling the spe
i�
ation.In a work�ow system ar
hite
ture, T-InputInfo is implemented as a XMLform whi
h is pro
essed by a work�ow engine. In our standard Java appli
a-tion, T-InputInfo is implemented as a form that is saved to a database. Inany 
ase, the point at whi
h the input form is pro
essed is the instrumenta-tion point;3. Validators (i.e., people performing requirements monitoring) instrument thesoftware. Five events are logged in this simple example: (a) T-InputInfo.start(), (b) T-InputInfo.end(), (
) T-InputInfo.su

ess(), (d) T-InputInfo.fail(), and (e) T-InputInfo.
an
el(). Of 
ourse, the develop-ers may have 
hosen a di�erent name for T-InputInfo or the �ve methods,in whi
h 
ase, the validator must introdu
e a mapping from the run-timeobje
t and methods to the requirements 
lasses and operations. Given therise of domain-driven software development, in whi
h requirements 
lasses



21are implemented dire
tly in 
ode, the mapping fun
tion is often relativelysimple � even one-to-one;4. The EEAT monitor 
ontinually re
eives the instrumented events and deter-mines the satisfa
tion of requirements. In the 
ase of AR1, if the T-InputInfoform is pro
essed as su

eed or 
an
el, then AR1 is true.The ar
hite
ture and pro
ess of EEAT provides some 
ontext for the pre-
eding des
ription. EEAT follows a model-driven ar
hite
ture (MDA). It relieson the E
lipse Modeling Framework (EMF) for its meta-model and the OSGi
omponent spe
i�
ations. This means that the OCLTM language and parser isde�ned as a variant of the E
lipse OCL parser by providing EMF de�nitionsfor operations, su
h as re
eivedMessage. The 
ompiler generates Drools rules,whi
h 
ombined with the EEAT API, provide the pro
essing to in
rementallyevaluate OCLTM properties at runtime.EEAT provides an E
lipse-based UI. However, the run-time operates as aOSGi appli
ation, 
omprised as a dynami
 set of OSGi 
omponents. For theseexperiments, the EEAT run-time 
omponents 
onsist of the OCLTM propertyevaluator, 
ompiled into a Drools rule system, and the EEAT log4j feed, whi
hlistens for logging events and adds them to the EEAT repository. The Javaappli
ation was instrumented by E
lipse TPTP to send CBE events via log4jto EEAT, where the event are evaluated by the 
ompiled OCLTM propertymonitors. For a more 
omplete des
ription of the language and pro
ess of EEAT,see [26, 27℄.5.3 Monitor Performan
eMonitoring has little impa
t on the target system, mostly be
ause the target sys-tem and the monitor typi
ally run on separate 
omputers. The TPTP Probekitprovides optimized byte-
ode instrumentation, whi
h adds little overhead tosome (sele
ted) method 
alls in the target system. The logging of signi�
antevents 
onsumes no more than 5%, and typi
ally less than 1% overhead.For real-time monitoring, it is important to determine if the target events 
anoverwhelm the monitoring system. A performan
e analysis of EEAT was 
on-du
ted by 
omparing the total monitoring runtime vs. without monitoring using40 
ombinations of the Dwyer et al. temporal patterns [11℄. For data, a simpletwo-event sequen
e was the basis of the test datum; for 
ontext, 
onsider theevents as an arriving email and its subsequent reply. These pairs were 
ontinu-ously sent to the server 10,000 times. In the experiment, the event generator andEEAT ran in the same multi-threaded pro
ess. The test ran as a JUnit test 
asewithin E
lipse on a Windows Server 2003 dual 
ore 2.8 GHz with 1G memory.The results suggest that, within the test 
on�guration, sequential properties (oflength 2) are pro
essed at 137 event-pairs per se
ond [26℄. This indi
ates thatEEAT is reasonably e�
ient for many monitoring problems.



226 Related WorkIn the literature, there are many approa
hes for the design of adaptive systems.A great deal of them, however, fo
us on ar
hite
tural solutions for this prob-lem, su
h as the Rainbow framework [13℄, the proposal of Kramer & Magee [19℄,the work of Sousa et al. [30℄, the SASSY framework [22℄, among others. Theseapproa
hes usually express adaptation requirements in a quantitative manner(e.g., utility fun
tions) and fo
us on quality of servi
e (i.e., non-fun
tional re-quirements). In 
omparison, our resear
h is fo
used on early requirements (goal)models, allowing stakeholders and requirements engineers to reason about adap-tation on a higher level of abstra
tion. Furthermore, AwReqs 
an be asso
iatednot only to non-fun
tional 
hara
teristi
s of the system (represented by quality
onstraints), but also to fun
tional requirements (goals, tasks) and even domainassumptions. The rest of this se
tion fo
uses on re
ent approa
hes that share a
ommon fo
us with ours in early requirements models.A number of re
ent proposals o�er alternative ways of expressing and rea-soning about partial requirements satisfa
tion. RELAX by Whittle, et al. [36℄ isone su
h approa
h aimed at 
apturing un
ertainty (mainly due to environmentalfa
tors) in the way requirements 
an be met. Unlike our goal-oriented approa
h,RELAX assumes that stru
tured natural language requirements spe
i�
ations(
ontaining the SHALL statements that spe
ify what the system ought to do)are available before their 
onversion to RELAX spe
i�
ations. The modal oper-ators available in RELAX, SHALL and MAY. . .OR, spe
ify, respe
tively, thatrequirements must hold or that there exist requirements alternatives. We, on theother hand, 
apture alternative requirements re�nement using OR de
omposi-tions of goals.In RELAX, points of �exibility/un
ertainty are spe
i�ed de
laratively, thusallowing designs based on rules, planning, et
. as well as to support unanti
ipatedadaptations. Some requirements are deemed invariant � they need to be satis�edno matter what. This 
orresponds to the NeverFail(R) AwReq pattern in ourapproa
h. Other requirements are made more �exible in order to maintain theirsatisfa
tion by using �as possible�-type RELAX operators. Be
ause of these,RELAX needs a logi
 with built-in un
ertainty to 
apture its semanti
s. Theauthors 
hose fuzzy bran
hing temporal logi
 for this purpose. It is based on theidea of fuzzy sets, whi
h allows gradual membership fun
tions. E.g., the fun
tionfor fuzzy number 2 peaks at 1 given the value 2 and slopes sharply towards 0as we move away from 2, thus 
apturing �approximately 2�. Temporal operatorssu
h as Eventually and Until allow for temporal 
omponent in requirementsspe
i�
ations in RELAX.Our approa
h is mu
h simpler 
ompared to RELAX. The AwReqs 
onstru
tsthat we provide just referen
e other requirements. Thus, we believe that it ismore suitable, e.g., for requirements eli
itation a
tivities. Our spe
i�
ations donot rely on fuzzy logi
 and do not require a 
omplete requirements spe
i�
ationto be available prior to the introdu
tion of AwReqs. Also, our language doesnot require 
omplex temporal 
onstru
ts. However, the underlying formalismused for AwReqs � OCLTM � provides temporal operators, as does EEAT,



23so temporal properties 
an be expressed and monitored. Most of the work ongenerating OCLTM spe
i�
ations 
an be automated through the use of patterns.With ea
h relaxation RELAX asso
iates �un
ertainty fa
tors�: properties ofthe environment that 
an or 
annot be monitored, but whi
h a�e
t un
ertaintyin a
hieving requirements. Our future work in
ludes su
h integration of domainmodels in our approa
h.Using AwReqs we 
an express approximations of many of the RELAX-ed re-quirements. For instan
e, AR5 from table 1 
an be used as a rough approximationof the requirement �ambulan
es must arrive at the s
ene AS CLOSE AS POSSI-BLE to 10 minutes' time�. The general pattern for approximating fuzzy require-ments is to �rst identify a number of requirements that di�er in their stri
tness,depending on our interpretation of what �approximately� means. E.g., R1 = �am-bulan
e arrives in 10 min�, R2 = �ambulan
e arrives in 12 min�, R3 = �ambulan
earrives in 15 min�. Then, we assign desired satisfa
tion levels to these require-ments. For instan
e, we 
an set su

ess rate for R1 to 60% (as in AR5), R2 to80%, and R3 to 100%. This means that all ambulan
es will have to arrive within10�15 min from the emergen
y 
all. The AwReq will then look like AR12 = Su
-
essRate(R1, 60%) AND Su

essRate(R2, 80%) AND Su

essRate(R3, 100%).On the other hand, AR13 = Su

essRate(R1, 80%) AND Su

essRate(R2, 100%)provides a mu
h stri
ter interpretation of the fuzzy duration with all ambulan
esrequired to arrive within 12 minutes.Another related approa
h 
alled FLAGS is presented in [3℄. FLAGS require-ments models are based on the KAOS framework [20℄ and are targeted at adap-tive systems. It proposes 
risp (Boolean) goals (spe
i�ed in linear-time temporallogi
, as in KAOS), whose satisfa
tion 
an be easily evaluated, and fuzzy goalsthat are spe
i�ed using fuzzy 
onstraints. In FLAGS, fuzzy goals are mostly as-so
iated with non-fun
tional requirements. The key di�eren
e between 
risp andfuzzy goals is that the former are �rm requirements, while the latter are more�exible. Compared to RELAX, FLAGS is a goal-oriented approa
h and thus is
loser in spirit to our proposal.To provide semanti
s for fuzzy goals, FLAGS in
ludes fuzzy relational andtemporal operators. These allow expressing requirements su
h as something bealmost always less than X, equal to X, within around t instants of time, lastshopefully t instants, et
. As was the 
ase with the RELAX approa
h,AwReqs 
anapproximate some of the fuzzy goals of FLAGS while remaining quite simple. Theexample that we presented while dis
ussing RELAX also applies here. Whenevera fuzzy membership fun
tion is introdu
ed in FLAGS, its shape must be de�nedby 
onsidering the preferen
es of stakeholders. This spe
i�es exa
tly what valuesare 
onsidered to be �around� the desired value. As we have shown above withAR12 and AR13, AwReqs 
an approximate this �tuning� of fuzzy fun
tions whilenot needing fuzzy logi
 and thus remaining more a

essible to stakeholders.Additionally, in FLAGS, adaptive goals de�ne 
ountermeasures to be exe-
uted when goals are not attained, using event-
ondition-a
tion rules. Our pro-posal on a full-�edged 
ompensation language has been re
ently submitted forpubli
ation in a 
onferen
e and is 
urrently under review [33℄. Dis
ussion in



24se
tion 3 illustrates how AwReqs and meta-AwReqs 
ould be used to ena
t therequired 
ompensation behavior, in
luding relaxation of desired su

ess rates.We further 
omment on these aspe
ts on se
tion 7.2.Letier and van Lamsweerde [21℄ present an approa
h that allows for spe
ify-ing partial degrees of goal satisfa
tion for quantifying the impa
t of alternativedesigns on high-level system goals. Their partial degree of satisfa
tion 
an bethe result of, e.g., failures, limited resour
es, et
. Unlike FLAGS and RELAX,here, a partial goal satisfa
tion is measured not in terms of its proximity to beingfully satis�ed, but in terms of the probability that it is satis�ed. The approa
haugments KAOS with a probabilisti
 layer. Here, goal behavior spe
i�
ation (inthe usual KAOS temporal logi
 way) is separate from the quantitative aspe
tsof goal satisfa
tion (spe
i�ed by quality variables and obje
tive fun
tions). Ob-je
tive fun
tions 
an be quite similar to AwReqs, ex
ept they use probabilities.For instan
e, one su
h fun
tion presented in [21℄ states that the probability ofambulan
e response time of less than 8 min should be 95%. Obje
tive fun
tionsare formally spe
i�ed using a probabilisti
 extension of temporal logi
. An ap-proa
h for propagating partial degrees of satisfa
tion through the model is alsopart of the method.Overall, the method 
an be used to estimate the level of satisfa
tion of high-level goals given statisti
al data about the 
urrent or similar system (from ratherlow-level measurable parameters). Our approa
h, on the other hand, naturallyleads to high-level monitoring 
apabilities that 
an determine satisfa
tion levelsfor AwReqs.There is a fundamental di�eren
e between the approa
hes des
ribed aboveand our proposal. There, by default, goals are treated as invariants that mustalways be a
hieved. Non-
riti
al goals � those that 
an be violated from time totime � are relaxed. Then, the aim of those methods is to provide the ma
hineryto 
on
lude at runtime that while the system may have failed to fully a
hieveits relaxed goals, this is a

eptable. So, while relaxed goals are monitored atruntime, invariant ones are analyzed at design time and must be guaranteed toalways be a
hievable at runtime.In our approa
h, on the other hand, we a

ept the fa
t that a system mayfail in a
hieving any of its initial (stratum 0) requirements. We then suggest that
riti
al requirements are supplemented by AwReqs that ultimately lead to theintrodu
tion of feedba
k loop fun
tionality into the system to 
ontrol the degreeof violation of 
riti
al requirements. Thus, the feedba
k infrastru
ture is there toreinfor
e 
riti
al requirements and not to monitor the satisfa
tion of expendable(i.e., relaxed) goals, as in RELAX/FLAGS. The introdu
tion of feedba
k loopsin our approa
h is ultimately justi�ed by 
riti
ality 
on
erns.7 From Awareness Requirements to Feedba
k LoopsAs stated in se
tion 1, our intention in this proposal is to identify and explorerequirements that lead to the introdu
tion of feedba
k loop fun
tionality intoadaptive systems. In se
tion 3.3, we dis
ussed the sour
es of AwReqs, while



25se
tion 5 explained how EEAT 
an be used to monitor AwReqs at runtime todetermine if they are attained or not. In this se
tion, we present the overview ofthe role of Awareness Requirements in our overall approa
h for feedba
k loop-based requirements-driven adaptive systems design.Figure 9 shows a variant of a feedba
k 
ontroller diagram adapted for require-ments-driven adaptive systems. Here, system requirements play the role of thereferen
e input, while indi
ations of requirements 
onvergen
e signaling if therequirements have been met repla
e the traditional monitored output of the 
on-troller. The 
ontroller itself is represented by a requirements-driven adaptationframework that 
ontrols the target system through exe
uting adaptation a
tionsthat 
orrespond to the 
ontrol input in traditional feedba
k 
ontrol s
hemes. Dy-nami
ally 
hanging 
ontext 
orresponds to the disturban
e input of the 
ontrolloop. Finally, the measure of requirements divergen
e is the 
ontrol error.

Fig. 9. A feedba
k loop illustrating the steps of the proposed pro
ess.Furthermore, the phases of our proposed approa
h are added to the feedba
kloop diagram in �gure 9, labeled 1 through 5. Step 1 is to set the targets forsystem to a
hieve/maintain at runtime. AwReqs, as dis
ussed here, are used forthis purpose. For step 2, the EEAT monitoring framework presented in se
tion5 is used to monitor whether the AwReqs are attained at runtime. Given thevalues for the AwReq attainment at runtime, in step 3 we 
al
ulate requirementsdivergen
e. If the targets are not met, this warrants a system adaptation. Thesystem identi�
ation pro
ess (step 4) is aimed at linking system 
on�gurationparameters with indi
ators of requirements 
onvergen
e and 
an be used to de-termine possible system re
on�gurations. This pro
ess is further dis
ussed inSe
tion 7.1. Finally, adaptation strategies/a
tions (step 5 in �gure 9) are used



26by the adaptation framework to a
tually adapt the target system. These arefurther dis
ussed in se
tion 7.2.7.1 System Identi�
ationAs we have shown throughout se
tions 3 to 5, AwReqs 
an be used to determinewhen requirements are not being satis�ed, mu
h the same way a 
ontrol system
al
ulates the 
ontrol error, i.e., the dis
repan
y between the referen
e input (de-sired) and the measured output (out
ome). The next step, then, is to determinethe 
ontrol input based on this dis
repan
y, i.e., determine what 
ould be doneto adapt the target system to ultimately satisfy the requirements.In Control Theory (e.g., [15℄), the �rst step towards a

omplishing this isan a
tivity 
alled System Identi�
ation, whi
h is the pro
ess of determining theequations that govern the dynami
 behavior of a system. This a
tivity is 
on-
erned with: (a) the identi�
ation of system parameters that, when manipulated,have an e�e
t on the measured output; and (b) the understanding of the natureof this e�e
t. Afterwards, these equations 
an guide the 
hoi
e of the best wayto adapt to di�erent 
ir
umstan
es. For example, in a 
ontrol system in whi
hthe room temperature is the measured output, turning on the air 
onditionerlowers the temperature, whereas using the furna
e raises it. If the heating/
ool-ing systems o�er di�erent levels of power, there is also a relation between su
hpower level and the rate in whi
h the temperature in the room 
hanges.In [32℄ we propose a systemati
 pro
ess for 
ondu
ting System Identi�
ationfor adaptive software systems, along with a language that 
an be used to rep-resent how 
hanges in system parameters a�e
t the indi
ators of requirements
onvergen
e. After AwReqs have been eli
ited as indi
ators, the System Identi-�
ation pro
ess 
onsists of three a
tivities:1. Identify parameters: determine points of variability in the system (OR-de
ompositions, parameters related to system goals or tasks) whose 
hangeof value a�e
ts any of the indi
ators. For instan
e, the set of required �elds(an enumerated parameter) a�e
ts AwReq AR1 (see table 1) � less required�elds makes inputting information easier; the number of ambulan
es, as wellas operators and dispat
hers working, a�e
ts AwReq AR5 � the higher thenumber, the higher the 
han
es of fast assistan
e;2. Identify relations: for ea
h indi
ator�parameter pair (not only the onesidenti�ed in the previous step, but the full {indicators} × {parameters}Cartesian produ
t), verify if there is a relation between 
hanges in the param-eter and the value of the indi
ator. For ea
h existing relation, model quali-tative information about the nature of the e�e
t using di�erential equations.For example, ∆ (AR1/RequiredF ields) < 0 indi
ates that de
reasing therequired �elds (assuming the enumerated values form a totally ordered set)in
reases the su

ess of AR1; ∆ (AR5/NumberOfAmbulances) > 0 statesthat in
reasing the number of ambulan
es also in
reases the su

ess of AR5;3. Re�ne relations: after identifying initial relations, the model 
an be re�nedby 
omparing and 
ombining those that refer to the same indi
ator. For ex-ample,∆ (AR5/NumberOfAmbulances) > ∆ (AR5/NumberOfOperators)



27tells us that buying more ambulan
es is more e�e
tive than hiring more op-erators when 
onsidering how fast ambulan
es get to emergen
y sites.A more detailed explanation of the System Identi�
ation pro
ess and theproposed language for modeling relations between indi
ators and parameters
an be found in [32℄. However, the basi
 examples above already give us theintuition that this kind of information is very important in order to determinethe best way to adapt the target system and, therefore, the models produ
ed bySystem Identi�
ation 
an be used by the adaptation framework for this purpose.Adaptation strategies are dis
ussed next.7.2 Adaptation StrategiesThere are several ways a system 
an be 
hanged as a result of its failure to at-tain the requirements. We 
all one su
h possibility adaptation. Here, the system's
on�guration (the values of its parameters) is 
hanged in attempt to a
hieve theindi
ator targets. This 
an be viewed as parameter tuning. There 
an be a num-ber of possible re
on�guration strategies based on the amount of informationavailable in the system identi�
ation model. The more information is availableand the more quantitative it is, the more pre
ise and advan
ed the re
on�gu-ration strategies 
an be
ome. The re
on�gurations involve 
hanging the valuesof the system parameter(s), whi
h a�e
t indi
ator(s) that failed to a
hieve theirtarget values. With the absen
e of a fully quantitative model relating parametersand indi
ators, an adaptation strategy may involve a number of su
h re
on�gu-rations that are performed in su

ession in attempt to bring the indi
tor value toits target. When more pre
ise information is available, quantitative approa
hes,e.g., mimi
king the PID 
ontroller [15℄ 
an be used. Detailed spe
i�
ation andanalysis of these strategies is one of the subje
ts of our 
urrent resear
h.In addition to re
on�guring a system, Evolution Requirements, whi
h des
ribeevolutions of other requirements, 
an be used to identify spe
i�
 
hanges to thesystem requirements under parti
ular 
onditions (usually requirements failures,negative trends on a
hieving requirements, or opportunities for improvement).Unlike re
on�gurations dis
ussed above, evolution requirements may 
hange thespa
e of alternatives available for the system. In our re
ent work [33℄, we haveidenti�ed a number of adaptation strategies, in
luding abort, retry, delegate to anexternal agent, relax/strengthen the requirement, et
., 
onstru
ted from the ba-si
 requirements evolution operations su
h as initiate (a requirement instan
e),rollba
k (
hanges due to an attempt to a
hieve a requirement), et
. These adapta-tion strategies 
an be applied at the requirements instan
e level (thus, �xing/im-proving a parti
ular system instan
e) and/or type level (thereby 
hanging thebehavior of all subsequent system instan
es). Re
on�guration is 
onsidered asone possible adaptation strategy. It 
an be applied at both levels. Further, [33℄proposes an ECA-based pro
ess for exe
uting adaptation strategies in responseto failures. Triggered by AwReq failures, this pro
ess attempts to exe
ute the pos-sibly many adaptation strategies asso
iated with the AwReq in their preferen
eorder, while defaulting to the abort strategy if others do not prove su

essful.



28 We stress here that Awareness Requirements are absolutely 
ru
ial in ourvision for requirements-driven adaptive systems design. They serve both as themeans to spe
ify targets to be met by the system (i.e., referen
e inputs for thefeedba
k 
ontroller) and as the indi
ators of requirements 
onvergen
e (i.e., themonitored outputs), with their failures triggering the above-des
ribed adaptationstrategies.8 Con
lusionsThe main 
ontribution of this paper is the de�nition of a new 
lass of require-ments that impose 
onstraints on the run-time su

ess rate of other require-ments. The te
hni
al details of the 
ontribution in
lude linguisti
 
onstru
tsfor expressing su
h requirements (referen
e to other requirements, requirementstates, temporal operators), expression of su
h requirements in OCLTM , as wellas portions of a prototype implementation founded on an existing requirementsmonitoring framework. We have also dis
ussed the role of AwReqs in a 
ompletepro
ess for the development of adaptive systems using a feedba
k loop-basedadaptation framework that builds on top of this monitoring framework.Other than working towards the full feedba
k loop implementation dis
ussedin se
tion 7, future steps in our resear
h in
lude the integration of domain modelsin the approa
h (as mentioned in se
tion 6) and improvements in the de�nitionand spe
i�
ation of AwReqs. Other questions also present themselves as opportu-nities for future work in the 
ontext of this resear
h: what is the role of 
ontextualinformation in this approa
h? How 
ould we add predi
tive 
apabilities or prob-abilisti
 reasoning in order to avoid failures instead of adapting to them? Couldthis approa
h help a
hieve requirements evolution? These and other questionsshow how mu
h work there is still to be done in this resear
h area.Referen
es1. Report of the inquiry into the London Ambulan
e Servi
e. South West ThamesRegional Health Authority (1993)2. Obje
t Constraint Language, OMG Available Spe
i�
ation, Version 2.0,http://www.omg.org/
gi-bin/do
?formal/2006-05-01 (2006)3. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Adap-tation. In: Pro
. of the 18th IEEE International Requirements Engineering Con-feren
e. pp. 125�134. IEEE (2010)4. Berry, D.M., Cheng, B.H.C., Zhang, J.: The Four Levels of Requirements Engi-neering for and in Dynami
 Adaptive Systems. In: Pro
. of the 11th InternationalWorkshop on Requirements Engineering: Foundation for Software Quality. pp. 95�100 (2005)5. Bres
iani, P., Perini, A., Giorgini, P., Giun
higlia, F., Mylopoulos, J.: Tropos:An Agent-Oriented Software Development Methodology. Autonomous Agents andMulti-Agent Systems 8(3), 203�236 (2004)6. Brun, Y., et al.: Engineering Self-Adaptive Systems through Feedba
k Loops. In:Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software



29Engineering for Self-Adaptive Systems, Le
ture Notes in Computer S
ien
e, vol.5525, pp. 48�70. Springer (2009)7. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Resear
hRoadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.(eds.) Software Engineering for Self-Adaptive Systems, Le
ture Notes in ComputerS
ien
e, vol. 5525, pp. 1�26. Springer (2009)8. Dardenne, A., van Lamsweerde, A., Fi
kas, S.: Goal-dire
ted Requirements A
qui-sition. S
ien
e of Computer Programming 20(1-2), 3�50 (1993)9. Dobson, S., et al.: A Survey of Autonomi
 Communi
ations. ACM Transa
tionson Autonomous and Adaptive Systems 1(2), 223�259 (2006)10. Doyle, J.C., Fran
is, B.A., Tannenbaum, A.R.: Feedba
k Control Theory. Ma
mil-lan Coll Div, 1992 edn. (1992)11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Spe
i�
ations forFinite-State Veri�
ation. In: Pro
. of the 21st International Conferen
e on SoftwareEngineering. pp. 411�420. ACM (1999)12. Flake, S.: Enhan
ing the Message Con
ept of the Obje
t Constraint Language. In:Pro
. of the 16th International Conferen
e on Software Engineering & KnowledgeEngineering. pp. 161�166 (2004)13. Garlan, D., Cheng, S.W., Huang, A.C., S
hmerl, B., Steenkiste, P.: Rain-bow: Ar
hite
ture-Based Self-Adaptation with Reusable Infrastru
ture. Computer37(10), 46�54 (2004)14. Giese, H., Cheng, B.H.C. (eds.): Pro
eedings of the 6th International Symposiumon Software Engineering for Adaptive and Self-Managing Systems. ACM (2011)15. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedba
k Control of Com-puting Systems. Wiley, 1st edn. (2004)16. Hevner, A.R., Mar
h, S.T., Park, J., Ram, S.: Design S
ien
e in Information Sys-tems Resear
h. MIS Quarterly 28(1), 75�105 (2004)17. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the Core Ontology and Problemin Requirements Engineering. In: Pro
. of the 16th IEEE International Require-ments Engineering Conferen
e. pp. 71�80. IEEE (2008)18. Kephart, J.O., Chess, D.M.: The vision of autonomi
 
omputing. Computer 36(1),41�50 (2003)19. Kramer, J., Magee, J.: A Rigorous Ar
hite
tural Approa
h to Adaptive SoftwareEngineering. Journal of Computer S
ien
e and Te
hnology 24(2), 183�188 (2009)20. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-els to Software Spe
i�
ations. Wiley, 1 edn. (2009)21. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfa
tion forRequirements and Design Engineering. In: Pro
. of the 12th ACM SIGSOFT In-ternational Symposium on Foundations of Software Engineering. vol. 29, pp. 53�62.ACM (2004)22. Menas
e, D.A., Gomaa, H., Malek, S., Sousa, J.a.P.: SASSY: A Framework forSelf-Ar
hite
ting Servi
e-Oriented Systems. IEEE Software 28(6), 78�85 (2011)23. Parashar, M., Figueiredo, R., K�
�man, E.E. (eds.): Pro
eedings of the 7th Inter-national Conferen
e on Autonomi
 Computing. ACM (2010)24. Robinson, W.N.: A requirements monitoring framework for enterprise systems.Requirements Engineering 11(1), 17�41 (2006)25. Robinson, W.N.: Extended OCL for Goal Monitoring. Ele
troni
 Communi
ationsof the EASST 9 (2008)26. Robinson, W.N., Fi
kas, S.: Designs Can Talk: A Case of Feedba
k for DesignEvolution in Assistive Te
hnology. In: Lyytinen, K., et al. (eds.) Design Require-



30 ments Engineering: A Ten-Year Perspe
tive, Le
ture Notes in Business InformationPro
essing, vol. 14, pp. 215�237. Springer (2009)27. Robinson, W.N., Purao, S.: Monitoring Servi
e Systems from a Language-A
tionPerspe
tive. IEEE Transa
tions on Servi
es Computing 4(1), 17�30 (2011)28. Rohleder, C., Smith, J., Dix, J.: Requirements Spe
i�
ation - Ambulan
e Dispat
hSystem. Te
h. rep., Software Engineering (CS 3354) Course Proje
t, University ofTexas at Dallas, USA (available at: http://www.utdallas.edu/�
jr041000/) (2006)29. Rosenthal, D.: Cons
iousness and Mind. Oxford University Press, 1st edn. (2005)30. Sousa, J.a.P., Balan, R.K., Poladian, V., Garlan, D., Satyanarayanan, M.: A Soft-ware Infrastru
ture for User�Guided Quality�of�Servi
e Tradeo�s. In: Cordeiro,J., Shishkov, B., Ran
hordas, A., Helfert, M. (eds.) Software and Data Te
hnolo-gies, Communi
ations in Computer and Information S
ien
e, vol. 47, pp. 48�61.Springer (2009)31. Souza, V.E.S.: An Experiment on the Development of an Adaptive Sys-tem based on the LAS-CAD. Te
h. rep., University of Trento (available at:http://disi.unitn.it/�vitorsouza/a-
ad/) (2012)32. Souza, V.E.S., Lapou
hnian, A., Mylopoulos, J.: System Identi�
ation for Adap-tive Software Systems: a Requirements Engineering Perspe
tive. In: Jeusfeld, M.,Del
ambre, L., Ling, T.W. (eds.) Con
eptual Modeling � ER 2011, Le
ture Notesin Computer S
ien
e, vol. 6998, pp. 346�361. Springer (2011)33. Souza, V.E.S., Lapou
hnian, A., Mylopoulos, J.: (Requirement) Evolution Require-ments for Adaptive Systems. In: Pro
. of the 7th International Symposium onSoftware Engineering for Adaptive and Self-Managing Systems (to appear) (2012)34. Souza, V.E.S., Mylopoulos, J.: From Awareness Requirements to Adaptive Systems:a Control-Theoreti
 Approa
h. In: Pro
. of the 2nd International Workshop onRequirements�Run.Time. pp. 9�15. IEEE (2011)35. Tallaba
i, G.: System Identi�
ation for the ATM System. Master thesis, Universityof Trento (to be submitted) (2012)36. Whittle, J., Sawyer, P., Ben
omo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: In-
orporating Un
ertainty into the Spe
i�
ation of Self-Adaptive Systems. In: Pro
.of the 17th IEEE International Requirements Engineering Conferen
e. pp. 79�88.IEEE (2009)37. Yu, E.S.K., Giorgini, P., Maiden, N., Mylopoulos, J.: So
ial Modeling for Require-ments Engineering. MIT Press, 1st edn. (2011)


