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Abstract— In order to leverage the benefits of the notion of 
situation at design time, proper support is required at the 
modeling level. In the past, this need has led to the development 
of a situation type specification language called SML. Although 
SML facilitates the definition of situation types by providing a 
graphical notation, designers could profit from additional 
support in order to assess the quality of the situation type models 
they produce. Since situations consist of combinations of context 
elements and may also be combined into complex situations, 
composition may lead to inconsistent, redundant and/or 
unintended situation type definitions. In order to address this 
challenge, in this paper we present a formal validation method 
for situation modeling based on the automatic transformation of 
SML models into a lightweight formal method.  
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I.  INTRODUCTION 
The aim of situation-aware applications is to promote 

effective interaction with users by autonomously adapting 
application behavior according to the user’s current (and 
projected) situation. When dealing with the design of situation-
aware systems we are required to settle a number of questions, 
including: what are the relevant types of entities that exist in 
the user’s environment (or context)? What are the particular 
combinations of entities that are relevant to us?  

As discussed by Kokar et al. in [1], “to make use of 
situation awareness […] one must be able to recognize 
situations, […] associate various properties with particular 
situations, and communicate descriptions of situations to 
others”. In order to facilitate those tasks in the development of 
situation-aware applications, we have been working on 
techniques and frameworks that explicitly support the situation 
concept at application design time and run-time. Situations are 
composite entities whose constituents are other context entities, 
their properties and the relations in which they are involved. 
Situations support us in conceptualizing certain parts of reality 
that can be comprehended as a whole. Examples of situations 
include “John is working”, “John has fever”, “John is working 
and has fever”, “Bank account number 846-0 is overdrawn 
while a suspicious transaction is ongoing”, etc. The notion of 
situation enables designers, maintainers and users to abstract 
from the lower-level entities and properties that stand in a 
particular situation and to focus on the higher-level patterns 
that emerge from lower-level entities in time. 

We have aimed at simplifying the specification of situation 
types (at application design time) (see [2], [3]) and the 
detection of situations (at application run-time) ([4]). At 
design-time, behavior and policies can be defined in terms of 
the types of situations in which they apply, instead of various 
low-level conditions. This not only fosters separation of 
concerns through abstraction but also enables the definition of 
complex situation types by reusing previously defined situation 
types. At run-time, situation detection machinery can be 
employed, enabling timely reaction to current situations [4].  

In order to leverage the benefits of the notion of situation at 
design time, proper support is required at the modeling level. 
This challenge has been addressed in the past with a model-
driven approach to the specification of situation types (and 
ultimately model-driven realization of situation detection) [2]. 
That approach consists in part of a Situation Modeling 
Language (SML), which is a graphical language for situation 
modeling, allowing the expression of primitive situation types 
and complex situation types (with temporal constraints when 
required).  This means that the designer is able to specify the 
types of situations in which he/she is interested at a high-level 
of abstraction, and generate situation detection code 
automatically. 

Despite the benefits of the availability of a suitable 
modeling language and a code generation infrastructure, the 
definition of situation types is not a trivial task, and designers 
could profit from additional support in order to assess the 
quality of the situation type models they produce. Since 
situations consist of particular combinations of context 
elements, their combinations into complex situations may lead 
to what we call unwanted scenarios, which encompasses 
inconsistent, redundant and/or unintended situation type 
definitions. 

An inconsistent situation type definition specifies an 
impossible combination of conditions on context elements, and 
would probably be the result of a design error. A trivial 
example of inconsistent situation type in a healthcare setting 
would be a complex situation that is composed of hypothermia 
and fever simultaneously. Although such inconsistencies may 
be straightforward to detect, the composition of situations and 
temporal operators on situations may lead to more subtle 
relations between situations that may go undetected by the 
modeler. An inconsistent situation type definition would have 
no practical purpose for situation-awareness. 



 Redundant situation type definitions may arise from 
different forms of specification that actually entail the very 
same context conditions. Redundant situations would violate 
parsimony in specifications and have the perverse effect that 
users would attempt to attribute different semantics to the 
(apparently) different (yet equivalent) situation types. Consider 
for example a fever situation type, and a high body temperature 
situation type, if both established as sole condition a bodily 
temperature of 38 degrees Celsius or higher. 

Unintended situation type definitions arise out of the 
difference between the modeler’s intention and the actual 
definitions he/she expresses in the language. This may be a 
result of lack of knowledge on the semantics of the language or 
simply the inherent difficulty in predicting all implications of a 
(complex) definition..  

The consequences of those scenarios can vary from excess 
of situation types to the wrongful detection of situations at 
runtime (e.g., false positives and false negatives). Most of 
those problems are related to semantic, domain specific aspects 
of the situation models, which can only be avoided if a proper 
model assessment mechanism is employed at design-time. 

Model assessment is crucial for the production of high-
quality conceptual models in general, and is especially relevant 
if the models will be employed in a model-driven approach, 
with the generation of deployable code from models.  In our 
case, we generate situation detection code directly from 
situation type models, hence the key role of model assessment. 
Model assessment allows model rectification at an early phase 
to make the created models less prone to error and to reflect 
accurately the modeler’s intention. 

This paper addresses situation type model assessment by 
proposing the use of a formal method in an approach that is 
analogous to the one employed in [5] for conceptual models in 
the Unified Modeling Language (UML). We use a simple but 
expressive logic-based language called Alloy [6], which is 
shipped with a sophisticated analyzer. In order to retain the 
ease-of-use of SML, we automatically translate SML 
definitions into Alloy, such that the user of the approach is not 
required to learn this formal method. The Alloy analyzer 
allows us to check for consistency and redundancy of situation 
type definitions, as well as to simulate those definitions in 
order to support the modeler in the identification of unintended 
ones.   

This paper is further structured as follows: Section II 
introduces the SML language, as well as our application 
scenario in the healthcare domain that will be used in our 
examples; Section III presents our approach to the assessment 
problem, the framework used and the transformation from 
SML to Alloy developed; Section IV discusses the simulation 
performed, the problems encountered and illustrates with 
examples in our chosen domain; Section V concludes our work 
by summarizing the results and proposing topics for further 
investigation. 

II. SML AND RUNNING EXAMPLE 
The Situation Modeling Language (SML) is a graphical 

language for modeling situation abstractions in a context-

aware (or situation-aware) application scenario. The language 
was created with the purpose of facilitating the definition of 
situations types at design-time. SML allows “the expression of 
primitive situations and complex situations involving the 
composition of situations (with temporal constraints when 
required)” [2]. A modeling infrastructure for the language was 
created, and is composed by a graphical editor, which is a 
model-driven Eclipse plug-in developed with the Obeo 
Designer tool, and an automatic transformation to a rule-based 
situation detection platform that leverages on JBoss Drools 
engine (and its integrated Complex Event Processing 
platform).  

A situation type definition in SML is a composition of two 
kinds of models: a context model and a situation type model. 
The context model is a structural model that defines the classes 
of entities and relationships that exist in the modeled domain, 
which in turn are referred by the situation type model entities. 
In order to define context models, we employ an ontologically 
well-founded UML class diagram profile called OntoUML [7]. 
OntoUML specializes UML adding important distinctions not 
originally present in the language; this adds precision to the 
conceptual context models built with OntoUML. Fig. 1 shows 
an example of a context model in the healthcare domain that 
incorporates those distinctions, which are explained next, and 
will be used in our assessment examples. Thus, a class 
stereotyped as kind implies static classification, meaning that 
this entity (the actual person or hospital in our example) will 
always be necessarily of that type during its entire life. This is 
different from a phase, which entities play contingently during 
their lives. In our example, a person will be either infected 
(here used as a synonym to ill) or healthy, never both, at a 
specific point in time, but can appear in those phases many 
times during its life. Also, an infection is always contagious, in 
order to simplify our simulations.  A relator (such as treatment 
in the example) works as a reified association, relating and 
binding the elements that play roles in a relation. Finally a 
category is an abstract class that generalizes different kinds 
(e.g., physical entity).  

 
Fig. 1. Healthcare context model 

The situation type model defines situation as patterns of the 
context model classes’ instances. SML defines a concrete 
syntax for creating situation type diagrams, such as the one in 



Fig. 2. It illustrates a situation type relevant in the healthcare 
domain, namely a fever situation type, which happens when a 
person’s temperature is above 37 degrees Celsius. The 
elements depicted in Fig. 2 are references to the homonymous 
ones created in the context model of Fig. 1. Each situation 
element that references a context element or another situation 
is called a Participant. For instance, a Participant may be an 
Entity Participant (reference to any element that is not a relator, 
such as kind, role, phase, etc.), a Relator Participant or a 
Situation Participant (reference to another situation). In our 
example, the Person participant refers to an instance of the kind 
Person in the context model. More complex situations will be 
illustrated in section IV. 

 
Fig. 2. Example of a SML diagram 

III. MODEL ASSESSMENT APPROACH 

A. Approach Overview 
The approach comes down to a transformation of our 

context and situation type models into a logic-based language 
called Alloy, and further simulation and validation of the 
obtained models with the Alloy Analyzer tool, as Fig. 3 
depicts. The transformation from the context model to Alloy 
(t1), which we call the Structural Module, is inherited from the 
OntoUML modeling environment, described in the next sub-
section. This paper presents the inclusion of a Situation Module 
by transforming the SML situation type model to Alloy (t2). 
The situation module depends on the structural module as the 
situation type model depends on the context model. Having 
both modules in the Alloy definition allow us to simulate with 
the analyzer worlds populated with context objects and 
situation instances to assess our models. We can also check the 
validity of assertions that quantify over the states and histories 
of context objects and situation instances. The Alloy 
specification is basically a set of facts which represent axioms 
that are respected in the simulation and validation. 

 
Fig. 3. Approach Overview 

B. The Modeling Environment and Validation Framework 
The OntoUML language (used for our context models) has 

a rich model-based environment for model construction, 
verbalization, code generation, formal verification and 
validation. Our assessment approach makes use, in particular, 
of the validation framework [5] (which uses the Alloy 
language, present in this environment), incorporating a 
Situation Module to it. 

Alloy [6] is a logic language based on set theory, which is 
supported by an Analyzer that, given a context, exhaustively 
generates possible instances for a given specification and also 
allows automatic checking of assertions’ consistency. In the 
OntoUML validation framework, the generated instances of a 
given conceptual model are organized in a branching-time 
temporal structure, thus, serving as a visual simulator for the 
possible dynamics of element creation, classification, 
association and destruction. It allows a modeler to visualize a 
representation of snapshots in this world structure, which are 
states admissible by the models current axiomatization. This 
enables modelers to detect unintended, redundant or 
inconsistent model instances and take the proper measures to 
rectify them. 

C. The Transformation 
The transformation from SML to Alloy was conceived in a 

model-driven fashion. Each concept of the SML situation type 
metamodel was mapped to a respective pattern in Alloy and 
the union of these patterns represents what we call the situation 
axiom. We create the situation axioms in Alloy accordingly to 
the formalization of SML presented in [2] (in first-order logic). 

Each situation axiom postulates the conditions for the 
existence of a situation of a particular type, i.e., those 
conditions that must be true for as long as the situation of the 
type exists. In Alloy we address this with a fact with two 
expressions: one that captures the sufficient conditions for the 
existence of the situation (which necessitates the creation of a 
situation of the type using the =>/implies operator) and one 
that captures the necessary conditions. Since these facts are 
specific to a particular situation type, we present 
transformation rules that determine these facts from situation 
type definitions in SML. 

The most important rules in the transformation are depicted 
in the following figures. The figures show an element of a 
situation model and its respective representation in Alloy 
connected by an arrow. For every situation type example, the 
first rule in a fact represents the sufficient conditions (marked 
with “1”) and the second rule the necessary conditions (marked 
with “2”). The explanation of the transformation patterns will 
focus on former, since the latter is analogous. 

Fig. 4 shows the transformation of Entity Participants 
(depicted only as Entity), Attributes and Formal Relations. In 
this example one can see that a situation always generates a 
fact with equivalent name. Likewise, every rule begins by 
universally quantifying the worlds which we will talk about (in 
this case only one World w). Participants (entities, relators and 
other situation references) will always be quantified also (like 
the entity in the example). After the quantification of all 
elements we apply the restrictions that compose the situation 



rule, which can be world relationships, formal relations such as 
the one depicted (an attribute of e related to a value by a 
relation relation) or other associations. At the end of the rule 
we have a pattern that indicates that those restrictions imply the 
existence of a situation s of type SitTypeName and that this 
situation is bound to the instance e (would also bind every 
other Participant, if it was the case). The entity’s name in 
lowercase is used to represent the association between the 
situation and the entity that must be created in alloy. The 
equality at the end of the rule indicates that the entity 
connected to the situation in the world at issue must necessarily 
be e. 

 
Fig. 4. Transformation rule for Entities, Attributes and Formal Relations 

Fig. 5 depicts the transformations rule for Relational 
Contexts. In this case, both the Entity and the Relator are 
quantified. The relation between them is transformed into the 
restriction that triggers the situation (the object that connects to 
e through the relation relation must be r and vice versa). At the 
end, the binding is made both for the Entity and the Relator (in 
truth, only one side of the restriction and one binding would be 
necessary, but we opted to represent the complete rule). 

 
Fig. 5. Transformation rule for Relational Contexts 

Fig. 6 shows the transformation of situation composition. 
Past (white rounded rectangle) and current (shaded rounded 
rectangle) situations are represented in Alloy by means of 
reified worlds. Each past world in the situation definition adds 
a new world variable to the rule. World relations are defined by 
the next operator, so a past world is actually a world of which 
the set of future (next) worlds contains the current world. Past 
situations like SituationA are constrained to exist in the past 
world (w1 in (1) and w2 in (2)) and not exist in the current 

world, while current situations exist in the same world the 
situation type being defined exists. Finally, the equals relation 
becomes an equivalence in Alloy. 

 
Fig. 6. Transformation rule for Situation composition 

In addition to the situation type specific facts that we have 
discussed so far, we must also admit an axiom that states that a 
situation is unique for a particular conjunction of entities in a 
world. This is a general axiom that is represented as a predicate 
in Alloy and must be applied to every situation type defined: 

 
Finally, we must also admit for every situation type that if a 

conjunction of entities remains in a particular condition in two 
consecutive worlds, then the situations in both worlds are the 
same. Again, this is a general axiom that is represented as a 
epredicate in Alloy and must be applied to every situation type 
defined: 

 

IV. EXAMPLE ASSESSMENT 
We start the illustration of model assessment with a simple 

situation. Take, for example, the fever situation of Fig. 2, 
which exists when a person’s temperature is above 37 degrees 
Celsius. After transforming the situation model to Alloy (along 
with the context model), we obtain a rule analogous to the 
generic ones shown in the last section. At this point we can ask 
Alloy to generate worlds so that we can check for under and 
overconstraining, redundancy and inconsistency. A very simple 
Alloy simulation with our fever situation is shown in Fig. 7, 
which shows a Fever situation which involves an Object of 
type Person (also Infected Person and Physical Entity) that has 
a temperature of 40 Degrees Celsius. 



 
Fig. 7. Simulation of a Fever situation in Alloy 

Alloy gives us a possibility of checking our formal relations 
since SML does not constrain their use. For instance, the 
incorrect use of temporal relations between composing 
situations in a complex situation can generate unsatisfiable 
situations. The situation in Fig. 8 illustrates a past situation that 
occurs in a time interval from zero to two hours after a current 
situation, which is impossible. 

 
Fig. 8. Intermittent Fever situation with wrong temporal relation 

Thus, in Alloy, we will have a rule that says one situation is 
both in a world that is next and previous to the current world. 
This rule, as we would expect, is unsatisfiable, as we can check 
by applying the following rule to the run command in Alloy, 
which asks the analyzer to generate at least one instance of the 
Intermittent Fever situation: 

 
After checking exhaustively all the possibilities within the 

defined scope, the tool present us the message depicted in Fig. 
9. It says that the predicate may be inconsistent for we have 
limited the number of instances it should generate, but we can 
easily see that no bigger scope is necessary since the number 
we used would be sufficient if there were to exist the situation. 

 
Fig. 9. No instance found for the command run. Unsatisfiable result. 

Another unsatisfiable situation can occur when we create a 
composite situation with contradicting situation conditions. For 
instance, suppose a situation where a person’s temperature is 
above 40 degrees Celsius and also below this same 
temperature. This is clearly a wrong definition but one that can 
be difficult to identify if we have a model with many situation 
types, or if it is masked by the situation’s names. An example 
of this is shown in Fig. 10, where the user was misled by the 
situation name to think that Under 40 refers to the person’s age 
instead, while a High Fever situation is defined as a person that 
has more than 40 degrees Celsius. After generating the Alloy 
rule, we run a command analogous to the one for Intermittent 
Fever, but asking Alloy to generate at least one instance of an 
Under 40 High Fever situation instead. As we would expect, 
no instance was found, indicated that this situation is 
inconsistent. 

 
Fig. 10. Situation composed by two incompatible situations 

The Alloy Analyzer can also be used to check equivalence 
of situations. In a large model, many types can be created to 
indicate a same situation, which is undesired since it 
overpopulates the model and do not add semantics to it. For 
instance, we have a Normal Fever situation (Fig. 11), which is 
defined as a person who has a temperature between 37 and 40 
degrees Celsius, and a Common Fever situation (Fig. 12), 
which is the composition of the Fever (temperature > 37ºC) 
and Under 40 C (temperature < 40ºC) situations definitions. 

 
Fig. 11. Normal Fever situation 

 
Fig. 12. Common Fever situation 



Both of them should happen at the same temperature 
interval and, consequently, at the same time, as we see by 
running the simulation. Every world generated by the analyzer 
is similar to the one in Fig. 13, where there is a Common Fever 
situation (Situation3), connected (composed by) to a Fever and 
an Under 40 C situation, always alongside a Normal Fever 
situation (Situation1), the two referring to the same person. 

 
Fig. 13. Alloy simulation for Common Fever and Normal Fever 

As a definitive test for this case, we can create assertions 
and ask Alloy to verify whether it holds. An assertion is an 
assumed true state which the analyzer tries to contradict. A 
successful contradiction means a false assertion, and is 
supported by an example to the user, while an unsuccessful one 
mean the assertion is true for the scope we defined. 
Consequently, we created an assertion that affirms that 
whenever a Common Fever (the number of its instances is > 0) 
exists, a Normal Fever also exists and vice versa (depicted in 
Fig. 14). One can check the result obtained, which indicates 
that the assertion is valid, in Fig. 15. 

 
Fig. 14. Assertion for checking equivalence of situations 

 
Fig. 15. No counterexample found. Valid assertion. 

Finally, we can use the analyzer to detected unintended 
situation type definitions resulting from underconstrained 
models. Suppose, first, we have the following situations (Fig. 
16): a person is healthy (Healthy situation); a person is infected 
(Infected situation); a healthy person becomes infected 
(Becomes Infected situation); and a Patient is having a 
treatment in a Hospital (Is Being Treated situation). We want 

now to combine the situations presented to create a more 
complex situation in which two Patients, one which is also an 
Infected Person, are being treated in a Hospital at the very 
same time (overlapping Is Being Treated situations), and the 
Patient which was healthy becomes infected (Becomes Infected 
situation) after the treatment. This characterizes our Possible 
Contagion situation, whose model can be seen in Fig. 17. 

 
Fig. 16. Becomes Infected and Is Being Treated situations. 

 
Fig. 17. Possible Contagion situation. 

As we ask alloy to generate instances of the modeled 
situation, we see in Fig. 18 that we have underconstrained our 
definition since it is feasible that the same person alone 
(Object1) generates a Possible Contagion situation (Situation2) 
by turning from an Infected to a Healthy Person (indicated in 
the first two worlds of the image) and becoming Infected 
(Situation3) in the subsequent world. 

This situation happens for two reasons: a Patient can have 
multiple treatments in the same hospital at the same time 
(defined by our context model, which is reasonable) and thus 
can be the Patient of both Is Being Treated situations. Besides, 
we didn’t explicitly said the Patient from the first treatment 
must be different from the Patient from the second treatment 
(and consequently from the infected Person). A correct 
situation model for this case would be the one in Fig. 19, in 
which we added the negated (not) equals relation between the 
person originally infected and the one that becomes so. 

 



 

Fig. 18. Epidemic Risk situation generation by one instance alone 

 

Fig. 19. Correct Possible Contagion situation 

V. CONCLUSIONS AND FUTURE WORK. 
This paper proposes an assessment approach for situation 

models using a lightweight formal method. In order to 
accomplish that in a manner that is transparent to the user, we 
have proposed an automated transformation from SML to 
Alloy and analysis of the result using the Alloy Analyzer.  As 
we have demonstrated, our approach allows us to identify from 
simple inconsistencies (solved by adding a single element or 
constraint), to more sophisticated semantic and equivalence 
problems, which are hard to notice without the help of an 
automated tool. 

Our approach uses the validation framework developed in 
[5], but also extends it including a Situation Module that 
enables one to validate situation type models developed with 
SML. Although situation modeling is a recurrent subject in the 
context-aware applications community, situation model 
validation/assessment at design time is applied only for very 

specific scenarios and technologies such as in [8], unlike the 
more general domain-independent approach we take in this 
paper. Meanwhile, conceptual model validation is more 
recurrent and OntoUML, along with its validation framework, 
was used in [9] to detect semantic anti-patterns in this language 
(although not including support for situations). 

For future work we intend to continue exploring the SML 
language and increasing its expressivity and its infrastructure. 
In particular, we intend to expand the language’s constructs to 
be able to express the subtleties of the acquisition of context 
information (including quality of context). This will require 
extending the approach we present in this paper. We also 
intend to improve the visualization of situation instantiation for 
assessing situation models. Although we have used so far the 
visualization tool provided with the Alloy Analyzer, we believe 
that a richer tool with explicit support for the situation concept 
may be more appropriate, allowing us to explore richer 
graphical patterns. Diagrams generated by the Analyzer would 
then be used to communicate with domain experts. Finally, we 
will continue to work on our approach aiming to propose a 
systematic method for validation of situation type models. 
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