
Assessing Situation Models with a
Lightweight Formal Method

Vinicius M. Sobral, João Paulo A. Almeida, Patrícia Dockhorn Costa
Computer Science Department, Federal University of Espírito Santo (UFES)

Vitória-ES, Brazil
vmsobral@inf.ufes.br, jpalmeida@inf.ufes.br, pdcosta@inf.ufes.br

Abstract— In order to leverage the benefits of the notion of
situation at design time, proper support is required at the
modeling level. In the past, this need has led to the development
of a situation type specification language called SML. Although
SML facilitates the definition of situation types by providing a
graphical notation, designers could profit from additional
support in order to assess the quality of the situation type models
they produce. Since situations consist of combinations of context
elements and may also be combined into complex situations,
composition may lead to inconsistent, redundant and/or
unintended situation type definitions. In order to address this
challenge, in this paper we present a formal validation method
for situation modeling based on the automatic transformation of
SML models into a lightweight formal method.

Keywords—situation modeling; situation specification;
situation validation; situation assessment; model validation;

I. INTRODUCTION
The aim of situation-aware applications is to promote

effective interaction with users by autonomously adapting
application behavior according to the user’s current (and
projected) situation. When dealing with the design of situation-
aware systems we are required to settle a number of questions,
including: what are the relevant types of entities that exist in
the user’s environment (or context)? What are the particular
combinations of entities that are relevant to us?

As discussed by Kokar et al. in [1], “to make use of
situation awareness […] one must be able to recognize
situations, […] associate various properties with particular
situations, and communicate descriptions of situations to
others”. In order to facilitate those tasks in the development of
situation-aware applications, we have been working on
techniques and frameworks that explicitly support the situation
concept at application design time and run-time. Situations are
composite entities whose constituents are other context entities,
their properties and the relations in which they are involved.
Situations support us in conceptualizing certain parts of reality
that can be comprehended as a whole. Examples of situations
include “John is working”, “John has fever”, “John is working
and has fever”, “Bank account number 846-0 is overdrawn
while a suspicious transaction is ongoing”, etc. The notion of
situation enables designers, maintainers and users to abstract
from the lower-level entities and properties that stand in a
particular situation and to focus on the higher-level patterns
that emerge from lower-level entities in time.

We have aimed at simplifying the specification of situation
types (at application design time) (see [2], [3]) and the
detection of situations (at application run-time) ([4]). At
design-time, behavior and policies can be defined in terms of
the types of situations in which they apply, instead of various
low-level conditions. This not only fosters separation of
concerns through abstraction but also enables the definition of
complex situation types by reusing previously defined situation
types. At run-time, situation detection machinery can be
employed, enabling timely reaction to current situations [4].

In order to leverage the benefits of the notion of situation at
design time, proper support is required at the modeling level.
This challenge has been addressed in the past with a model-
driven approach to the specification of situation types (and
ultimately model-driven realization of situation detection) [2].
That approach consists in part of a Situation Modeling
Language (SML), which is a graphical language for situation
modeling, allowing the expression of primitive situation types
and complex situation types (with temporal constraints when
required). This means that the designer is able to specify the
types of situations in which he/she is interested at a high-level
of abstraction, and generate situation detection code
automatically.

Despite the benefits of the availability of a suitable
modeling language and a code generation infrastructure, the
definition of situation types is not a trivial task, and designers
could profit from additional support in order to assess the
quality of the situation type models they produce. Since
situations consist of particular combinations of context
elements, their combinations into complex situations may lead
to what we call unwanted scenarios, which encompasses
inconsistent, redundant and/or unintended situation type
definitions.

An inconsistent situation type definition specifies an
impossible combination of conditions on context elements, and
would probably be the result of a design error. A trivial
example of inconsistent situation type in a healthcare setting
would be a complex situation that is composed of hypothermia
and fever simultaneously. Although such inconsistencies may
be straightforward to detect, the composition of situations and
temporal operators on situations may lead to more subtle
relations between situations that may go undetected by the
modeler. An inconsistent situation type definition would have
no practical purpose for situation-awareness.

 Redundant situation type definitions may arise from
different forms of specification that actually entail the very
same context conditions. Redundant situations would violate
parsimony in specifications and have the perverse effect that
users would attempt to attribute different semantics to the
(apparently) different (yet equivalent) situation types. Consider
for example a fever situation type, and a high body temperature
situation type, if both established as sole condition a bodily
temperature of 38 degrees Celsius or higher.

Unintended situation type definitions arise out of the
difference between the modeler’s intention and the actual
definitions he/she expresses in the language. This may be a
result of lack of knowledge on the semantics of the language or
simply the inherent difficulty in predicting all implications of a
(complex) definition..

The consequences of those scenarios can vary from excess
of situation types to the wrongful detection of situations at
runtime (e.g., false positives and false negatives). Most of
those problems are related to semantic, domain specific aspects
of the situation models, which can only be avoided if a proper
model assessment mechanism is employed at design-time.

Model assessment is crucial for the production of high-
quality conceptual models in general, and is especially relevant
if the models will be employed in a model-driven approach,
with the generation of deployable code from models. In our
case, we generate situation detection code directly from
situation type models, hence the key role of model assessment.
Model assessment allows model rectification at an early phase
to make the created models less prone to error and to reflect
accurately the modeler’s intention.

This paper addresses situation type model assessment by
proposing the use of a formal method in an approach that is
analogous to the one employed in [5] for conceptual models in
the Unified Modeling Language (UML). We use a simple but
expressive logic-based language called Alloy [6], which is
shipped with a sophisticated analyzer. In order to retain the
ease-of-use of SML, we automatically translate SML
definitions into Alloy, such that the user of the approach is not
required to learn this formal method. The Alloy analyzer
allows us to check for consistency and redundancy of situation
type definitions, as well as to simulate those definitions in
order to support the modeler in the identification of unintended
ones.

This paper is further structured as follows: Section II
introduces the SML language, as well as our application
scenario in the healthcare domain that will be used in our
examples; Section III presents our approach to the assessment
problem, the framework used and the transformation from
SML to Alloy developed; Section IV discusses the simulation
performed, the problems encountered and illustrates with
examples in our chosen domain; Section V concludes our work
by summarizing the results and proposing topics for further
investigation.

II. SML AND RUNNING EXAMPLE
The Situation Modeling Language (SML) is a graphical

language for modeling situation abstractions in a context-

aware (or situation-aware) application scenario. The language
was created with the purpose of facilitating the definition of
situations types at design-time. SML allows “the expression of
primitive situations and complex situations involving the
composition of situations (with temporal constraints when
required)” [2]. A modeling infrastructure for the language was
created, and is composed by a graphical editor, which is a
model-driven Eclipse plug-in developed with the Obeo
Designer tool, and an automatic transformation to a rule-based
situation detection platform that leverages on JBoss Drools
engine (and its integrated Complex Event Processing
platform).

A situation type definition in SML is a composition of two
kinds of models: a context model and a situation type model.
The context model is a structural model that defines the classes
of entities and relationships that exist in the modeled domain,
which in turn are referred by the situation type model entities.
In order to define context models, we employ an ontologically
well-founded UML class diagram profile called OntoUML [7].
OntoUML specializes UML adding important distinctions not
originally present in the language; this adds precision to the
conceptual context models built with OntoUML. Fig. 1 shows
an example of a context model in the healthcare domain that
incorporates those distinctions, which are explained next, and
will be used in our assessment examples. Thus, a class
stereotyped as kind implies static classification, meaning that
this entity (the actual person or hospital in our example) will
always be necessarily of that type during its entire life. This is
different from a phase, which entities play contingently during
their lives. In our example, a person will be either infected
(here used as a synonym to ill) or healthy, never both, at a
specific point in time, but can appear in those phases many
times during its life. Also, an infection is always contagious, in
order to simplify our simulations. A relator (such as treatment
in the example) works as a reified association, relating and
binding the elements that play roles in a relation. Finally a
category is an abstract class that generalizes different kinds
(e.g., physical entity).

Fig. 1. Healthcare context model

The situation type model defines situation as patterns of the
context model classes’ instances. SML defines a concrete
syntax for creating situation type diagrams, such as the one in

Fig. 2. It illustrates a situation type relevant in the healthcare
domain, namely a fever situation type, which happens when a
person’s temperature is above 37 degrees Celsius. The
elements depicted in Fig. 2 are references to the homonymous
ones created in the context model of Fig. 1. Each situation
element that references a context element or another situation
is called a Participant. For instance, a Participant may be an
Entity Participant (reference to any element that is not a relator,
such as kind, role, phase, etc.), a Relator Participant or a
Situation Participant (reference to another situation). In our
example, the Person participant refers to an instance of the kind
Person in the context model. More complex situations will be
illustrated in section IV.

Fig. 2. Example of a SML diagram

III. MODEL ASSESSMENT APPROACH

A. Approach Overview
The approach comes down to a transformation of our

context and situation type models into a logic-based language
called Alloy, and further simulation and validation of the
obtained models with the Alloy Analyzer tool, as Fig. 3
depicts. The transformation from the context model to Alloy
(t1), which we call the Structural Module, is inherited from the
OntoUML modeling environment, described in the next sub-
section. This paper presents the inclusion of a Situation Module
by transforming the SML situation type model to Alloy (t2).
The situation module depends on the structural module as the
situation type model depends on the context model. Having
both modules in the Alloy definition allow us to simulate with
the analyzer worlds populated with context objects and
situation instances to assess our models. We can also check the
validity of assertions that quantify over the states and histories
of context objects and situation instances. The Alloy
specification is basically a set of facts which represent axioms
that are respected in the simulation and validation.

Fig. 3. Approach Overview

B. The Modeling Environment and Validation Framework
The OntoUML language (used for our context models) has

a rich model-based environment for model construction,
verbalization, code generation, formal verification and
validation. Our assessment approach makes use, in particular,
of the validation framework [5] (which uses the Alloy
language, present in this environment), incorporating a
Situation Module to it.

Alloy [6] is a logic language based on set theory, which is
supported by an Analyzer that, given a context, exhaustively
generates possible instances for a given specification and also
allows automatic checking of assertions’ consistency. In the
OntoUML validation framework, the generated instances of a
given conceptual model are organized in a branching-time
temporal structure, thus, serving as a visual simulator for the
possible dynamics of element creation, classification,
association and destruction. It allows a modeler to visualize a
representation of snapshots in this world structure, which are
states admissible by the models current axiomatization. This
enables modelers to detect unintended, redundant or
inconsistent model instances and take the proper measures to
rectify them.

C. The Transformation
The transformation from SML to Alloy was conceived in a

model-driven fashion. Each concept of the SML situation type
metamodel was mapped to a respective pattern in Alloy and
the union of these patterns represents what we call the situation
axiom. We create the situation axioms in Alloy accordingly to
the formalization of SML presented in [2] (in first-order logic).

Each situation axiom postulates the conditions for the
existence of a situation of a particular type, i.e., those
conditions that must be true for as long as the situation of the
type exists. In Alloy we address this with a fact with two
expressions: one that captures the sufficient conditions for the
existence of the situation (which necessitates the creation of a
situation of the type using the =>/implies operator) and one
that captures the necessary conditions. Since these facts are
specific to a particular situation type, we present
transformation rules that determine these facts from situation
type definitions in SML.

The most important rules in the transformation are depicted
in the following figures. The figures show an element of a
situation model and its respective representation in Alloy
connected by an arrow. For every situation type example, the
first rule in a fact represents the sufficient conditions (marked
with “1”) and the second rule the necessary conditions (marked
with “2”). The explanation of the transformation patterns will
focus on former, since the latter is analogous.

Fig. 4 shows the transformation of Entity Participants
(depicted only as Entity), Attributes and Formal Relations. In
this example one can see that a situation always generates a
fact with equivalent name. Likewise, every rule begins by
universally quantifying the worlds which we will talk about (in
this case only one World w). Participants (entities, relators and
other situation references) will always be quantified also (like
the entity in the example). After the quantification of all
elements we apply the restrictions that compose the situation

rule, which can be world relationships, formal relations such as
the one depicted (an attribute of e related to a value by a
relation relation) or other associations. At the end of the rule
we have a pattern that indicates that those restrictions imply the
existence of a situation s of type SitTypeName and that this
situation is bound to the instance e (would also bind every
other Participant, if it was the case). The entity’s name in
lowercase is used to represent the association between the
situation and the entity that must be created in alloy. The
equality at the end of the rule indicates that the entity
connected to the situation in the world at issue must necessarily
be e.

Fig. 4. Transformation rule for Entities, Attributes and Formal Relations

Fig. 5 depicts the transformations rule for Relational
Contexts. In this case, both the Entity and the Relator are
quantified. The relation between them is transformed into the
restriction that triggers the situation (the object that connects to
e through the relation relation must be r and vice versa). At the
end, the binding is made both for the Entity and the Relator (in
truth, only one side of the restriction and one binding would be
necessary, but we opted to represent the complete rule).

Fig. 5. Transformation rule for Relational Contexts

Fig. 6 shows the transformation of situation composition.
Past (white rounded rectangle) and current (shaded rounded
rectangle) situations are represented in Alloy by means of
reified worlds. Each past world in the situation definition adds
a new world variable to the rule. World relations are defined by
the next operator, so a past world is actually a world of which
the set of future (next) worlds contains the current world. Past
situations like SituationA are constrained to exist in the past
world (w1 in (1) and w2 in (2)) and not exist in the current

world, while current situations exist in the same world the
situation type being defined exists. Finally, the equals relation
becomes an equivalence in Alloy.

Fig. 6. Transformation rule for Situation composition

In addition to the situation type specific facts that we have
discussed so far, we must also admit an axiom that states that a
situation is unique for a particular conjunction of entities in a
world. This is a general axiom that is represented as a predicate
in Alloy and must be applied to every situation type defined:

Finally, we must also admit for every situation type that if a

conjunction of entities remains in a particular condition in two
consecutive worlds, then the situations in both worlds are the
same. Again, this is a general axiom that is represented as a
epredicate in Alloy and must be applied to every situation type
defined:

IV. EXAMPLE ASSESSMENT
We start the illustration of model assessment with a simple

situation. Take, for example, the fever situation of Fig. 2,
which exists when a person’s temperature is above 37 degrees
Celsius. After transforming the situation model to Alloy (along
with the context model), we obtain a rule analogous to the
generic ones shown in the last section. At this point we can ask
Alloy to generate worlds so that we can check for under and
overconstraining, redundancy and inconsistency. A very simple
Alloy simulation with our fever situation is shown in Fig. 7,
which shows a Fever situation which involves an Object of
type Person (also Infected Person and Physical Entity) that has
a temperature of 40 Degrees Celsius.

Fig. 7. Simulation of a Fever situation in Alloy

Alloy gives us a possibility of checking our formal relations
since SML does not constrain their use. For instance, the
incorrect use of temporal relations between composing
situations in a complex situation can generate unsatisfiable
situations. The situation in Fig. 8 illustrates a past situation that
occurs in a time interval from zero to two hours after a current
situation, which is impossible.

Fig. 8. Intermittent Fever situation with wrong temporal relation

Thus, in Alloy, we will have a rule that says one situation is
both in a world that is next and previous to the current world.
This rule, as we would expect, is unsatisfiable, as we can check
by applying the following rule to the run command in Alloy,
which asks the analyzer to generate at least one instance of the
Intermittent Fever situation:

After checking exhaustively all the possibilities within the

defined scope, the tool present us the message depicted in Fig.
9. It says that the predicate may be inconsistent for we have
limited the number of instances it should generate, but we can
easily see that no bigger scope is necessary since the number
we used would be sufficient if there were to exist the situation.

Fig. 9. No instance found for the command run. Unsatisfiable result.

Another unsatisfiable situation can occur when we create a
composite situation with contradicting situation conditions. For
instance, suppose a situation where a person’s temperature is
above 40 degrees Celsius and also below this same
temperature. This is clearly a wrong definition but one that can
be difficult to identify if we have a model with many situation
types, or if it is masked by the situation’s names. An example
of this is shown in Fig. 10, where the user was misled by the
situation name to think that Under 40 refers to the person’s age
instead, while a High Fever situation is defined as a person that
has more than 40 degrees Celsius. After generating the Alloy
rule, we run a command analogous to the one for Intermittent
Fever, but asking Alloy to generate at least one instance of an
Under 40 High Fever situation instead. As we would expect,
no instance was found, indicated that this situation is
inconsistent.

Fig. 10. Situation composed by two incompatible situations

The Alloy Analyzer can also be used to check equivalence
of situations. In a large model, many types can be created to
indicate a same situation, which is undesired since it
overpopulates the model and do not add semantics to it. For
instance, we have a Normal Fever situation (Fig. 11), which is
defined as a person who has a temperature between 37 and 40
degrees Celsius, and a Common Fever situation (Fig. 12),
which is the composition of the Fever (temperature > 37ºC)
and Under 40 C (temperature < 40ºC) situations definitions.

Fig. 11. Normal Fever situation

Fig. 12. Common Fever situation

Both of them should happen at the same temperature
interval and, consequently, at the same time, as we see by
running the simulation. Every world generated by the analyzer
is similar to the one in Fig. 13, where there is a Common Fever
situation (Situation3), connected (composed by) to a Fever and
an Under 40 C situation, always alongside a Normal Fever
situation (Situation1), the two referring to the same person.

Fig. 13. Alloy simulation for Common Fever and Normal Fever

As a definitive test for this case, we can create assertions
and ask Alloy to verify whether it holds. An assertion is an
assumed true state which the analyzer tries to contradict. A
successful contradiction means a false assertion, and is
supported by an example to the user, while an unsuccessful one
mean the assertion is true for the scope we defined.
Consequently, we created an assertion that affirms that
whenever a Common Fever (the number of its instances is > 0)
exists, a Normal Fever also exists and vice versa (depicted in
Fig. 14). One can check the result obtained, which indicates
that the assertion is valid, in Fig. 15.

Fig. 14. Assertion for checking equivalence of situations

Fig. 15. No counterexample found. Valid assertion.

Finally, we can use the analyzer to detected unintended
situation type definitions resulting from underconstrained
models. Suppose, first, we have the following situations (Fig.
16): a person is healthy (Healthy situation); a person is infected
(Infected situation); a healthy person becomes infected
(Becomes Infected situation); and a Patient is having a
treatment in a Hospital (Is Being Treated situation). We want

now to combine the situations presented to create a more
complex situation in which two Patients, one which is also an
Infected Person, are being treated in a Hospital at the very
same time (overlapping Is Being Treated situations), and the
Patient which was healthy becomes infected (Becomes Infected
situation) after the treatment. This characterizes our Possible
Contagion situation, whose model can be seen in Fig. 17.

Fig. 16. Becomes Infected and Is Being Treated situations.

Fig. 17. Possible Contagion situation.

As we ask alloy to generate instances of the modeled
situation, we see in Fig. 18 that we have underconstrained our
definition since it is feasible that the same person alone
(Object1) generates a Possible Contagion situation (Situation2)
by turning from an Infected to a Healthy Person (indicated in
the first two worlds of the image) and becoming Infected
(Situation3) in the subsequent world.

This situation happens for two reasons: a Patient can have
multiple treatments in the same hospital at the same time
(defined by our context model, which is reasonable) and thus
can be the Patient of both Is Being Treated situations. Besides,
we didn’t explicitly said the Patient from the first treatment
must be different from the Patient from the second treatment
(and consequently from the infected Person). A correct
situation model for this case would be the one in Fig. 19, in
which we added the negated (not) equals relation between the
person originally infected and the one that becomes so.

Fig. 18. Epidemic Risk situation generation by one instance alone

Fig. 19. Correct Possible Contagion situation

V. CONCLUSIONS AND FUTURE WORK.
This paper proposes an assessment approach for situation

models using a lightweight formal method. In order to
accomplish that in a manner that is transparent to the user, we
have proposed an automated transformation from SML to
Alloy and analysis of the result using the Alloy Analyzer. As
we have demonstrated, our approach allows us to identify from
simple inconsistencies (solved by adding a single element or
constraint), to more sophisticated semantic and equivalence
problems, which are hard to notice without the help of an
automated tool.

Our approach uses the validation framework developed in
[5], but also extends it including a Situation Module that
enables one to validate situation type models developed with
SML. Although situation modeling is a recurrent subject in the
context-aware applications community, situation model
validation/assessment at design time is applied only for very

specific scenarios and technologies such as in [8], unlike the
more general domain-independent approach we take in this
paper. Meanwhile, conceptual model validation is more
recurrent and OntoUML, along with its validation framework,
was used in [9] to detect semantic anti-patterns in this language
(although not including support for situations).

For future work we intend to continue exploring the SML
language and increasing its expressivity and its infrastructure.
In particular, we intend to expand the language’s constructs to
be able to express the subtleties of the acquisition of context
information (including quality of context). This will require
extending the approach we present in this paper. We also
intend to improve the visualization of situation instantiation for
assessing situation models. Although we have used so far the
visualization tool provided with the Alloy Analyzer, we believe
that a richer tool with explicit support for the situation concept
may be more appropriate, allowing us to explore richer
graphical patterns. Diagrams generated by the Analyzer would
then be used to communicate with domain experts. Finally, we
will continue to work on our approach aiming to propose a
systematic method for validation of situation type models.

ACKNOWLEDGEMENTS
This research is funded by the Brazilian Research Funding

Agencies FAPES (grant number 59971509/12), CNPq
(310634/2011-3, 485368/2013-7) and CAPES.

REFERENCES
[1] M. M. Kokar, C. J. Matheus, and K. Baclawski, “Ontology-based

situation awareness,” Inf. Fusion, vol. 10, no. 1, pp. 83–98, Jan. 2009.
[2] P. D. Costa, I. T. Mielke, I. Pereira and J. P. A. Almeida, “A Model-

Driven Approach to Situations: Situation Modeling and Rule-Based
Situation Detection,” in 2012 IEEE 16th International Enterprise
Distributed Object Computing Conference, 2012, Beijing, China, Sept.
10-14, 2012, no. 87346, pp. 154–163.

[3] P. Costa, “Architectural Support for Context-Aware Applications: From
Context Models to Services Platforms,” Universiteit Twente, Enschede,
The Netherlands, 2007.

[4] I. S. A. Pereira, P. D. Costa, and J. P. A. Almeida, “A rule-based
platform for situation management,” in 2013 IEEE International Multi-
Disciplinary Conference on Cognitive Methods in Situation Awareness
and Decision Support (CogSIMA), 2013, pp. 83–90.

[5] A. B. Benevides, G. Guizzardi, B. F. B. Braga, and J. P. A. Almeida,
“Validating Modal Aspects of OntoUML Conceptual Models Using
Automatically Generated Visual World Structures.,” J. UCS, vol. 16, no.
20, pp. 2904–2933, 2010.

[6] D. Jackson, Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006, pp. I–XVI, 1–350.

[7] G. Guizzardi, “Ontological foundations for structural conceptual
models,” CTIT, Centre for Telematics and Information Technology,
Enschede, 2005.

[8] S. Lu, A. Tazin, and M. M. Kokar, “Network composition for situation
assessment: A trusted meeting case study,” in Information Fusion
(FUSION), 2012 15th International Conference on, 2012, pp. 346–353.

[9] G. Guizzardi and T. P. Sales, “Detection, Simulation and Elimination of
Semantic Anti-patterns in Ontology-Driven Conceptual Models,” in
Conceptual Modeling - 33rd International Conference, 2014, Atlanta,
GA, USA, October 27-29, 2014. Proceedings, 2014, vol. 8824, pp. 363–
376.

