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Abstract In recent years, there has been a growing interest in the use of reference
conceptual models to capture information about complex and sensitive business do-
mains (e.g., finance, healthcare, space). These models play a fundamental role in
different types of critical semantic interoperability tasks. Therefore, domain experts
must be able to understand and reason with their content. In other words, these mod-
els need to be cognitively tractable. This paper contributes to this goal by proposing
a model clustering technique that leverages on the rich semantics of ontology-driven
conceptual models (ODCM). In particular, we propose a formal notion of Relational
Context to guide the automated clusterization (or modular breakdown) of conceptual
models. Such Relational Contexts capture all the information needed for understand-
ing entities “qua players of roles” in the scope of an objectified (reified) relationship
(relator). The paper also presents computational support for automating the identi-
fication of Relational Contexts and this modular breakdown procedure. Finally, we
report the results of an empirical study assessing the cognitive effectiveness of this
approach.
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1 Introduction

In recent years, there has been a growth in the use of reference conceptual models
to capture information about complex and critical domains (e.g., [7, 9]). As the com-
plexity of these domains grows, often so does the size and complexity of the artifacts
that represent them. Moreover, in sensitive domains (e.g., finance, healthcare), these
models play a fundamental role in different types of critical semantic interoperability
tasks including data integration [21], data interchange [9], and ontology-based data
access [56]. Therefore, domain experts must be able to understand and accurately
reason with the content of these models. However, the human capacity for process-
ing unknown information is very limited, containing bottlenecks in visual short-term
memory and causing problems to identify and hold stimuli [37]. For this reason, there
is an evident need for developing adequate complexity management mechanisms for
reference conceptual models.

One type of such complexity management mechanisms is conceptual model mod-
ularization or Conceptual Model Clustering (henceforth CMC) [1]. CMC is the pro-
cess by which a model is fragmented into smaller interconnected parts [35], each of
which can be more easily manipulated by a model user than the entire model. The
greatest challenge in CMC is the process for module extraction, namely, coming up
with adequate criteria for dividing the model into modules that ease model under-
standing.

Traditionally, different techniques have been used for module extraction (e.g., [1,
12, 36]). However, almost the totality of these approaches address modularization in
languages that are ontologically-neutral [25] such as UML, ER diagrams, or OWL1.
While these languages may have a well-defined abstract syntax and a formal (logical)
semantics, in general, they lack ontological semantics. Consequently, the modulariza-
tion techniques developed for them rely on criteria that leverage almost exclusively
on the syntactical properties of the models, typically, topological ones [51].

In contrast, ontology-driven conceptual modeling (ODCM) languages are sys-
tematically designed to conform to an underlying ontological theory. In particular, an
ODCM language contains exactly the modeling primitives that are necessary to rep-
resent the ontological distinctions put forth by its underlying ontology. For example,
as different ontological categories of types (e.g., Kinds, Mixins, Roles) play different
roles with respect to their instances regarding issues such as classification (e.g., dy-
namic versus static) and identity, these distinctions should be explicitly represented
by the language’s constructs. ODCM approaches have enjoyed an increasing adoption
by the Conceptual Modeling community as a number of independent results consis-
tently show their benefits for improving the quality of conceptual models (e.g., [50]).
An example of an ODCM language is OntoUML [25], whose primitives reflect the
underlying UFO foundational ontology [25].

In this paper, we leverage the ontologically well-founded semantics of OntoUML
to propose a formal approach for automated modularization in conceptual models.
The proposed approach breaks down an OntoUML model into a number of Relational

1 There is a long debate in philosophy regarding the ontological neutrality (or lack thereof) of formal
languages. We simply mean here that they commit to a simple ontology of formal structures (e.g., that of
set theory) in which sorts of types and relations are undifferentiated.
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Contexts. Intuitively, Relational Contexts are modules that capture all the information
needed for understanding entities qua players of roles in the scope of an objectified
(reified) relationship (ontological speaking, the so-called relators).

As reported in [46], Relators and Roles are clearly the most used OntoUML con-
structs in conceptual models. This is unsurprising, given the strong adoption of On-
toUML/UFO in business (organizational, social, and legal) domains [49], as well as
the fact that in these realms the bulk of the domain knowledge is concentrated in rela-
tionships and roles. As argued in [26], specially in these realms, “we seldom interact
with these entities qua-themselves, but we frequently conceive objects qua-playing-
certain-roles in given ‘contexts’... For example, most of our interactions with other
human beings and, hence, our conceptualizations of these interactions are thought
in terms of roles such as parent, employee, student, president, citizen, customer,
etc. Analogously, when thinking about, for instance, cars, we think about them as
means of transportation, insurable items, work-related resources, product offerings,
etc. Moreover, we often conceive these ‘contexts’ as relational ones: marriages, em-
ployments, enrollments, and presidential mandates are themselves concrete ‘object-
like’ entities that define a scope in which ordinary objects play complementary roles
interacting with each other”. This view is also defended by other authors such as [8],
who go as far as to claim that “[r]oles are useful not only to model domains that
include institutions and organizations. Rather, every object can be considered as an
institution or an organization structured in roles”. Also in social science and, in par-
ticular, in its sub-field called Role Theory, roles as patterns of context-bound behavior
types are considered to be “one of the most important features of social life” [10].

The proposal advanced here is, thus, aimed at conceptual models in business
(organizational, social, and legal) domains, which form the bulk of the Informa-
tion Systems discipline. For models that are centered on taxonomic relations (e.g.,
product types, biological taxonomies), we recommend alternative complexity man-
agement techniques, in particular, the static ontological views as proposed in [17].
In fact, this paper can be seen as a companion to [17] and [27] in a general research
program of defining ontology-driven complexity management theories, techniques,
and tools. While in these two papers the focus is on model recoding with ontology-
design patterns, and on model abstraction, respectively, here we propose the notion
of relationship-centric conceptual model modularization (or clustering).

This paper is an extension of [30]. As in that original paper, we advance a for-
malization of the notion of Relational Context by leveraging on the theory of relators
from UFO/OntoUML. We then use this notion to propose a strategy for relationship-
centric modularization termed Relator-Centric Clustering. However, extending that
work, we discuss here a full implementation of this strategy as a service part of an
open-source software library for OntoUML models, as well as a plugin for the Vi-
sual Paradigm model engineering tool. Furthermore, in this paper, we report on the
results of an empirical study conducted with expert conceptual modelers to evaluate
the perceived cognitive effectiveness of our clustering strategy. In particular, in that
experiment, our approach is compared with two other relevant approaches used in the
literature of conceptual modeling. Finally, we present a much more elaborated analy-
sis of related work: firstly, we review different strategies for complexity management
of large symbolic models in the literature of traditional conceptual modeling, on-
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tology engineering, and enterprise modeling; secondly, in the section discussing the
experiment, we also provide an extensive analysis of these two competing approaches
considered therein.

The remainder of the paper is organized as follows. Section 2 positions our work
in reference to related efforts; Section 3 briefly presents the OntoUML language and
some of the ontological notions underlying it; Section 4 presents the formal contri-
butions of this paper. Firstly, it defines the notions of Ontological Views, Relational
Contexts, and Modular Breakdown. This is done both formally, in terms of a precise
definition of these notions, as well as intuitively by making use of a running exam-
ple in the domain of Car Rental; in Section 5, we report on an implementation of
this approach as a service and as as a plug-in to a model-based OntoUML editor;
Section 6 presents the empirical study, including: (i) the materials (description of the
two alternative clustering approaches, as well as the alternative breakdowns of the
aforementioned Car Rental model under these three competing approaches), (ii) the
procedure used for conducting the experiment, (iii) the obtained results, (iv) a further
analysis of qualitative responses, (v) the limitations of the experiment, and (vi) a dis-
cussion of the representativeness of the conceptual model that is used as a running
example throughout the paper as well as in this experiment; finally, Section 7 presents
our conclusions and outlines directions for future research.

2 Complexity Management of Conceptual Models

The discipline of complexity management of large conceptual models (henceforth
CM-CM) has been around for quite some time and has been represented in the lit-
erature by a series of different approaches and techniques. In fact, [51] claims that
“one of the most challenging and long-standing goals in conceptual modeling... is to
understand, comprehend, and work with very large conceptual schemas”.

The challenge and importance of this discipline lie in the following. On one hand,
real information systems often have large and extremely complex conceptual mod-
els [51]. On the other hand, this complexity poses a serious additional challenge in
the comprehension and, consequent, quality assurance of these models. For exam-
ple, [44] reports on an empirical study conducted with a large and professionally
constructed conceptual model.2 In that study, the authors managed to show that the
model contained 879 occurrences of error-prone structures (anti-patterns), 52.56% of
which really introduced representation errors according to the creators of the model.

According to [51], the methods for CM-CM can be classified in three areas,
namely, clustering, relevance, and summarization methods. Clustering is about clas-
sifying the elements of a conceptual model into groups, or clusters, according to some
criteria (e.g., a similarity function); Relevance methods are about the application of
ranking functions to the elements of a model in order to obtain ordered lists (i.e.,

2 We will refer to this model (henceforth termed the MGIC model [44]) in a few passages of this article.
The MGIC model was developed by practitioners in the context of a Brazilian governmental project and for
the domain of Ground Transportation Regulation. The model consists of 3,800 classes, 61 datatypes, 1,918
associations, 3,616 subtyping relations, 698 generalization sets, 865 attributes, i.e., navigable association
ends.
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a ranking) of model elements according to their perceived relevance in representing
the domain at hand; finally, Summarization is about producing a reduced version of
a model consisting only of the elements that are judged to be of more relevance for
representing the domain at hand. In clustering methods, the goal is to break down a
model into fragments such that the sum of these fragments should be informationally
equivalent to the whole (i.e., to the original model). In contrast, relevance and sum-
marization methods (including model abstraction) aim to produce partial views of the
original model at hand. In other words, while clustering methods have lossless model
transformations, the latter classes of methods are based on lossy transformations.

Techniques for model clustering, relevance, and summarization have been devel-
oped for more than three decades in conceptual modeling, from earlier approaches
such as [16] in the mid-80’s, to [1,12] in the second half of the 90’s, to [47,48] in the
first decade of the 2000’s, to recent approaches such as [11]. Recently, the problem
of complexity management of large symbolic models has gained significant interest
also in the areas of ontology engineering [2, 6, 13, 14, 20, 33], enterprise models [34],
and process models [53, 55].

In enterprise modeling, in particular, in enterprise architecture modeling, this
problem is always present given that, by their very nature, these models aim at putting
together multiple layers (e.g., business, information system, and technology layers),
multiple concerns (e.g., modeling the situation “as-is”, the situation “to-be”, and how
to bridge the two), as well as multiple dimensions (e.g., a dimension of active en-
tities, i.e., carriers of behavior; a dimension of behavior itself, i.e., occurrences of
the behavior of these entities; a dimension of passive entities, i.e., entities that are
created, terminated, changed, and manipulated by behavior). In this area, approaches
like ArchiMate [34] define multiple viewpoints, which are archetypal “filters” over
the complete model that select information over layers, concerns, and dimensions
that are supposed to match particular aims (e.g., designing, deciding, informing),
granularity (e.g., details, coherence, overview) and user roles (e.g., process manager,
CEO, service designer, software developer, network administrator). However, unlike
approaches for view extraction like [17], ArchiMate viewpoints are not designed to
guarantee that the set of views is informationally equivalent to the original model.

In ontology engineering, this problem is also very salient, given that some of the
models produced by the area are of significant size. An extreme case is the Founda-
tional Model of Anatomy, which contains “75,000 classes and over 120,000 terms;
over 2.1 million relationship instances from over 168 relationship types”3. However,
even a foundational model such as SUMO contains 20,000 terms and 80,000 axioms4.

In this area, the approaches for complexity management vary considerably. A
first concern there is how to separate these large theories in models that will form
an ontology network (or ontology federation). For example, [14] propose the use of
another model (in that case, an ArchiMate architectural model) to guide that process.
Large ontologies can incorporate concerns from different generality levels ranging
from domain-specific concerns (e.g., what kinds of elements are involved in a soft-
ware service), to concerns that crosscut different domains (e.g., what is a service),

3 http://sig.biostr.washington.edu/projects/fm/
4 http://www.ontologyportal.org/
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to domain-independent ones (e.g., how to differentiate and characterize objects and
events). Some approaches (e.g., [15]) use an understanding of ontologies at these dif-
ferent levels (i.e., foundational, core, and domain ontologies) as a strategy for model
breakdown. Another example that takes a similar level-based approach for modular-
izing ontology networks is proposed in [41].

Most of the methods for complexity management of large ontologies, however,
consider these models simply as logical theories and are oblivious to these distinc-
tions about generality level. These methods are divided in approaches for model ab-
straction (known as forgetting [13]), clustering (called ontology partitioning [6, 20]),
as well as ontology module extraction [13]. A few approaches such as [13] propose
to combine operations of module extraction and forgetting. Ontology partitioning is
a lossless operation; module extraction and forgetting are lossy operations, both of
which require from the user as input a set of model elements they are interested in
(called a seed signature [13]). Module extraction is about producing a subset of the
ontology for which answers for queries over the seed signature are the same as those
obtained from the original model; forgetting is about eliminating from the ontology
the terms provided in this list while preserving logical inferences involving the re-
maining elements [13].

None of the aforementioned approaches is fully automated. Approaches such as
[14] assume the existence of additional supporting models (enterprise architecture
models) and require an understanding of the mapping between these models and the
model to be modularized; approaches such as [15] require a human interpretation of
the non-consensual classification of ontologies in different generality levels. Finally,
approaches for ontology module extraction and forgetting rely on the user input of
seed signatures, which can be a problem in the case of large models. An exception
in this sense is [2], which proposes an automated approach for recommending which
ontology concepts can potentially be used as cluster seeds. This part of the approach
is based on an algorithm that ranks the relevance of model elements (i.e., a relevance
method). Finally, although module extraction is sometimes driven by the concern of
identifying reusable fragments of the original model, this concern is itself strongly
based on human heuristics and judgment [33].

A drawback that is common to the majority of existing methods in all these
classes in the literature is that they are based on classic conceptual modeling no-
tations (e.g., UML, ER) [51] and knowledge representation languages (e.g., OWL)
and, as a consequence, they are constrained to rely almost exclusively on syntactic
(mainly topological) or formal properties of the addressed models. These proper-
ties include closeness (a quantitative evaluation of the links among elements in the
model) [19], hierarchical distance (length of the shortest relationship path between
entities), structural-connective distance (elements are considered closer if they are
neighbors in a mereological or subtyping structure), or category distance (elements
are considered to be closer if one subtypes the other) [1]. For example, [12] proposes
a (relevance) method based on the assumption that the number of attributes and re-
lations characterizing an element in a model can be used as a (heuristic) measure
of its relevance for that model. In the same spirit, [47, 48] go as far as proposing
PageRank-style algorithms to infer the relevance of elements in entity-relationship
diagrams and RDF schemas (even ignoring the difference between association and
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subtyping relations). The problem with relying solely on these properties is that there
is no guarantee that a model element satisfying some topological requirement (e.g., a
node with more edges connected to it) by necessity represents the model’s most im-
portant concepts. This is related to the work by [38,39], that while criticizing existing
CM-CM methods, referred to it as lack of cognitive justification.

Variations of these ideas can also be found in more recent approaches such as
the ones proposed in [2, 6, 11, 20]. For example, [11] uses a genetic algorithm based
on fitness functions that are topological in nature (e.g., the sum of relations within a
model, the sum of relations across modules, number of modules, average number of
elements per module, standard deviation of module size) [39]; [2] uses the number
of relations (including subtyping, supertyping, and property relations) that a type is
involved in to estimate its relevance, as well as indicators such as a notion of hierar-
chical similarity to calculate cohesion and coupling of candidate modules; [20] uses
graph-partitioning heuristics for detecting communities (i.e., subset of nodes densely
interconnected relatively to the rest of the graph); [6] also uses the number of direct
relations between two nodes divided by the maximum number of global relationships
shared by each of the two nodes with every other node in the graph to estimate the
weight for their connection, and then uses these weights to generate a breakdown that
minimizes the weight of the connections crossing partitions.

The method proposed here is a type of clustering method. However, in contrast
with all the aforementioned approaches, our proposal focuses on the ontological se-
mantics [25] of the elements represented in a conceptual model. As previously dis-
cussed, the idea is to use a formal and ontological notion of Relational Context (see
section 4) as a clustering mechanism. In general strokes, a Relational Context is built
in the following manner: starting from a focal reified relationship (relator), from
there exploring the different relational types (typically roles) played by entities in the
scope of that relationship, then finally navigating upwards the supertyping hierarchy
of these relational types until reaching the fundamental types (kinds) that provide the
essential properties and identity principles that characterize their instances.

This approach (detailed in section 4) is only made possible because it is based on
a non-classical CM language, namely, the ODCM language OntoUML (briefly pre-
sented in section 3). There are three CM-CM methods in the literature that are based
on the same language, namely, the approaches of (i) [17], (ii) [27], and (iii) [35, 36].
The first method [17] is the one that is closer to the work presented here, since it is
also a clustering method and, hence, a lossless approach. What is presented there is
an approach for what the authors name Model Recoding. The method takes a concep-
tual model and produces a series of views constituted by ontological design patterns
centered around general (as opposed to model specific) ontological constructs. So,
for example, it groups all the kinds in the model in one view, all the roles played by
instances of these kinds in a relational context in another view, etc. So, instead of
breaking down the model into clusters that correspond to what one could intuitively
call sub-domains, that approach breaks down the model in terms of general onto-
logical categories. In contrast, the second [27] and third approaches [35, 36] differ
from the approach presented here since these are approaches for model summariza-
tion and hence lossy approaches. Finally, [35,36] also differs from our approach since
it requires user input in selecting a set of entities in the model that are of particular
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relevance (a seed). Our approach, instead, is a fully automated one, which we argue
is an important feature in methods dealing with large-scale models.

In summary, to the best of our knowledge, our approach is the only clustering
method in the literature that is both fully automated and driven by ontological cate-
gories (ontological meta-types) of the elements represented in a model, as opposed
to solely relying on topological properties of the graph, or on formal properties of the
logical rendering of that model.

3 A Whirlwind Introduction to UFO and OntoUML

OntoUML is a language whose meta-model has been designed to comply with the
ontological distinctions and axiomatization of a theoretically well-grounded founda-
tional ontology named UFO (Unified Foundational Ontology) [25, 28, 32]. UFO is
an axiomatic formal theory based on contributions from Formal Ontology in Philoso-
phy, Philosophical Logic, Cognitive Psychology, and Linguistics. OntoUML has been
successfully employed in several industrial projects in different domains, such as
petroleum and gas, digital journalism, complex digital media management, off-shore
software engineering, telecommunications, retail product recommendation, and gov-
ernment [32]. A recent study shows that UFO is the second-most used foundational
ontology in conceptual modeling and the one with the fastest adoption rate [49]. That
study also shows that OntoUML is among the most used languages in ontology-
driven conceptual modeling (together with UML, (E)ER, OWL, and BPMN). More-
over, empirical evidence shows that OntoUML significantly contributes to improving
the quality of conceptual models without requiring an additional effort to producing
them. For instance, the work of [50] reports on a modeling experiment conducted
with 100 participants in two countries showing the advantages (in these respects)
of OntoUML when compared to a classical conceptual modeling language (EER -
Extended ER).

In the sequel, we briefly explain a selected subset of the ontological distinctions
put forth by the Unified Foundational Ontology (UFO). We also show how these dis-
tinctions are represented by the modeling primitives of OntoUML (as a UML profile).
For an in-depth discussion, philosophical justifications, formal characterization, and
empirical support for these categories one should refer to [22, 25].

Take a domain in reality restricted to endurants [25] (as opposed to events or
occurrents). Central to this domain we will have object Kinds, i.e., the genuine fun-
damental types of objects that exist in this domain. We use the term “kind” in a strong
technical sense, i.e., a type capturing essential properties of the things it classifies. In
other words, the objects classified by that kind could not possibly exist without being
of that specific kind.

Kinds tessellate the possible space of objects in that domain, i.e., all objects be-
long to exactly one kind and do so necessarily. Typical examples of kinds include
‘Person’, ‘Organization’, and ‘Car’ (see Figure 1; stereotypes reflect the correspon-
dence between the UML profile and UFO). We can, however, have other static subdi-
visions (or subtypes) of a kind. These are naturally termed Subkinds. As an example,
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Fig. 1 A conceptual model in OntoUML in which relators are highlighted in green.
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the kind ‘Person’ can be specialized in the subkinds ‘Man’ and ‘Woman’ (in a con-
ceptualization of gender that underlies many legacy information systems).

Object kinds and subkinds represent essential properties of objects (they are also
termed rigid or static types [25, 28]). We have, however, types that represent con-
tingent or accidental properties of objects (termed anti-rigid types [25, 28]). These
include Phases (for example, in the way that ‘being a living person’ captures a clus-
ter of contingent intrinsic properties of a person, or in the way that ‘being a puppy’
captures a cluster of contingent intrinsic properties of a dog) and Roles (for example,
in the way that ‘being a husband’ captures a cluster of contingent relational properties
of a man participating in a marriage, or that ‘being a rental car’ captures contingent
intrinsic properties of a car participating in a car rental, see Figure 1).

In other words, the difference between the contingent properties represented by a
phase and a role is the following: phases represent properties that are intrinsic to en-
tities (e.g., ‘being a puppy’ is being a dog that is in a particular developmental phase;
‘being a living person’ is being a person who has the intrinsic property of being alive;
‘being an available car’ is being a car that is functional and, hence, can be rented);
roles, in contrast, represent properties that entities have in a relational context, i.e.,
contingent relational properties (e.g., ‘being a husband’ is to bear a number of com-
mitments and claims towards a spouse in the scope of a marital relationship; ‘being a
student’ is to bear a number of properties in the scope of an enrollment relationship
with an educational institution).

Kinds, Subkinds, Phases, and Roles are categories of object Sortals. In the philo-
sophical literature, a sortal is a type that provides a uniform principle of identity,
persistence, and individuation for its instances [25]. To put it simply, a sortal is ei-
ther a kind (e.g., ‘Person’) or a specialization of a kind (e.g., ‘Student’, ‘Teenager’,
‘Woman’), i.e., it is either a type representing the essence of what things are or a sub-
classification applied to the entities that “have that same type of essence”5. Phases,
but also typically subkinds, appear in OntoUML models forming (disjoint and com-
plete, i.e., exhaustive) partitions following a Dividing Principle [54]. For example, in
Figure 1, we have the following phase partitions: the one including ‘Living Person’
and ‘Deceased Person’ (as phases of ‘Person’ and according to a ‘life status’ dividing
principle); the one including ‘Child’, ‘Teenager’ and ‘Adult’ (as phases of ‘Living
Person’ and according to ‘age phase’); the one including ‘Available Car’ and ‘Under
Maintenance Car’(as phases of ‘Car’ and according to a ‘car status’). Since they are
exclusively composed of phases, these are all dynamic partitions [54]. In this model,
we also have a (static) subkind partition formed by the subkinds ‘Man’ and ‘Woman’,
dividing ‘Person’ according to ‘gender’.

Relators (or relationships in a particular technical sense [22, 23]) represent clus-
ters of relational properties that “hang together” by a nexus (provided by a relator
kind). Moreover, relators (e.g., marriages, enrollments, presidential mandates, citi-
zenships, but also car rentals, employments, and car ownerships, see Figure 1) are
full-fledged Endurants. In other words, entities that endure in time bearing their own

5 In the model of Figure 1, we use a color scheme in which object kinds are represented in red; other
object types classifying instances of those kinds are represented in a lighter tone of that red; relators are
represented in green.
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essential and accidental properties and, hence, first-class entities that can change in a
qualitative manner while maintaining their identity6.

As discussed in depth in [22,23], relators are the truth-makers of relational propo-
sitions, and relations (as classes of n-tuples) can be completely derived from rela-
tors [25, 31]. For instance, it is ‘the marriage’ (as a complex relator composed of
mutual commitments and claims) between ‘John’ and ‘Mary’ that makes true the
proposition that “John is the husband of Mary”. Relators are existentially dependent
entities (e.g., the marriage between John and Mary can only exist if John and Mary
exist) that bind together entities (their relata) by the so-called mediation relations—
a particular type of existential dependence relation [25, 31]. As discussed in depth
in [22], like in the MERODE approach [45] (but here for ontological reasons), all
domain relations in business models (the so-called material relations) can be repre-
sented exclusively by employing relators and these existential dependence relations
(mediation).

Objects participate in relationships (relators) playing certain “roles” [25]. For in-
stance, people play the role of a spouse in a marriage relationship; a person plays the
role of president in a presidential mandate; a car plays the role of a rental car scope of
a car rental, see Figure 1. ‘Spouse’ and ‘President’ (but also typically student, teacher,
pet) are examples of what we technically term a role in UFO, i.e., a relational contin-
gent sortal (since these roles can only be played by entities of a unique given kind).
There are, however, relational and contingent role-like types that can be played by
entities of multiple kinds. An example is the role ‘Customer’ (which can be played
by both people and organizations), see Figure 1. We call these role-like types that
classify entities of multiple kinds RoleMixins [25].

In general, types that represent properties shared by entities of multiple kinds
are termed Non-Sortals. Non-Sortals are always represented as abstract types as they
can only be instantiated via instantiating sortal types, which typically specialize them
[25, 28]. For example, the only way an entity can be an instance of ‘Customer’ is
either by being a ‘Personal Customer’—in case this entity is a person, or a ‘Corporate
Customer’—in case it is an organization. Since all kinds are mutually disjoint, so
are the types ‘Personal Customer’ and ‘Corporate Customer’, i.e., the RoleMixin
‘Customer’ is partitioned into these two sortals. In summary, all customers are either
of the kind ‘Person’ or of the kind ‘Organization’, and the type ‘Customer’ represents
(refactors) all the properties (including the relational ones) that are common to all
customers of various kinds.

4 Views, Relational Contexts, and Relator-Centric Clustering

In this section, we present a formal definition of our structure of ontological views,
which are then used to formally define our notion of Relational Context (RC) and

6 The model in Figure 1 is a simplified model for this domain. A more detailed model could include
cases of “relators mediating relators” (e.g., a car rental mediating a car ownership and an employment).
The example avoids these to avoid deviating from the main focus of the discussion. Our formal definition
of RCC (see section 4.7), however, has no such a limitation, thus, addressing these cases that result in
nested contexts (i.e., contexts including other contexts).
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of Relator-Centric Clustering (RCC). Built over UFO’s distinctions and for the On-
toUML language, the approach presented here proposes rules to extract modules
(clusters) from a conceptual model expressed in OntoUML.

4.1 Basic Definitions

Let a Model M be a graph defined such that M = 〈Θ ,Σ ,Φ〉 , where Θ = {C1..Cn}
is the (non-empty) set of concepts in the model M), Σ = {r1..rn} is the set of di-
rected relations in the model and Φ = {gs1..gsn} is the set of Generalization Sets
in the model. Let CT (Concept Type), RT (Relation Type) and GST be domains
of types such that CT = {SORTAL, NON-SORTAL, KIND, SUBKIND, PHASE,
ROLE, ROLEMIXIN, RELATOR}, RT = {MEDIATION, SUBTYPING}, and GST =
{PHASE-PARTITION, SUBKIND-PARTITION} . Now, let < be partial order rela-
tion defined in CT in the following way to reflect the specializations in the taxonomy
of types in UFO: KIND < SORTAL, SUBKIND < SORTAL, ROLE < SORTAL,
PHASE < SORTAL, ROLEMIXIN < NON-SORTAL. Finally, we define a number
of auxiliary functions:

– C(M) is a function that maps a model M to its associated set Θ ;
– R(M) is a function that maps a model M to its associated set Σ ;
– GS(M) is a function that maps a model M to its associated set Φ ;
– E HasType T is a relation connecting an element E to a type T in the following

manner: if E is a concept, then T ∈CT ; if E is a relation then T ∈ RT , and if E is
a generalization set, then E ∈ GST . We should also add that for any two types T
and T ′ such that T < T ′, if E HasType T then E HasType T ′;

– t(r) is a function that maps a relation r to the target (destination) of that directed
relation;

– s(r) is the complementary function that maps a relation r to the source (origin) of
that directed relation;

– r.gs connects a relation r with a generalization set gs such that r HasType SUB-
TYPING and: if gs HasType PHASE-PARTITION then s(r) HasType PHASE;
if gs HasType SUBKIND-PARTITION then s(r) HasType SUBKIND. More-
over, for any two relations r1 and r2 such that r1 . gs and r2 . gs, we have that
t(r1) = t(r2).

As expected, we have that for every model M and every relation such that r ∈
R(M), we have that both s(r) ∈C(M) and t(r) ∈C(M). Moreover, every generaliza-
tion set gs ∈ GS(M) is such that all r .gs implies that r ∈ R(M).

For example, let M be the model depicted in Figure 1. Then, C(M) amounts to
exactly the types represented there, while R(M) includes all the mediation and UML
subtyping relations. Finally, GS(M) amounts to the generalization sets:

– Gender: a subkind partition comprising the subtyping relations connecting Man
to Person, and Woman to Person;

– AgePhase: a phase partition on the developmental status of people, comprising the
subtyping relations connecting Child to Person, Teenager to Person, and Adult to
Person;
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– LifeStatus: a phase partition comprising subtyping relations connecting Living
Person to Person, and Deceased Person to Person;

– OperationalStatus: a phase partition comprising subtyping relations connecting
Available Car to Car, and Under Maintenance Car to Car;

– CustomerNature: a phase partition comprising subtyping relations connecting
Personal Customer to Customer, and Corporate Customer to Customer.

4.2 Direct Subtyping and (Indirect) Subtyping

Let the functions ST (C,C′) (symbolizing that C is a direct subtype of C′), ST∗(C,C′)
(symbolizing that C is a subtype of C′) and IST∗(C,C′) (symbolizing that C is an
improper subtype of C′) be defined as follows:

– ST (C,C′) iff there is an r such that r HasType SUBTYPING and s(r) = C and
t(r) =C′;

– ST∗(C,C′) iff ST (C,C′) or there is a C′′ such that ST (C,C′′) and ST∗(C′′,C′);
and,

– IST∗(C,C′) iff ST∗(C,C′) or C =C′.

We also define the following auxiliary function:

– K(C) mapping a sortal C to its unique supertyping KIND, i.e., we have that
K(C) = C′ iff C′ HasType KIND and IST∗(C,C′). (Notice that if C is a KIND,
then C =C′.)

Again, using the model M of Figure 1 as an example, we have that, for instance,
K(CarAgency) = Organization and K(PersonalCustomer) = Person.

4.3 View

Let M and M′ be models as previously defined. It follows that M is a view of M′

(symbolized as V (M,M′) iff:

– C(M)⊆C(M′) and
– R(M)⊆ R(M′) and
– GS(M)⊆ GS(M′).

Notice that, given our definition of a model, we have that all r ∈ R(M) are such
that s(r) ∈ C(M) and t(r) ∈ C(M), but also that for all r .GS(M) we have that r ∈
R(M). In other words, M is necessarily an original subgraph of M′.

The views we are ultimately interested in are the so-called Relational Contexts
(RC), which will be defined in sub-section 4.6. Nevertheless, before we reach that, we
need to establish two types of auxiliary views: Sortal Identity Paths and Non-Sortal
Identity Paths. They are used later to support the definition of Relational Contexts.
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4.4 Sortal Identity Path

We define that a view M is a Sortal Identity Path of M′ based on a focus type c
(symbolized as SIP(M,M′,c), where c HasType SORTAL iff:

– V (M,M′) and
– c′ ∈C(M) iff (IST∗(c,c′) and IST∗(c′,K(c)) and
– r ∈ R(M) iff r HasType SUBTYPING and s(r) ∈C(M) and t(r) ∈C(M).

SIP is a generic parameterizable view definition that, given a sortal type c, provides
a view that includes that type and all its supertypes (if any) until its corresponding
kind is reached. Taking the model of Figure 1 and picking, for instance, Personal
Customer as focus type, the corresponding SIP would be constituted by the types
that generalize Personal Customer, i.e., Adult, Living Person, and, finally, Person.
Later, we use SIP to determine which supertypes should be included in a Relational
Context, namely those that reveal the nature of the entities in the context.

4.5 Non-Sortal Identity Paths

We define that the view M is a Non-Sortal Identity Paths of M′ based on a focus type
c (symbolized as NSIP(M,M′,c), where c HasType NON-SORTAL iff:

– V (M,M′) and
– c′ ∈C(M) iff IST∗(c′,c) or (there is a c′′ such that IST∗(c′′,c) and IST∗(c′′,c′)

and IST∗(c′,K(c′′))) and
– r ∈ R(M) iff r HasType SUBTYPING and (s(r) ∈C(M)) and (t(r) ∈C(M))).

The intention of the NSIP can be explained as follows. Take a non-sortal type c in the
model M′, this view should include: (i) c itself and all its non-sortal subtypes; (ii) the
first sortal specializing c as well as the path from this sortal to the unique kind provid-
ing its identity principle [25]. Taking the model of Figure 1 and picking, for instance,
Customer as focus type, in the corresponding NSIP, we have, besides the rolemixin
Customer, the sortals that immediately specialize it (the roles Personal Customer and
Corporate Customer) as well as the supertypes of each of these sortals that are in
the path between them and their kinds (Person and Organization, respectively, in this
case).

4.6 Relational Context

We define that M is a Relational Context of M′ with focus on a relator type rel,
where (rel HasType RELATOR) (symbolized as RC(M,M′,rel)) iff the following
conditions are satisfied:

– V (M,M′);
– c ∈C(M) iff:

– c = rel, or
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– there is a r ∈ R(M) and t(r) = c, or
– there is a view M′′ and a c′ ∈C(M) such that (SIP(M′′,M′,c′) or NSIP(M′′,M′,c′))

and c ∈C(M′′), or
– there is a gs ∈ GS(M) and a r .gs and s(r) = c, or

– r ∈ R(M) iff:
– (r HasType MEDIATION and s(r) ∈C(M)) or
– (r HasType SUBTYPING and s(r) ∈C(M)) and ((t(r) HasType RELATOR)

or t(r) ∈C(M)), or
– there is a gs ∈ GS(M) such that r .gs

– gs ∈ GS(M) iff:
– gs HasType PHASE-PARTITION and there is an r such that r . gs and r ∈

R(M), or
– gs HasType SUBKIND-PARTITION and for all r such that r . gs then r ∈

R(M).

Now, this definition can benefit from some unpacking. The Relational Context
(RC) starts by (naturally) including the focal relator rel (c = rel). In addition, it in-
cludes all types that are connected by that relator via MEDIATION relations (hence-
forth, mediated types) ((r ∈ R(M) and t(r) = c) and (r HasType MEDIATION and
s(r) ∈ C(M))). For example, if we take the relator Car Rental as focus, the corre-
sponding RC would also include the types of entities that are bound by instances of
Car Rental in that context, i.e., Customer and Rental Car.

Furthermore, this RC should include in this context all the types going from these
mediated types to their respective kinds. The rationale here is that in order to un-
derstand the nature of the entities connected by instances of the relator at hand, one
must understand what kinds of things those entities essentially are, i.e., what sort of
principle of identity they obey. In case any of these mediated types c′ is a sortal, then
the RC will include all types in its SIP (c′ ∈C(M) and there is and a view M′′ such
that SIP(M′′,M′,c′) and c ∈C(M′′)). So, in this example, for the sortal type Rental
Car, it would include also the types Available Car and Car. In contrast, if any of the
mediated types is a Non-Sortal, then the relational context will include all types in its
NSIP (c′ ∈C(M) and there is a view M′′ such that NSIP(M′′,M′,c′) and c ∈C(M′′)).
The rationale here is analogous. However, since different instances of a non-sortal
might take their identities from different kinds, in order to understand that context,
we need to include all the information in the identity path between that non-sortal me-
diated type and the relevant kinds. For instance, for a Car Rental Relational Context,
we need to understand the notion of Customer and, in order to understand this notion
we have to understand the notions of Personal Customer and Corporate Customer.
Finally, in order to understand the latter, we need to understand Organizations, and
to understand the former, the notions of Adult, Living Person and Person. After all,
instances of Personal Customer are adult living people.

Besides the types in SIP and NSIP of mediated types, the Relational Context
should also include all types that appear in phase partitions standing in the path be-
tween a mediated type and its identity supplier (i.e., its associated kind). The idea
is that these types offer a contrast background that helps in the clarification of the
semantics of the types in these paths. For example, in the Car Rental context, in or-
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der to understand that personal customers must be living adults, it is important to
understand that they cannot be other alternatives of instances of Person, namely, liv-
ing children, living teenagers, as well as deceased person. In particular, given the
anti-rigidity of these types (phases), all instances of living person can cease to be so,
thus, becoming deceased people, in which case they can no longer play the role of
Personal Customer. Formally, if one of the subtyping relations in a (N)SIP is part of
a phase partition, then that phase partition generalization set is included in the view
(gs HasType PHASE-PARTITION and there is an r such that r .gs and r ∈ R(M)).
Additionally, all other types that share the common supertype in that generalization
set are also included in the view (there is a gs ∈ GS(M) and a r . gs and s(r) = c),
and so are all these supertyping relations in that same generalization set (r HasType
SUBTYPING and t(r) ∈C(M) and (there is a gs such that gs ∈ GS(M) and r . gs)).
Notice that subkind partitions are only included (a posteriori) if all subtyping rela-
tions comprising it are already included in the view (e.g., gender in an RC with Car
Rental as the focus).

Furthermore, we include in a relational context all subtyping relations involving
two types included in that view (r HasType SUBTYPING and s(r)∈C(M) and t(r)∈
C(M)). Finally, we include all supertypes of relators already included in the view
(r HasType SUBTYPING and s(r) ∈ C(M) and t(r) HasType RELATOR). This is
because a subtype inherits all the properties of its supertypes, and thus to understand
the context of a sub-relator we must understand the general notion (e.g., to understand
‘foreign marriage’ as a ‘marriage’ recognized abroad, we must understand ‘marriage’
as a relation binding spouses).

4.7 Relator-Centric Clustering

We are now in position to define the notion of a Relator-Centric Clustering:

A Relator-Centric Clustering of a model M is a set of views symbolized as
RCC(M) = {M1..Mn} such that for every Mi ∈ RCC(M) there is a type rel such
that rel ∈C(M) and RC(Mi,M,rel).

Figure 2 depicts the application of this notion of RCC to the model of Figure 1.
Here we represent each Relational Context using UML packages and name these
packages with the homonymous focal relator. As one can observe, the original model
can be broken down into four contexts, namely: the Car Rental, the Marriage, the
Car Ownership, and the Employment contexts. Each of these modules contains a
view of the original model with all the information required to understand each of the
contexts.

The Car Rental RC shows the roles (and role mixin) directly mediated by the Car
Rental relator (Responsible Employee, Rental Car, Customer). The kinds involved
are made explicit: Person, Car and Organization (when playing the role of Corpo-
rate Customer). Important business rules the model imposes on a Car Rental are
revealed: only an Adult (a Living Person) can rent a car, and only a car that is in the
Available Car phase can be rented. A similar observation can be made for the Mar-
riage RC, as it reveals that the original model reflects a heteronormative setting and
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Fig. 2 An RCC for the model of Figure 1 organized as (Onto)UML packages.

with gender in static classification. Finally, the Car Ownership and the Employment
RCs are examples of simpler views, as the path from directly mediated entities to the
involved kinds is short.

5 Tool Support

We implemented our relator-centric clustering algorithm in JavaScript as a service
within ontouml-js7, an open source software library for OntoUML. Maintained
by the Conceptual and Cognitive Modeling Research Group (CORE)8, ontouml-js
provides an Application Programming Interface (API) for developers to programmat-
ically create, navigate, and query OntoUML models, as well as a number of services
that consume these models and can be explored in Computer-Aided Software En-

7 ontouml-js is distributed via NPM (https://www.npmjs.com/package/ontouml-js) and its
source code is available at https://purl.org/krdb-core/ontouml-js.

8 https://www.inf.unibz.it/krdb/core/
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gineering (CASE) tools. The current version of the library provides the following
model-based services:

– Syntax verification: a service that parses an OntoUML model and verifies its
compliance with OntoUML’s syntactical rules (see [28] for more details);

– Transformation to OWL (ontouml2gufo): a parameterized service that gener-
ates OWL specifications compliant with gUFO [5], the reference implementa-
tion of the Unified Foundational Ontology (UFO) in the Web Ontology Language
(OWL) [52];

– Relator-centric clustering: a service that implements the algorithm described
in this paper. It receives an OntoUML model as an input and returns a set of
diagrams, each of which contains one module produced by the algorithm.

To support OntoUML modelers and make the services implemented in ontouml-js
available to them, CORE developed an open source OntoUML plugin9 for Visual

9 See source code at https://purl.org/krdb-core/ontouml-plugin.

Fig. 3 A screenshot of the OntoUML plugin for Visual Paradigm showcasing a cluster generated using
the relator-centric clustering algorithm.
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Paradigm10. This plugin, which is implemented in Java, provides basic OntoUML
modeling capabilities to the tool, such as the language’s collection of stereotypes.
It also acts as a bridge between Visual Paradigm and a web server that exposes
ontouml-js services11. The communication between the plugin and the server is
done by converting OntoUML models in Visual Paradigm into JSON objects that
adhere to the structure defined by the ontouml-schema12. The ontouml-schema
format is defined using JSON Schema [42], a vocabulary that allows one to annotate
and automatically validate JSON documents.

Figure 3 contains a screenshot of the OntoUML plugin for Visual Paradigm. The
menu at the top includes buttons to access the functionalities of the plugin; the one to
generate the relator-centric clustering is highlighted (“Generate Diagrams”). On the
Model Explorer panel on the left, the classes composing our running example can be
seen, along with the diagrams generated by the clustering algorithm (namely “Car
Ownership Cluster”, “Car Rental Cluster”, “Employment Cluster”, and “Marriage
Cluster”). The selected diagram is shown in the center/right of the screen (“ Marriage
Cluster”). The diagrammatic disposition of the elements of this cluster in Figure 3
differs from that of Figure 2. That is because our relator-centric clustering algorithm
only defines the elements that should be included in a cluster, not how they are to be
laid out in a diagram. The diagram layout in Figure 3 was automatically arranged by
Visual Paradigm, while that of Figure 2 was manually arranged.

6 Empirical Evaluation

This section describes the empirical evaluation we have conducted to contrast the
perceived effectiveness of the clustering obtained with the relator-centric approach
with those clusterings obtained with ontologically-neutral (topological) approaches,
more specifically those of Akoka and Comyn-Wattiau [1] and Castano et al. [12].

This empirical evaluation took the form of a study with conceptual modelling ex-
perts in which they were asked to rank the alternative modularizations of a model ac-
cording to their preference. We first present the materials used in the study, including
how we derived the alternative modularizations. Next, the empirical study procedure
is described. Finally, we present the results and insights obtained from analysing the
rankings and their motivation, and discuss the study’s limitations. We also provide a
justification for the choice of conceptual model in the experiment as representative of
the models in the application scope of our approach.

10 Visual Paradigm is a multi-platform desktop CASE tool that supports, among others, UML modeling,
and whose functionalities can be extended via plugins written in Java. For more information, please refer
to https://www.visual-paradigm.com/.

11 See source code at https://purl.org/krdb-core/ontouml-server.
12 See https://purl.org/krdb-core/ontouml-schema, an application-neutral reference format

for serializing and exchanging OntoUML models and diagrams.
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6.1 Materials

We have prepared the clusterization of the model presented in Figure 1 according to
the relator-centric approach and the other two approaches, which, not unlike ours, can
be applied automatically. In the sequel, we present briefly the selected model break-
down strategies and present the resulting diagrams that were shown to the subjects of
the experiment.

6.1.1 The Approach of Akoka and Comyn-Wattiau

Akoka and Comyn-Wattiau’s [1] is a top-down clustering approach originally in-
tended for EER diagrams, but which can straightforwardly be translated to be used
in UML diagrams. It starts from a single cluster, and at each iteration, selects the
model element that is considered the “farthest” from its current cluster. This element
is moved to a separate cluster, and the model is then reorganized considering the
newly formed cluster. Each element that is more distant to its own cluster than to
another cluster is transferred to the cluster that is the closest to it. The improvement
in the quality of the clustering is assessed in each iteration. The number of clusters is
selected by observing when improvement from one iteration to the next drops.

This approach of Akoka and Comyn-Wattiau’s can work with different distance
functions. The ones proposed in the paper include: (i) visual distance; (ii) hierarchical
distance; and (iii) cohesive distance.

The so-called visual distance, despite its name, does not take into account the ac-
tual positioning of elements in a diagram; instead, the distance between two elements
is defined as the length of the shortest path between them, with each relationship or
generalization in the model counting as a segment of length 1 (e.g., in Figure 1, the
distance between RentalCar and CarAgency is 4, along the path RentalCar – Avail-
ableCar – Car – CarOwnership – CarAgency).

The hierarchical distance, in its turn, takes into account the cardinality of rela-
tionships. “The distance between entities linked by a 1:N relationship is equal to 1,
whereas the distance is equal to 2 for M:N relationships. This is justified by the fact
that any M:N relationship can always be translated into two different 1:N relation-
ships.” [1] Since we assume here models with reified relationships13, applying visual
distance or hierarchical distance results in the same clusterization.

Finally, the so-called cohesive distance assigns different lengths to different kinds
of segments. In particular, relationships are considered 10 to 100 times lengthier than
generalizations. This favours the grouping of taxonomic structures, but performs very
poorly in the presence of multiple inheritance (e.g., the path from Wife to Organi-
zation has length 80, while the path from Employment to Organization has length
1,000). Since multiple inheritance is not uncommon in conceptual models and is
present in our test model, we have not employed the cohesive distance as it would
result in poor clustering.

In summary, for the aforementioned reasons, we have opted for the so-called ‘vi-
sual’ distance in applying Akoka and Comyn-Wattiau’s method. The five resulting

13 The ontological rules behind OntoUML yields models in which all domain relations are reified as
relators [22].
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Fig. 4 A clusterization for the model of Figure 1 following Akoka and Comyn-Wattiau’s approach.

clusters are shown in Figure 4. We have selected to emphasize the relator classes, as
the notation employed in [1] suggests a double line for weak entities (and relators
are relational weak entities [25]). Note that all diagrams, including our relator-centric
approach, were prepared in plain UML (thus without the OntoUML stereotypes) to
allow the inclusion of UML users in general in the study, and to avoid introducing
bias in the interpretation of the diagrams by OntoUML users. They are shown here in
the same way as they were presented for the experiment subjects.

6.1.2 The Approach of Castano et al.

Castano et al. [12] propose a number of conceptual schema analysis techniques, in-
cluding a bottom-up clustering approach. Their objective is to obtain highly cohesive
sub-schemas. They introduce the notions of affinity and closeness between model
elements, and build up a definition of coupling between clusters in terms of these
notions. Affinity is calculated with the help of a thesaurus (not specified in the work)
and is based on the labels for entities. Synonyms, hypernyms/hyponyms and term
relatedness are considered. Closeness considers the type and number of links among
elements. A link strength is assigned to each type of link. A strength of 0.4 is assigned
to relationships, a strength of 0.6 to generalizations, and a strength of 1.0 to attribute
links (the latter are not considered in the present work).

As discussed in [12], the procedure for clustering consists in the merging of the
closest pair of clusters. The procedure stops when the desired number of clusters is
obtained. The authors suggest to use the number of “representative elements” as the
number of clusters. They provide a procedure for the identification of “representa-
tive elements” by calculating an element’s “relevance”, summing the number of links
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Fig. 5 A clusterization for the model of Figure 1 following Castano et al.’s approach.

weighted by strength. They suggest to select those ranked above average in terms of
“relevance” as “representative elements”. There are six of those in the test model:
Person, LivingPerson, Car, Customer, Organization, and Employee. The authors pa-
rameterize their model with weights for affinity and closeness in the definition of
coupling. The approach was tested by the authors in [12] with high precedence for
closeness, which was given a 90% weight in the calculation of coupling. Because of
the small effect of affinity and the lack of a standardized terminological resource to
calculate it, we have opted to apply their approach by considering closeness alone
in the calculation of coupling. The resulting clusterization can be seen in Figure 5.
Elements emphasized correspond to the “representative elements”.

For completeness, Figure 6 shows the relator-centric clusterization as presented
to the subjects of the experiment.

6.2 Procedure

We sent out 160 invitations to participate in the empirical study. These invitations
were sent to contacts in the personal networks of the researchers that were consid-
ered to have the required expertise in conceptual modeling to participate. We reck-
oned that subjects should have knowledge of UML (as the models were expressed in
this language) and that they be used to working with conceptual models, assuming
that sufficient exposure to conceptual models has made them aware of the need for
complexity management. The invitations sent did not reveal the purpose of the study;
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Fig. 6 The relator-centric clusterization for the model of Figure 1.
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they only mentioned that it was a study on complexity management of conceptual
models and that modularization was investigated as a model management technique.
It was by no means disclosed that one of the modularization alternatives was pro-
posed by the researchers. The invitation made clear that participating included giving
consent to participate, while emphasizing that the responses would be treated anony-
mously. In fact, there was no means for the researchers to identify who participated
and to associate responses to the identities of the subjects.

The invitations contained a link to an online survey prepared with Google Forms.
The survey first presented the subjects some general questions that could be used as
controls for their level of expertise. Next, there was a description of the task requiring
them to rank the three alternative modularizations according to their preference, tak-
ing into account the purpose of modularization as a model management technique.
Upon this explanation, the complete model was shown, followed by the three alterna-
tive sets of model modules presented in the previous sub-section. The Google Forms
survey referred to these sets of model modules with meaningless names, in order not
to reveal the modularization strategies used to obtain them.

Each invitation sent out contained a link to one of three different versions of the
survey, each of which with a different order of presentation of the three alternatives.
This was made to rule out bias in the order of presentation. Subjects could always go
back and forth to any of the alternative sets of modules and to the complete model,
such that they could compare the alternatives and judge their effectiveness in manag-
ing the complexity of the model.

The survey ended with a response sheet where subjects could rank the three al-
ternatives and optionally motivate their ranking. This qualitative data was collected
to find out the reasoning of our subjects when ranking the alternatives. Finally, the
response sheet presented the subjects with a five-point Likert scale for each alterna-
tive set of modules, in which subjects were asked to express their level of agreement
with a statement that the modules were highly cohesive. The definition of cohesion
presented to the subjects was the degree to which elements within a particular mod-
ule can be said to belong together with stronger relations than with those in different
modules. We included the explicit instruction not to change the ranking of the alter-
natives when indicating their level of agreement with the cohesiveness of the modules
for each alternative, as we were interested in finding out whether the perceived co-
hesiveness of the different sets of modules was associated with the ranking of the
alternatives, but did not want to impose this criterion upon our subjects. In other
words, we reckoned that perceived cohesiveness could be part of the rationale used
to rank the alternative sets of modules, but we did not want to rule out other kinds of
reasoning that would be revealed by the motivation for the ranking provided by the
subjects.

The complete survey can be obtained in supplementary material at http://
purl.org/krdb-core/relator-centric-clustering.
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Table 1 Subjects’ rankings of the three modularization alternatives, where 1 means the most preferred
alternative, and 3 the least preferred.

Approach \ Ranking
All experts - 42 subjects

1 (best) 2 3 (worst)

Relator-centric 29 6 7

Akoka and Comyn-Wattiau 8 28 6

Castano et al. 5 8 29

Approach \ Ranking
OntoUML subgroup - 28 subjects

1 (best) 2 3 (worst)

Relator-centric 19 4 5

Akoka and Comyn-Wattiau 6 19 3

Castano et al. 3 5 20

Approach \ Ranking
Non-OntoUML subgroup - 14 subjects

1 (best) 2 3 (worst)

Relator-centric 10 2 2

Akoka and Comyn-Wattiau 2 9 3

Castano et al. 2 3 9

6.3 Analysis of the Ranking Results

In total, we received 62 complete responses to our survey (i.e., a response rate of
approximately 38%). From the 62 participants, we excluded the responses of those
that indicated to belong to at least one of the following not mutually exclusive cate-
gories: (1) to be ‘novices’ in conceptual modelling (10 participants); (2) to have less
than four years experience with conceptual modelling (18 participants); (3) and to
have no knowledge of UML (5 participants). This left us with 42 participants whose
responses could be considered as reflecting expert opinions. Included in this group of
42 were 14 persons that declared their level of expertise in conceptual modelling as
‘intermediate’ rather than ‘expert’. As these 14 participants had at least four years of
experience in conceptual modelling and all but one indicated to have knowledge of
at least two conceptual modelling languages, we decided that we could safely treat
them as ‘experts’ for the purpose of our study.

The 42 participants that made through the selection are hereafter referred to as
the subjects of our study. Because the experts were recruited from our personal net-
works, the majority of them held a position in academia (30 subjects), while the
others indicated to have a position in industry or government (12 subjects). The most
frequent academic position was that of professor (19 subjects), while positions held
in industry or governmental organizations varied widely: business analyst / architect
(3), software engineer (3), system analyst / architect (2), consultant (1), mid-level or
senior manager (1), data scientist (1), other IT staff position (1).

Table 1 shows how the 42 subjects ranked the three modularization alternatives
(i.e., relator-centric, Akoka and Comyn-Wattiau, and Castano et al.), where we also
distinguish between subjects that have declared to know OntoUML (28) and those
that did not (14). With this distinction, we wished to assess whether OntoUML ex-
perts could ‘guess’ (project) the underlying rationale for relator-centric modulariza-
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tion, even if the models did not show OntoUML stereotypes. We reckoned that this
‘guessing’ (projecting), which could surface in the motivation for the ranking pro-
vided, is not a problem per se; on the contrary as it would support the soundness of the
logic of relator-centric clustering. However, if the results are consistent across the On-
toUML and non-OntoUML subgroups, then we have some confidence that OntoUML
(or UFO) knowledge does not play a role in appreciating the clarity of relator-centric
modularization. In other words, although relator-centric modularization leverages on-
tological semantics, actual knowledge of those semantics is not needed to appreciate
the effectiveness of this modularization strategy in managing the complexity of con-
ceptual models.

The table shows a clear preference for Relator-centric modularization, for all ex-
perts and also for both subgroups. Regarding the other two modularization alterna-
tives, the one by Akoka and Comyn-Wattiau seems to be preferred above the one by
Castano et al., and also this observation seems to be consistent across both subgroups.

To assess whether the observed differences in ranking the modularization alter-
natives are also statistically significant, we ran tests using the SPSS software pack-
age. The Friedman non-parametric test for differences in the rankings of the three
alternative modularizations indicated that these differences were significant consid-
ering all experts (Chi-square: 25.33; p < 0.001), only the experts with knowledge
of OntoUML (Chi-square: 17.64; p < 0.001), and only the experts with no knowl-
edge of OntoUML (Chi-square: 8.14; p < 0.05). Running the same test again for
only relator-centric modularization and the Akoka and Comyn-Wattiau modulariza-
tion (which comes closest to relator-centric modularization in the rankings), we ob-
serve that the difference in ranking is statistically significant considering all experts
(Chi-square: 6.10; p < 0.05), close to being significant for the OntoUML subgroup
(Chi-square: 3.57; p = 0.059), but not significant for the non-OntoUML group (Chi-
square: 2.57; p = 0.109), which might be due to the small sample size. These results
provide evidence that the relator-centric modularization presented in this paper is the
preferred modularization strategy to manage the complexity of conceptual models. It
also seems that knowledge of OntoUML does not have a considerable impact on this
preference.

To verify whether the preferences in ranking the modularization alternatives were
associated with the perceived cohesiveness of the modules (Table 2), we performed
correlational analyses by calculating the Kendall rank correlation coefficient (i.e.,
Kendall’s tau). For these analyses we assumed that the preference rank given to a
particular modularization strategy (i.e., 1, 2 or 3) is a value on an ordinal scale of
preference, which is only an approximation as we only asked subjects to rank al-
ternatives and not to express their preferences on a scale. Given this approximation,
the correlational analyses show that for relator-centric modularization and the Akoka
and Comyn-Wattiau modularization, the correlation with perceived cohesiveness is
statistically significant (relator-centric: Kendall’s tau 0.336; p < 0.05 / Akoka and
Comyn-Wattiau: Kendall’s tau 0.506; p < 0.001), while it is not for the Castano et
al. modularization (Kendall’s tau 0.261; p = 0.058). These results suggest that the
perception of cohesiveness of the modules was taken into account by the experts
when judging the different modularization strategies, at least for the relator-centric
and Akoka and Comyn-Wattiau modularization strategies, but that it cannot explain
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fully the rankings. The analysis of other elements in the rationale of the subjects for
ranking the alternative modularizations is presented in the next-subsection.

Table 2 Subjects’ perceptions of module cohesion, where 0 = completely disagree, 1 = somewhat disagree,
2 = neither agree or disagree, 3 = somewhat agree, and 4 = completely agree.

Approach \ Perceived cohesiveness
All experts – 42 subjects

0 1 2 3 4

Relator-centric 3 6 3 13 17

Akoka and Comyn-Wattiau 1 8 16 10 7

Castano et al. 8 14 14 4 2

Approach \ Perceived cohesiveness
OntoUML subgroup – 28 subjects

0 1 2 3 4

Relator-centric 2 5 2 6 13

Akoka and Comyn-Wattiau 0 5 10 7 6

Castano et al. 5 7 10 4 2

Approach \ Perceived cohesiveness
Non-OntoUML subgroup – 14 subjects

0 1 2 3 4

Relator-centric 1 1 1 7 4

Akoka and Comyn-Wattiau 1 3 6 3 1

Castano et al. 3 7 4 0 0

6.4 Analysis of the Motivations for the Rankings

Twenty-nine of the 42 subjects ranked relator-centric clustering first. When looking
at the motivation they provide, we find many elements that support the logic of mod-
ularizing based on relational contexts, meaning a focus on modules that highlight
reified relationships and the roles played by entities in such relationships. Illustrative
examples include (note that relator-centric clustering is referred to as ALT-A, ALT-K
and ALT-Y depending on the version of the survey received):

– “Coherence of the unifying concept - relators” (subject 4, who reported to have
no knowledge of OntoUML);

– “ALT-A is the best one. It is organized by the events14, what made me better
understand the different model topics” (subject 9);

– “Association classes (although not represented as they should, imho15), should
not be broken down by modularization. Inheritance hierarchies should also be

14 As discussed in [23,29], relators and events form a duality that is often manifest in terms of systematic
polysemy in language (e.g.,“marriage as a relator bundling mutual rights and obligations of the spouses”
verus “marriage as a process aggregating the actions of the spouses qua players of these roles”; “service
as a contractual agreement” versus “service as a service delivery event”).

15 Association classes were introduced in UML to address one of the functions of relators (namely,
association reification) but with a poorer semantics [31]. It is natural that UML users interpret relators as
association classes and, in doing so, resist to what they interpret as “change in notation”.
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kept together, whenever possible.” (subject 11, who reported to have no knowl-
edge of OntoUML);

– “This approach seems to be centered around the relators.” (subject 13);
– “First, I identified what are the main concepts to be represented in the domain:

rental agency, marriage, employment. Then I associate to each concept, what
entities are requested to explain them. These sets are, for me, the best modules”
(subject 19);

– “ALT-Y shows each reified relation in one place and more fully defines the relata.”
(subject 20);

– “ALT-Y modularization was the best since it presented all important core con-
cepts related to Car Rental in one module, and additional relationships in other
modules.” (subject 25);

– “For me ALT-Y provides the best way of maintaining the relations between con-
cepts. Concepts like marriage aren’t broken up. And for example employee is
clearly visible in the two modularizations and therefore the relations with other
concepts are still clear.” (subject 30);

– “Complete taxonomies, central concept (Car Rental) more contextualized” (sub-
ject 34);

– “Only ALT-Y shows the association between two objects that are involved in mod-
eling the event. Also this diagram shows the ‘role’ of an object.” (subject 36,
reported to have no knowledge of OntoUML);

– “In my point of view, modules should capture a context (in a vague sense) that is
auto-contained and has all the concepts, relations, and properties that are nec-
essary for talking about that context. Also, it is necessary to preserve in each
module the concepts that provide identity to the concepts that are relevant for
that context.” (subject 42)

We also found some other rationales, for instance related to perceived cohesive-
ness (e.g., “Based on ontology modules criteria: self-contained, loose coupling, and
high cohesion” (subject 12)) or noting the loss of information in the Akoka and
Comyn-Wattiau and Castano et al. modularizations (e.g., “There is loss of informa-
tion from the original model to ALT-X and ALT-Z.” (subject 37)).

If we look into the motivations of the eight subjects that preferred the Akoka and
Comyn-Wattiau solution above ours, we observe that some subjects noticed the im-
balance in module size of relator-centric clustering (which is circumstantial because
of the model used in the study), such as:

– “The worst alternative was ALT-A, because the modularization was unbalanced
in terms of the size of the modules.” (subject 3);

– “I think that the “main” module of ALT-Y is very big. I would prefer if it was
defined an extra module for the hierarchy of Person.” (subject 21);

– “ALT-J is the one focusing the most on the interactions between actors in the busi-
ness model. ALT-K could be even better, but the inclusion of whole specialization
hierarchies for the involved roles hurts the goal of modularization.” (subject 59)

A similar reasoning was also provided by some of the five subjects that pre-
ferred the Castano et al. modularization, e.g., “size of models” (subject 50), and “use
smaller components” (subject 44).
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6.5 Limitations

There are a few limitations to our study. First, we did not compare relator-centric clus-
tering to all possible other modularization strategies, whether published or conceiv-
able. The idea was to compare it with a number of alternatives that first, were based
on topological criteria rather than a logic of ontological semantics, and second, re-
ceived some attention (e.g., as to date, 188 and 54 citations in Google Scholar for the
Castano et al. and Akoka and Comyn-Wattiau papers, respectively). Moreover, both
approaches were published in important venues in conceptual modeling (ACM Trans-
actions of Database Systems and Data & Knowledge Engineering, respectively). Fi-
nally, we wanted to compare our approaches with clustering approaches that were
lossless transformations and that could be fully automated, thus, excluding alterna-
tives such as [17, 36]. Our focus on just two alternatives for comparison is also be-
cause we reckoned that fatigue could occur in our study if subjects were asked to rank
a larger number of alternatives (and motivate this ranking), which could have harmed
the reliability of the data.

Second, when operationalizing the modularization strategies of the alternative
approaches, some choices had to be made as explained in the Materials sub-section.
While each choice could have been different, we carefully deliberated our options to
stay truthful to the logic behind the original modularization strategies, so we do not
consider this factor as a threat to the validity of the results.

Third, although the response rate was good, the actual number of valid responses
could have been higher than 42, which would have increased statistical power. Never-
theless, even with 42 responses, the differences in the rankings of the three strategies
tested, including ours, were statistically significant.

Fourth, our focus was on collecting evidence of the perceived effectiveness of
relator-centric clustering compared to the other approaches tested. We could have fo-
cused more on explaining why our clustering strategy is preferred above the presented
alternatives to see whether the logic of relator-centric clustering is indeed the ratio-
nale followed by the experts. The qualitative responses regarding perceived cohesive-
ness and motivations for the ranking were quite insightful (see previous sub-sections),
however a more in-depth investigation could have employed a process tracing tech-
nique like a think-aloud protocol that required subjects to explicitly verbalize their
rationale for the ranking. In current times of physical contact restrictions due to the
COVID-19 pandemic, such a verbal protocol analysis study would have been difficult
to realize.

6.6 How Representative is the Conceptual Model Used?

The model we used as a running example throughout this article and employed in
the reported experiment (Figure 1) is representative of the class of models that this
approach addresses, i.e., those in business (organizational, social, and legal) domains.

As presented in [43] and formalized in [57], OntoUML is what is termed a pattern
grammar. This means that the actual primitives of the language are ontology design
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patterns and, hence, that the valid models of the language are created by iterating
through instantiations of these patterns.

In this paper, we focus on the subset of OntoUML modeling primitives presented
in section 3 and formally accounted for in section 4.1. We claim that this subset
comprises the primitives that amount to the vast majority of modeling elements used
in conceptual models in our domains of interest16.

In models restricted to our adopted primitives, the following patterns from [43]
are of relevance: (i) the Subkind Pattern, variants 1 and 2; (ii) the Phase Pattern; (iii)
the Role Pattern; (iv) the RoleMixin Pattern, variants 1 and 2; (v) the Relator Pat-
tern variant 1; (vi) the Relationally Dependent Pattern variant 1. For example, the
model of Figure 1 is a combination of: one instance of (i) variant-1, one instance
of (i) variant-2; three instances of (ii) (including an iterated application of the phase
pattern); five instances of (iii) (including an iterated application of the role pattern);
one instance of (iv), variant-2; four instances of (v), variant-1. The Relational Depen-
dence Pattern (iv) is always a combination of a Relator Pattern connected either to
an instance of the Role Pattern or of the RoleMixin Pattern. This is exactly what we
have following the iterated combination of (iii), (iv) and (v) above. In summary, the
model of Fig.1 contains instances of all the patterns (i)–(vi) and only those patterns.
The only example missing in that model is of a variant-1 of the RoleMixin Pattern
(iv). In that variant, we can have chains of RoleMixins specializing the RoleMixin
connected to a focal relator until we reach the level of sortal subtypes. Although, we
did not include this case in our running conceptual model—in order to keep it within
manageable dimensions for the paper and experiment—the reader should note that
this case is also covered by the NSIP definition in section 4.5.

The fact that OntoUML models are created by the iterated combination of these
patterns also enables us to make a prioristic considerations regarding the expected
dimensions of the clusters produced by our approach.

On one hand, the smallest possible cluster we could get is (in theory) a cluster
with just one relator and one single kind (e.g., a Marriage connected to two instances
of the single type Person). However, given that relational properties are almost ubiq-
uitously optional for kinds, and that OntoUML methodologically aims at eliminating
optional properties from conceptual models [25], the smallest clusters to be found in
practice are akin to those of Employment and Car Ownership depicted in Figure 2.

On the other hand, there are five ways in which clusters can grow17: (a) by having
a long chain of mediation relations between relators; (b) by having large generaliza-
tion sets with subkinds and phases (subkind and phase partitions); (c) by a having
long chain of generalization (supertyping) relations between the sortal type directly
mediated by a focal relator and their corresponding kind (i.e., the Sortal Identity Path
(SIP), see definition 4.4); (d) by having a long chain of specialization (subtyping)
relations between the non-sortal type mediated by a focal relator and their first sor-
tal subtypes, as well as from these to their corresponding kinds (i.e., the Non-Sortal

16 For example, in the large MGIC model previously mentioned, the class stereotypes considered in
section 4.1 account for circa 90% of the cases, and the meta-relations of subtyping and mediation account
for more than 85% of the represented relations.

17 This follows not only from the patterns that can be used to build a Relational Context but also, and
more directly, from its very formal definition in section 4.
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Identity Path (NSIP), see definition 4.5); (e) by having a long chain of specialization
relations involving relator types. Let us analyze these case by case.

Regarding case (a), as we discuss in footnote 6, in this case, we would formally
have nested clusters. For example, in a model in which we have an Insurance (relator)
connecting a Car Rental and an Insurance Agency, we would have a cluster Car
Rental Insurance including the Car Rental Insurance Relator, the Insurance Agency
and the Car Rental cluster as a sub-cluster. In other words, that relational context
would represent that a Car Rental Insurance is a relator connecting an Insurance
Agency and a Car Rental, and to know more about what a Car Rental is and what
else is involved in it, one would have to investigate that nested cluster. We argue that,
at least formally, this mechanism contains the growth of clusters in this case by taking
sub-clusters to cognitively count at each level as one model element.

Regarding case (b), according to our experience, in non-taxonomic models, sub-
kind and phase partitions are small-sized. For example, in the large model discussed
above from [44], the percentage of phases in the model is merely 2.9% of the classes,
and the number of phases divided by number of kinds in the model is circa 0.25, while
the number of subkinds divided by number of kinds in the model is less than 2.

Now, regarding cases (c) and (d). An analysis of ten OntoUML models in differ-
ent domains reported in [24] considers among the analyzed variables the maximum
height of the hierarchy (symbolized by h) in each of those models (i.e., maximum
path size from a top-level class to a leaf class). According to the authors, the average
h for that sample is 3. In particular, in the two largest models considered there that
are clearly in the business domain—one about Normative Acts containing 59 classes,
and one about IT corporate architectures containing 66 classes—the value of h is 3
in both cases. Notice that h = 3 is also what we have for the model of Figure 1 in the
present paper. Even in the largest model overall in that sample (231 classes), which
is a model about Biodiversity, i.e., clearly a taxonomic model in which generaliza-
tion/specialization paths tend to be longer, we have h = 5.

Finally, regarding case (e), according to our experience, large chains of special-
izing relator types are very uncommon in business domains. For example, when con-
sidering the ten models analyzed in [24], none of the models in business domains
included specializations between relator types. In fact, in that entire sample, only two
models included relator types specializing each other, namely, the aforementioned
taxonomic model in biodiversity, and a model representing a telecommunications
ITU-T standard in the domain of optical networks (123 classes), an atypical model
containing hierarchies of relator types representing different sorts of logical network
connections. Even in these two models, for the former, the longest relator type hier-
archy path is of length = 1; for the latter model, the longest path from leaf classes to
the corresponding top-class stereotyped as «relator» is of length = 5.

7 Final Considerations

In this paper, we propose a formal approach for conceptual model clustering by lever-
aging on the ontologically well-founded semantics of the modeling language On-
toUML. As such, this is a contribution to a broader research program that aims at
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developing ontology-based complexity management techniques for conceptual mod-
els. Other techniques in this program include model recoding with ontology design
patterns [17] and model abstraction/summarization [27].

In this particular contribution, we rely on the theory of relators underlying On-
toUML to present a full formal account of the notions of Relational Context (RC)
and Relator-Centric Clustering (RCC). An RCC is a model modular breakdown in
terms of a number of adequate RCs. Each RC, in turn, captures all the information
needed to understand the maximal scope of objects in the way they participate in cer-
tain relationships. The approach is formally characterized (claim to formal precision)
and it is based on a well-founded ontological theory of relators (claim to ontological
adequacy).

Additionally, we have reported on a fully implemented plug-in tool for a model-
based OntoUML editor that automates this approach (claim to practical realizability).
Following the formal characterization of this framework, the algorithm implement-
ing it is deterministic (i.e., it generate the same RCC for a given model in every
execution) and, in the worst possible case, the algorithm would execute a total of
(ne−nr)∗nr operations (where ne is the number of elements in the model and nr is
the number of classes stereotyped as relators). So, even in the worst possible case, the
algorithm is tractable (claim to computational efficiency and scalability). In practice,
nr is on average circa 6% of ne (as observed by analyzing 54 OntoUML models in
different domains in the OntoUML repository [44,46]), and RCs are often largely dis-
joint with minimal intersections only in the level of kinds. In other words, in practice,
the algorithm will often execute approximately ne steps as the different RCs tessellate
the original model. We have tested, nonetheless, the performance and scalability of
our implementation against the large MGIC model. MGIC is atypical in the sense that
it has nr = 771, i.e., the number classes stereotyped as relators there is significantly
higher than the observed average, amounting to circa 20% of the model. However,
even in the tests carried out with this model (on a MacBook Pro 2017, Intel Core
i5 2.3GHz with 8GB of 2,133 MHz RAM), the corresponding modular breakdown
was generated, on average, under 12 seconds. These are encouraging results. Com-
putational efficiency and scalability are important features for algorithms used for
complexity management of conceptual models, given that the value of having proper
techniques for addressing this issue increases with the size and complexity of the
models.

Finally, we have conducted an empirical study to evaluate one particular claim
to cognitive adequacy of our strategy. Despite the limitations of that study as dis-
cussed in section 6.5, we believe to have collected convincing empirical evidence of
the effectiveness of relator-centric clustering as a model management technique for
reference conceptual models in the business domain, as perceived by experts in con-
ceptual modeling and relative to other approaches that do not leverage the ontological
semantics of models. We also have indications that: (i) this perceived effectiveness is
related to perceived cohesiveness of the resulting model clusters; (ii) the underly-
ing rationale for the modularization was confirmed by the motivations for ranking
relator-centric clustering first by a reasonable number of experts; (iii) the preference
for relator-centric clustering does not depend on prior knowledge of ontological se-
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mantics. In other words, we believe to have shown that there is a certain ‘naturalness’
in the strategy used to modularize a conceptual model based on its relational contexts.

In the past years, there is a growing interest in the representation of reified events
(occurrences) as first-class citizens in structural conceptual models with many ben-
efits [3, 4, 29, 40]. For example, in [4], some of us have proposed an approach for
event reification in conceptual modeling in which events have their own properties,
and can form taxonomic, partonomic, and temporal ordering structures. Moreover,
objects participate in these events playing a number of ‘processual roles’ (e.g., the
roles of victim and perpetrator in a crime). In a future work, and as an extension of
the approach presented here, we intend to characterize contexts and clusters centered
around this notion of events. As discussed in [23,29], there is always an indissoluble
link between certain events and relators, namely, on one hand, these events constitute
the “life” of a relator (i.e., they are composed of occurrences that are manifestations
of the constituents of a relator, e.g., commitments, claims, powers, etc.). On the other
hand, relators define a focus for events providing an ontological criteria for their indi-
viduation (i.e., for individuating which occurrences are part of a particular marriage,
enrollment, employment, etc.). Given this strong bond between these two ontological
categories, we have every reason to believe that the formal clustering strategy pro-
posed here could be straightforwardly adapted to handle relational contexts centered
around events.

The notion of Relational Context proposed here bears a resemblance also to the
notion of Frames in C.J. Fillmore’s Frame Semantics [18]. In fact, we first considered
using the term Ontological Frame (or Relational Frame) for this notion. Frames,
in that tradition, are patterns that describe situations, events or relationships and in
which elements appear playing interconnected and mutually dependent (semantic)
roles. However, unlike our approach, frames have the primary goal of providing a
background structure for the interpretation of lexical terms. RCs, in contrast, have
as primary goal ontological transparency, focusing on connecting the entities playing
complementary roles in the scope of bundles of relational properties (relators) to their
identity-providing kinds.
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ceedings of the 25th International Conference on World Wide Web, p. 263–273. International World
Wide Web Conferences Steering Committee (2016). DOI 10.1145/2872427.2883029

43. Ruy, F.B., Guizzardi, G., Falbo, R.A., Reginato, C.C., Santos, V.A.: From reference ontologies to
ontology patterns and back. Data Know. Eng. 109, 41–69 (2017)

44. Sales, T.P., Guizzardi, G.: Ontological anti-patterns: Empirically uncovered error-prone structures in
ontology-driven conceptual models. Data Know. Eng. 99, 72–104 (2015)

45. Snoeck, M.: Enterprise Information Systems Engineering: The MERODE Approach. Springer (2014)
46. Teixeira, M.: An ontology-based process for domain-specific visual language design. Federal Univer-

sity of Espirito Santo, Brazil / Ghent University, Belgium (2016)
47. Tzitzikas, Y., Hainaut, J.L.: How to tame a very large ER diagram (using link analysis and force-

directed drawing algorithms). In: L. Delcambre, C. Kop, H.C. Mayr, J. Mylopoulos, O. Pastor (eds.)
Conceptual Modeling. ER 2005, pp. 144–159. Springer, Berlin (2005)

48. Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On ranking RDF schema elements (and its application in
visualization). J Univers. Comput Sci 13(12), 1854–1880 (2007)

49. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and conceptual modeling
languages in ontology-driven conceptual modeling. In: Proc.35th ER (2016)

50. Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Comparing traditional con-
ceptual modeling with ontology-driven conceptual modeling : an empirical study. Information Sys-
tems 81, 92–103 (2019). DOI 10.1016/j.is.2018.11.009

51. Villegas Niño, A.: A filtering engine for large conceptual schemas. Universitat Politècnica de
Catalunya (2013)

52. W3C: OWL 2 Web Ontology Language. structural specification and functional-style syntax. W3C
recommendation 11 December 2012 (2012). URL https://www.w3.org/TR/owl2-syntax/



36 Giancarlo Guizzardi et al.

53. Weber, B.: The impact of modularization on the understandability of declarative process models: A
research model. Information Systems and Neuroscience p. 133 (2020)

54. Wieringa, R., de Jonge, W., Spruit, P.: Using dynamic classes and role classes to model object migra-
tion. Theory and Practice of Object Systems 1(1), 61–83 (1995)

55. Winter, M., Pryss, R., Probst, T., Baß, J., Reichert, M.: Measuring the cognitive complexity in the
comprehension of modular process models. IEEE Trans. Cogn. Develop. Syst. (2020). DOI 10.1109/
TCDS.2020.3032730

56. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Zakharyaschev, M.:
Ontology-based data access: A survey. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pp. 5511–5519 (2018). DOI 10.24963/ijcai.2018/777

57. Zambon, E., Guizzardi, G.: Formal definition of a general ontology pattern language using a graph
grammar. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS),
pp. 1–10. IEEE (2017)


