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Abstract

We navigate the world through concepts that relate to each other and form a complex network
of relationships. The study of a domain includes studying the concepts that belong to it and
formalizing a conceptualization to be shared with others that may bene�t from it. The artifact
that results from this e�ort is called an “ontology”, a formal, explicit speci�cation of a shared
conceptualization.

With ontology-driven conceptual modeling, modelers are able to design formal models to
represent conceptualizations that aid the comprehension of a domain and enable a common
understanding of it by di�erent stakeholders. With this intention, the Uni�ed Foundational
Ontology (UFO) was developed, along with OntoUML, an ontologically well-founded version
of UML 2.0 class diagrams.

UFO and OntoUML have gone through several updates over the years and OntoUML 2.0
emerged as the latest version of the language. Thereby, frameworks and other tools designed
for OntoUML became outdated. New projects developed to work with OntoUML 2.0 models,
such as the OntoUML Server, are eager to be able to utilize such tools, but require up-to-date
functionalities.

With this in mind, this work presents an updated model transformation of OntoUML 2.0 to
Alloy, to be provided as a service o�ered by the OntoUML Server parent project. This service
will allow model veri�cation and model validation for OntoUML 2.0 models with the intention
of aiding modelers in the creation of higher-quality models.

Keywords: Ontology-Driven Conceptual Modeling. Transformation. UFO. OntoUML. Alloy.



Resumo

Navegamos pelo mundo por meio de conceitos que se relacionam entre si e formam uma rede
complexa de relacionamentos. O estudo de um domínio inclui o estudo dos conceitos que
pertencem a ele e a formalização de uma conceituação, a ser compartilhada com outros que
podem se bene�ciar dela. O artefato que resulta desse esforço é chamado de “ontologia”, uma
especi�cação explícita e formal de uma conceituação compartilhada.

Com a modelagem conceitual baseada em ontologias, modeladores são capazes de projetar
modelos formais para representar conceituações que auxiliam a compreensão de um domínio e
permitem um entendimento mútuo dele por diferentes partes interessadas. Com essa intenção,
a Uni�ed Foundational Ontology (UFO) foi desenvolvida, juntamente com OntoUML, uma
versão ontologicamente bem-fundamentada de diagramas de classe da UML 2.0.

UFO e OntoUML passaram por diversas atualizações ao longo dos anos e OntoUML 2.0 surgiu
como a versão mais recente da linguagem. Com isso, frameworks e outras ferramentas de-
senvolvidas para OntoUML se tornaram desatualizadas. Novos projetos desenvolvidos para
trabalhar com modelos OntoUML 2.0, como o OntoUML Server, estão ansiosos para utilizar
essas ferramentas, mas requerem funcionalidades atualizadas.

Com isso em mente, este trabalho apresenta uma transformação atualizada de modelos On-
toUML 2.0 para Alloy, a ser disponibilizada como um serviço oferecido pelo projeto pai OntoUML
Server. Esse serviço permitirá a veri�cação de modelos e a validação de modelos OntoUML 2.0,
com o objetivo de assistir modeladores na criação de modelos de maior qualidade.

Palavras-chave: Modelagem Conceitual Baseada em Ontologias. Transformação. UFO. On-
toUML. Alloy.
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1 Introduction

In general terms, conceptual modeling has been characterized as “the activity of for-
mally describing some aspects of the physical and social world around us for purposes of
understanding and communication” (MYLOPOULOS, 1992). Under this view, conceptual mod-
els are fundamental artifacts to the software development process and are useful to establish
a common knowledge of the domain between di�erent stakeholders. Furthermore, a good
comprehension of the domain, accompanied by a systematic formalization, grants great support
for problem solving in various �elds, such as software engineering and project management.

There has been a growing interest in the use of foundational ontologies to design
and evaluate conceptual models, in a branch named ontology-driven conceptual modeling
(GUIZZARDI, 2005). This approach improves traditional techniques by taking into consideration
ontological properties inherited from a foundational ontology, such as rigidity, identity and
dependence. In this context, the scienti�c community has contributed for more than a decade
now to the development of the Uni�ed Foundational Ontology (UFO), and the associated
OntoUML language (GUIZZARDI, 2005). OntoUML is a UFO-based pro�le for UML 2.0 class
diagrams (GUIZZARDI, 2005) that makes it possible to enhance models by adding stereotypes
and meta-attributes to model elements such as classes and associations, capturing ontological
properties from UFO. OntoUML is regularly updated and currently a 2.0 version was released
(GUIZZARDI et al., 2018).

The construction of high-quality models is challenging, however. The modeler must
be capable of expressing the desired conceptualization with precision, to avoid ambiguity
and inconsistencies. More speci�cally, the model must allow the description of all admissible
scenarios and inhibit the inadmissible scenarios, according to the original conceptualization
(GUIZZARDI, 2005). For this purpose, model veri�cation and model validation are powerful
techniques that can assist the modeler in acquiring con�dence concerning the quality of
produced models. Model veri�cation can be achieved by providing model checking tools and
model validation can be done through model simulation. The results of the application of these
techniques can be interpreted by the modeler in search for unwanted behavior in their designed
models.

1.1 Motivation

This research project was thought out as an important service to be included in the
OntoUML Server1, a web API designed to expose functionalities for OntoUML models (e.g. au-
1 Available at: <https://github.com/OntoUML/ontouml-server>

https://github.com/OntoUML/ontouml-server
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tomatic syntax veri�cation and model transformation). The development team of the OntoUML
Server consists of a number of former NEMO members, currently at the Free University of
Bozen-Bolzano, in Italy.

The need of a model validation service to the OntoUML Server, through the development
of a model transformation, gave birth to this project. The target language chosen for this task
is Alloy (JACKSON, 2012), a logic-based language that allows the creation of simulations for
model instances. With its powerful tool, Alloy Analyzer, it is possible to analyze instances of the
model in order to verify behavior and assess aspects of the model, such as underconstraining
and overconstraining.

There are many works regarding OntoUML to Alloy transformations, such as (BRAGA
et al., 2010), (BENEVIDES et al., 2011) and (SALES, 2014). All of these, however, are currently out-
dated when considering the new OntoUML 2.0 elements and ontological properties. This work
builds on these previous e�orts, updating what is required. The design of the transformation is
particularly in�uenced by Sales’s M.Sc. Thesis (SALES, 2014).

Moreover, two other works were done in this same context of model transformation
and validation using Alloy, prior to this project. Both works were Scienti�c Initiation projects
concerning ML2, a multi-level conceptual modeling language (FONSECA, 2017). In the �rst, a
transformation of ML2 to Alloy was developed. And subsequently, an extension to the language
using OCL (WARMER; KLEPPE, 2003) was proposed and included to the transformation.
Therefore, this graduation project is also a means of consolidating all academic work done
during the undergraduate course.

1.2 Goals

The main goal of this research project is to develop a model transformation service to
be included in the OntoUML Server parent project. This transformation should o�er modelers
a validation functionality that aids them in the creation of higher quality OntoUML 2.0 models,
without requiring any additional learning of technologies.

The plan to achieve the main goal consists of the following speci�c goals:

• Revisit pre-existing transformation approaches for OntoUML to gather ideas and poten-
tially reuse useful patterns;

• De�ne a set of updated transformation rules;

• Develop the transformation service in a programming language;

• Demonstrate the applicability of the transformation service through an example with
simulation scenarios.
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1.3 Research Methodology

The approach used to achieve the goal of this project consists in the following activities
(grouped in three parts):

• Part 1: Literature Review.

– Activity 1.1: Study of the ontologically well-founded language OntoUML 2.0 (FON-
SECA et al., 2019) (GUIZZARDI et al., 2021).

– Activity 1.2: Study of the formal logic-based language Alloy (JACKSON, 2012).

– Activity 1.3: Study and review of pre-existing transformation approaches for On-
toUML, such as (BRAGA et al., 2010), (BENEVIDES et al., 2011) and (SALES, 2014).

• Part 2: Model Transformation Project.

– Activity 2.1: Speci�cation of the OntoUML 2.0 to Alloy transformation rules.

– Activity 2.2: Implementation of the transformation using the Typescript program-
ming language.

• Part 3: Testing and Results Evaluation.

– Activity 3.1: Evaluation of the correctness and the feasibility of the approach and
tools used.

– Activity 3.2: Inclusion of the transformation as a new service o�ered by the On-
toUML Server.

1.4 Monograph Structure

The remainder of this monograph is organized as follows:

• Chapter 2 presents the ontological theory used in the course of this work and the target
language of the transformation;

• Chapter 3 presents the transformation rules and design decisions used in its implementa-
tion;

• Chapter 4 presents the transformation results and model simulation scenarios;

• Chapter 5 discusses some aspects of the implementation;

• Chapter 6 presents the conclusions and �nal considerations of this project.
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2 Theoretical Foundations

2.1 The Unified Foundational Ontology (UFO)

The Uni�ed Foundational Ontology (UFO) (GUIZZARDI, 2005) is constituted by three
main parts: UFO-A, an ontology of objects (endurants) (GUIZZARDI, 2005); UFO-B, an ontology
of events (perdurants) (GUIZZARDI et al., 2013); and UFO-C, an ontology of social entities built
on the top of UFO-A and UFO-B (GUIZZARDI; FALBO; GUIZZARDI, 2008).

UFO de�nes a fundamental distinction of elements between universals and individuals.
Universals are abstract patterns of features that describe a group of di�erent individuals.
Individuals are instances that exist in the real world, extend in time and possess a unique
identity. To illustrate, Organization is an example of a universal. Instances of Organization,
such as The Coca-Cola Company and Pepsico, are individuals. Note that both share the same
characteristics of being an Organization, but they also have their own particularities, such as
di�erent names, date of foundation, owner, employees, and so on.

Endurants represent object-like entities, and are divided in two groups: substantials
and moments. Substantials are existentially independent endurants, such as Person, Car and
Organization. Moments are existentially dependent endurants, such as a person’s weight and a
car’s color. In other words, moment individuals can only exist in other endurants.

Substantials are further divided into two subgroups: sortals and non-sortals. Sortal
substantials are those whose instances carry a uniform principle of identity, such as Person,
Car and Organization. Non-sortals are those whose instances can obey di�erent principles of
identity, such as Furniture and Works of Art.

Furthermore, universals can be classi�ed according to a rigidity ontological property.
Rigid universals are those whose instances cannot cease to be without ceasing to exist. An
Organization, for instance, cannot stop being an Organization without ceasing to exist entirely.
Anti-rigid universals are those whose instances can move in and out of their extension. To
illustrate, a Person can become an Employee, and later on cease being an Employee, without
ceasing to exist. Other examples are: Child, Adult, Student, Husband and Wife. Finally, semi-
rigid universals apply rigidly to some instances and anti-rigidly to others.

In summary, UFO-A’s taxonomy is composed of all these endurant distinctions, as
shown in Figure 1. The leaves of this hierarchy will be discussed in detail in the next section,
as they are the basis for the modeling constructs of OntoUML.



Chapter 2. Theoretical Foundations 16

Figure 1 – UFO-A’s hierarchy of endurants.

2.2 OntoUML 2.0

OntoUML is a UFO-based pro�le for UML 2.0 class diagrams (GUIZZARDI, 2005). As
a modeling language, it provides to the modeler a number of stereotypes that can be used to
decorate classes and relations, as well as a set of meta-properties to enhance the semantics of
model elements.

OntoUML has gone through several extensions and updates since its conception, giving
support to new stereotypes and deprecating others. Moreover, it was also extended to support
the classi�cation of moment universals by rigidity and sortality (to be discussed later in this
section) and to include the taxonomy of events from UFO-B. The consolidation of this evolution
is called OntoUML 2.0 (GUIZZARDI et al., 2018). This research project will focus on the changes
in stereotypes and other ontological properties concerning the structural aspects corresponding
to UFO-A, leaving the inclusion of events from UFO-B to future work.

This section will present the various modeling options of OntoUML 2.0, the syntax and
how the language captures the ontological properties of UFO. To illustrate some of the patterns,
a running example is provided in Figure 2.

To begin with, every OntoUML 2.0 class de�nes a group of ontological natures for
its instances, a notion borrowed from UFO. They are grouped into substantial and moment
natures. The substantial ontological natures are: functional complex, collective and quantity.
The moment ontological natures are: intrinsic mode, extrinsic mode, quality and relator. The
ontological natures of a class are determined via the meta-attribute restrictedTo, composing a
set of possible natures. Note that for some non-sortals, for example, this meta-attribute may
contain both substantial and moment natures. This is the case of the category Social Entity
of Figure 2, whose restrictedTo meta-attribute contains the functional complex and relator
ontological natures.

A set of ultimate sortals was de�ned with ontological natures in mind (GUIZZARDI et
al., 2021), with the rule that every endurant must instantiate a unique ultimate sortal. These
ultimate sortals represent the top of the hierarchy and each provide a stereotype. Substantial
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Figure 2 – Running example of OntoUML 2.0 elements.

ultimate sortals are kinds, collectives and quantities. Moment ultimate sortals are relators,
qualities and modes. They are detailed below:

• The «kind» stereotype decorates classes that represent substantial ultimate sortals whose
instances are regular objects, such as Person and Organization.

• The «collective» stereotype decorates classes that represent substantial ultimate sortals
whose instances are groups of objects, such as Soccer Team.

• The «quantity» stereotype decorates classes that represent substantial ultimate sortals
whose instances are quantities, typically referred by general mass terms, such as Water
and Gold.

• The «relator» stereotype decorates classes that represent moment ultimate sortals whose
instances are relators, truthmakers of a material relation, such as Marriage and Employ-
ment.

• The «quality» stereotype decorates classes that represent moment ultimate sortals whose
instances are qualities, such as Weight, Height and Geometry.

• The «mode» stereotype decorates classes that represent moment ultimate sortals whose
instances are modes, intrinsic properties of an individual, such as Goal, Symptom and
Skill.
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The following stereotypes are used to represent sortals that specialize one of the ultimate
sortals and, therefore, cannot exist on their own:

• The «subkind» stereotype decorates classes that represent rigid sortals, such as Non-Pro�t
Organization and Commercial Organization.

• The «phase» stereotype decorates classes that represent externally independent anti-rigid
sortals, such as Child, Adult, Active Organization and Inactive Organization.

• The «role» stereotype decorates classes that represent externally dependent anti-rigid
sortals, such as Spouse, Employee and Student.

Lastly, the sterotypes for non-sortals are:

• The «category» stereotype decorates classes that represent rigid non-sortals, such as
Physical Object (as a superclass of kinds Person and Car) and Social Entity.

• The «phaseMixin» stereotype decorates classes that represent externally independent
anti-rigid non-sortals, such as Living Animal and Dead Animal.

• The «roleMixin» stereotype decorates classes that represent externally dependent anti-
rigid non-sortals, such as Provider and Customer.

• The «mixin» stereotype decorates classes that represent semi-rigid non-sortals, such as
Legally Recognized Civil Partnership.

Furthermore, elements from an OntoUML model can be related with generalizations and
stereotyped associations (FONSECA et al., 2019). The «material» and «mediation» stereotypes
are often used in the Relator Pattern, in which a material relation is derived from two or more
mediations, with a relator as the truthmaker. In Figure 2, this pattern can be found between
Organization, Employment and Employee. Other stereotypes, such as «characterization» and
«externalDependence» are often used with the Mode Pattern, not included in the running
example. Part-whole relations, not represented in the running example, also come with a
set of possible stereotypes. They are: «componentOf», «memberOf», «subCollectionOf» and
«subQuantityOf», whose semantics trace back to Guizzardi’s Ph.D. thesis (GUIZZARDI, 2005).

Additionally, the UML notion of generalization set is employed to represent a group
of generalizations of a common superclass, capturing a common criterion of specialization
used for its subclasses. The UML meta-attributes isComplete and isDisjoint are used to capture
some extra behavior. A complete generalization set requires that every instance of the common
superclass must be an instance of at least one of subclasses from the set. A disjoint generalization
set signals that there is no instance of the common superclass that is an instance of multiple
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subclasses in the set. In other words, there is no overlapping between the subclasses. A complete
disjoint generalization set is a special kind of generalization set in which both meta-attributes
are True. To exemplify, an Organization represented in Figure 2 is either Active or Inactive,
and never both at the same time.

In summary, in the example of Figure 2, a Person can assume the role of an Employee,
if they are hired by an Organization. Employment is a relator that acts as the truthmaker of
the material relation hires, mediating both the Organization and the Employee. Social Entity
is an abstract category whose instances can be substantials (like Organizations) or moments
(like Employments). An Organization has two phases, which describe if it is an Active or an
Inactive Organization. Finally, the Skill mode characterizes an intrinsic property that inheres
in an employee.

2.3 Alloy

Alloy is a logic-based language used to simulate instances of a de�ned model (JACKSON,
2012). It was chosen as the target of the transformation, given its ease of use and the very
powerful Alloy Analyzer tool.

Alloy’s logic is based on atoms and relations. A relation consists in a set of tuples, each
tuple being a sequence of atoms. The arity of the relation is determined by the number of atoms
inside a tuple. For instance, a relation that maps names to addresses can be represented as a
binary relation, such as {(N1,A1),(N2,A2),(N3,A3),...}. Additionally, a function is a binary
relation that maps each atom to at most one other atom.

Atoms can be grouped in sets. In Alloy, these sets are called signatures. In short, sets
are to atoms what classes are to instances in an object-oriented programming language. It is
possible to create subsets and simulate generalization sets, just like inheritance in a language
like Java. Signatures can also have �eld declarations, that end up representing a relation between
the signature they are in and other atoms (such as others signatures).

Moreover, Alloy models can be constrained by establishing facts. These are logical
statements that must be true for all instances of the model. The language presents a number of
mathematical operators, set operators, relational operators and logical operators to be used in
its expressions. Their use allows a number of operations, as simple as additions and unions,
but also as complex as transitive closures.

In addition, Alloy allows model veri�cation with the inclusion of assertions to verify if a
certain expression holds true for every instance. It also provides model validation through the
execution of predicates with the Alloy Analyzer to generate possible instances of the model. For
this, it is necessary to use run statements. These statements are executed for a de�ned scope
that constrains the number of atoms used in the enumeration process of Alloy’s simulation.
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Also, due to the enumeration phase of the process, Alloy is very limited to scope sizes. Because
of this, even if no undesired instances are identi�ed for a small scope, it is not possible to
a�rm that the designed model is free from imperfections. However, in his book (JACKSON,
2012), Jackson discusses the small scope hypothesis, a premise he adopts due to the fact that
"most �aws in models can be illustrated by small instances, since they arise from some shape
being handled incorrectly, and whether the shape belongs to a large or small instance makes
no di�erence". He completes the hypothesis by stating that "if the analysis considers all small
instances, most �aws will be revealed". With this in mind, it is recommended to run models for
various instances and scopes (respecting Alloy’s limitations), to achieve a better understanding
of its structure and to make conclusions about model validation based on sound evidence.
Thereby, even if larger scopes are not considered, the �nal analysis will be supported by the
small scope hypothesis.

When running predicates, the Alloy Analyzer generates an instance for the model that
follows all de�ned constraints. A pop-up window is opened to show a visualization of the
instance, with the options of displaying it as a diagram, as a tree, as a table or as text. Since
OntoUML is a diagrammatic language, the �rst option will be the most useful for the context
of this project. With the simulation visualization as a diagram, atoms of Alloy’s signatures
are displayed on the screen as nodes, with arcs connecting them. These arcs represent the
relations de�ned in the model speci�cation. By having access to instances of the models like
this, the modeler can intuitively analyze if their models are underconstrained, overconstrained,
incomplete or otherwise poorly designed.

The next chapter will present how OntoUML 2.0 elements can be transformed to an
Alloy speci�cation, to take advantage of its powerful model validation and analysis tool. Later,
Chapter 4 will show simulation scenarios for the example of Figure 2 leveraging the Alloy
Analyzer.
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3 The OntoUML 2.0 to Alloy Transforma-

tion

This chapter presents the transformation rules from source models in OntoUML 2.0 to
target speci�cations in Alloy. For every model transformation, three modules are generated: the
world structure module, which allows adding temporal behavior to the models in Alloy (and
is the same for any source model); the ontological properties module, which contains useful
predicates that represent UFO constraints (and again is the same for any source model); and
the main module, which contains the signatures and all generated �elds, facts and functions
according to the OntoUML 2.0 elements being transformed. This structure and most transfor-
mation rules presented in this chapter were reimplemented and extended from the OntoUML
to Alloy transformation proposed in (SALES, 2014).

3.1 World Structure Module

This module describes the world structure proposed in (BENEVIDES et al., 2011). A
World captures instances of the model in a given moment, along with their possible relations.
It functions as a snapshot of the model in a moment in time. Worlds relate to one another via
the next �eld declaration, which allows the representation of a possible sequence of worlds
(refer to Listing 3.1). An important constraint to avoid temporal cycles is also added, as in
this not in this.^(@next) (line 6).

In this speci�cation, the CurrentWorld is �xed and must exist. It is used as a reference to
the other worlds in the simulation (lines 10–27). A world in the next attribute of CurrentWorld
is considered a FutureWorld, while a world from which it is possible to reach CurrentWorld

by a �nite number of steps of next is considered a PastWorld. Lastly, a special world labeled
CounterfactualWorld is used to represent alternative futures to a PastWorld. This is relevant
to simulate and check modal properties of an OntoUML model.

Individuals of the model exist in a speci�c world (or worlds). To restrict their exis-
tence and avoid inconsistencies, some constraints are added. First, the continuous_existence

predicate (line 30) states that an individual cannot cease to exist and then come back to life
in a future world. Additionally, the elements_existence predicate (line 35) ensures that all
individuals must exist in at least one world.

Finally, additional predicates are included to be used as simulation parameters (lines
40–52). The singleWorld predicate is used for simulating a single world (Current). Next, the
linearWorlds predicate is used for simulating a linear world structure, with Past, Current and
Future. At last, the multipleWorlds predicate includes a Counterfactual to the simulation.
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Listing 3.1 – World structure module in Alloy.

1 module w o r l d _ s t r u c t u r e [ World ]
2
3 some abs t rac t s ig TemporalWorld extends World {
4 next : se t TemporalWorld −− Immed ia t e n e x t moments .
5 } {
6 th i s not in th i s . ^ ( @next ) −− The r e a r e no t empo r a l c y c l e s .
7 lone ( ( @next ) . th i s ) −− A wor ld can be t h e immed ia t e n e x t momment o f a t most one

wor l d .
8 }
9

10 one s ig CurrentWorld extends TemporalWorld { } {
11 next in FutureWorld
12 }
13
14 s ig PastWorld extends TemporalWorld { } {
15 next in ( Pas tWorld + C o u n t e r f a c t u a l W o r l d + CurrentWorld )
16 CurrentWorld in th i s . ^ @next −− A l l p a s t wo r l d s can r e a c h t h e c u r r e n t moment .
17 }
18
19 s ig FutureWorld extends TemporalWorld { } {
20 next in FutureWorld
21 th i s in CurrentWorld . ^ @next −− A l l f u t u r e wo r l d s can be r e a c h e d by t h e c u r r e n t

moment .
22 }
23
24 s ig C o u n t e r f a c t u a l W o r l d extends TemporalWorld { } {
25 next in C o u n t e r f a c t u a l W o r l d
26 th i s in PastWorld . ^ @next −− A l l p a s t wo r l d s can r e a c h t h e c o u n t e r f a c t u a l moment .
27 }
28
29 −− E l emen t s c anno t d i e and come t o l i f e l a t e r
30 pred c o n t i n u o u s _ e x i s t e n c e [ e x i s t s : World−>univ ] {
31 a l l w : World , x : ( @next .w) . e x i s t s | ( x not in w. e x i s t s ) => ( x not in ( ( w . ^ nex t )

. e x i s t s ) )
32 }
33
34 −− A l l e l em e n t s must e x i s t s i n a t l e a s t one wor l d
35 pred e l e m e n t s _ e x i s t e n c e [ e l e m e n t s : univ , e x i s t s : World−>univ ] {
36 a l l x : e l e m e n t s | some w: World | x in w. e x i s t s
37 }
38
39 −− Run p r e d i c a t e f o r a s i n g l e World
40 pred s i n g l e W o r l d {
41 # World =1
42 }
43
44 −− Run p r e d i c a t e f o r l i n e a r Wor lds ( Pa s t , Cur r en t , F u t u r e )
45 pred l i n e a r W o r l d s {
46 # World =3 and # PastWorld =1 and # FutureWorld =1
47 }
48
49 −− Run p r e d i c a t e f o r m u l t i p l e Wor lds ( Pa s t , C o u n t e r f a c t u a l , Cur r en t , F u t u r e )
50 pred m u l t i p l e W o r l d s {
51 # World =4 and # PastWorld =1 and # C o u n t e r f a c t u a l W o r l d =1 and # FutureWorld =1
52 }
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3.2 Ontological Properties Module

This module de�nes some ontological properties of UFO to be used during the transfor-
mation, such as rigidity and immutability (refer to Listing 3.2).

The rigidity and antirigidity predicates (lines 4 and 10) are used to constrain classes
according to their rigidity ontological property, taking into consideration their ontological
nature. In addition, the immutable_source and immutable_target predicates (lines 16 and 22)
are used for relation ends with the isReadOnly meta-attribute equal to True.

Listing 3.2 – Ontological properties module in Alloy.

1 module o n t o l o g i c a l _ p r o p e r t i e s [ World ]
2
3 −− Th i s p r e d i c a t e s t a t e s t h a t a c l a s s i s r i g i d
4 pred r i g i d i t y [ C l a s s : univ−>univ , Nature : univ , e x i s t s : univ−>univ ] {
5 a l l w1 : World , p : univ | p in w1 . e x i s t s and p in w1 . C l a s s implies
6 a l l w2 : World | w1!=w2 and p in w2 . e x i s t s implies p in w2 . C l a s s
7 }
8
9 −− Th i s p r e d i c a t e s t a t e s t h a t a c l a s s i s an t i − r i g i d

10 pred a n t i r i g i d i t y [ C l a s s : se t univ−>univ , Nature : univ , e x i s t s : univ−>univ ] {
11 a l l x : Nature | #World >=2 implies ( some d i s j w1 , w2 : World |
12 x in w1 . e x i s t s and x in w1 . C l a s s and x in w2 . e x i s t s and x not in w2 . C l a s s )
13 }
14
15 −− Th i s p r e d i c a t e makes t h e s o u r c e r e l a t i o n end immutable
16 pred immutab le_source [ T a r g e t : World−>univ , r e l : univ−>univ−>univ ] {
17 a l l w1 : World , x : univ | x in w1 . T a r g e t implies
18 a l l w2 : World | x in w2 . T a r g e t implies ( w1 . r e l ) . x = (w2 . r e l ) . x
19 }
20
21 −− Th i s p r e d i c a t e makes t h e t a r g e t r e l a t i o n end immutable
22 pred i m m u t a b l e _ t a r g e t [ Source : World−>univ , r e l : univ−>univ−>univ ] {
23 a l l w1 : World , x : univ | x in w1 . Source implies
24 a l l w2 : World | x in w2 . Source implies x . ( w1 . r e l ) =x . ( w2 . r e l )
25 }

3.3 Main Module

This module is the main module of the transformation and is where all signatures,
�elds, facts and functions will be added. It consists of a skeleton speci�cation that is present in
every model transformation (refer to Listing 3.3).

First, all required modules are imported, including the world structure module and
the ontological properties module discussed previously (lines 3–7). Some native Alloy utility
models are also used, such as util/relation and util/ternary for relation mapping and
util/sequniv for ordering.

Three main signatures are de�ned to group all the di�erent classes in the model. Those
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are: Endurant, Object and Aspect (lines 9, 10 and 11). With this de�nition, Endurant is an
abstract signature, with every Endurant being either an Object or an Aspect. These signatures
will be discussed more in depth in Section 3.3.1. Additionally, the Datatype signature (line 13)
will be used in datatype mapping, discussed in Section 3.3.5.

The core signature of this module and the home of most of the OntoUML 2.0 element
de�nitions is the abstract signature World (lines 15–17). Classes and relations will be mapped
as �elds of this signature, to capture the behavior that individuals and their relations exist in
a particular World. It is also worth to notice that this signature is used as a parameter to the
world structure and ontological properties modules.

Moreover, a fact block is included to invoke the continuous_existence predicate and
the elements_existence predicate (lines 19–22), discussed in the previous section. This guides
the simulation to show every element of the model in at least one World and avoid the reap-
pearance of individuals throughout the timeline.

In addition, a function named visible (line 24) is used to improve the model visualization
when running simulations. This function has no e�ect in the transformation, acting solely as a
workaround kept from (BRAGA et al., 2010) and (SALES, 2014). The exists �eld is added to its
body in every model transformation, so that all things that exist in the worlds appear as nodes
in the simulation. Additional terms are appended with a + if they involve datatypes, such as
class attributes. This is necessary due to the atemporality property of datatypes and will be
further discussed in Chapter 4.

Finally, six run statements are proposed to guide the modeler in di�erent simulation
scenarios (lines 29–34). All involve the singleWorld, linearWorlds and multipleWorlds pred-
icates described in Section 3.1, with the �rst three being used for a small scaled simulation and
the last three being using for a larger scaled simulation. Note that these are optional and the
modeler can come up with their own statements if they wish.

Listing 3.3 – Skeleton speci�cation of the main module in Alloy.

1 module main
2
3 open w o r l d _ s t r u c t u r e [ World ]
4 open o n t o l o g i c a l _ p r o p e r t i e s [ World ]
5 open u t i l / r e l a t i o n
6 open u t i l / s e q u n i v
7 open u t i l / t e r n a r y
8
9 abs t rac t s ig Endurant { }

10
11 s ig O b j e c t extends Endurant { }
12
13 s ig Aspect extends Endurant { }
14
15 s ig Data type { }
16
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17 abs t rac t s ig World {
18 e x i s t s : some Endurant ,
19 }
20
21 f a c t a d d i t i o n a l F a c t s {
22 c o n t i n u o u s _ e x i s t e n c e [ e x i s t s ]
23 e l e m e n t s _ e x i s t e n c e [ Endurant , e x i s t s ]
24 }
25
26 fun v i s i b l e : World−>univ {
27 e x i s t s
28 }
29
30 −− S u g g e s t e d run p r e d i c a t e s
31 run s i n g l e W o r l d for 10 but 1 World , 7 Int
32 run l i n e a r W o r l d s for 10 but 3 World , 7 Int
33 run m u l t i p l e W o r l d s for 10 but 4 World , 7 Int
34 run s i n g l e W o r l d for 20 but 1 World , 7 Int
35 run l i n e a r W o r l d s for 20 but 3 World , 7 Int
36 run m u l t i p l e W o r l d s for 20 but 4 World , 7 Int

3.3.1 Mapping of Classes

All classes, with the exception of those stereotyped as «dataype» and «enumeration»,
are mapped into a �eld declaration in the World signature, taking into consideration the
ontological natures within their restrictedTo meta-attribute (refer to Table 1). Thereby, class
�elds represent binary relations that tie every World to a subset of individuals that exist in that
World. The expression World.Class refers to every individual that instantiates the class in any
World, whilst the expression w.Class (w being a particular World) refers to the individuals that
instantiate Class in w. Keep in mind that any red-colored keywords of this chapter refer to
variables used in the transformation rules. For instance, Class refers to the name of the class
transformed to Alloy.

If the transformed class is restricted only to substantial ontological natures (functional
complex, collective or quantity), the �eld’s type is the projection of the Object signature, as
in ObjectClass: set exists:>Object. For clari�cation, a projection of a relation r over a set
s, represented by r:>s, contains all the tuples of r that end with an element in s. Therefore,
ObjectClass can only contain atoms that exist in a certain world as Objects. Analogously,
if the transformed class is restricted only to moment ontological natures (intrinsic mode,
extrinsic mode, quality or relator), the �eld’s type is the projection of the Aspect signature,
as in AspectClass: set exists:>Aspect. If, however, the restrictedTo meta-attribute contains
both substantial and moment ontological natures, the �eld’s type is the projection of the
Endurant signature, as in EndurantClass: set exists:>Endurant. The keyword set is used
to make it optional for a world to contain an instance of a class.

In addition, for top-level classes in the model hierarchy, the rigidity ontological property
of the class is mapped into a fact block. This approach seems to rule out cases where anti-rigid
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Table 1 – Class mapping to Alloy.

OntoUML 2.0 Alloy
ObjectClass,
AspectClass,
EndurantClass

abs t rac t s ig World {
O b j e c t C l a s s : se t e x i s t s : > Objec t ,
A s p e c t C l a s s : se t e x i s t s : > Aspect ,
E n d u r a n t C l a s s : se t e x i s t s : > Endurant

}

RigidClass f a c t {
r i g i d i t y [ R i g i d C l a s s , Nature , e x i s t s ]

}

AntirigidClass f a c t {
a n t i r i g i d i t y [ A n t i r i g i d C l a s s , Nature , e x i s t s ]

}

isAbstract f a c t a b s t r a c t C l a s s {
a l l w: World | w . A b s t r a c t C l a s s =

w. S u b c l a s s _ 1 + . . . + w. Subc l a s s_N
}

classes specialize rigid classes. However, by default, anti-rigid behavior can be veri�ed but is not
required to show up in the model instances. That said, for rigid classes, i.e. stereotyped as «kind»,
«quantity», «collective», «mode», «quality», «relator», «subkind» or «category», the rigidity
predicate is called within the fact block, as in rigidity[RigidClass,Nature,exists]. For anti-
rigid classes, stereotyped as «role», «roleMixin», «historicalRole», «historicalRoleMixin»,
«phase» or «phaseMixin», the antirigidity predicate is called within the fact block, as in
antirigidity[AntirigidClass,Nature,exists]. It is worth to notice that, in this context,
Nature refers to Object, Aspect or Endurant. Finally, semi-rigid classes do not require any
further constraining.

Furthermore, if the class’s isAbstract meta-attribute is True, an additional fact is provided
to constraint the class’s extension to the union of all of its subclasses, as in AbstractClass =

Subclass_1+...+Subclass_N.

The mapping of datatypes and enumerations will be discussed in Section 3.3.5.

To illustrate the mapping described in this section, consider the classes of Figure 3,
extracted from the running example of the previous section. The transformation of these classes
to Alloy is speci�ed in Listing 3.4. Social Entity is a category whose restrictedTo meta-attribute
contains the functional complex and relator ontological natures. Therefore, it is mapped as an
Endurant (line 3). It is also a top-level rigid class (lines 8–10) and abstract class (lines 12–14).
Organization and Employment are not top-level classes. Thus, they are only mapped to �eld
declarations of the World signature according to their Object and Aspect natures, respectively
(lines 4 and 5).
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Figure 3 – Fragment of the running example showcasing classes.

Listing 3.4 – Fragment of the Alloy speci�cation of the running example for classes.

1 abs t rac t s ig World {
2 e x i s t s : some Endurant ,
3 S o c i a l E n t i t y : se t e x i s t s : > Endurant ,
4 O r g a n i z a t i o n : se t e x i s t s : > Objec t ,
5 Employment : se t e x i s t s : > Aspec t
6 } { }
7
8 f a c t r i g i d {
9 r i g i d i t y [ S o c i a l E n t i t y , Endurant , e x i s t s ]

10 }
11
12 f a c t a b s t r a c t C l a s s {
13 a l l w: World | w . S o c i a l E n t i t y = w. O r g a n i z a t i o n +w. Employment
14 }

3.3.2 Mapping of Relations

Like classes, relations are mapped into a �eld declaration in the World signature. The
only exceptions are derivations, which are mapped into a fact (refer to Table 2). Relation �elds
represent ternary (or 4-ary, in the case of ordered associations) relations that tie every World to
a subset of related individuals that exist in that World. The ternary relation is justi�ed by the
fact that an association between Class1 and Class2 happens in the extension of a World, the
world being the third dimension of the relation. In this work, only binary associations between
classes will be considered.

As a general rule, relations are mapped as a ternary �eld that relates their Source

and Target classes, as in GeneralRelation: set Source -> Target. If any of the relation
ends is tagged with the isOrdered meta-attribute, the mapping changes to a 4-ary relation,
that uses the built-in Int signature as a fourth dimension to create the behavior of ordering,
as in OrderedRelation: set Source -> Int -> Target. However, the inclusion of Int in the
relation only provides the "position" of the relation, deeming necessary the inclusion of an
additional ordering fact block to ensure the proper ordering behavior.

Relations that take part in the Relator Pattern have special mapping rules. The material
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Table 2 – Relation mapping to Alloy.

OntoUML 2.0 Alloy
GeneralRelation abs t rac t s ig World {

G e n e r a l R e l a t i o n : se t Source −> T a r g e t
}

MaterialRelation
(connected to a
DerivationRelation)

abs t rac t s ig World {
M a t e r i a l R e l a t i o n : se t Source −> R e l a t o r −> T a r g e t

}

isOrdered abs t rac t s ig World {
O r d e r e d R e l a t i o n : se t Source −> Int −> T a r g e t

}

f a c t o r d e r i n g {
a l l w: World , x : w . S o u r c e C l a s s |

i s S e q [ x . ( w . O r d e r e d R e l a t i o n ) ]
a l l w: World , x : w . S o u r c e C l a s s , y : w . O r d e r e d C l a s s |

lone x . ( ( w . O r d e r e d R e l a t i o n ) . y )
}

DerivationRelation f a c t d e r i v a t i o n {
a l l w: World , x : w . Source , y : w . Target ,

r : w . R e l a t o r |
x −> r −> y in w. M a t e r i a l R e l a t i o n i f f

x in r . ( w . M e d i a t i o n R e l a t i o n _ 1 ) and
y in r . ( w . M e d i a t i o n R e l a t i o n _ 2 )

}

isComposite
(PartWholeRelation)

f a c t c o m p o s i t i o n {
a l l w: World , x : w . P a r t C l a s s |

lone WholeRe la t ionEnd [ x ,w]
a l l w: World , x : w . P a r t C l a s s |

some WholeRe la t ionEnd [ x ,w] implies no
( OtherWholeRe la t ionEnd_1 [ x ,w ] + . . . +

OtherWholeRelat ionEnd_N [ x ,w] )
}

MediationRelation,
PartWholeRelation

f a c t a c y c l i c {
a l l w: World |

a c y c l i c [w . M e d i a t i o n R e l a t i o n ,w . Source ]
a l l w: World |

a c y c l i c [w . P a r t W h o l e R e l a t i o n ,w . Source ]
}

relation, whose truthmaker is a relator, is mapped into a 4-ary relation, as in MaterialRelation

: set Source -> Relator -> Target. The derivation relation that ties the relator to the ma-
terial relation is represented in a fact block, constraining the derived material relation to the
mediation relations present in the pattern. Also, it is important to notice that relations with
the «material» stereotype which are not part of a Relator Pattern in the model are treated as a
general relation.

Furthermore, part-whole relations and relations stereotyped as «componentOf», «mem-
berOf», «subCollectionOf» or «subQuantityOf» are mapped as general relations, with the
addition of a fact block to capture the semantics of a composite aggregation, if that is the case.
Two constraints are taken into consideration: the �rst states that a part can compose at most
one whole; the second forbids the composition of wholes of any other type. In Section 3.3.3,
constraints on association ends with the isReadOnly meta-attribute help with the immutability
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semantics of these relations as well. In addition, Section 3.3.6 will take into consideration the
weak supplementation axiom, an important constraint for part-whole relations. It is also worth
to notice that the main focus of this project was put into classes and regular associations, so
not everything from part-whole relations is covered.

Lastly, part-whole relations and mediations must not compose a cycle in the model.
They must also be anti-re�exive and anti-symmetric. To prevent this behavior, an acyclic
constraint is introduced for every relation of this kind. Since acyclic also implies anti-re�exivity
and anti-symmetry, no further constraining is required.

The mapping of relations between datatypes will be discussed in Section 3.3.5.

As an example, consider the fragment of Figure 4, extracted from the running example.
The transformation of the relations of this fragment to Alloy is speci�ed in Listing 3.5. This
example showcases the Relator Pattern, where the material relation hires is derived from
the relator Employement, which mediates classes Organization and Employee. The material
relation is mapped to a 4-ary relation (line 2), with the relator, acting as the truthmaker of the
relation, being represented as the fourth dimension. The unnamed mediations are mapped as
general relations (lines 3 and 4). Moreover, acyclic constraints are created for each one of them
(lines 7–9 and 11–13). Finally, the derivation is not mapped into a �eld declaration in the World

signature, but as a fact instead (lines 15–18).

Figure 4 – Fragment of the running example showcasing relations.

Listing 3.5 – Fragment of the Alloy speci�cation of the running example for relations.

1 abs t rac t s ig World {
2 h i r e s : se t O r g a n i z a t i o n −> Employment −> Employee ,
3 r e l a t i o n 1 : se t Employment −> one O r g a n i z a t i o n ,
4 r e l a t i o n 2 : se t Employment −> one Employee
5 } { }
6
7 f a c t a c y c l i c {
8 a l l w: World | a c y c l i c [w . r e l a t i o n 1 ,w . Employment ]
9 }

10
11 f a c t a c y c l i c {
12 a l l w: World | a c y c l i c [w . r e l a t i o n 2 ,w . Employment ]
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13 }
14
15 f a c t d e r i v a t i o n {
16 a l l w: World , x : w . O r g a n i z a t i o n , y : w . Employee , r : w . Employment |
17 x −> r −> y in w. h i r e s i f f x in r . ( w . r e l a t i o n 1 ) and y in r . ( w . r e l a t i o n 2 )
18 }

3.3.3 Mapping of Properties: A�ributes and Relation Ends

Attributes and relation ends are grouped as properties in OntoUML 2.0. Since they
contain many similarities, this section discusses the mapping of both. Attributes essentially
represent relations between a class and a datatype and are mapped in a similar way as relations
were mapped in the previous section: into a �eld declaration of the World signature. Both
attribute ends and relation ends are mapped to functions in Alloy, which are later used in a
number of facts as “aliases” (refer to Table 3).

Source ends are mapped to (w.Relation).x or (select13[w.Relation].x, depending
on the arity of their relations. Target ends are mapped to x.(w.Relation) or x.(select13[w.
Relation]). Note that the select13[] predicate is borrowed from the ternary utility module
and returns a binary relation of the �rst and last atoms of the ternary relation. In other words,
if a->b->c is a ternary relation, select13[a->b->c] will return the binary relation a->c. This
is used to ignore the relator class present in material relations. Lastly, attribute ends are like
target ends in their class to datatype relation. Thus, they share the same mapping as target
ends.

In addition, the multiplicity of attributes and relation ends is usually mapped into the
�eld declaration of their respective relations. That is the case for default multiplicities, such
as 0..1 (treated with Alloy’s lone keyword), 1..1 (one), 1..* (some) and 0..* (set). For custom
multiplicities, however, an additional fact is used to constraint the relation end to the lower
bound and the upper bound values. For association ends whose container is a material relation
(connected to a derivation), the multiplicity is also mapped to facts, regardless of it being
custom or not.

Finally, for immutable attributes and relation ends with the isReadOnly meta-property,
an additional fact block is added, including the respective immutable_target predicate or
immutable_source predicate from the ontological properties module.

The mapping of properties of datatypes will be discussed in Section 3.3.5.

For instance, consider the fragment of Figure 5, extracted from the running example.
The transformation of the attribute and relation ends of this fragment to Alloy is speci�ed
in Listing 3.6. The attribute birthDate is mapped to a �eld declaration of the World signature
(line 2), much like a relation (as seen in the previous section). The two unnamed association
ends of the inheresin characterization relation are mapped to functions (lines 9–11 and 13–15).
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Table 3 – Property mapping to Alloy.

OntoUML 2.0 Alloy
Attribute abs t rac t s ig World {

A t t r i b u t e : se t OwnerClass se t −> A t t r i b u t e T y p e ,
O r d e r e d A t t r i b u t e : se t OwnerClass se t −> se t Int se t

−> se t A t t r i b u t e T y p e
}

fun A t t r i b u t e E n d [ x : World . OwnerClass ,w: World ] : se t
A t t r i b u t e T y p e {
x . ( w . A t t r i b u t e )

}

SourceEnd,
TargetEnd

fun SourceEnd [ x : World . Target ,w: World ] : se t World .
Source {
(w . R e l a t i o n ) . x

}

fun TargetEnd [ x : World . Source ,w: World ] : se t World .
T a r g e t {
x . ( w . R e l a t i o n )

}

−− Ma t e r i a l ( c o n n e c t e d t o d e r i v a t i o n ) o r Ord e r ed
fun SourceEnd [ x : World . Target ,w: World ] : se t World .

Source {
( s e l e c t 1 3 [w. R e l a t i o n ] ) . x

}

−− Ma t e r i a l ( c o n n e c t e d t o d e r i v a t i o n ) o r Ord e r ed
fun TargetEnd [ x : World . Source ,w: World ] : se t World .

T a r g e t {
x . ( s e l e c t 1 3 [w. R e l a t i o n ] )

}

Default Multiplicity −− 0 . . 1 ( l o n e ) ; 1 . . 1 ( one ) ; 1 . . ∗ ( some ) ; 0 . . ∗ ( s e t )
abs t rac t s ig World {

A t t r i b u t e : se t OwnerClass se t −> some A t t r i b u t e T y p e
R e l a t i o n : se t Source lone −> one T a r g e t

}

Custom Multiplicity −− A t t r i b u t e
f a c t m u l t i p l i c i t y {

a l l w: World , x : w . OwnerClass |
# A t t r i b u t e E n d [ x ,w] >= LowerBound and

# A t t r i b u t e E n d [ x ,w] <= UpperBound
}

−− S o u r c e End
f a c t m u l t i p l i c i t y {

a l l w: World , x : w . T a r g e t |
# SourceEnd [ x ,w] >= LowerBound and

# SourceEnd [ x ,w] <= UpperBound
}

−− Ta r g e t End
f a c t m u l t i p l i c i t y {

a l l w: World , x : w . Source |
# TargetEnd [ x ,w] >= LowerBound and

# TargetEnd [ x ,w] <= UpperBound
}

isReadOnly f a c t a s s o c i a t i o n P r o p e r t i e s {
i m m u t a b l e _ t a r g e t [ OwnerClass , A t t r i b u t e ] −− A t t r i b u t e
i m m u t a b l e _ t a r g e t [ Source , R e l a t i o n ] −− S o u r c e End
immutab le_source [ Target , R e l a t i o n ] −− Ta r g e t End

}
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The names Skill1 and Employee3 are aliases used for when the association ends do not have
an explicit name. They refer to the class connected to the end and receive the class’s name,
followed by a number to di�erentiate other ends connected to the same class. Lastly, since the
relation inheresin is a characterization, the isReadOnly meta-attribute of the target end is true.
Thus, the immutable_target predicate is added to a fact block (line 6).

Figure 5 – Fragment of the running example showcasing properties.

Listing 3.6 – Fragment of the Alloy speci�cation of the running example for properties.

1 abs t rac t s ig World {
2 b i r t h D a t e : se t Person se t −> one Date
3 } { }
4
5 f a c t r e l a t i o n P r o p e r t i e s {
6 i m m u t a b l e _ t a r g e t [ S k i l l , i n h e r e s i n ]
7 }
8
9 fun S k i l l 1 [ x : World . Employee , w: World ] : se t World . S k i l l {

10 (w . i n h e r e s i n ) . x
11 }
12
13 fun Employee3 [ x : World . S k i l l , w: World ] : se t World . Employee {
14 x . ( w . i n h e r e s i n )
15 }

3.3.4 Mapping of Generalizations and Generalization Sets

The mapping of generalizations is very straightforward, since Alloy has the in construct
used to subset signatures. The inheritance between a subclass and a superclass can be seen
as subsetting, since the extension of the subclass is said to be included in the extension of
the superclass. Therefore, adding the expression Subclass in Superclass to a fact block is
enough to generate this behavior (refer to Table 4).
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Table 4 – Generalization and generalization set mapping to Alloy.

OntoUML 2.0 Alloy
Generalization f a c t g e n e r a l i z a t i o n {

S u b c l a s s in S u p e r c l a s s
}

Generalization Set
(isDisjoint, isComplete)

f a c t g e n e r a l i z a t i o n S e t {
d i s j o in t [ S u b c l a s s _ 1 , . . . , Su bc l a s s_N ] −− D i s j o i n t
S u p e r c l a s s = S u b c l a s s _ 1 + . . . + Su bc l a s s_N −− Comple t e

}

Additionally, the isDisjoint and isComplete meta-attributes of generalization sets are
mapped into a fact block to capture their behavior, with the expressions disjoint[Subclass_1
,...,Subclass_N] (if disjoint) and Superclass = Subclass_1+...+Subclass_N (if complete).

To illustrate, consider the fragment of Figure 6, extracted from the running example.
The transformation of the generalizations and generalization set of this fragment to Alloy is
speci�ed in Listing 3.7. The Active Organization and Inactive Organization phases are subclasses
of the common superclass Organization. The specializations are mapped into simple fact blocks
(lines 1–3 and 5–7). The generalization set activity, formed by these two phases, is disjoint
and complete. Therefore, the mapping into the fact block also speci�es the disjointness (line
10) and the completeness (line 11).

Figure 6 – Fragment of the running example showcasing generalizations.

Listing 3.7 – Fragment of the Alloy speci�cation of the running example for generalizations.

1 f a c t g e n e r a l i z a t i o n {
2 A c t i v e O r g a n i z a t i o n in O r g a n i z a t i o n
3 }
4
5 f a c t g e n e r a l i z a t i o n {
6 I n a c t i v e O r g a n i z a t i o n in O r g a n i z a t i o n
7 }
8
9 f a c t g e n e r a l i z a t i o n S e t {

10 d i s j o in t [ A c t i v e O r g a n i z a t i o n , I n a c t i v e O r g a n i z a t i o n ]
11 O r g a n i z a t i o n = A c t i v e O r g a n i z a t i o n + I n a c t i v e O r g a n i z a t i o n
12 }
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3.3.5 Mapping of Datatypes and Enumerations

Because datatypes are atemporal, they cannot be mapped into a �eld declaration of the
World signature like other classes. Thus, they are mapped into individual signatures that subset
the general Datatype signature. Enumerations are also atemporal, but are mapped to the Alloy
built-in enum construct (refer to Table 5).

Table 5 – Datatype and enumeration mapping to Alloy.

OntoUML 2.0 Alloy
DatatypeClass s ig D a t a t y p e C l a s s in Data type { }

Attribute (within a
DatatypeClass)

s ig D a t a t y p e C l a s s in Data type {
A t t r i b u t e : A t t r i b u t e T y p e −− l on e , one , some , s e t

}

−− Custom m u l t i p l i c i t y
f a c t m u l t i p l i c i t y {

a l l x : D a t a t y p e C l a s s | #x . A t t r i b u t e >=LowerBound
and #x . A t t r i b u t e <=UpperBound

}

Relation (between
DatatypeClasses)

s ig S o u r c e D a t a t y p e C l a s s in Data type {
R e l a t i o n : T a r g e t D a t a t y p e C l a s s

}

f a c t m u l t i p l i c i t y {
a l l x : S o u r c e D a t a t y p e C l a s s |

#x . R e l a t i o n >= TargetLowerBound
and #x . R e l a t i o n <= TargetUpperBound

a l l x : T a r g e t D a t a t y p e C l a s s |
# R e l a t i o n . x>= SourceLowerBound

and # R e l a t i o n . x<= SourceUpperBound
}

EnumerationClass enum Enumera t ionC la s s {
L i t e r a l _ 1 , . . . , L i t e r a l _ N

}

Attributes and relations between datatypes are mapped into �eld declarations in the
source datatype signature. Any stereotype associated to relations is ignored. The multiplicity
of attributes is mapped the same way as to how it is done for regular classes. For relations,
however, the multiplicity is always de�ned in a fact block, taking into consideration the lower
bound and the upper bound of both the source and target ends of the relation. If the lower
bound or the upper bound are unde�ned, the part of expression concerning them is ommited.

No additional mapping is required for generalizations and generalization sets involving
datatypes. Also, enumerations do not support attributes, specializations or relations between
themselves.

For instance, consider the fragment of Figure 7, extracted from the running example.
The transformation of the datatypes of this fragment to Alloy is speci�ed in Listing 3.8. The
Number and Date datatypes are mapped into individual signatures, independent of World, that
subset the Datatype signature (lines 1 and 3). Additionally, the attributes of Date are mapped
into �eld declarations of its own signature (lines 4–6).
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Figure 7 – Fragment of the running example showcasing datatypes.

Listing 3.8 – Fragment of the Alloy speci�cation of the running example for datatypes.

1 s ig Number in Data type { }
2
3 s ig Date in Data type {
4 day : one Number ,
5 month : one Number ,
6 year : one Number
7 }

3.3.6 Additional Facts

After transforming the OntoUML 2.0 elements, some additional constraints should be
considered to enforce some other ontological properties of UFO and guide the Alloy simulation.

First, to constraint the existence of individuals in a World only to those de�ned in the
World signature, the projection of the Object signature must be in the union of all top-level
object classes. Analogously, the projection of the Aspect signature must be in the union of all
top-level aspect classes, and the projection of the Endurant signature must be in the union of
all top-level endurant classes (refer to Table 6).

Next, a similar constraint is de�ned for datatypes. The extension of the Datatype signa-
ture must be equal to the union of all its datatype subtypes, as in Datatype = DatatypeClass_1

+...+DatatypeClass_N. Also, all top-level datatypes must be disjoint. This is enforced by adding
the expression disjoint[DatatypeClass_1+...+DatatypeClass_N].

Additionally, the identity principle requires that ultimate sortals must be disjoint. To
enforce this rule and also prevent top-level classes with di�erent ontological natures to overlap
in the Alloy speci�cation, the expression disjoint[Class,(DifferentNaturedClass_1+...+

DifferentNaturedClass_N)] is included within a fact �eld in the World signature.

Moreover, classes with the «relator» stereotype must obey a relator rule that requires
every instance to mediate at least two disjoint entities. To enforce the desired ontological
property, a fact block is speci�ed taking into consideration the relation ends of every mediation
relation in which the relator takes part.

Furthermore, classes with an intrinsic moment ontological nature (intrinsic mode or
quality) must not indirectly characterize themselves. To prevent this, an acyclic characterization
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Table 6 – Additional mapping to Alloy.

OntoUML 2.0 Alloy
Existence Constraint abs t rac t s ig World { } {

e x i s t s : > O b j e c t in O b j e c t C l a s s _ 1 + . . . + O b j e c t C l a s s _ N
e x i s t s : > Aspec t in A s p e c t C l a s s _ 1 + . . . + Aspec tC lass_N
e x i s t s : > Endurant in E n d u r a n t C l a s s _ 1 + . . . +

EndurantClass_N
}

Datatypes Constraint f a c t a d d i t i o n a l D a t a t y p e F a c t s {
Data type = D a t a t y p e C l a s s _ 1 + . . . + Data typeClas s_N
d i s j o in t [ D a t a t y p e C l a s s _ 1 + . . . + Data typeClas s_N ]

}

Identity Constraint abs t rac t s ig World { } {
d i s j o in t [ C las s , ( D i f f e r e n t N a t u r e d C l a s s _ 1

+ . . . + D i f f e r e n t N a t u r e d C l a s s _ N ) ]
}

Relator Constraint f a c t r e l a t o r C o n s t r a i n t {
a l l w: World , x : w . R e l a t o r C l a s s |

# ( M e d i a t i o n R e l a t i o n E n d _ 1 [ x ,w]
+ . . . + Med ia t i onRe la t i onEnd_N [ x ,w] ) >=2

}

Acyclic
Characterizations
Constraint

f a c t a c y c l i c C h a r a c t e r i z a t i o n s {
a l l w: World | a c y c l i c [

(w . C h a r a c t e r i z a t i o n R e l a t i o n _ 1 + . . . +
C h a r a c t e r i z a t i o n R e l a t i o n _ N ) ,

(w . I n t r i n s i c M o m e n t _ 1 + . . . +
w. In t r ins i cMoment_N ) ]

}

Weak
Supplementation
Constraint

f a c t w e a k S u p p l e m e n t a t i o n C o n s t r a i n t {
a l l w: World , x : w . WholeClass |

# ( P a r t R e l a t i o n E n d _ 1 [ x ,w]
+ . . . + P a r t R e l a t i o n E n d _ N [ x ,w] ) >=2

}

constraint is required, considering the union of all characterization relations and the union of
all the intrinsic moments.

Finally, the weak supplementation axiom states that the number of parts composing
a whole must be equal or greater to two, otherwise the whole and the part would be the
same. This rule is enforced by generating a fact block for every WholeClass, constraining the
minimum of parts in every whole individual.

As an example, consider the entire running example (Figure 2). The mapping of its
additional facts is shown in Listing 3.9. The existence and the identity constraints are mapped
into fact �elds of the World signature (lines 3–5 and 6–7). Note how only top-level classes are
taken into consideration. In addition, the relator constraint is de�ned for the Employment
relator (lines 10–12). Moreover, top-level datatypes must form a disjoint complete generalization
set, mapped to a fact block(lines 14–17). And lastly, an acyclic predicate should be considered
for the inheresin characterization (lines 19–21). Note that Skill is the only intrinsic moment
of the model.
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Listing 3.9 – Fragment of the Alloy speci�cation of the running example for additional facts.

1 abs t rac t s ig World {
2 } {
3 d i s j o in t [ S o c i a l E n t i t y , ( Number+Date+ S k i l l ) ]
4 d i s j o in t [ Person , ( Number+Date+ S o c i a l E n t i t y + S k i l l ) ]
5 d i s j o in t [ S k i l l , ( Number+Date+ S o c i a l E n t i t y + Person ) ]
6 e x i s t s : > O b j e c t in S o c i a l E n t i t y + Person
7 e x i s t s : > Aspec t in S o c i a l E n t i t y + S k i l l
8 }
9

10 f a c t r e l a t o r C o n s t r a i n t {
11 a l l w: World , x : w . Employment | # ( O r g a n i z a t i o n 1 [ x ,w]+ Employee1 [ x ,w] ) >=2
12 }
13
14 f a c t a d d i t i o n a l D a t a t y p e F a c t s {
15 Data type = Number+Date
16 d i s j o in t [ Number , Date ]
17 }
18
19 f a c t a c y c l i c C h a r a c t e r i z a t i o n s {
20 a l l w: World | a c y c l i c [ (w . i n h e r e s i n ) , (w . S k i l l ) ]
21 }



38

4 Simulation Scenarios

This chapter presents three simulation scenarios created for the running example
model transformed to Alloy. They are all executed for a small scope to limit the discussion to a
few focused details. We show various instances generated by the Alloy Analyzer, which are
visualized as graphs composed of nodes and arcs. To achieve these instances, the models were
run for at least a dozen of instances.

For all the studied scenarios, a theme was used to improve model visualization. This
theme is the same one used in (SALES, 2014), with some minor adaptations. Atoms of the Object
signature are represented as yellow rectangles. Atoms of the Aspect signature are represented
as pink ellipses. Datatypes are represented as gray hexagons. All elements are projected over
the World signature, so that the instances of World do not show as nodes. The simulation makes
it possible to choose which world to visualize with a dropdown feature. Also, because of this
projection, the relations between endurant nodes are shown as arcs, much like in an OntoUML
model. The Alloy Analyzer names every atom with the name of their container signature
(corresponding to the ontological nature of the instance), followed by a number (starting from
0) to di�erentiate atoms of the same signature.

Due to the fact that datatypes are atemporal, any associations between datatypes can
transcend worlds. In other words, with the proposed idea of projecting the atoms over the
World signature, the visualization of these associations is a bit trickier. One could switch themes
to visualize datatypes in a better manner, if they wish, but this will not be explored in depth in
this work.

4.1 Scenario 1: Single World

In this scenario, the singleWorld predicate was run for a small scope of at most 10
atoms for each top-level signature. A notable instance is shown in Figure 8. This �gure shows
the current (and only) world observed for this instance.

Note that Object0 and Object1 are Persons, but Object1 also assumes the role of an
Employee. Object1 is hired by the Active Organization Object3. This material relation is
mediated by Aspect1, an Employment relator with a salary attribute of Datatype0 (a Number).
The arcs relation1 and relation2 represent the mediation relations. In addition, Aspect0 is a
skill that inheres in Object1 and Object2 is an Active Organization with no employees.

For this scenario, the OntoUML model of Figure 2 has generated a predictable instance.
There is no undesired behavior here and the modeler might conclude that their model is well
de�ned. However, with only a single example, this conclusion may seem a bit hasty.



Chapter 4. Simulation Scenarios 39

Figure 8 – Current (and only) world of the simulation scenario 1.

4.2 Scenario 2: Linear Worlds

In this scenario, the linearWorlds predicate was run for a small scope of at most 10
atoms for each top-level signature. Some interesting instances were generated, one of which is
shown in Figures 9, 10 and 11. These �gures show the past, current and future worlds of this
instance, respectively.

In Figure 9 (past world), Object2 is an Employee that is hired by the Inactive Organization
Object1. Aspect3 is the Employment relator that mediates the Employee and the Organization
in the hires material relation. Also notice that Employment has a salary attribute of the
Number datatype (Datatype4) and the Employee has a birthDate attribute of the Date datatype
(Datatype7). Lastly, Aspect2 is a skill that inheres in the Employee.

In Figure 10 (current world), Object2 no longer exists. Another Person, Object3, shows
up in the timeline and is not employed. Also, Object1 remains an Inactive Organization, but
with no employees.

In Figure 11 (future world), Object3 is now employed, but in two Organizations, Object0
and Object1. Notice how Object1 became an Active Organization. Two Employment relators
mediate the hires material relations, with the same salary attributes of Datatype4.

An interesting thing that can be analyzed about this scenario is the fact that an Inactive
Organization has hired employees. One could say that this is unwanted. By simulating their
models in Alloy, a modeler can then observe details such as this, where additional constraints
are desired to improve their models. Then, they can redesign their models to prevent this
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behavior, or even add invariants such as OCL constraints (WARMER; KLEPPE, 2003). Particular
observations like these are the core purpose of using Alloy to support modelers creating models
with higher quality.

Figure 9 – Past world of the simulation scenario 2.

Figure 10 – Current world of the simulation scenario 2.
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Figure 11 – Future world of the simulation scenario 2.

4.3 Scenario 3: Multiple Worlds

In this �nal scenario, the multipleWorlds predicate was run for a small scope of at
most 10 atoms for each top-level signature. Figures 12, 13, 14 and 15 show the past, current,
future and counterfactual worlds of a generated instance, respectively.

In Figure 12 (past world), Object1 is an Employee that is hired by the Active Organization
Object4. Aspect2 is the Employment relator with salary of Datatype0.

In Figure 13 (current world), Object1 no longer exists. Object4 turned into an Inactive
Organization, now only with Employee Object2.

In Figure 14 (future world), no Employment relations are seen. All previous Persons
and Organizations no longer exist. Object3 is a Person and Object0 is an Inactive Organization
with no employees.

Finally, Figure 15 (counterfactual world) presents an alternate timeline from the past
world. Here, Object1 still exists, but is no longer employed. A di�erent Employment is visualized,
connecting the Inactive Organization Object0 to the Employee Object3. Also, three Person
objects share the same birthDate attribute of Datatype1.

This scenario shows an instance very similar to that of scenario 2. Again, Inactive
Organizations can be seen hiring Employees, reinforcing the notion that this detail might
require special attention. The main goal of this scenario, however, was to simply exemplify the
counterfactual world structure.
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Figure 12 – Past world of the simulation scenario 3.

Figure 13 – Current world of the simulation scenario 3.
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Figure 14 – Future world of the simulation scenario 3.

Figure 15 – Counterfactual world of the simulation scenario 3.
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5 Implementation

This chapter brie�y showcases the implementation process to code the OntoUML 2.0 to
Alloy transformation using Typescript. Because of the change of frameworks and programming
languages, the reimplementation of parts of the OntoUML to Alloy transformation (SALES,
2014) was necessary.

First of all, Typescript was chosen because the OntoUML Server is mostly being de-
veloped in this language. Thus, many utilities such as model parsing and model handling are
already implemented and can be used. Furthermore, the OntoUML Server has a model transfor-
mation service for gUFO, a lightweight implementation of UFO currently under development
(ALMEIDA et al., 2019). The patterns and code structure used in the implementation of this
service were highly in�uential to the implementation of the transformation to Alloy.

The code is structured with the following �les:

• ontouml2alloy.ts

• class_functions.ts

• relation_functions.ts

• property_functions.ts

• relation_functions.ts

• generalization_functions.ts

• generalization_set_functions.ts

• util.ts

• index.ts

The ontouml2alloy.ts �le contains the Ontouml2Alloy class that implements the Service
interface. This class stores the world �eld declarations, world �eld facts, fact blocks, functions,
datatypes, enumerations and some additional information, used when generating the Alloy
source code. An instance of this class is generated in the beginning of every transformation
and is used by all the �les su�xed with “functions”. The model is provided in the constructor
of this class and is essentially a tree of OntoUML elements (represented as classes). This model
structure was already implemented in the context of the OntoUML Server project.

The most important function of the Ontouml2Alloy class is transform() (refer to List-
ing 5.1). This function calls functions for every element type (lines 2–6). Then, after all elements
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are transformed, the main module is written (lines 14–20), followed by the world structure and
ontological properties modules (lines 22 and 23).

Listing 5.1 – Fragment with the transform() function of the ontouml2alloy.ts �le

1 t r a n s f o r m ( ) {
2 th i s . t r a n s f o r m C l a s s e s ( ) ;
3 th i s . t r a n s f o r m G e n e r a l i z a t i o n s ( ) ;
4 th i s . t r a n s f o r m G e n e r a l i z a t i o n S e t s ( ) ;
5 th i s . t r a n s f o r m P r o p e r t i e s ( ) ;
6 th i s . t r a n s f o r m R e l a t i o n s ( ) ;
7
8 // removes possible duplicate facts and funs
9 th i s . w o r l d F i e l d F a c t s = [ . . . new Set ( th i s . w o r l d F i e l d F a c t s ) ] ;

10 th i s . f a c t s = [ . . . new Set ( th i s . f a c t s ) ] ;
11 th i s . r e l a t i o n P r o p e r t i e s F a c t s = [ . . . new Set ( th i s . r e l a t i o n P r o p e r t i e s F a c t s ) ] ;
12 th i s . f un s = [ . . . new Set ( th i s . f un s ) ] ;
13
14 th i s . w r i t e P r e a m b l e ( ) ;
15 th i s . w r i t e D a t a t y p e s ( ) ;
16 th i s . writeEnums ( ) ;
17 th i s . w r i t e W o r l d S i g n a t u r e ( ) ;
18 th i s . w r i t e F a c t s ( ) ;
19 th i s . w r i t e F u n s ( ) ;
20 th i s . wr i t eRuns ( ) ;
21
22 th i s . w r i t e W o r l d S t r u c t u r e M o d u l e ( ) ;
23 th i s . w r i t e O n t o l o g i c a l P r o p e r t i e s M o d u l e ( ) ;
24 }

As an example, the transformClasses() function (refer to Listing 5.2) loops through every
class in the model, calling the transformClass() function for each one (lines 4–6). This function
is de�ned in the class_functions.ts �le and will be shown shortly. Afterwards, two functions
are called to transform the additional facts for all classes and datatypes (lines 8 and 9).

Listing 5.2 – Fragment with the transformClasses() function of the ontouml2alloy.ts �le

1 t r a n s f o r m C l a s s e s ( ) {
2 const c l a s s e s = th i s . model . g e t A l l C l a s s e s ( ) ;
3
4 for ( const _ c l a s s of c l a s s e s ) {
5 t r a n s f o r m C l a s s ( this , _ c l a s s ) ;
6 }
7
8 t r a n s f o r m A d d i t i o n a l C l a s s C o n s t r a i n t s ( th i s ) ;
9 t r a n s f o r m A d d i t i o n a l D a t a t y p e C o n s t r a i n t s ( th i s ) ;

10
11 return true ;
12 }

The �les su�xed with “functions” contain the functions used to transform speci�c
OntoUML elements. In class_functions.ts, for instance, the function transformClass (refer to
Listing 5.3 is called to decide which type of class is being transformed. Additional functions are
then called depending on the class’s stereotype and meta-attributes.
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Listing 5.3 – Fragment of the transformClass() function of the class_functions.ts �le

1 export function t r a n s f o r m C l a s s ( t r a n s f o r m e r : Ontouml2Alloy , _ c l a s s : Class ) {
2 i f ( _ c l a s s . hasAnySte reo type ( [ C l a s s S t e r e o t y p e . EVENT , C l a s s S t e r e o t y p e . SITUATION ] ) ) {
3 return ;
4 }
5
6 i f ( _ c l a s s . h a s D a t a t y p e S t e r e o t y p e ( ) ) {
7 t r a n s f o r m D a t a t y p e C l a s s ( t r a n s f o r m e r , _ c l a s s ) ;
8 return ;
9 }

10
11 i f ( _ c l a s s . h a s E n u m e r a t i o n S t e r e o t y p e ( ) ) {
12 t r a n s f o r m E n u m e r a t i o n C l a s s ( t r a n s f o r m e r , _ c l a s s ) ;
13 return ;
14 }
15
16 i f ( _ c l a s s . i s R e s t r i c t e d T o E n d u r a n t ( ) ) {
17 t r a n s f o r m E n d u r a n t C l a s s ( t r a n s f o r m e r , _ c l a s s ) ;
18 }
19
20 i f ( _ c l a s s . h a s R e l a t o r S t e r e o t y p e ( ) ) {
21 t r a n s f o r m R e l a t o r C o n s t r a i n t ( t r a n s f o r m e r , _ c l a s s ) ;
22 }
23
24 i f ( _ c l a s s . i s A b s t r a c t ) {
25 t r a n s f o r m A b s t r a c t C l a s s ( t r a n s f o r m e r , _ c l a s s ) ;
26 }
27
28 t r a n s f o r m W e a k S u p p l e m e n t a t i o n C o n s t r a i n t ( t r a n s f o r m e r , _ c l a s s ) ;
29 t r a n s f o r m D i s j o i n t N a t u r e s C o n s t r a i n t ( t r a n s f o r m e r , _ c l a s s ) ;
30 }

Consider an endurant class, for instance. In line 17 of Listing 5.3, the transformEn-
durantClass() function will be called (refer now to Listing 5.4). The �rst thing this function does
is decide the nature of the class, according to the Alloy signatures Object, Aspect or Endurant
presented previously (lines 5-11). Then, a world �eld declaration is added to the transformer
(the Ontouml2Alloy instance that contains the model and all the fragments being generated by
the transformation). Note that the decision here was to represent everything as strings, that
later on will all be concatenated to form the entire Alloy speci�cation model.

Next, lines 17 to 32 will generate a rigid fact if the class is top-level and rigid, depending
on its stereotype, an antirigid fact if it is a top-level antirigid class, or none.

Listing 5.4 – Fragment of the transformEndurantClass() function of the class_functions.ts �le

1 function t r a n s f o r m E n d u r a n t C l a s s ( t r a n s f o r m e r : Ontouml2Alloy , _ c l a s s : Class ) {
2 const c lassName = getNameNoSpaces ( _ c l a s s ) ;
3 l e t n a t u r e = ’’ ;
4
5 i f ( _ c l a s s . i s R e s t r i c t e d T o S u b s t a n t i a l ( ) ) {
6 n a t u r e = ’Object’ ;
7 } e l se i f ( _ c l a s s . i s R e s t r i c t e d T o M o m e n t ( ) ) {
8 n a t u r e = ’Aspect’ ;
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9 } e l se {
10 n a t u r e = ’Endurant’ ;
11 }
12
13 t r a n s f o r m e r . a d d W o r l d F i e l d D e c l a r a t i o n (
14 c lassName + ’: set exists:>’ + n a t u r e
15 ) ;
16
17 i f ( i s T o p L e v e l ( _ c l a s s , t r a n s f o r m e r . model . g e t A l l G e n e r a l i z a t i o n s ( ) ) ) {
18 i f ( _ c l a s s . h a s R i g i d S t e r e o t y p e ( ) ) {
19 t r a n s f o r m e r . a d d F a c t (
20 ’fact rigid {\n’ +
21 ’ rigidity[’ + className + ’,’ + n a t u r e + ’,exists]\n’ +
22 ’}’
23 ) ;
24 } e l se i f ( _ c l a s s . h a s A n t i R i g i d S t e r e o t y p e ( ) ) {
25 t r a n s f o r m e r . a d d F a c t (
26 ’fact antirigid {\n’ +
27 ’ antirigidity[’ + className + ’,’ + n a t u r e + ’,exists]\n’ +
28 ’}’
29 ) ;
30 }
31 }
32 }

This logic is repeated for every OntoUML model element. The full implementation can
be found in: <https://github.com/fernandoam14/ontouml-js>.

While the transformation has been entirely coded using OntoUML Server’s packages
and classes, the deployment process responsible to o�er it as a service is currently ongoing.
Any tests done in the development process were done separately, but according to the model
structure presented in the ontouml-js1 library used by the OntoUML Server.

Lastly, it is worth to point out that some important decisions were made regarding
naming conventions. OntoUML does not enforce naming classes, attributes and relations. Also,
named elements may contain spaces and other special characters, unsupported by Alloy. The
approach used to work around this issue does not cover every possible situation and can be
enhanced in future works. For named elements, any spacing is removed. For unnamed relations
and properties (attributes and relation ends), an alias is provided with a number to di�erentiate
each one. For instance, two unnamed relations would be called relation1 and relation2. Finally,
unnamed classes are not handled.

1 Available at: <https://github.com/OntoUML/ontouml-js>

https://github.com/fernandoam14/ontouml-js
https://github.com/OntoUML/ontouml-js
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6 Conclusion

6.1 Contribution

This work contributes to the theory and practice of ontology-driven conceptual mod-
eling with an adjustment of the core parts of the OntoUML to Alloy transformation (SALES,
2014) to contemplate the new ontological properties of OntoUML 2.0, focused speci�cally on
UFO-A aspects.

Moreover, the studied scenarios show important evidence that model simulation is a
powerful tool for model validation. This con�rms our motivation that Alloy can be used by
modelers to improve the quality of their OntoUML models.

In addition, the Typescript code produced for the transformation was developed under
the OntoUML Server framework and its integration as a service to be provided is ongoing.
Thereby, an updated OntoUML 2.0 to Alloy transformation tool will be available to use by
modelers to allow model veri�cation and model validation.

Furthermore, The OntoUML Server is currently used by other projects, such as the Visual
Paradigm OntoUML plugin1. The transformation developed in this work can also be included
as a functionality of the plugin, which already includes features such as model serialization to
JSON and model transformation to gUFO. With this, modelers will have a centralized work
environment for OntoUML 2.0 modeling.

6.2 Final Considerations

This project greatly contributed to the consolidation of conceptual modeling, model-
driven development and ontology-driven conceptual modeling theory and model transformation
techniques studied for three years, during the course of two Scienti�c Initiation projects and
this graduation project.

Time limitations and other external factors did not make possible the development of a
robust framework such as the one proposed in Sales’s M.Sc. Thesis (SALES, 2014). Nevertheless,
there is a great feeling of accomplishment. The academic journey is tough and all these
years working in this environment provided great experience and growth. Doing research in
the Software Engineering �eld helped �nding my academical place and gave me ideas and
aspirations for a possible Master’s degree in the future.

1 Available at: <https://github.com/OntoUML/ontouml-vp-plugin>

https://github.com/OntoUML/ontouml-vp-plugin
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6.3 Future Work

Due to limitations mentioned previously, UFO-B events were not taken into consid-
eration for the transformation developed in the context of this research project. Also, some
constraints related to part-whole relations and other kinds of derivations were not supported
and should be explored in a future work. Subsetted and rede�ned properties were also not
considered. Additionally, the naming convention rules chosen for naming classes, attributes
and relators does not cover every case possible in OntoUML modeling. And, �nally, the trans-
formation was not designed to contemplate partial models due to the idea of integrating it to
the Visual Paradigm OntoUML plugin, which currently veri�es the syntax of OntoUML models
ensuring they are complete, following strict syntactic rules. Thus, this transformation can then
be enhanced by these new features and by more thorough testing cases to sharpen rough edges,
providing an even better tool for OntoUML modelers.

Furthermore, the deployment of the service in the OntoUML Server should open a
number of work opportunities. For instance, the inclusion of an updated transformation of
OCL to Alloy to supplement the work done with the OntoUML 2.0 to Alloy transformation is
encouraged, since many OntoUML 2.0 models are subject to OCL constraining.

In the near future, the incorporation of the transformation as a feature of the Visual
Paradigm OntoUML plugin can also encourage the addition of transformation parameters, used
to customize the simulation. Some examples of parametrization are: the inclusion of facts for
additional constraining; the de�nition of custom scopes; and the enforcement of antirigidity
behavior in the simulations and other UFO axioms, such as Weak Supplementation and the
Identity Principle. In addition, the Alloy Analyzer interface can also be integrated to the plugin
for an even more compact modeling experience.
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Listing 1 – Full Alloy speci�cation of the transformed OntoUML running example model.

1 module main
2
3 open w o r l d _ s t r u c t u r e [ World ]
4 open o n t o l o g i c a l _ p r o p e r t i e s [ World ]
5 open u t i l / r e l a t i o n
6 open u t i l / s e q u n i v
7 open u t i l / t e r n a r y
8
9 abs t rac t s ig Endurant { }

10
11 s ig O b j e c t extends Endurant { }
12
13 s ig Aspect extends Endurant { }
14
15 s ig Data type { }
16
17 s ig Number in Data type { }
18
19 s ig Date in Data type {
20 day : one Number ,
21 month : one Number ,
22 year : one Number
23 }
24
25 abs t rac t s ig World {
26 e x i s t s : some Endurant ,
27 S o c i a l E n t i t y : se t e x i s t s : > Endurant ,
28 Person : se t e x i s t s : > Objec t ,
29 O r g a n i z a t i o n : se t e x i s t s : > Objec t ,
30 Employment : se t e x i s t s : > Aspect ,
31 Employee : se t e x i s t s : > Objec t ,
32 A c t i v e O r g a n i z a t i o n : se t e x i s t s : > Objec t ,
33 I n a c t i v e O r g a n i z a t i o n : se t e x i s t s : > Objec t ,
34 S k i l l : se t e x i s t s : > Aspect ,
35 b i r t h D a t e : se t Person se t −> one Date ,
36 s a l a r y : se t Employment se t −> one Number ,
37 h i r e s : se t O r g a n i z a t i o n −> Employment −> Employee ,
38 r e l a t i o n 1 : se t Employment −> one O r g a n i z a t i o n ,
39 r e l a t i o n 2 : se t Employment −> one Employee ,
40 i n h e r e s i n : se t S k i l l −> one Employee
41 } {
42 d i s j o in t [ S o c i a l E n t i t y , ( Number+Date+ S k i l l ) ]
43 d i s j o in t [ Person , ( Number+Date+ S o c i a l E n t i t y + S k i l l ) ]
44 d i s j o in t [ S k i l l , ( Number+Date+ S o c i a l E n t i t y + Person ) ]
45 e x i s t s : > O b j e c t in S o c i a l E n t i t y + Person
46 e x i s t s : > Aspec t in S o c i a l E n t i t y + S k i l l
47 }
48
49 f a c t a d d i t i o n a l F a c t s {
50 c o n t i n u o u s _ e x i s t e n c e [ e x i s t s ]
51 e l e m e n t s _ e x i s t e n c e [ Endurant , e x i s t s ]
52 }
53
54 f a c t r e l a t i o n P r o p e r t i e s {
55 i m m u t a b l e _ t a r g e t [ Employment , r e l a t i o n 1 ]
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56 i m m u t a b l e _ t a r g e t [ Employment , r e l a t i o n 2 ]
57 i m m u t a b l e _ t a r g e t [ S k i l l , i n h e r e s i n ]
58 }
59
60 f a c t r i g i d {
61 r i g i d i t y [ S o c i a l E n t i t y , Endurant , e x i s t s ]
62 }
63
64 f a c t a b s t r a c t C l a s s {
65 a l l w: World | w . S o c i a l E n t i t y = w. O r g a n i z a t i o n +w. Employment
66 }
67
68 f a c t r i g i d {
69 r i g i d i t y [ Person , Ob jec t , e x i s t s ]
70 }
71
72 f a c t r e l a t o r C o n s t r a i n t {
73 a l l w: World , x : w . Employment | # ( O r g a n i z a t i o n 1 [ x ,w]+ Employee1 [ x ,w] ) >=2
74 }
75
76 f a c t r i g i d {
77 r i g i d i t y [ S k i l l , Aspect , e x i s t s ]
78 }
79
80 f a c t a d d i t i o n a l D a t a t y p e F a c t s {
81 Data type = Number+Date
82 d i s j o in t [ Number , Date ]
83 }
84
85 f a c t g e n e r a l i z a t i o n {
86 Employee in Person
87 }
88
89 f a c t g e n e r a l i z a t i o n {
90 O r g a n i z a t i o n in S o c i a l E n t i t y
91 }
92
93 f a c t g e n e r a l i z a t i o n {
94 Employment in S o c i a l E n t i t y
95 }
96
97 f a c t g e n e r a l i z a t i o n {
98 A c t i v e O r g a n i z a t i o n in O r g a n i z a t i o n
99 }

100
101 f a c t g e n e r a l i z a t i o n {
102 I n a c t i v e O r g a n i z a t i o n in O r g a n i z a t i o n
103 }
104
105 f a c t g e n e r a l i z a t i o n S e t {
106 d i s j o in t [ A c t i v e O r g a n i z a t i o n , I n a c t i v e O r g a n i z a t i o n ]
107 O r g a n i z a t i o n = A c t i v e O r g a n i z a t i o n + I n a c t i v e O r g a n i z a t i o n
108 }
109
110 f a c t m u l t i p l i c i t y {
111 a l l w: World , x : w . Employee | # O r g a n i z a t i o n 2 [ x ,w] >=1
112 }
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113
114 f a c t m u l t i p l i c i t y {
115 a l l w: World , x : w . O r g a n i z a t i o n | # Employee2 [ x ,w] >=0
116 }
117
118 f a c t a c y c l i c {
119 a l l w: World | a c y c l i c [w . r e l a t i o n 1 ,w . Employment ]
120 }
121
122 f a c t a c y c l i c {
123 a l l w: World | a c y c l i c [w . r e l a t i o n 2 ,w . Employment ]
124 }
125
126 f a c t d e r i v a t i o n {
127 a l l w: World , x : w . O r g a n i z a t i o n , y : w . Employee , r : w . Employment |
128 x −> r −> y in w. h i r e s i f f x in r . ( w . r e l a t i o n 1 ) and y in r . ( w . r e l a t i o n 2 )
129 }
130
131 f a c t a c y c l i c C h a r a c t e r i z a t i o n s {
132 a l l w: World | a c y c l i c [ (w . i n h e r e s i n ) , (w . S k i l l ) ]
133 }
134
135 fun v i s i b l e : World−>univ {
136 e x i s t s + s e l e c t 1 3 [ b i r t h D a t e ]+ s e l e c t 1 3 [ s a l a r y ]
137 }
138
139 fun b i r t h D a t e 1 [ x : World . Person , w: World ] : se t Date {
140 x . ( w . b i r t h D a t e )
141 }
142
143 fun s a l a r y 1 [ x : World . Employment , w: World ] : se t Number {
144 x . ( w . s a l a r y )
145 }
146
147 fun O r g a n i z a t i o n 2 [ x : World . Employee , w: World ] : se t World . O r g a n i z a t i o n {
148 ( s e l e c t 1 3 [w. h i r e s ] ) . x
149 }
150
151 fun Employee2 [ x : World . O r g a n i z a t i o n , w: World ] : se t World . Employee {
152 x . ( s e l e c t 1 3 [w. h i r e s ] )
153 }
154
155 fun Employment1 [ x : World . O r g a n i z a t i o n , w: World ] : se t World . Employment {
156 (w . r e l a t i o n 1 ) . x
157 }
158
159 fun O r g a n i z a t i o n 1 [ x : World . Employment , w: World ] : se t World . O r g a n i z a t i o n {
160 x . ( w . r e l a t i o n 1 )
161 }
162
163 fun Employment2 [ x : World . Employee , w: World ] : se t World . Employment {
164 (w . r e l a t i o n 2 ) . x
165 }
166
167 fun Employee1 [ x : World . Employment , w: World ] : se t World . Employee {
168 x . ( w . r e l a t i o n 2 )
169 }
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170
171 fun S k i l l 1 [ x : World . Employee , w: World ] : se t World . S k i l l {
172 (w . i n h e r e s i n ) . x
173 }
174
175 fun Employee3 [ x : World . S k i l l , w: World ] : se t World . Employee {
176 x . ( w . i n h e r e s i n )
177 }
178
179 −− S u g g e s t e d run p r e d i c a t e s
180 run s i n g l e W o r l d for 10 but 1 World , 7 Int
181 run l i n e a r W o r l d s for 10 but 3 World , 7 Int
182 run m u l t i p l e W o r l d s for 10 but 4 World , 7 Int
183 run s i n g l e W o r l d for 20 but 1 World , 7 Int
184 run l i n e a r W o r l d s for 20 but 3 World , 7 Int
185 run m u l t i p l e W o r l d s for 20 but 4 World , 7 Int
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