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Abstract
Software plays an essential role in modern society, as it has become indispensable in
many aspects of our lives, such as social, business and even personal. Because of this
importance, many researchers are dedicated to study the nature of software, how it is
related to us and how it is able to change aspects in our society. It is accepted by the
scientific community that software is a complex social artifact. This notion comes from the
fact that a modern software system can be understood as the combination of interacting
elements that exist inside a computer, such as programs and data, and in our world, such
as sensors, other systems or even people, all of which are specifically organized to provide
a set of functionalities or services and so, fulfill its purposes.

A major concern in the development of modern complex software-based systems, is ensuring
that the design of the system is capable of satisfying the current set of requirements. In
this context, it is widely accepted in the scientific literature and in international standards
that the requirements have an important role in the software process. Because of that,
requirements need to be developed, refined, managed and traced to their origins, in a
controlled engineering process, to control their changing nature and mitigate risks. In order
to support these activities, we argue, based on the conceptual modeling scientific literature,
that we can use ontologies to provide a better understanding of the software systems
domain, reducing the inherent complexity and improving the requirements engineering
process.

In this work, we propose an ontology-based requirements traceability theory centered
in different types of software systems requirements. Based on that, we developed the
Reference Ontology of Software Systems (ROSS) and the Ontology of Software Defects
Errors and Failures (OSDEF). ROSS and OSDEF are domain ontologies about the
software systems that are intended to be used together and combined with other existing
ontologies, as reference models for requirements traceability. Besides, we developed machine-
readable operational ontologies, based on the reference versions of ROSS and OSDEF. The
operational ontologies are created to support an ontology-based requirements traceability
process that is based on the relationships that exist between the concepts in the ontologies.

Keywords: Software Systems, Software Requirements, Requirements Traceability, On-
tologies, ROSS, OSDEF, UFO.



Resumo
Sistemas de Software desempenham um papel essencial na sociedade moderna, pois eles se
tornaram indispensáveis em vários aspectos de nossas vidas: sociais, empresariais e até
pessoais. Por conta dessa relevância do software para a sociedade, muitos pesquisadores se
dedicam a estudar a natureza do software, como ele se relaciona conosco e como é capaz de
mudar aspectos em nosso mundo. É aceito pela comunidade científica que o software é um
artefato social complexo. Essa noção vem do fato de que um sistema de software moderno
pode ser entendido como a combinação de elementos que interagem entre si, sendo que
parte deles existem dentro de um computador, como programas e os dados, enquanto a
outra parte existe fisicamente em nosso mundo, como sensores, componentes mecânicos ou
mesmo pessoas, todos os quais são especificamente organizados para fornecer um conjunto
de funcionalidades ou serviços e, assim, cumprir seus propósitos.

Uma grande preocupação no desenvolvimento de sistemas modernos e complexos baseados
em software, é garantir que o projeto do sistema seja capaz de satisfazer o conjunto
atual de requisitos. Nesse contexto, é amplamente aceito na literatura científica e em
padrões internacionais que os requisitos de um sistema de software têm um papel crucial
durante seu ciclo de vida e por isso precisam ser desenvolvidos, refinados, gerenciados e
rastreados até suas origens, em um processo de engenharia controlado, a Engenharia de
Requisitos, para controlar sua natureza mutável e mitigar riscos ao desenvolvimento do
sistema de software. Para dar suporte a essas atividades, baseados na literatura científica
de modelagem conceitual, nós propomos a utilização de ontologias de domínio, como
modelos para um melhor entendimento do domínio de sistemas de software, reduzindo a
complexidade inerente e melhorando o processo de Engenharia de Requisitos.

Neste trabalho, nós propomos um método para utilização de ontologias de domínio
como ferramentas para rastreabilidade de requisitos de software centrado na definição de
diferentes tipos de requisitos de sistemas de software. Nós desenvolvemos a Ontologia de
Sistemas de Software (ROSS) e a Ontologia de Defeitos, Erros e Falhas (OSDEF). ROSS
e OSDEF são ontologias de domínio sobre os sistemas de software que se destinam a
serem usadas em conjunto e combinadas com outras ontologias existentes, como modelos
de referência para rastreabilidade de requisitos. Além disso, desenvolvemos ontologias
operacionais legíveis por máquina, baseadas nas versões de referência do ROSS e OSDEF.
As ontologias operacionais são criadas para dar suporte a um processo de rastreabilidade de
requisitos baseado em ontologias que é baseado nas relações que existem entre os conceitos
nas ontologias.

Palavras-chave: Sistemas de Software, Requisitos de Software, Rastreabilidade de Requi-
sitos, Ontologias, ROSS, OSDEF, UFO.
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1 Introduction

In this chapter we discuss the context in which Software Systems are inserted in
our lives, as we, as a society, become more dependent on them. We briefly examine their
properties and how researchers and practitioners have been working to better understand,
develop and manage such systems in the best possible way to support us. This context and
the possibilities of research around it are discussed as the motivation for the development
of this thesis. The chapter also presents the main objectives of the thesis, an overview of
the research method that was adopted, the related publications and the organization of
the manuscript.

1.1 Context and Motivation
Software plays an essential role in modern society, as it has become indispensable

in many aspects of our lives, such as social, business and even personal. Because of this
importance, many researchers are dedicated to study the nature of software and how it is
related to us, changing aspects in our world. It is accepted by the scientific community that
software is a complex social artifact (IRMAK, 2013; WANG et al., 2014a). This notion
comes from the fact that a modern software system can be understood as the combination
of interacting elements that exist inside a computer, such as programs and data, and in our
world, such as sensors, other systems or even people. These system elements are specifically
organized to provide a set of functionalities or services and so, fulfill its purposes (ISO,
IEC, 2017b; BOURQUE; FAIRLEY et al., 2014) as components of the software system.

Software Systems are computer-based artifacts, they are capable of existing through
time, being replicated many times and having dozens of different versions, while still
maintaining their identity (WANG et al., 2014b). A classic example of theses properties
can be observed in Microsoft Windows, an operating system that has been created over 30
years ago, received many updates and was released under many different versions, but still
maintains its identity as Microsoft’s operating system.

Despite their special properties, software systems are still artifacts, they can inherit
defects and are susceptible to failures that can range from having a small impact to being
so critical that may cause huge material and social losses. In other words, one can say that
software systems have a significant value in our society as we are heavily dependent on
them. However, as their value grows, the risks involved in their creation and maintenance
also grow (SALES et al., 2018). Because of this high-value/high-risk characteristic, many
researchers have dedicated their works to better understand and to better represent the
software domain and the artifacts that are part of it.
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Because of that, planning, building and maintaining complex/critical software
systems is not a trivial task, as software is not, by any means, a static artifact. Software
Systems change and evolve during their operation cycle (BOURQUE; FAIRLEY et al.,
2014); complexity and criticality of Software Systems are constantly growing (CHENG;
ATLEE, 2007); new functionalities and features are inserted at the same pace that obsolete
ones are removed; during a software development process (SDP) or even during system
operation, new requirements will eventually emerge, in different levels of abstraction, from
different sources and the existing ones will need to be revised, which also adds variability to
the domain. In other words, regardless of the reasons, requirements inevitably change (ISO,
2018) and as they are the foundation of a software system, the latter also change in
consequence.

Further, one of the most important properties of software systems is it inherent
complexity, because of the heterogeneity of their components, and the unpredictability
and openness of their environments. In fact, the success of a software system heavily
depends on how well it is capable to keep fulling its requirements while existing in a
changing environment (CHENG; ATLEE, 2007). Besides, requirements are not simple
entities, in the sense that they exist in different levels of granularity and refinement. In
this context, it is widely accepted in the scientific literature and in international standards
that requirements need to be developed, refined and managed in a controlled engineering
process, to control their changing nature, mitigating risks and to allow for the ability to
trace back the relations between them, their origins and to other products of the software
system domain (ISO, 2018; BOURQUE; FAIRLEY et al., 2014; GOTEL; FINKELSTEIN,
1994; RAMESH, 1998; KANNENBERG; SAIEDIAN, 2009). Requirements Traceability
emerges a supportive process to manage the relationships that exist around software
system requirements.1

In one of the oldest definitions presented in the literature, requirements traceability
(RT) is defined as “the ability to follow the life of a requirement, in both a forwards and
backwards direction” (GOTEL; FINKELSTEIN, 1994). For example, a very common case
of requirements traceability within the software systems context happens between test
cases and the requirements which they are intended to test.

Traceability between requirements and different types of software artifacts plays
a major role in system life-cycle, supporting activities such as system validation, change
impact analysis, project visibility and regulation compliance (NAIR; VARA; SEN, 2013)
and it is considered a necessary activity for software quality, even for organizations with
early stages of maturity (CMMI Institute, 2018).

Despite the benefits mentioned above, unfortunately, many organizations fail to
implement proper requirements traceability in their software projects and/or products. In
1 Requirements Traceability is discussed in Section 2.2.
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many cases a requirements traceability matrix (which is one of the main components in
traceability analysis) is created, but as the software evolves, the requirements traceability
activity is left aside in a phenomenon called traceability decay (MÄDER; GOTEL, 2012).

Traceability decay and other challenges, like poor tool support, (TUFAIL et al.,
2017) that are directly related of the Requirements traceability problem (GOTEL; FINKEL-
STEIN, 1994) have been studied and discussed in the literature by practitioners and
researches over the decades. Many proposals and techniques to support and improve the
performance of the requirements traceability process have emerged in the literature. One of
the most promising approaches suggests the utilization of reference models for supporting
requirements traceability. The purpose of a such models is to reduce the task of creating
application-specific models over a problem domain (RAMESH; JARKE, 2001). In other
words, the model is intended to represent/cover the intended domain in the best way
possible. The user of the model selects relevant parts of the reference model and adapts
them to the problem at hand, in order to configure solution that solves the problem.
However, to our knowledge, most of the models that exist in the current literature,2 are
usually incomplete, in the sense that they do not cover the whole software domain, not
considering important artifacts and entities that exist inside the software domain. Besides,
most models consider software requirements in a simplistic way, as a concept that is only
important during the development of the software system, and becomes less important as
the system enters in production and as mentioned earlier in the chapter, this notion is
considered wrong and outdated by modern standards and capability models, that consider
the existence of many types of requirements.

In this context, an approach for requirements traceability based on the utilization
of reference models needs to fulfill three requirements: (i) cover the software domain in
the best possible way; (ii) consider the existence of software requirements with different
levels of granularity and that enforce their importance over the whole software process,
not only during development; and (iii) be based on well-founded and tested conceptual
modeling theories for the development of the proposed reference model.

In order to pursue (i) and (ii) we need to understand the nature of software
systems, the importance of requirements as the foundation of the software process, their
representation as specifications and their relations with other software artifacts In their
well-know research, Pamela Zave and Michael Jackson (ZAVE, 1995; ZAVE; JACKSON,
1997; GUNTER et al., 2000) extensively discussed the subject and proposed an information
framework and a reference model about Requirements Engineering (RE) process and its
main artifacts: Requirements (R), Assumptions (A), Specifications (S), Programs (P ) and
the Machine (M) where the system exists. The reference model of RE was created to
provide a solid theory about RE and is widely known and accepted by the RE community.
2 These traceability models mentioned are discussed in Section 7.5
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Based on Zave and Jackson’s work, Wang et al. (WANG et al., 2014b; WANG et
al., 2016) presented the Ontology of Software Artifacts (OSA). OSA defines distinctions
between a set of types of existing artifacts that make up our notion of software, in its
different perspectives (computational and social) and aims to explain the ontological
nature of these artifacts in the light of Zave and Jackson’s model.

However, although Wang’s work presents an ontological analysis of the (Software)
Artifacts that are usually associated to the general conceptualization of software (e.g Code,
Program and Software System) and their properties, it does not focus on the artifacts that
are part of the software process.3 The Software System process is composed by many other
concepts that were not discussed by Wang and his colleagues, specially when we look to
Software Systems as first-class citizens for Organizations strategic plans. Besides, Wang’s
analysis is heavily focused on the further development of the concept of Assumption and
does not improve over the concept of Requirement as it represents the capabilities of a
Software System and the benchmark of its success or failure.

Due to that, we believe that Zave and Jackson’s reference model can be further
improved by considering other (Software) Artifacts that are part of the software process,
but that were not discussed by them or by Wang, in their respective works. In a simplistic
way, we intend to do that by adopting and reusing, into our work, concepts of ontologies
that conceptualize about the software systems domain.4 Furthermore, the concept of
Requirement needs to be further developed, not only as a high-level goal, as presented in
OSA, but as an essential Information Item that exists through the software process and
that can exist in many levels of abstraction.

For (iii), we consider the following information that was raised so far: (a) the previous
works of Zave & Jackson and Wang; (b) the Software Systems domain is a complex, multi-
agent, multi-artifact and multi-phase domain; (c) Software Systems are heterogeneous
artifacts, composed by elements with distinct natures that are strongly related with each
other and (d) the vital role of requirements in it (ISO, 2018; ISO, 2017; BOURQUE;
FAIRLEY et al., 2014). We argue that, based on the considerations listed above, we
can use reference ontologies (GUARINO, 1998; GUIZZARDI, 2007) to provide a better
understanding of the software systems domain, reducing the complexity and improving the
reference models originally proposed by Zave & Jackson and Wang. Reference Ontologies
are widely accepted in the literature as knowledge-supporting tools to provide semantics
for complex domains, acting as reference models and solving communication problems
and ambiguities between entities of a domain. Besides, machine readable operational
ontologies (GUIZZARDI, 2007), based on well-founded reference models, are capable to
3 Concepts that are part of ROSS and OSDEF will appear highlighted in Sans Serif throughout the text

of this thesis.
4 This subject is further discussed in chapters 4, 5 and 7.
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support requirements traceability and ontology-based reasoning on the domain of study.5

These requirements for our research were raised based on the conclusions and
research directions presented by the works of Zave, Jackson, Gunter, van Lamsweerde and
Wang, in addition with the knowledge about reference models for requirements traceability
presented in the related literature. More precisely, in his PhD thesis, Wang (2016) suggested
that the reference models produced by Zave & Jackson and by himself could be further
improved to provide a model requirements traceability. Due to that, we started our research
in the scientific literature and in international standards to understand the requirements
for such reference model. Furthermore, the intention of adopting domain ontologies about
the software process (the ontologies of SEON) and proceeding with our previous research,
but focusing in requirements traceability, was in our plans since the very beginning of this
research.

1.2 Research Hypothesis
Considering, as previously mentioned, that:

• Software Systems are complex social artifacts, that are deeply inserted and needed
in modern society;

• Software Requirements are the foundation of any software system;

• Requirements Traceability is considered a mandatory policy by many international
standards on software systems; Although it is hard to implement and to maintain,
as it tends to decay as the software system evolves through its operation.

• Ontologies have been extensively and successfully used as support tools for knowledge
representation, knowledge sharing, systems interoperability and semantic-based
reference models inside the software domain;

The research hypothesis of this thesis is:

Well-grounded domain ontologies can support semantic requirements traceability.
Reference ontologies about the software systems domain can define the important domain
concepts (entities) and the relations that exist around them. Operational ontologies can be
used as machine-readable assets that provide the support for querying over the software
artifacts data produced during the software process.

Based on the research hypothesis presented above, the focus of this work is on the
development of an ontology-based requirements traceability theory. This thesis presents
5 Reference and Operational ontologies are discussed in Section 3.
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two well-grounded ontologies about the software systems domain, the Reference Ontology
of Software Systems (ROSS) and the Ontology of Software Defects Errors and Failures
(OSDEF). These ontologies were created to be used as reference models for the software
systems domain, representing the main artifacts that are part of that domain.

ROSS is focused on different types of requirements with distinct levels of granularity
and on other artifacts that are related to them. OSDEF is focused on representing the
concepts of failures and defects that exist in the software process and that are directly
related to software change/evolution. Moreover, it is important to explain that, although
ROSS and OSDEF are complete ontologies on their own (they are not sub-ontologies of
another ontology), they are not capable to cover the entire software domain on their own,
because of its size and complexity. That is true especially for OSDEF, that was created to
conceptualize about a very specific part of the software systems domain.

Due to that, ROSS and OSDEF were designed to be integrated with other
software-related ontologies that are part of the Software Engineering Ontology Network
(SEON) (RUY et al., 2016), in order to represent other types of software artifacts.6 In fact,
our reference model and our approach for requirements traceability, which are discussed in
Chapter 7, are based on reusing concepts from ontologies that conceptualize about parts
of the software domain that are not discussed by ROSS or OSDEF. For example, if the
users desire to retrieve traces between a set of requirements, the programs that implement
them and test cases associated to those programs. they must reuse the Reference Ontology
on Software Testing (ROoST) (SOUZA; FALBO; VIJAYKUMAR, 2013) together with
ROSS, since ROoST is the ontology of SEON that conceptualizes about the software
testing domain.

1.3 Research Objectives
The main objective of this thesis is to provide a reference model for the software

systems domain that focuses particularly on requirements traceability, that allows us
to trace from low-level concepts such as programs at runtime all the way to high-level
concepts such as business requirements.

This general objective can be decomposed in the following specific objectives:

• Develop a set of reference ontologies that are able to properly represent and cover
the software system domain, by proposing new reference models and reusing existing
ones;

6 Ontologies are intended to be (re)used together and associated, based on their concepts, in ontology
networks. This concept is discussed in Chapter 3.
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Figure 1 – Overview of the Design Science Paradigm cycles (HEVNER, 2007) adapted for
the development of this research.

• Apply the knowledge from the reference models into operational ontologies, in order
to allow the implementation of ontology-based traceability;

• Demonstrate, through a proof of concept, the feasibility of a requirements traceability
based on operational ontologies.

1.4 Research Method
In this work, the research method follows the Design Science Methodology (WIERINGA,

2014). A Design Science research intends to improve the state-of-the-art through the
introduction of new and innovative artifacts and the process for creating these arti-
facts (HEVNER, 2007). The method considers three closely related activity cycles: Rele-
vance, Design and Rigor.

The Relevance Cycle starts the research and it defines the problems to be ad-
dressed/opportunities, the research requirements and the criteria for evaluating the results.
The Rigor Cycle refers to the use and generation of knowledge by connecting the design
science activities to the scientific knowledge base, experience and expertise of the par-
ticipants in a research project. Accuracy is achieved through the proper application of
existing fundamentals and methodologies (HEVNER, 2007). Finally, for the central part
of the paradigm, the Design Cycle refers to the development and evaluation of artifacts or
theories to solve the identified problems. It can be considered the heart of design science as
it is where most of the work in this paradigm is done. Moreover, it draws the requirements
for the research as inputs from the Relevance Cycle and the theories and methods for
design and evaluation of the artifacts produced from the Rigor Cycle.

Figure 1 summarizes the discussion about the design, rigor, and relevance cycles,
and highlights the main elements of each cycle in the context of this thesis.
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Regarding the Relevance Cycle, the research opportunity was to work on the
development of an ontology-based requirements traceability theory that is based on well
founded domain ontologies about the software domain. The problem, perceived during
a related research about requirements management is that requirements traceability, as
a support process, has a considerable positive impact on the development of software
systems. However, it is hard to implement and even more to maintain it, as the software
system changes in its existence. Additionally, many proposals that exist in the literature
about “semantic requirements traceability” are based on models that adopt very little
formalism.

In order to achieve the objectives presented in the previous section and to de-
velop de domain ontologies7 necessary for this work following the rigor required for the
Design Science paradigm, the domain ontologies proposed in this thesis are created and
evaluated based on the ontology engineering method SABiO, Systematic Approach to
Build Ontologies (FALBO, 2014). SABiO was chosen as the ontology engineering method
for this research because: (i) it was created specifically for the development of domain
ontologies; (ii) it has been successfully applied in the development of ontologies in the
Software Engineering, and Requirements Engineering area, which the main research field
of this thesis; and (iii) because it acknowledges the importance of utilization of foundation
ontologies as base for the creation of domain ontologies. SABiO is properly presented and
explained in Section 3.4.

Furthermore, the knowledge base adopted is based on the scientific literature and
in international standards and capability models that are widely accepted and used by
practitioners around the world.

More precisely, the part of the knowledge related to requirements traceability used
for the development of this research is based on the results of two systematic literature
reviews (SLR) (KITCHENHAM; CHARTERS, 2007) about requirements traceability. The
first one was conducted by Nair, Vara and Sen (2013) and the second one by Tufail et al.
(2017). Mapping studies were used to obtain an overview perspective over the requirements
traceability literature and to identify the sub-areas of the research domain, including the
most relevant papers.8

The part that is related to ontologies in software engineering is directly related
to previous works. This research is an extension of the work developed in (DUARTE
et al., 2018), where we proposed the Software Ontology (SwO) and Reference Software
Requirements Ontology (RSRO), reference ontologies about the software domain. Because
of that, the research conducted for this thesis is based on the same international standards
and scientific works, such as, ISO 12207 (ISO, 2017), ISO 29148 (ISO, 2018), Zave
7 Ontology definition, types and uses are discussed in Chapter 3.
8 Both SLRs are further discussed in Section 2.2.
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and Jackson’s work and the Unified Foundational Ontology (UFO) (GUIZZARDI, 2005;
GUIZZARDI, 2007; GUIZZARDI; FALBO; GUIZZARDI, 2008; GUIZZARDI et al., 2013).

We believe that this knowledge baseline is solid to support the research that is
being conducted, as the knowledge and results generated by this research are relevant and
contribute to the growth of that base.

For the Design Cycle, the main artifacts produced in this thesis are the two domain
ontologies, ROSS and OSDEF, created to improve the reference models that already
existed in the literature, proposed by Zave, Jackson and Wang. Additionally, ROSS and
OSDEF intend to fill a conceptual gap that exists in SEON9.

Regarding evaluation, both ontologies were evaluated through ontology verification
and validation techniques proposed by SABiO. Furthermore, as a proof of concept, we
also performed an empirical evaluation of the capability of ROSS and OSDEF to be used
as tools for requirements traceability using data of an ATM System prototype.

1.5 Published Work
This Section presents the published works related to this thesis.

• Duarte, Bruno Borlini; Guizzardi, Giancarlo; Guizzardi, Renata; Falbo, Ricardo de
Almeida; Souza, Vítor E. Silva. Ontological foundations for software require-
ments with a focus on requirements at runtime. Applied Ontology, p. 73-105,
2018.

In this first paper, we presented the Software Ontology (SwO) and the Reference
Software Requirements Ontology (RSRO) and started the discussion about the
relations between Requirements and Programs, in the context of the Software
Systems Domain. SwO and RSRO are discussed in Section 3.5;

• Duarte, Bruno Borlini; Guizzardi, Giancarlo; Guizzardi, Renata; Falbo, Ricardo
de Almeida; Souza, Vítor E. Silva. Towards an ontology of software defects,
errors and failures. In: International Conference on Conceptual Modeling (ER).
Springer, Cham, p. 349-362, 2018.

For the second paper we presented OSDEF and discussed Failures, Defects and Errors
in the context of the software systems domain. OSDEF was created to explain the
ontological nature of the concepts that are usually overloaded in the literature as
“software anomalies”. OSDEF draws knowledge from a well-know ontological pattern
of Events presented in UFO-B to conceptualize about this very specific part of the
Software Systems domain;

9 SEON is presented in Section 3.5
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• Duarte, Bruno Borlini; Guizzardi, Giancarlo; Guizzardi, Renata; Falbo, Ricardo de
Almeida; Souza, Vítor E. Silva. An ontological analysis of software system
anomalies and their associated risks. Data & Knowledge Engineering (DKE),
Elsevier, v. 134, p. 101892, 2021.

Finally, we presented ROSS, an ontology that reuses SwO and RSRO to extend Zave
and Jackson’s work over the importance of requirements for the software systems
domain. ROSS was created to be the backbone ontology for our ontology-based
requirements traceability approach.

1.6 Organization
The remainder of this thesis is structured as follows:

Chapter 2 summarizes the baseline knowledge related to this work. First, we discuss
the Requirements Engineering field. After that we focus on the Requirements Traceability
research.

Chapter 3 discusses the ontological foundations adopted in this work. First we focus
on UFO (GUIZZARDI, 2005; GUIZZARDI, 2007; GUIZZARDI et al., 2013), the founda-
tional ontology used to ground ROSS and OSDEF. Second, we present SABiO (FALBO,
2014), the ontology engineering method adopted for the development of both ontologies.
Lastly, we present SEON (RUY et al., 2016) the Software Engineering Ontology Network
that connect several domain ontologies that are directly related to our proposal.

Chapter 4 presents ROSS, the Reference Ontology of Software Systems, the first
contribution of this thesis.

Chapter 5 presents OSDEF, the Ontology of Software Defects, Errors and Failures,
the second contribution of this thesis.

Chapter 6 presents the Evaluation processes for both ROSS and OSDEF, based on
the normative defined by SABiO.

Chapter 7 presents our approach for requirements traceability based on domain
ontologies. The approach uses operational versions of both ROSS and OSDEF, that are
based on the reference models presented in the previous chapters, as tools for the execution
of SPARQL queries (W3C, 2013) over the data of an ATM Simulation System.

Chapter 8 presents the conclusions of this thesis, revisits its main contributions
and outlines directions for future research.
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2 Baseline

This chapter presents concepts and proposals in both Requirements Engineering
and Requirements Traceability domains that were relevant for the development of this
thesis.

The chapter is structured as follows: Section 2.1 presents an overview of the
Requirements Engineering domain focused on the development of Software Systems.
Section 2.2 discusses Requirements Traceability. Section 2.3 summarizes the chapter.

2.1 Requirements Engineering for Software Systems
Requirements are the foundation and the building blocks of any software system

project, since they are the basic knowledge for the other phases of the software process, such
as design, coding and testing (LAMSWEERDE, 2000). However, poorly specified/missing
requirements are recurrently recognized as a major cause of problems in software systems
projects, such as exceeded costs, failure to meet client’s expectations and project delivery
delays (BOURQUE; FAIRLEY et al., 2014). Besides that, software systems are constantly
growing in size and in complexity, which makes the requirements problem (BELL; THAYER,
1976) a bigger concern and a constant research challenge (LAMSWEERDE, 2009).

Requirements Engineering (RE) is a systematic and interdisciplinary effort that
mediates between the domains of the client, the stakeholder that acquires or procures a
product or service, and the supplier, an organization or individual that enters into an
agreement with the client for the development of a product or service (ISO, 2018). RE
is extensively discussed in international standards (ISO, 2018; ISO, 2017) and in the
scientific literature (ZAVE, 1995; LAMSWEERDE, 2000), that are focused on promoting
a better understanding and scientific advances of the activities of discovering, eliciting,
developing, analyzing, verifying (including verification methods and strategy), validating,
communicating, documenting and managing requirements.

However, if based only on this definition, one can understand requirements as simple
and static artifacts, that are created early in a software system development process and
only used when needed, a conclusion that is far from the truth. The fact is that the term
requirement itself is not consistent in the software industry. In some cases, a requirement
is simply an abstract statement about a desire of service that a system should provide. At
the other extreme, it is a detailed, formal definition of a system function (SOMMERVILLE,
2016). In other words, the term requirement is loosely used to refer to different levels of
formality.
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Moreover, as they are critical, requirements are also complex entities: (i) require-
ments can be represented in many forms and in different levels of abstraction (ISO, 2018);
(ii) requirements are not independent entities since they are directly related to many
other artifacts produced during the software process, including other requirements. (SOM-
MERVILLE, 2016); and (iii) requirements change and (need to) evolve through the
existence of a Software System, as the environment around them also changes (BOURQUE;
FAIRLEY et al., 2014; LAMSWEERDE, 2000). Obviously, from a project management
perspective, it would be desirable to freeze the original set of requirements during the
entire development process of a software system and even later during system operation,
in order to avoid delays and more costs. However, in practice, this is rarely possible. This
happens because requirements are not static entities as their understanding keeps evolving
during the software development process (ISO, 2018). In fact, changes in the requirements
are necessary for a Software System to evolve and to keep producing the desired results,
since it is expected that the environment where the software system exists will suffer
changes.

In other words, during the software process and operation, new requirements will
emerge and old ones will need to be changed or even removed. This process is expected
and it directly impacts on software system’s features and functionalities, in order to keep
it relevant (LEHMAN; RAMIL, 2001).

Within this context, many authors dedicated their research to discuss this require-
ments problem and to propose models, frameworks and theories to better understand
requirements, their changing nature and their connection with other artifacts that are
produced during the software process.

In what follows, we describe research that discussed and proposed the definition
and utilization of reference models for Software Systems. The works are presented in
chronological order, for better understanding, starting from Zave and Jackson’s work,
which is considered, by many scholars, as a landmark of the requirements engineering
research field. Besides, it is important to explain that these works were adopted and used
as a source of knowledge for the development of ROSS and OSDEF and thus, are a relevant
background for the work that is being described here.

2.1.1 Zave and Jackson’s model

In their work (JACKSON; ZAVE, 1995; ZAVE; JACKSON, 1997; GUNTER et
al., 2000), Zave, Jackson and Gunter discussed four common problem areas of RE and
presented a set of definitions and a formula of relevant RE elements to tackle them:
S, K ` R.

The formula states that in order to fulfill a set of requirements (R), an implementable
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specification (S) associated with relevant domain knowledge (K) is necessary. By their
definitions, a requirement (R) is a high-level prescriptive statement about a desired effect
that exists only in the environment1 where the system-of-interest exists. In other words,
a requirement should contain nothing but information about the environment and that
everything else should be understood as “implementation bias”. For example, considering
an ATM Software System, any type of description about how the the requirement The ATM
must be able to communicate with the bank server should be implemented, is considered
implementation bias. On the other side, the specification (S), which is derived from the
requirement, is responsible for describing the behavior of the machine.2

Finally the domain knowledge (or domain assumptions) (K) are the elements
responsible to bridge the gap between the requirements and its specifications. In this
context, Zave and Jackson emphasize that although every SE project will have unique
properties and different emphases, the formula and the terminology presented will work with
all of them, as the relation between requirements, specifications and domain assumptions
does not change. Moreover, they also emphasize that incorrect assumptions will have a
serious effect on the satisfaction of the requirements, as the specification that is derived
heavily depends on these assumptions. In fact, the importance of assumptions for the
Requirements Engineering research and for Software Systems domain were already being
discussed by Lehman in his Principle of Software Uncertainty (LEHMAN, 1989; LEHMAN,
1996) as a part of the theory of the Laws of Software Evolution.

Few years later, Gunter et al. (2000) improved the existing formula by adding two
new concepts: the machine (M), as the programming platform and the program (P ), as the
artifact that is intended to implement the specification inside a computer, creating the
WRSPM reference model. Besides that, the model further discussed the conceptualization
around the environment in which the Software System exists. Figure 2 depicts the five
artifacts and the portions of the world in which they exist.

This representation, and the knowledge around it, developed in previous works (JACK-
SON; ZAVE, 1995; ZAVE; JACKSON, 1997), was proposed to be used as a reference
model and a basic framework for RE, providing a discussion about the key elements of the
RE process, their main attributes and their relations. Moreover, it is important to explain
that the reference model focuses on the Specification artifact, as it is in the center of the
model, existing in the environment, but also having to respect the same basic properties
of the program. In other words, the specification S must be created in the environment in
a way that it follows a set of rules that allows it to be implemented in a program P , for a
1 The concept of environment used by Zave and Jackson denotes a portion of the real world in which

the system-of-interest will operate to produce a result.
2 The concept of Machine originally presented refers to the computational artifact being built. Zave and

Jackson decided to avoid the term “System” as they considered it too generic, in the sense that an
aircraft, or even a living organism can be considered a system.
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Figure 2 – Gunter, Zave and Jackson’s RE reference model presenting the 5 key artifacts
for the RE process (GUNTER et al., 2000). W represents the knowledge about
the World, R represents Requirements of the System; S denotes the Specification
of the System; P is Program that is the implementation of S for M, the Machine.

machine M .

2.1.2 van Lamsweerde’s model

Lamsweerde (2009) extended Zave and Jackson’s work by focusing on the relation
between the problem world, which needs a solution, and the machine, which is created to
provide it. He suggests that in order to make sure that a machine solution will correctly
solve a problem, this machine should be properly anchored on the problem world,3 which
needs to be correctly delimited, structured and characterized. In order to do that, the
types of statements about the world should be understood.

Figure 3 depicts van Lamsweerde’s extended classification among the types of
statements that exist in the problem world. An expectation is a prescriptive assumption
about a specific behavior of a member/component in the problem world that the machine
cannot control. For example, an operator must manually input new calculation parameters
every time some change happens in the Software System’s domain. In this case, a require-
ment can only be fulfilled if the operator inputs the new calculation parameters. Domain
hypotheses are descriptive assumptions about the problem word, in the sense that they do
not prescribe any expected behavior from a person/element in the problem world. Domain
hypotheses are not expected to hold every time, on the other side, Domain properties are
descriptive statements that are based on natural laws, that are expected to hold invariably.

Based on these new definitions, van Lamsweerde presented an extension of Zave
and Jackson’s original formula: S, K ` R which was extended to: S, K, D ` R. The
new formula states that the requirements will be satisfied whenever the specification is
met, provided that the assumptions and domain properties hold. Compared to Zave and
Jackson’s work, van Lamsweerde’s proposal focus on the types of statements that exist in
3 The problem world is generally a complex organizational and technical world, grounded on rules and

constraints that will directly affect the machine solution.
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Figure 3 – van Lamsweerde distinction among the types of statements in the problem
world (LAMSWEERDE, 2009).

the problem world to decompose the concept of assumption, defining that an Expectation is
a prescriptive assumption while a domain hypotheses is a descriptive assumption. Moreover,
van Lamsweerde proposes the concept of domain property, which is used to extend the
original formula from (JACKSON; ZAVE, 1995), as an intrinsic property of the domain,
which is not mutable. However, by doing that, he does not take into account the formula
proposed in (GUNTER et al., 2000).

2.1.3 Wang et al.’s model

Most recently, Wang et al. (2014b) presented the Ontology of Software Artifacts
(OSA), which is depicted in Figure 4, as a reference ontology (GUIZZARDI; FALBO;
GUIZZARDI, 2008) founded on the concepts and definitions of Requirement, Specification,
Machine and Program presented by Zave and Jackson and grounded on DOLCE (MASOLO
et al., 2003). OSA reuses these definitions and the axiomatization of the foundational
ontology DOLCE, to create an ontology about the artifacts that constitute our notion of
software and their essential properties.

A Program, as in Zave and Jackson’s definition, is an Artifact that intends to
implement a Program Specification, if a set of Machine Assumptions hold. A Software System
intends to implement a Software System Specification, which presupposes a set of Domain
Assumptions. A Software Product is the final artifact presented in OSA, which is composed
by Software Systems and have a set of High-level Requirements as their essential property.
The ontology is built so the elements depicted in purple (darker background) are essential
properties and part of the identity criteria of the artifacts presented on left side of the
figure, in yellow (lighter background) and these essential properties depend on Assumptions
about the behavior of the machine and the world.

A couple of years later, Wang et al. (2016) presented the concept of Internal
Specification, which refers to a specification that constrains the phenomena happening
inside the machine. This concept was created as a distinction from the original concept of
specification presented by Zave and Jackson (called External Specification by Wang), which
is supposed to exist at the interface between the external world and the machine, being
a implementable refinement of the Requirements. They also present a deeper discussion
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Figure 4 – Ontology of Software Artifacts (OSA) (WANG et al., 2014b).

over the concept of Assumption, suggesting the distinction between Assumptions-Used and
Assumptions-Needed, as this elaboration of the original concept has practical implications
on how assumptions handled during software process. For example, in the case of a failure
in a Software System because of an Assumption-Used by the developers that does not hold
when the Software System is in operation.4

2.2 Requirements Traceability
Traceability is defined as the degree to which a relationship can be established

among two or more logical entities, especially the ones having a predecessor-successor or
master-subordinate relationship to one another (ISO, IEC, 2017a).

Requirements traceability and the ability to improve software systems quality and
management are being recognized and highlighted in the scientific literature for almost
25 years (GOTEL; FINKELSTEIN, 1994; RAMESH et al., 1995; RAMESH et al., 1997;
PANDANABOYANA et al., 2013).

From a Configuration Management5 perspective, Requirements Traceability im-
proves project management, maintenance, visibility and change impact analysis capabilities
for software systems. These benefits come from the fact that Requirements Traceability
4 The preliminary ontology of assumptions is reused for the development of ROSS and is presented in

Section 3.5.4.
5 Software Configuration Management (SCM) is a support process, with the objective of identify and

systematically control the configuration of a system, controlling changes and maintaining the integrity
and traceability of the software system (BOURQUE; FAIRLEY et al., 2014).
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makes it easier to determine the software artifacts that need to be updated to fulfill a
request for change (KANNENBERG; SAIEDIAN, 2009). In this context, requirements
traceability is very important support process for the software system evolution.

Because of these benefits, capability models (CMMI Institute, 2018) and interna-
tional standards (ISO, IEC, 2017a; ISO, 2018) suggest that the ability of being able to
trace back mutable requirements and to relate them to other artifacts in the software is
indispensable for high-quality software products.

Requirements are a top priority artifact and the foundation of any software project,
however, as we have showed in the previous section, many authors emphasize the importance
and relevance of many others software artifacts for the software process. These artifacts are
obviously related to software requirements by relations that can vary from a simple indirect
association to a more relevant existential dependency relation. In fact, the relations that
exist between the requirements themselves and other artifacts in the software process and
their classification are a relevant part of the requirements traceability research field.6

One of the most accepted classifications proposes a separation between horizontal
and vertical requirements traceability (LINDVALL; SANDAHL, 1996). The former refers
to the activity of tracing the relations that exist between elements in different models.
For example, a test case TC001 can be traced back to a requirement FR001 in a software
project.7 The latter refers to tracing the relations between elements in the same model.
For example, the FR001 used in the previous example can also be directly related to other
requirements.

Figure 5 presents an overview of the requirements traceability domain and depicts
the concepts of horizontal and vertical traceability that were discussed above.

However, building and maintaining an efficient mechanism that provides traceability
is not an easy task. Several studies (GOTEL; FINKELSTEIN, 1994; KANNENBERG;
SAIEDIAN, 2009; REGAN et al., 2012; TUFAIL et al., 2017) have been presented over
the years addressing major and most common problems for establishing and maintaining
an effective requirements traceability policy. Problems like traceability decay, systems
complexity, poor tool support, the lack of communication between stakeholders, poor data
integration and even the amount of data generated are still identified as challenges to
overcome in this area.

Besides, depending on the maturity level of the organization, traceability links
are physically stored in spreadsheets or text-based documents, where such links tend to
deteriorate during a project as time-pressured team members fail to update them. Another
6 The relations between software requirements and other artifacts are a important part of this work and

are extensively discussed in the ontology presented in Chapter 4.
7 In this context, the test case is historically dependent on the requirement. This type of dependence is

well-known and discussed in the ontology literature.
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Figure 5 – Requirements Traceability Overview (KANNENBERG; SAIEDIAN, 2009).

potential solution exists in requirements management tools, such as IBM’s Rational
RequisitePro, however, these tools are often very expensive, making them a prohibitive to
small organizations.

Because of that, unfortunately, many organizations fail to implement effective
traceability practices either due to the aforementioned difficulties or because they suc-
cumb to the misconception that traceability practices return little value for the effort
involved (CLELAND-HUANG et al., 2007). In his research, Ramesh (1998) states that
environmental, organizational and technical factors can influence the implementation of
requirements traceability positively and negatively, inside an organization.

Figure 6 depicts the results of Ramesh’s research about these factors. Ramesh
concludes that many organizations tend to face requirements traceability-related tasks as
an overhead inside the software process(for example, as a mandatory policy to achieve
CMMI level 2), because of that, they tend to abandon it before starting to notice the
benefits. On the other side, organizations that are committed to the traceability process
by seeing it as an opportunity for improving project management, can find its benefits
and improve their processes.

Ramesh also suggests that organizations shall define their needs and goals towards
the requirements traceability process. In other words, they shall define how much effort
and commitment they should apply in the traceability process. Ramesh defines two types
of traceability application: a low-end traceability user tends to use simple traceability
schemes to model dependencies among requirements. A high-end traceability user employs
detailed schemes, capturing traces between requirements and many other related artifacts.
High-end users also tend to use traceability information in more elaborated ways, applying
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Figure 6 – Factors Influencing Requirements traceability in practice (RAMESH, 1998).

reasoning techniques over the traceability data.

Besides, since every organization is unique in its processes, workflows, products
and resources, they have to create or adapt a method that is viable and cost-effective for
the needs of the organization.

Alonso-Rorís et al. (2016) define that for a proper traceability mechanism, it is
essential to establish a formal scheme for describing the information in a semantic model and
that the application of technologies from the Semantic Web (BERNERS-LEE; HENDLER;
LASSILA, 2001) enables the use of semantic traceability techniques, facilitating the
management of complex relations, querying and reasoning over the data items that need
to be traced. This point of view is also presented by Espinoza and Garbajosa (2011),
which emphasize the use of semantics as key issue regarding traceability. In the same line,
Ramesh and Jarke (2001) argue that, to be useful, traceability must be organized in a
proper modeling framework.

Because of these characteristics and challenges to overcome, many researchers
have focused on the development of reference models for requirements traceability as a
solution that provides a picture of the reality and can be adopted based on the needs of
the organization.
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Reference models are prototypical models created over a specific domain with the
purpose of significantly reducing the task of creating application-specific models and/or
systems. The user of the reference model selects relevant parts of the model, adapts them
to the problem at hand, and configures an overall solution from these adapted parts. In
other words, reference models can be understood as a representative abstraction of a
well-established knowledge inside a domain (RAMESH; JARKE, 2001).8

Besides, it is also important to understand that more standardized domains, such
as the modern software systems domain, can benefit more from the desirable properties of a
formalized reference model. These models should be developed based on the best practices
and the condensed knowledge and later refined based on prototypes and industrial case
studies.

In order to support our research on reference models for requirements traceability
and to cover as much of the literature as possible, we explored the results of Systematic
Literature Reviews (SLRs) (KITCHENHAM; CHARTERS, 2007; KITCHENHAM; BUD-
GEN; BRERETON, 2010) focused on the Requirements Traceability research field that
were performed first by Nair, Vara and Sen (2013) and more recently by Tufail et al. (2017).
SLRs are useful because they provide a well-defined and objective procedure for identifying
the nature and extent of the literature that is available to answer a particular research
question (BUDGEN et al., 2008). Besides, they compile information and the underlying
knowledge about the topic that is being researched and can support the identification of
gaps in the current research (KITCHENHAM; CHARTERS, 2007). For this thesis we
reviewed the results of both SLRs, focusing on papers that proposed reference models
for Requirements Traceability. Additionally, we performed the snowballing technique (i.e.,
search into the references of the papers considered relevant for the the work in progress)
to find other related papers.

Within the results of these studies, the work of Ramesh and Jarke (2001) is
considered as one of the most relevant and a precursor of model-based traceability research.
They propose that the efficiency and the effectiveness of traceability heavily depends on
system of objects and traceability links types that are utilized. Moreover, authors also
point out to the fact that reference models can be built based on different aspects of
the requirements traceability field. For example, their reference model for requirements
traceability is focused on the Objects (Artifacts) that exist in the software process, while the
Semantic Model proposed by Alonso-Rorís and colleagues is focused on the characterization
of the traceability process domain of types of traces.

The approach proposed by Zhang et al. (2014) focuses only on the dependencies
that exist between requirements. They reuse Pohl’s Requirements Dependency Model and
Dahlstedt’s Requirements (Inter) dependency model (DAHLSTEDT; PERSSON, 2005) to
8 The concept of ontologies being developed and used as domain reference models is discussed in Section 3.
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create a new one and use it as the reference model for a requirements traceability in a
small industrial-based case study.

Ahn and Chong (2006) proposed a meta-model for feature-oriented requirements
traceability and an overview of a feature-oriented requirement tracing process. Their
meta-model defines priorities for features and relates them with some types of software
artifacts.

Serrano and Leite (2011) proposed a model for requirements traceability based in
graphs, on which each edge is a trace. ITrace is focused on modeling the social networks
and interactions of the software process. The model is divided in three graphs: A Graph
of the social network and the information sources, a graph of the social interactions and a
graph of the RE artifacts evolution.

Besides these, many other studies9 can be found in the literature with different
approaches for the development of a traceability mechanism that, based on models, intended
to provide satisfactory results and overall process support for its users. These proposals
and others that exist in the literature are related to our ontologies to certain degree, as
they are all designed based on the utilization of reference models. However, the difference
in our proposal is in fact that it extends through the software system context, by taking
advantage of the process of reusing other software-related ontologies. Besides, the ontologies
presented in this work, ROSS and OSDEF, are committed to a foundational ontology that
defines an extensive and well-accepted conceptual modeling theory. They are also based
on the knowledge presented in international standards.

Moreover, our proposal is not focused on the definition of the concept of trace
and its sub-types. We believe that the trace between the software artifacts exists in their
relations. In other words, the information that exists in the relations between artifacts,
that are represented in ROSS and OSDEF, is the trace itself.

Finally, as a part of the requirements traceability research field, the utilization
of reference model is often adopted as a way to represent the important aspects of the
traceability process for the organization. As mentioned earlier in this chapter, requirements
tracing can provide many benefits for the software process of an organization, however it
tends to become more complex and more susceptible to errors as the software naturally
ages and changes are made. The utilization of reference models is then an attempt to
provide support for some of the choices that are made, in the sense that the organization
members have to follow the directives that are proposed in the model, at the same time, it
makes the process easier to understand.
9 Other proposals are further discussed in Section 7.5
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2.3 Chapter Summary
This chapter summarized part of the state-of-the-art of the Requirements Engi-

neering and Ontologies research that was used as background of this thesis. In Section 2.1,
we started the discussion by introducing the RE for Software Systems as a research field,
explaining the importance of requirements, their special properties and their mutable
nature.

After that, we discussed other research that are the baseline for the development
of this thesis. The first, and most important one is Zave and Jackson’s reference model
for RE, which is based on five concepts that are crucial to the Software Systems process,
namely: (i) the knowledge over the environment where a Software System exists; (ii) the
requirements of the Software System; (iii) the specification that is created as a refinement
of the requirements, to describe them; (iv) the programs that implements a specification,
based on a programming platform; and (v) the programming platform itself, that provides
a basic set of rules and functions for the software to be executed and to operate as a tool.

Based on Zave and Jackson’s work, van Lamsweerde and Wang dedicated their
works to improve the original formula, presented by Zave and Jackson in the middle of
the nineties (S, K ` R) and the reference model. van Lamsweerde focused on the relations
between the (problematic) world, the machine (a software-based system) that is created
to solve it. He also discussed the domain properties and assumptions that exist between
them. On the other side, Wang et al. performed an ontological analysis of the domain and
proposed another extension of the reference model, by differentiating between internal
and external specifications and between domain and machine assumptions. Wang et al.
proposed OSA, the Ontology of Software Artifacts, that is directly related to ROSS and
OSDEF, the ontologies proposed in this thesis, as they are all based on Zave and Jackson’s
work.

We also discussed the requirements traceability literature, focusing on the utilization
of reference models as tools for the development of a requirements traceability approach. For
this, we adopted, as a starting point, two SLRs that were recently performed. Traceability
research has greatly focused on requirements traceability, aiming at studying how to
describe and follow the life of a requirement, in both forward and backward directions.
Requirements traceability has been demonstrated to provide many benefits to organizations
that make proper use of traceability techniques. This is why traceability is an important
part of many standards for software development, like ISO 26559 (ISO, IEC, 2017a) and
CMMI. In spite of the benefits that traceability offers to the software engineering industry,
its practice faces many challenges. These challenges can be identified under the areas of
cost in terms of time and effort, the difficulty of maintaining trace ability through change,
different view points on traceability held by various project stakeholders, organizational
problems and politics, and poor tool support.
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3 Ontological Foundations

This Chapter presents the ontological foundations that were used as the ground
theory for this thesis. Section 3.1 discusses the concept of ontology. Section 3.2 presents
UFO, the foundational ontology adopted in this work. Section 3.3 presents an overview
of the Semantic Web and discusses the Linked Data technologies that were used in this
thesis. Section 3.4 presents SABiO, the ontology engineering method adopted to create
ROSS and OSDEF, the ontologies developed in this work. Section 3.5 presents SEON, the
Software Engineering Ontology reused for the development of both ROSS and OSDEF.
Finally, Section 3.6 summarizes the chapter.

3.1 Ontologies
Presently, one of the most accepted definitions of ontology, and the one used

as reference in this thesis, is the one by Borst and Borst (1997) as a formal, explicit
specification of a shared conceptualization. However, the concept of ontology and the
scientific interest about it as research field are not new. The first ontology, in the sense of a
theory about the kinds of existence, was created by Aristotle, in his work Metaphysics and
Categories, as the science of being qua being. By this definition, Ontology (with a capital
“o”) is a branch of Metaphysics (a discipline of Philosophy) that can be understood as
the study of real objects and its most general features. However, the term “ontology” was
created only in the 17th century, by the philosophers Rudolf Gockel and Jacob Lorhad.
More recently, at the beginning of the 20th century, Edmund Husserl defined Formal
Ontology as an analog of Formal Logic, a discipline that aims to develop a system of
general, domain-independent set of categories that can be used in the development of
scientific domain-specific theories (GUIZZARDI, 2007).

Although the concept of ontology has a clear philosophical nature, it has been
recognized as a promising research field in areas of Computer Science, such as Artificial
Intelligence, Software Engineering, Linked Data, Database Design, Knowledge Engineering
and information integration (GUARINO, 1998). In this context, ontologies can also be
used as conceptual models; engineering artifacts, that are designed for a specific purpose,
such as reducing conceptual ambiguities and false agreements, improving knowledge repre-
sentation, supporting system interoperability, etc., and are represented in ontology-based
languages (GUIZZARDI, 2007), which are specifically created to provide a appropriate
representation of a conceptualization.

Figure 7 depicts the relations between Conceptualization, Modeling Language and
their instances, Abstraction and Model, respectively. Conceptualization and Abstractions
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Figure 7 – Relations between Conceptualization, Modeling Language, Abstraction and
Model (GUIZZARDI, 2007)

Figure 8 – Examples of (a) Lucid, (b) Sound, (c)Laconic and (d) Complete mappings
adapted from (GUIZZARDI, 2005).

are represented with clouds because they are immaterial entities that exist in the mind
of an user or a group of users of an language. This means that for a communication
do be precise and unambiguous, it is necessary that the language represents the same
conceptualization for the participants of the conversation (GUIZZARDI, 2007).1

Figure 8 presents these properties in examples of mappings between elements
of an Abstraction and a Model. A Lucidity: A language L is lucid to a domain D iff
every modeling primitive in the language represents at most one domain concept in
the ontology O; Soundness: A language L is sound to a domain D iff every modeling
primitive in the language has an interpretation in terms of a domain concept; Laconicity:
A language L is laconic to a domain conceptualization iff every concept in Abstraction
of that domain conceptualization is represented at most once in the meta-model of that
language; Completeness: A language L is complete to a domain D iff every concept in the
ontology O of that domain is represented in a modeling primitive of that language;

Based on these properties, a language based on an existing ontology, as its ontolog-
1 Guizzardi (2005) deeply discusses a set o properties that should be guaranteed for an isomorphic

mapping between an abstraction and a model.
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Figure 9 – Relation between UFO, as a conceptualization and OntoUML, as a modeling
language

ical commitment,2 describes a set of constructs that aim to approximate the language to
its intended meaning (GUARINO, 1998), through the formal axioms that exists in the
ontology underlying it. In other words, ontologies are specially useful to provide real-world
semantics for conceptual modeling languages as they provide a worldview for the language
abstract semantic to follow. For example, OntoUML is an ontology-based conceptual
modeling language that is grounded on the UFO ontology (GUIZZARDI, 2005), in the
sense that OntoUML commits to the world view and to the formal axioms that are defined
in UFO.

Figure 9 is adapted from Figure 7 to make explicit the relation between UFO and
OntoUML

Considering the information presented above, one can deduce that different types
of ontologies should exist, based on the types of domains which they represent and on
level of formalism adopted by them. There are several different classifications of ontologies
in the scientific literature. These classifications are usually based on their specificity level
or in their building purpose. Figure 10 presents the classification proposed by Guarino
(1998), which separates ontologies based on their degree of specificity and is one of the
most widely-accepted classification by the scientific community.

Top Level Ontologies (or Foundational Ontologies) are the most general ontologies,
that describe concepts that are domain-independent such as objects, time, space, matter,
events and the fundamental types of relations between these concepts. Domain Ontologies
describe concepts that are related to a specific domain, such as Requirements Engineering
or Economics. Domain Ontologies are usually created by specializing/reusing concepts
from a pre-existing top-level ontology. Task Ontologies, as the name suggests, represent
ontologies that are created over generic tasks or activities, such as selling or building, that
2 The ontological commitment K, of Language L with vocabulary V, represents that L commits to a

intensional interpretation of a conceptualization C that relates a world structure with the elements
of L. In other words, it denotes the result of the commitment (of the language) with an underlying
conceptualization.
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Figure 10 – Types of Ontologies according to their to level of generality, presented
in (GUARINO, 1998). Arrows represents specialization relationships.

traverse multiple domains. Application Ontologies describe concepts about both a specific
domain and the tasks and activities related to it. Because of that, Application Ontologies
usually specialize both domain and task ontologies.

In a didactic representation of Guarino’s classification, Figure 11 depicts the on-
tologies that are proposed and reused in this work. At the beginning of the continuum that
represents the foundational level, we have UFO-A (GUIZZARDI, 2005), UFO-B (GUIZ-
ZARDI et al., 2013) and DOLCE (MASOLO et al., 2003), ontologies that are very
generalist, in the sense that they are focused on concepts about the world and that are
created to be reused by other ontologies. Following the continuum to the right, UFO-C
is also considered a foundational ontology, although more specific, as it focuses on social
aspects of the world, and reuses concepts that are originally part of UFO-A and UFO-B.
Core Ontologies are the ones that are not domain independent but they tend to focus
on macro-domain, for example, the Software Process Ontology (SPO) (BRINGUENTE;
FALBO; GUIZZARDI, 2011a) is considered a core ontology of the software domain, as
it was reused for the development many other ontologies, however it is still less generic
than an ontology about processes in a domain-independent way. Besides, core ontologies
are usually developed grounded on a foundational ontology with the specific purpose of
being reused by domain ontologies. ROSS and OSDEF are considered domain ontologies
because they are much more specific that the other ones and also reuse concepts from
foundational (UFO) and core ontologies (SPO).

Based on these classification, the fact is that Figure 11 is represented as a continuum
because the boundaries between the categories are fuzzy and it is difficult to drawn an
strict line to separate when an ontology is too generic to be a domain ontology or, too
specific to be a core ontology. For example, on one side, ontologies like UFO-A, UFO-B
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Figure 11 – Representation of ontologies generality level as a continuum. Adapted
from (FALBO et al., 2013).

and DOLCE are clearly foundational ontologies, as they are genuinely domain independent.
On the other side, an ontology like SPO can be understood as a domain ontology since it
is focused on the software process however, since many more specific domain ontologies
about parts of the software process have been built reusing SPO, it can also be seem
as a core ontology. In practice, a domain ontology is not, necessarily at the end of the
continuum, as sometimes a even more specific domain ontology can be created reusing the
concepts of the first one and both, core and domain should be grounded on foundational
ontologies.

Another widely accepted classification that is orthogonal to the one proposed
by Guarino classifies ontologies based on their use: Reference Ontologies are heavily
axiomatizated ontologies that are created to represent the intended domain as best as
possible. They are usually created with languages that are focused on expressiveness and
adequacy to the domain. Moreover, reference ontologies are also created to be used by
humans, assisting them in their tasks. On the opposite side, Operational or Lightweight
ontologies are based on reference ontologies, however, they are created to be machine
processed, with languages that focus on computational properties, such as OWL or
RDF (GUIZZARDI, 2007). For this work, we adopt both classifications that were discussed,
as we intend to propose a domain reference ontology about requirements of software-based
systems that is based on the foundational ontology UFO and also to implement it using
an operational ontology language.

3.2 UFO
The Unified Foundational Ontology – UFO (GUIZZARDI, 2005; GUIZZARDI,

2006; GUIZZARDI, 2007; GUIZZARDI et al., 2013) is a foundational ontology that was
developed based on a number of theories from Formal Ontologies, Modal Logic, Linguistics
and Cognitive Psychology.

UFO is composed of three main parts: UFO-A, an ontology of endurants, that
discusses objects, their types, compositions and relations (GUIZZARDI, 2005); UFO-B, an
ontology of perdurants, that discusses events, their compositions, their participants and
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Figure 12 – A fragment of UFO presenting the concepts that are used in this work.

relations (GUIZZARDI et al., 2013; BENEVIDES et al., 2019); and UFO-C (GUIZZARDI,
2006; GUIZZARDI; FALBO; GUIZZARDI, 2008; BRINGUENTE; FALBO; GUIZZARDI,
2011b), an ontology of social entities, that is built on top of UFO-A and UFO-B (based
on Endurants and Perdurants) and discusses agents, their actions, goals, intentions, and
commitments. Moreover, other parts of UFO have been developed, such as UFO-S (NARDI
et al., 2015a) that extends UFO-A, B and C to discuss the concept of services.

For brevity reasons, Figure 12 shows the concepts of UFO that are reused in this
thesis.3 The concepts presented are originally defined in the three main parts of UFO:
UFO-A, UFO-B and UFO-C.

In UFO, things in the world can be classified as Universals, which are types of things,
entities created to represent the general properties and aspects of something, for example,
a chair as type of object on which someone can sit. On the opposite side, Individuals are
entities that exist instantiating Universals and possessing a unique identity. For example,
Queen Elizabeth’s throne is an individual chair with unique properties. Individuals can
be concrete or abstract, depending on their nature. Concrete Individuals can be further
3 The complete model of UFO, combining UFO-A UFO-B and UFO-C has around 100 concepts, so it

becomes impracticable to represent the entire model in this format.
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classified as Perdurants/Events and Endurants.4

Events are entities with temporal parts, they happen in time accumulating temporal
parts, for example, a football game is a complex event that is composed by many other
atomic events. Besides that, Events can cause other Events (in the sense of chains of
events) and can bring about Situations, which are portions of reality that exist as a whole.
Moreover, Events are manifestations of Dispositions that inhere in Objects. For example, a
magnet has the intrinsic property (a Disposition) to attract a piece of iron that is placed
nearby.

On the other side, Endurants are entities that exist in time, they do not have
temporal parts and can be existentially-independent: a Substantial, as Queen Elizabeth (an
Agent), or her throne (an Object); or existentially-dependent: a Moment (sometimes also
called a Trope), as the headache that the queen might have in a very hot day. Moments can
be seen as properties that can only exist by inheriting in other Endurants. For example,
the red color of the leather (a Quality of the leather) on the throne, or they can have
the Disposition to be manifested because of an Event. For example, the crown has the
Disposition to fall if the queen shakes her head.

Agents are Substantials capable of performing Actions, which are intentional Events.
Goals are the propositional content of the Intentional Moments of an Agent.5 For example,
Queen Elizabeth might have the Goal that William becomes king, instead of his father,
Charles, however, Goals require self-commitment from the Agent, which means that in
order to achieve this Goal, the Queen would have to convince Charles and the other
Lords that William will be a better King. In other words, she would have to commit to
perform actions to achieve her Goal. Finally, Normative Descriptions are rules/norms that
are recognized by an Agent. For example, the British people, as a Social Agent, accept the
United Kingdom’s constitution and the laws that are created in the parliament.

Finally, UFO was chosen as the foundational ontology to ground the ontologies
presented in this thesis because it addresses many essential aspects for conceptual modeling,
providing a complete set of categories to tackle the specificity of the software domain.
Further, it has been employed, successfully, as foundational ontology for the creation of
several other software-related ontologies (BRINGUENTE; FALBO; GUIZZARDI, 2011a;
BARCELLOS; FALBO; MORO, 2010; DUARTE et al., 2018; SOUZA et al., 2013). Besides
that, UFO is the foundational ontology suggested by SABiO, the ontology engineering
method that was used to create the ontologies presented in this thesis.
4 UFO-A is focused on Endurants and UFO-B on Perdurants.
5 An Intentional Moment inheres in an Agent, in the sense that the Intentional Moment is existentially

dependent of the Agent who bears it.
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3.3 Operational Ontologies, Linked Data and the Semantic Web
The term Semantic Web, was originally created by the inventor of the World Wide

Web (WWW), Tim Berners-Lee. In fact, the development of the Semantic Web has always
been related to the traditional World Wide Web (HITZLER; KROTZSCH; RUDOLPH,
2009). Similarly to the WWW, the foundations of the Semantic Web are the technologies
that are responsible for defining the data formats that are adopted in it.

3.3.1 RDF framework and SPARQL

The Resource Description Framework (RDF) is a formal language for representing
information on the Web. RDF is a W3C recommendation,6 developed to represent data in
a flexible way, in addition to allow the automated processing of this data. Differently from
common HTML pages, which was created to be human-readable, RDF was created to be a
common language for the machine-readable Semantic Web (W3C, 2004). However, that is
not the only difference between RDF and other well-know Web languages such as HTML
and XML, as they are created in a tree structure, while RDF documents organize and
store data in a graph data model (HITZLER; KROTZSCH; RUDOLPH, 2009) of triples.
In other words, RDF data model is a graph, that can be represented by several syntax
(even XML) while XML is a syntax with a tree data model. The direct consequence of
this distinction is that XML is too permissive, an assertion can be made in many different
ways, while RDF will always follow the structure format of a triple.

RDF triples are composed by a subject, that represents the resource of which
we are talking about; a predicate/property, that denotes a relationship and defined the
information that is being expressed about the subject and an object that defines the value
of the predicate. Figure 13 presents this structure in a graph example about the birthplace
of Tim Berners-Lee, where the nodes of the graph are the subject (Berners-Lee) and the
object (London), and the arc is the predicate (birthplace). Moreover, it is important to
notice that the direction of the predicate in the graph is relevant, as it will always point
out to the object.

RDF is considered one of the foundations for the Semantic Web (HITZLER;
KROTZSCH; RUDOLPH, 2009), as it is the base for many other technologies such as
the RDF-Schema (W3C, 2014a), which is an extension of the basic RDF vocabulary,
Turtle (W3C, 2014b), a textual syntax that allows an RDF graph to be written in a
more user-friendly and compact way, adding the possibility for creation of abbreviations
for data-types. Turtle provides compatibility with the triple pattern syntax of SPARQL.
6 A W3C Recommendation is a specification that, after extensive consensus-building, has received the

endorsement of W3C Members and the Director. In other words, W3C Recommendations are similar
to the standards published by other organizations, such as ISO.



Chapter 3. Ontological Foundations 47

Figure 13 – Graph representation of a triple that represents birthplace information of Tim
Berners-Lee. Adapted from (W3C, 2004).

SPARQL (W3C, 2013), is a query language for RDF that is used as an evaluation tool for
the ontologies presented in this thesis.

SPARQL can be used to express queries across diverse data sources, whether the
data is stored natively as RDF or viewed as RDF via middleware. SPARQL contains
capabilities for querying required and optional graph patterns along with their conjunctions
and disjunctions.

The SPARQL query language can be used to query data from different data sources
that follow the RDF data model. SPARQL queries are composed of a series of triples
that follow the <Subject, Predicate, Object> format. The query works by searching in
the data sources for triples that obey the format presented in the query (usually after
the WHERE clause). The results of SPARQL queries can be result sets or RDF graphs.
SPARQL v1.1, its most recent version, contains capabilities for querying required and
optional graph patterns along with their conjunctions and disjunctions, as the language
provides a complete set of logical and numerical operators, aggregate functions, sub-query
support and INSERT/DELETE commands.

For illustration purposes, Figure 14 presents a simple SPARQL query based on the
triple depicted in Figure 13 that searches for the birthplace of Sir Tim Berners-Lee. The
query searches for the information in the datastet of <dbpedia.org>.

3.3.2 gUFO – UFO‘s gentle implementation

gentle UFO (gUFO) (ALMEIDA et al., 2019) is a lightweight operational version
of UFO. gUFO was created to provide an implementation of UFO that is suitable for the
development of Linked Data approaches. gUFO is intended to be used by designers of
lightweight/operational ontologies.Moreover, gUFO can be used through the specialization
and instantiation of its concepts, facilitating the implementation of reference ontologies
that are originally grounded in UFO.

The key feature of gUFO is that it includes both taxonomies originally presented
in UFO. The first one with classes whose instances are individuals, for example, the
concepts of gufo:Object and gufo:Event. The second one with classes whose instances are
types/Universals, for example, the concepts of gufo:Kind, gufo:Phase, gufo:Category.

dbpedia.org
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Figure 14 – A SPARQL query example executed in <https://dbpedia.org/sparql/>

Figure 15 depicts classes (left) and object properties (right) hierarchy of gUFO in
Protégé. Classes are the concepts of the ontology and object properties are the relations
that exist between the concepts.7

gUFO presents the implementation of a part of UFO-A (GUIZZARDI, 2005), which
defines the concepts of Objects, Aspects, Situations and the distinction between Individuals
and Types (Universals). gUFO also implements the definition of Events and the notion of
object Participation in events, which is defined in UFO-B (GUIZZARDI et al., 2013).

Lastly, although gUFO does not present the definition of concepts of UFO-C, such
as Agents and Actions, it was designed so the user can define new concepts with less effort.
For example, an Action can be defined as a sub-type of Event, as it is originally defined in
UFO-C. In this case, the new concept will automatically inherit all the properties that
are already implemented for the concept of Event. gUFO was used as the base for the
development of the operational ontologies that were used to evaluate the reference models
of ROSS and OSDEF.
7 The complete description of all gUFO elements and its source code can be found in <https://purl.org/

nemo/doc/gufo>.

https://dbpedia.org/sparql/
https://purl.org/nemo/doc/gufo
https://purl.org/nemo/doc/gufo
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Figure 15 – Visualization of Classes and Object Properties (Relations) of gUFO in Protégé

3.4 SABiO – A Systematic Approach for Building Ontologies
This section presents SABiO, the Systematic Approach for Building Ontolo-

gies (FALBO, 2014), the ontology engineering method chosen for this thesis. SABiO was
chosen over other methods, such as the NEON Method (SUÁREZ-FIGUEROA et al., 2012),
On-to-Knowledge (SURE; STUDER, 2002) and METHONTOLOGY (FERNÁNDEZ-
LÓPEZ; GÓMEZ-PÉREZ; JURISTO, 1997) because it is focused on the development of
domain ontologies. Besides that, SABiO explicitly recognizes the importance of using foun-
dational ontologies in the ontology development process to improve the ontology quality,
representativity and formality. Finally, it has been successfully used on the development
of several domain ontologies in Software Engineering, such as the Runtime Requirements
Ontology (RRO) (DUARTE et al., 2016; DUARTE et al., 2018), the Reference Ontology
on Software Testing (ROoST) (SOUZA; FALBO; VIJAYKUMAR, 2017), the Reference
Software Requirements Ontology (RSRO) (DUARTE et al., 2018) and others. SABiO
provides support and facilitates the reuse of those ontologies, which is very beneficial, as
we intended to reuse concepts of already established ontologies for the software domain.

Figure 16 presents the five phases of SABiO and the support activities that are
proposed by the method. SABiO’s development process is composed of five main phases,
which are supported by well-known activities in the Requirements Engineering life-cycle,
such as knowledge acquisition, reuse and documentation.

The first phase, named Purpose Identification and Requirements Elicitation, as
the name suggests, is about defining the purpose and the intend use of the ontology and
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Figure 16 – SABiO’s Development Process and Support activities (FALBO, 2014).

eliciting its requirements. Analogously to software requirements, ontology requirements can
be divided in functional requirements, which define the content to be represented by the
ontology, and non-functional requirements, which represent quality properties and general
aspects of the ontology. SABiO defines that the functional requirements of an ontology
should be written in the form of competency questions (CQs) (GRÜNINGER; FOX, 1995),
which are questions that the ontology should be able to answer. Moreover, CQs help to
refine the scope of the ontology and can also be used in the ontology verification process.

The main objective of the second phase, Ontology Capture and Formalization, is
to define the domain conceptualization based on the CQs that were developed in the first
phase. The concepts and relations that are part of the domain and that will be represented
in the ontology should be identified, organized and analyzed in the light of a foundational
ontology, to improve its capability to represent the domain. It is important to understand
that this phase is very iterative, in the sense that new CQs may arise in the ontology
development process. Besides that, SABiO suggests that high-expressiveness graphical
languages, such as OntoUML should be used to represent the ontology, in a reference
ontology, as they support communication and can be used as reference models.

The Design phase starts after the reference ontology is produced. Its objective
is to transform the specification of the reference ontology, produced in second phase, in
the specification of an operational ontology. In the design phase, ontology engineers have
to tackle problems of lack of expressiveness of operational languages, when compared to
languages focused on the creation of reference ontologies, such as OntoUML. Moreover,
the specification of a reference ontology can be used as conceptual base to the development
of many operational ontology designs, as the designers and ontology engineers may decide
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to design only specific parts of the reference ontology as an operational ontology.

Analogously to Software Engineering, the ontology implementation phase consists
on the development of an operational ontology based on the design specification produced
in the previous phase, using the adopted operational language.

Ontology Testing is the last phase of SABiO, it consists of dynamically verifying
and validating the behavior of the operational ontology through a set of test cases and
comparing the results with the expected behavior based on the competency questions.
SABiO suggests that the tests be done initially starting from the sub-ontologies that make
up the domain ontology and rising as the sub-ontologies are being integrated until the
final ontology is properly integrated and can be tested working as a whole.

Regarding the supporting process, ontology reuse is probably the most important
one. Reusing existing ontologies is a crucial part in an ontology engineering process and
should be applied whenever possible, because it helps to keep consistency with previously
built ontologies, reduces workload and avoids concept redundancy. SABiO explains that
ontologies can be partially or totally reused, in distinct ways. Foundational and core
ontologies are usually reused by means of specializations, where the concept defined in
the foundational ontology is specialized in a more specific domain-related concept. For
example, Artifact, a concept originally defined in the Software Process Ontology (SPO), is
a sub-type of Object, defined in UFO. Ontologies can also be reused by Analogy. In this
sense, concepts and relations are not explicitly extended in a domain ontology, instead,
they are implicitly used to define the structure of a porting of a domain ontology. For
example, the relations that exist between the concepts of Program, Loaded Program Copy,
Program Copy Execution and Machine presented in RRO follow the structure pattern of
Events, Dispositions and Objects, defined in UFO.8 For this thesis, we reused concepts that
are part of SPO, SwO, the ontology of assumptions (ASMP) and also specialize concepts
from UFO. The reuse is facilitated because all ontologies are part of the same domain and
are grounded on UFO.

3.5 SEON - the Software Engineering Ontology Network
In the Ontology Engineering literature, an ontology network is defined as a collection

of ontologies related together through a variety of relationships, such as alignment, modu-
larization and dependency. A networked ontology, in turn, is an ontology included in such
a network, sharing concepts and relations with other ontologies (SUÁREZ-FIGUEROA et
al., 2012). The Software Engineering Ontology Network (SEON) (RUY et al., 2016) was
designed seeking to: (i) take advantage of well-founded ontologies (all of its ontologies are
8 This ontology pattern can be see in Figure 12 and is extensively discussed in (GUIZZARDI et al.,

2013).
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Figure 17 – Graphical representation of the Software Engineering Ontology Network
(SEON). Adapted from (RUY et al., 2016).

ultimately grounded in UFO); (ii) provide ontology reusability and increase productiv-
ity, supported by core ontologies organized as Ontology Pattern Languages (FALBO et
al., 2016); and (iii) solve ontology integration problems by providing integration mecha-
nisms (RUY et al., 2016).

In this version, SEON’s architecture is composed by: (i) UFO, as the foundational
ontology that grounds all other ontologies in the network; (ii) the Software Processes
Ontology (SPO) (BRINGUENTE; FALBO; GUIZZARDI, 2011a) as a core ontology that
has a broader scope of the Software Engineering domain and is designed as a central node
for the other ontologies; and (iii) the domain ontologies for the main technical Software
Engineering sub-domains, e.g., design, coding and testing, and for some management
sub-domains, e.g., software measurement, project management, configuration management,
and quality assurance.

Figure 17 presents an overview of SEON. Each package represents an ontology and
dashed lines represents the dependencies between ontologies. This dependency can be by
concept reuse or by specialization. UFO, as a foundational ontology is represented in light
gray. SPO, as a core ontology is represented in white. Networked domain ontologies are
represented in light yellow and external ontologies are represented in light red. SEON
complete specification is available at <https://nemo.inf.ufes.br/projects/seon/>.

Concerning software requirements, ReqON is SEON’s ontology sub-network devoted
to this topic. The Reference Software Requirements Ontology (RSRO) (DUARTE et al.,

https://nemo.inf.ufes.br/projects/seon/
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2018) is the main ontology in the requirements domain. It captures the most general notions
regarding requirements, which are valid for many Requirements Engineering approaches.
The Goal-Oriented Requirements Ontology (GORO) (BERNABÉ et al., 2019) focuses
on the basic notions of Goal-Oriented Requirements Engineering. The Requirements
Development Process Ontology (RDPO) (RUY et al., 2016) aims at representing the
activities, artifacts and stakeholders involved in the software requirements development
process. Finally, the Runtime Requirements Ontology (RRO) (DUARTE et al., 2016;
DUARTE et al., 2018), addresses the use of requirements at runtime. ReqON is depicted
on the left side of Figure 17.

For this thesis, we adopted UFO as the foundational ontology and reused three
ontologies that are part of SEON for the development of ROSS and OSDEF. The first
one, SPO, as a core ontology that provides general concepts about the software system
domain. The second one is the Software Ontology (SwO) (DUARTE et al., 2018), a domain
ontology that discusses software artifacts and is based on Zave & Jackson’s work. The
third one is the Reference Software Requirements Ontology (RSRO) (DUARTE et al.,
2018), an ontology that discusses software requirements in the context of the software
process. SPO, RSRO and SwO are presented and discussed in the next subsections.

Besides, later on this work, in Chapter 7, we also reuse concepts of other ontologies
that are part of SEON, such as the Configuration Management Ontology (CMPO) (RUY
et al., 2016) and the Reference Ontology of Software Testing (ROoST) (SOUZA; FALBO;
VIJAYKUMAR, 2013). These ontologies are reused to extend the operational versions
of ROSS and OSDEF with concepts such as Configuration Item, Change Request and Test
Case, which are Artifacts that are part of the to the software system life cycle but are not
specifically discussed in either ROSS or OSDEF.

We believe that associating the different types of requirements presented in ROSS
and the concepts of defects, faults and failures of OSDEF with the other concepts presented
in the ontologies that are part of SEON can improve the quality and coverage of traceability
information that is retrieved, since new traceability links are generated and can be queried
through the relations that exist between requirements and the software Artifacts mentioned
earlier. These links can easily be recovered because the domain ontologies presented in
this work were originally designed to be reused with other related ontologies. Besides, this
type of coverage of the domain can be beneficial for software organizations that want to
improve software systems management. For example, a software engineer can list all the
change requests and requirements associated with a Program that is part of a software
system with a single query.

Finally, three distinct ways to integrate ontologies into SEON are defined. The first
one, which is the one adopted for ROSS and OSDEF, considers that the new ontology is
grounded in UFO and also reuses or specializes concepts from SPO or other ontologies in
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SEON. In this case, the integration is facilitated, since the ontologies are designed following
SEON’s recommendations. The second case considers ontologies that are grounded on
UFO but that do not reuse or specialize any concept from one of SEON’s networked
ontologies. In this case, it is necessary to adapt the ontology to be integrated so that it
shares the representation pattern and aligns with the existing networked ontologies. The
third case considers external ontologies, which are not grounded on UFO. In this case, an
ontological analysis of the domain must be performed and the ontology to be integrated
must be re-engineered before the integration. The knowledge presented in the ontology
must be preserved but the representation strategy of this knowledge might be changed or
adjusted, in order to allow for a better integration.

3.5.1 Software Process Ontology - SPO

The Software Process Ontology (SPO) is a core ontology originally developed
in (FALBO; BERTOLLO, 2009) and re-engineered based on UFO in (BRINGUENTE;
FALBO; GUIZZARDI, 2011a). SPO was built to establish a common conceptualization
about the software process. Besides, as a core ontology, SPO provides the general concepts
for software processes, to be specialized and reused in domain-specific ontologies. SPO is
modularized in 5 sub-ontologies: Process/Activities sub-ontology, Artifacts sub-ontology,
Procedures sub-ontology, Resources sub-ontology and Stakeholders sub-ontology. SPO was
designed so that its five sub-ontologies could be easily reused during the development
of software-related domain reference ontologies. SPO is also the central core ontology of
SEON.

Besides, SPO reuses concepts from the Enterprise Ontology, such as Organization
and Team. Both concepts are depicted with the prefix EO in Figure 19.

For the development of ROSS, we reuse the concepts Artifact, Stakeholder and
Hardware Equipment, defined in the SPO. Software Artifacts are objects intentionally made
to serve a given purpose in the context of a software project or organization. Moreover,
Artifacts can be simple or composite, depending on their mereological structure. A Composite
Artifact is an Artifact that is composed by two or more Artifacts. On the other hand, a
Simple Artifact is an atomic one, an Artifact that cannot be decomposed in others.

Stakeholders are Agents (a single person, a group or an organization) interested or
affected by the software process activities or their results, eventually being responsible for
them (e.g., a user or a development team); Hardware Equipment (including Machine), which
are physical objects used for running software programs or to support some related action
(e.g., a computer or a tablet). Moreover, Stakeholders, can have different roles as part of a
software process and can also be understood as Resources, from a project perspective.

Figures 18 and 19 respectively shows the Artifact and Stakeholder sub-ontologies
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Figure 18 – SPO Artifact sub-ontology (BRINGUENTE; FALBO; GUIZZARDI, 2011a).

Figure 19 – SPO Stakeholder sub-ontology (BRINGUENTE; FALBO; GUIZZARDI,
2011a).

that are part of SPO.

3.5.2 Software Process Ontology - SwO

The Software Ontology (SwO) (DUARTE et al., 2018), depicted in Figure 20, is a
domain ontology created to represent the complex nature of the Artifact “Software”. SwO
aims to clarify and to establish a common conceptualization about the notion of software,
which is in fact composed by several Artifacts, with distinct natures and purposes.

SwO reuses the artifact sub-ontology of SPO (the classes depicted in green in
Figure 20). SwO was based on the theory of UFO-B about Events, Dispositions and Objects
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Figure 20 – SwO Conceptual Model (DUARTE et al., 2018).

to extend the Ontology of Software Artifacts (OSA), proposed by Wang et al. (2014b)9 and
Zave and Jackson’s work. The Loaded Program Copy (Disposition) represents the Program
loaded inside the memory of the Machine (Object) that participates in the Program Copy
Execution (Event) as a Controller.

These concepts were not addressed by previous works and are important because
they are responsible to “materialize” a Program, connecting it to theMachine and generating
an Event that is capable to transform the state-of-affairs in which the Machine exists.
This relations needed to be addressed for the development of the Runtime Requirements
Ontology (RRO) (DUARTE et al., 2018).

Regarding ROSS, SwO is almost fully reused in the System and Program sub-
ontologies of ROSS. It defines several concepts that were very important for the development
of this work.
9 OSA was discussed in Section 2.1.3.
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3.5.3 Reference Software Requirements Ontology - RSRO

The Reference Software Requirements Ontology (RSRO) (DUARTE et al., 2018),
depicted in Figure 21, is a domain ontology created to represent the ontological nature of
the Requirement. Like SwO, RSRO is grounded on UFO and reuses part of the artifact
sub-ontology of SPO. RSRO also reuses concepts from the NFR Ontology (GUIZZARDI
et al., 2014), which are represented in the model with the NFR prefix. A Requirement is
defined as a goal that represents the users’ needs and expectations (Stakeholder Intention)
to be achieved as result of the system development (GUIZZARDI et al., 2014).

Requirements can be functional or non-functional, depending on their nature.
Functional Requirements are the ones defining a Function to be available from the target
system (e.g., the need for providing a client register or controlling an order). They refer
to Software Function Types, i.e., types of functions that the software must provide (e.g.,
providing a client register, controlling an order). Non-Functional Requirements define criteria
or capabilities for the system (e.g., being easy to operate, being in conformance with a
standard). A special type of Non-Functional Requirement is Product Quality Requirement,
which refers to Quality Characteristics that the product shall present in some degree, such
as reliability, usability, efficiency.

Requirements are documented by Requirement Artifacts, an Information Item that
describes the Requirement in a proper way. The Requirements Document is composed of
Requirement Artifacts and related information (such as models, information sources and
varied descriptions). This Document is under the responsibility of the Requirements Engineer,
a Stakeholder that conducts the requirements development activities. The Requirements
Stakeholder represents the Stakeholders from whom the Requirements are collected and,
consequently, are the ones interested in the Requirement Artifacts.

3.5.4 Ontology of Assumptions

Besides the concepts reused from SPO and SwO, we also reused the concepts of
World and Machine Assumptions, depicted in Figure 22, that are presented by Wang et al.
(2016) in their sub-ontology of assumptions. A World assumption is an assumption about
world phenomena, that is invisible to the machine. For example, a meeting scheduling
system marks a reserved room for a meeting as occupied even if the meeting participants
decided to move the meeting to the cafeteria. In other words, from the perspective of the
data persisted in the software system, the room is occupied for the meeting, even if it is
empty in the real world and could be allocated for another meeting. Such assumptions
constrain the environment in which software system exists. Machine Assumptions are
assumptions about a machine’s internal behavior, which is only visible to the machine. For
example a user may assume that his daily-working backup software system is persisting
his work in the cloud every time he clicks the save button, however, if the backup system
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Figure 21 – RSRO Conceptual Model (DUARTE et al., 2018).

Figure 22 – Representation of the sub-ontology of assumptions proposed by Wang et al.
(2016).

is not properly configured, his progress will not be saved.

The other two types of assumptions are created to represent the impact that the
world and the machine have on each other. A Machine Dependence Assumption states that
an external world phenomenon depends on some machine phenomena while the World
Dependence Assumption represents the opposite, a machine phenomenon that depends
on a world phenomena. Wang et al. present these new interpretations of the concept of
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Assumption as a preliminary ontology of assumptions which, until now, has not been further
advanced. Their contribution towards Zave and Jackson’s work was heavily focused on the
further understanding and development of the concept of Assumption and its implications
for RE. Further, they also contributed by proposing a new notion for Specification.

Wang and his colleagues also use the distinction between Assumptions-Used and
Assumptions-Needed, in a classification that is orthogonal to the previous one. In other words,
all four types of assumptions proposed can be Assumptions-Used or Needed, depending on
the situation. However, these assumptions are disjoint, as an assumption cannot be used
and needed by the same individual at the same time.

3.6 Chapter Summary
This chapter discussed the ontological foundations that were adopted for the

development of this thesis. Firstly we explained what ontologies are, how they are developed
and used, the different types of ontologies that exist in the scientific literature and
how foundational ontologies, the most general type of ontology, are important for the
development of domain ontologies, the type of ontology presented in this thesis.

Secondly we presented UFO and gUFO, respectively, the foundational ontology
adopted in this thesis and its ‘gentle’ (operational) version, which is used to support the
evaluation process of ROSS and OSDEF.

Thirdly, we briefly explained the technologies that are used to create and use
operational ontologies and that were used to evaluate the ontologies proposed in this
thesis.

Lastly, we explained SABiO, the ontology engineering method that was adopted
for the development of ROSS and OSDEF and SEON, the Software Engineering Ontology
Network that relates SPO, SwO and CMPO the ontologies that were reused for the
development of ROSS and OSDEF.
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4 A Reference Ontology of Software-based
Systems

This chapter presents the first contribution of this work: the Reference Ontology
on Software Systems (ROSS). ROSS is a domain reference ontology (GUIZZARDI, 2007),
a conceptual artifact that is intended to represent the software systems domain in the best
possible way. ROSS was designed to be used as a backbone ontology, into which other
software-related more specific ontologies can be merged and reused together. ROSS is
based on international standards like ISO 29148 (ISO, 2018), ISO 12207 (ISO, 2017) and
ISO 15288 (ISO, 2015). ROSS conceptualize on the different types of software systems
requirements, their connections with the external (real-world) environment and with the
machines where they are executed. ROSS also discusses the assumptions that are made
during the software process. Because of theses characteristics, the operational version of
ROSS is intended to be used as a tool for ontology-based requirements traceability. The
work presented in this chapter was published as part of (DUARTE et al., 2021).

Section 4.1 briefly discusses the motivations and requirements for ROSS. Sec-
tions 4.2, 4.3 and 4.4 present the conceptual model of ROSS, divided in three layers that
intend to represent the three parts of the Software Systems domain. Section 4.5 presents
other ontologies that are directly related to ROSS. Section 4.6 concludes and summarizes
the chapter.

4.1 Motivation and Requirements
As discussed in Chapter 2, in their seminal work (JACKSON; ZAVE, 1995; ZAVE;

JACKSON, 1997), Zave and Jackson clarified the nature of RE and demonstrated the
importance of certain information items that is often neglected. Their conclusion was the
well-known formula: S, K ` R. Later on (GUNTER et al., 2000), the formula was improved
to be used as a reference model for the requirements engineering process, taking into
account other relevant software artifacts, such as the Machine (M), as the programming
platform and the Program (P ), as the unity that is intended to implement the specification.

However, this reference model does not take into account the fact that some of
these software artifacts may exist in different levels of abstraction through the software
process. For example, in Zave and Jackson’s work, requirements are considered as entities
that exist only in the external environment, far from the notions of program and machine.
Based on Zave, Jackson and Wang’s work we have developed SwO and RSRO, domain
reference ontologies that, extends these earlier works based on an ontological pattern of
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Events defined in UFO-B1.

Nowadays, there is a clear consensus in modern standards, such as ISO 29148 (ISO,
2018) and ISO 12207 (ISO, 2017), and capabilities models, such as CMMI (CMMI Institute,
2018), that requirements exist in many formats during the software process, being refined
from high-level goals for a system of interest to solution-oriented artifacts. In another
example, the concept of specification is originally described as an artifact that exists in the
interface between the world and the machine. Hence, if we are assuming that requirements
exist in many abstraction levels, so should their specifications. For that reason, we intend
to revisit and extend and ours previous works by building ROSS on top of these earlier
contributions.

Moreover, ROSS is developed following SABiO specification and, because of that,
it is based on a set of Competency Questions (CQs) as its functional requirements. The
CQs raised for ROSS are listed below:

• CQ1: What are software systems?

• CQ2: How are software systems composed?

• CQ3: What are the types of requirements that exist in a software system domain?

• CQ4: How are these requirements related?

• CQ5: How are these requirements managed?

• CQ6: What are the types of assumptions that are relevant in the software system
context?

• CQ7: How are requirements related to assumptions in the software systems domain?

• CQ8: What are the constrains on the software systems domain? How do they impact
the organization and the requirements?

For ROSS, the CQs were focused on the gaps that existed in Zave, Jackson and
Wang’s research and that are intended to be covered by ROSS. CQs 1 and 2 are focused
on expanding upon the concept of Software System, that is originally used by Wang in
OSA. CQs 3, 4 and 5 are focused on Requirements and based on the knowledge presented
in ISO 29148 and ISO 12207. What are the types of requirements? How are these different
types of requirements are related with each other? And with the other artifacts. We believe
that these questions are relevant for the software systems domain and consequently, for
the development of ROSS. However, they are not addressed by Zave and Jackson or by
Wang, in their research, since Requirements are only considered as top-level goals. Finally,
1 SwO and RSRO are properly discussed in Section 4.5
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Figure 23 – The Business sub-ontology of ROSS.

CQs 6, 7 and 8 are focused on the assumptions and constraints that exist in the domain.
Assumptions are discussed in Wang’s work and his definitions are reused in ROSS.

To present the ontology, we adopted SABiO’s normative on ontology modularization
and divided it in three sub-ontologies. This decision was taken because the software systems
domain itself can be divided in three parts, namely: (i) the business environment, in which
Agents like Organizations and its members, take Actions and demand Services; (ii) the
software system environment, that has the purpose of providing the services that are
needed and to connect business and machines; and (iii) the machine environment, in which
the machine is able to execute a translation of the specifications (source code) to create
a pure logical result, which form the base for the services provided. This division of the
domain in layers is also used in ISO standards 29148 (ISO, 2018) and 12207 (ISO, 2017).

4.2 ROSS Business Sub-ontology
The first part of the ontology, depicted in Figure 23, represents the business/orga-

nization environment in which the software system exists.

The Organization is a (Social) Agent involving people and other Agents and facili-
ties with an arrangement of responsibilities, authorities and relationships. The concept
Organization in ROSS and in other ontologies that are part of SEON are reused from
the Enterprise Ontology (prefix EO), an ontology that represents the Enterprise domain
and that is external (not part of) SEON. Business Requirements are high-level Goals an
Organization has towards the system-to-be. They represent the main reason why a project
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is initiated, what the software system is intended to achieve, which metrics can be used to
measure the project’s success or failure (ISO, 2018). To represent the relation between
Goals and Agents in ROSS, we created the has goal relation. In UFO, Goals are Propositions,
in particular, they are the propositional content of an Intention that inheres in an Agent
(in our domain, either an Organization or a Stakeholder). The has goal relation is then a
derived relation associated to the following derivation rule: given a goal G, agent A, and
intention I, we have that has-goal(A,G) iff G is the propositional content of an intention I
inhering in A. This relation also appears in Figure 24, between Stakeholder Requirement
and Stakeholder.

Additionally, a specific Business Requirement may depend on other Business Require-
ments. Depends on defines the coupling that may exist between Requirements with the same
level of abstraction. Furthermore, the Depends on relation is individually represented on
each of the four types of Requirements presented in ROSS, in order to support and enable
horizontal requirements traceability (i.e the type of requirements traceability between
artifacts at the same level of abstraction). For example, achieving a Stakeholder Require-
ment STREQ001 may be directly necessary for achieving another Stakeholder Requirement,
STREQ002. In this context, the two Stakeholder Requirements are coupled and this rela-
tionship can be captured in the reference model, and traced. The coupling level between
the requirements of software system is an intrinsic property and is heavily dependent to
the conceptual modeling activities performed for software system development.

Business Requirements, as goals of an Agent, are usually described as some type of
Artifact to be properly used, traced and maintained by the Organization. This Information
Item2 is named Business Requirements Specification (BRS) and, as a product of the system
development process, it is created very early and will exist during the entire life of the
system.

Moreover, it is important to understand that although specifications are usually
defined (mainly in textbooks) as document-type artifacts, they are not, necessarily, formal,
documented descriptions of requirements. For example, the description of the daily routine
of an organization’s office is a powerful source of requirements, with the support of proper
World Assumptions, which are ontologically defined as Propositions about the domain of
the system-to-be are part of the organization environment. Since World Assumptions are
Propositions, they represent the propositional context of Intentions of the Organization over
the Software System. These assumptions, and the other that will be further discussed in
this work, may or may not be explicit during the system development process.

Zave and Jackson (1997) defended that Assumptions should be treated as first
class citizens in every software system project, being documented and managed as any
2 Information Items are part of the Artifact sub-ontology of SPO and are defined as a relevant piece of

information created for human use in an performed process (see Figure 20).
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other configuration item. Based on this, Wang et al. (2016) proposed a small ontology
of assumptions (cf. Section 3.5.4), which is being reused in ROSS with the prefix ASMP.
In other words, a specification is a possible description of requirements based on a set of
assumptions, i.e., different assumptions used will result in different specifications and, if
the assumptions used are incorrect or incomplete, the specification will not be able to
properly describe the requirements.3 This phenomenon is also true when requirements are
in its lower levels of abstraction, as they are properly refined towards the solution of the
problem that gave origin to the software process.4

Business Requirements, are constrained by Business Constraints, which are Norma-
tive Descriptions that are recognized by the Organization. Business Constraints describe
conditions to be imposed in conducting the business process. In ROSS, we define two
types of Business Constraints that are extremely relevant for an Organization: Business Rules
and External Regulations. Business Rules are Normative Descriptions that define a policy,
guideline or practice that constrains some aspects of a business project and its intended
results. Moreover, Business Rules can be the origin/act as constraints of several types of
requirements (WIEGERS; BEATTY, 2013). For example, a software-factory organization
that has the internal policy of producing applications that are optimized for a certain type
of platform will have to create and implement specific requirements to satisfy this rule.

On the other side, External Regulations are Normative Descriptions that exist outside
of the organizational environment and that cannot be controlled by it. As examples we
can mention laws, business and engineering standards, market trends and even external
interface requirements. Moreover, alongside with Business Rules, External Regulations are
important for any type of Organization because they are capable of constraining the
Business Requirements. In line with CMMI (CMMI Institute, 2018), we argue that the
relationships between higher-level Business Requirements and these Normative Descriptions
are extremely important for the software process, since they define constraints for the
software system and for the Organization developing it. Because of that both Business Rules
and External Regulations must be managed and traced.

As Business Requirements are high-level Goals that exist in an organization-level
of a business (ISO, 2018), they tend to exist far from the solution that is desired. For
example, an Organization that desires to improve team productivity by reducing their
dependence on spreadsheets may decide to build their own team management tool, or
to buy one, such as Monday.com. At this point, the Organization has intentions towards
acquiring a team management tool, but they do not know what solution to implement. If
they decide to create their own tool, a software system project can be initiated. Because
of this “distance” that exists between the initial need and the domain of the solution, a
3 One can say that specifications are derived from requirements, as goals, with the support of assumptions.
4 This will be further discussed in the last part of the ontology.
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new type of requirement that is directly related to them but that is closer to the solution
domain must be captured.

Stakeholder Requirements are statements of the needs of the Stakeholders. Stakeholder
is a concept reused from SPO, it is defined as an Agent interested or affected by the software
process activities. A Stakeholder may be a member of the Organization where the system will
be implemented or an analyst that is responsible for the process. Stakeholder Requirements
are refined from Business Requirements and can be understood as the stakeholder’s point
of view towards the existing Business Requirements. In their work, Zave and Jackson stated
that requirements refinement is concerned with identifying the aspects of a requirement
that cannot be guaranteed or effected by a computer alone and augmenting or replacing
them until they are fully implementable. Moreover, goal refinement is directly related to
the requirements traceability process, since it provides a natural mechanism for structuring
connections between high-level requirements to low-level requirements (LAMSWEERDE,
2001).

The concept of refining Requirements (Goals) exists in the scientific literature since
the early 80s. Mostow’s goal refinement (MOSTOW, 1983) is defined as an “operationaliza-
tion” of goals, a process of converting a goal into an “executable” procedure (in our domain,
a Program).5 However, this concept of operationalization does not provide the semantics
necessary for our refined from relation, because the refinement of Business Requirements to
Stakeholder Requirements does not fit in the converting a goal into an executable procedure
definition, proposed by Mostow. In this context, the refined from relation denotes a type
Reduction relation (DARDENNE; LAMSWEERDE; FICKAS, 1993). Reduction denotes
that to achieve a Goal g1, possibly with other Goals g2, . . . , gn, is among the alternative
ways of achieving the higher-goal G. For example, the Business Requirement Reducing
operation costs by 10% can be achieved by achieving a combination of several Stakeholder
Requirements, that will also be refined into other “lower-level” requirements. Refined from
also denotes a historical dependence (FONSECA et al., 2019)6 that exists between Stake-
holder Requirements and Business Requirements, in the sense that Stakeholder Requirements
can only be specified after the Business Requirements are properly defined. In addition,
refined from is not a parthood relation, since the sum of all Stakeholder Requirements
g1, g2 . . . gn is not the Business Requirement G. In other words, a Business Requirement can
be refined in more than one set of Stakeholder Requirements.

Moreover, since all Business Requirements and Stakeholder Requirements are defined
as Goals, the same relation is also used to represent the relations between Stakeholder,
System and Program Requirements, that are respectively presented in the system and
machine sub-ontologies of ROSS.
5 Goal refinement through operationalization is also presented in KAOS (DARDENNE; LAMSWEERDE;

FICKAS, 1993).
6 A historical dependence is a non-descriptive relation where the truthmaker of the relation is an Event.
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Figure 24 – The System sub-ontology of ROSS.

Furthermore, as Stakeholder Requirements are ‘crispier’ than Business Requirements
but still exist in business level,7 they serve as a bridge between Business Requirements and
the other types of requirements that are solution-oriented. Finally, Stakeholder Requirements
are also classified as Goals, which are described in specific Information Item, called Stakeholder
Requirements Specification (StRS).

4.3 ROSS Systems Sub-ontology
The second part of the ontology, depicted in Figure 24, is centered around the

concept of Software System, which acts as an interface between the Machine and the
Environment. In their work, Zave and Jackson (1997) briefly define a Software System as a
general artifact with manual, automatic and even abstract (data) components, separating
it from the concept of Machine. In a more general definition, a Software System is defined
by ISO 24765 (ISO, IEC, 2017b) as a combination of interacting elements organized to
achieve one or more stated purposes. SWEBoK extends this definition by explaining the
concept of Software System as a complex and heterogeneous artifact, as it can be composed
by many System Elements, such as software, hardware, firmware, people, data and even
other systems. For ROSS, we reused the concept of Software System that is presented in
SwO, which is based on Zave and Jackson‘s definition.

From an ontological point of view, software systems are complex social Artifacts,
composed of other artifacts as System Components. A System Component in turn, can be
either a System Element or a (sub)system.

For example, Microsoft Windows 10 is an (operating) system composed by many
7 ISO 29148 defines Stakeholder Requirements as Information Items that exist in the Business Operational

Level of an Organization, while Business Requirements are part of the Business Organization Level.
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subsystems, such as the memory-management system, the user interface and the security
system.

System Elements are also artifacts that are used by Software Systems during their
operation, such as Programs or Hardware Equipment, that are necessary for system operation,
such as servers, sensors or peripherals.

Furthermore, the notion of software proposed here, in line with (WANG et al.,
2014b; DUARTE et al., 2018), allows for a software system to be composed by many
artifacts that exist in different levels of abstraction, each with its own identity and purpose.
As discussed by these authors, the simple term “software” is heavily overloaded. Moreover,
Software Systems and Programs are Individuals, which, in a sense “behave like types” given
that they define properties that are repeatable in their copies. For example, Microsoft
Outlook is Microsoft’s well-known mailing software that, as an Individual, has properties
and an unique identity, which makes it different from another individual of the same type
(E-mail Client Software, e.g., Mozilla Thunderbird). Nonetheless, it can share a number of
properties with their copies, in a way that is analogous to how individuals of the same
type share the same properties, each of which, however, having a unique identity.

As a type of software Artifact (FALBO; BERTOLLO, 2009; BRINGUENTE;
FALBO; GUIZZARDI, 2011a), Software Systems are also developed based upon a set of
requirements. System Requirements are solution-oriented Goals for the system-of-interest,
which are based on background information about the high-level objectives to be achieved
by a solution (ISO, 2018). System Requirements are different from Business Requirements and
Stakeholder Requirements since they exist in a solution perspective, whereas stakeholder and
business requirements exist in a problem perspective. However, System Requirements are
derived from Stakeholder Requirements. This relation between both types of requirements
provides the connection between the business and the system sub-ontologies.

Furthermore, similarly from their higher-level counterparts, System Requirements
are described in an Information Item called System Requirements Specification (SyRS) (ISO,
2018). In this context, Software Systems are intended to implement the SyRS and intended
to satisfy the System Requirements, which are described in the SyRS. Both intended to
implement and intended to satisfy relations are originally discussed in OSA. The first
one, intended to implement, links the software system to its specification and is derived
from someone’s intention towards the software system being developed. More precisely,
Stakeholders from an Organization have the Intention that the Software System (an Artifact)
is capable of providing the functionalities and capabilities described in its specification.
The second one, intended to satisfy, is also derived from these Intentions of Stakeholders and
represent the fact the System Requirements denote the essential functions of the Software
Systems, the goals that need to be fulfilled. This pattern of relations also occur for the
concepts of Program, Program Specification and Program Requirements, in the machine
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Figure 25 – The Machine sub-ontology of ROSS.

sub-ontology of ROSS.

Moreover, as a software system can be composed by distinct System Elements,
the SyRS compiles, in a technical level, requirements, capabilities and constraints of the
system-of-interest as a whole. Because of that, it depends on two types of assumptions,
namely, the World Assumption, that was previously presented and the Machine Assumption,
i.e., an assumption about the machine’s internal operations, that are only visible to the
machine. In other words, for the SyRS to be created, it depends on assumptions about
the environment and about the machine.

4.4 ROSS Machine Sub-ontology
Finally, the last part of the ontology, presented in Figure 25, represents the parts

of a software system that exist inside a Machine and is focused on the concept of Program.

Wang et al. (2014b) promote an extensive discussion and a reference ontology of
software artifacts.8 Based on Wang et al.’s work and in order to capture the complex
nature of software, in SwO (DUARTE et al., 2018), we argue that a Program is defined
as an Artifact produced during a software process and having the purpose of generating
a result in the environment, through its execution in a Machine (WANG et al., 2016).
Moreover, Programs are artifacts constituted by source code, although not being identical
8 In line with Wang et al.’s work, we avoid to use the word Software and prefer to use a specific terms

proper to each situation, e.g., Program, Machine or Software System.
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Figure 26 – Adaptation of an example of requirements scope in a business context. Figure
originally presented in ISO 29148 (ISO, 2018).

to code. The consequence of that is that the source code, as a sequence of symbols, can be
altered without changing the identity of the Program. In this context, Programs are System
Elements related to the Machine. However, Programs are considered abstract because they
are not physical objects, like a printer or a circuit board, although they are artifacts
created for a specific purpose. Besides, despite of its abstract nature, Programs and other
artifacts, like laws, are designed and capable of producing results (affecting) in the real
(concrete) world.

Programs can only fulfill their purpose when loaded (as Loaded Program Copy) and
executed as Events, called Program Copy Execution, which occur inside a Machine. Moreover,
the purpose of the Program is directly related to its identity. In a very simple example:
changing variable names changes the set of expressions (i.e. the code of the Program) and
it may even change how code is loaded inside the Machine, yielding Loaded Program Copies
with different characteristics. This type of change, however, does not affect the identity of
the Program, since it does not affect its requirements (WANG et al., 2014b).

Furthermore, as artifacts produced through a development process, a Program is
intended to implement a Program Requirements Specification that describes the Program
Requirements related to such Program. In this context, we can say that the Program9

intended to satisfy the Program Requirements. Program Requirements are the lower-level
goals for the part of a system that is commonly understood as software. In other words,
they are solution-oriented goals that are refined from higher-level requirements, such as
stakeholder and system requirements (ISO, 2018; BOURQUE; FAIRLEY et al., 2014),
and are focused on a possible solution for the computational part of the system-to-be.
Figure 26 presents an adaptation of a figure presented in ISO 29148 (ISO, 2018), depicting
how requirements exist in different levels of abstraction, inside an organization, and how
they are derived from high-level organization needs to solution-specific goals.

Moreover, as mentioned earlier in this section, a Program Specification is not
9 For a deeper discussion about the concept of Program, please see (DUARTE et al., 2018).
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Figure 27 – Integration of ROSS to SEON’s ReqON sub-network.

necessarily a formal document in natural language about requirements. As in the original
formula proposed by Zave and Jackson (1997), Program Specification is heavily related
to the assumptions that exist in the context of the Machine. For example, the source
code of a Program could be considered a translation of a Program Specification to a
machine-readable language that will be derived from the Program Requirements. Because of
that, it will heavily depend on the assumptions (Machine Assumptions that the developers
have towards the programming platform, i.e., the Machine).10 More precisely, different
developers, with different Machine Assumptions will produce different implementations,
which can satisfactorily or not achieve the same requirements.

Finally, regarding SEON integration, ROSS is grounded on UFO and already
specializes concepts from three networked ontologies, SPO, SwO and RSRO. Due to that,
no further ontological analysis or re-engineering processes are necessary. ROSS specializes
three concepts from SPO, seven from SwO and one from RSRO. Furthermore, as it is
focused on requirements, ROSS must be integrated into the ReqON sub-network of SEON.
Figure 27 depicts ROSS integrated to SEON as part of the ReqON sub-network. The color
scheme adopted in Figure 27 is the same one used in Figure 17, in Section 3.5.
10 Wang et al. defend that even the ‘plan about a program’ that exists in the mind of the developer can

be considered a type of abstract specification.
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4.5 Related Works
This Section presents other ontologies that are directed related and influenced de

development of ROSS.

4.5.1 Goal Oriented Requirements Ontology (GORO)

GORO (NEGRI et al., 2017; BERNABÉ et al., 2019) is a reference ontology
created to represent the Goal-Oriented Requirements Engineering (GORE) domain. GORE
emerged as an alternative Requirements Engineering, it is concerned with the use of goals
for eliciting, elaborating, structuring, specifying, analyzing, negotiating, documenting, and
modifying requirements (LAMSWEERDE, 2001).

GORO was developed based on nine GORE languages presented in the literature,
such as iStar (YU, 1995; YU, 1997), KAOS (DARDENNE; LAMSWEERDE; FICKAS,
1993), Tropos (BRESCIANI et al., 2004), Techne (BORGIDA et al., 2009) and others.
GORO is composed of three modules/sub-ontologies. Figure 28 depicts the first one, which
represents the concepts of Goals and Assumptions. Figure 29 depicts Tasks, as Plans and
their relations to Goals. Finally, a third one includes Obstacles and Contribution links as
Relators. In the context of GORE, Goals are a central concept of every GORE language,
they represent desirable conditions and are associated to Agents that seek to achieve such
Goals. Moreover, GORO reuses the concept of Goal from UFO-C and specializes it to
define a Goal-Based Requirement. Tasks are Plans that operationalize Goals. In other words,
Goals can be operationalized into one or many tasks. Finally, Obstacles are anti-goals,
entities that captures undesirable conditions.

In comparison to ROSS, GORO is also grounded on UFO and also reuses concepts
from SwO and RSRO, however, it is focused on representing Requirements Engineering
with the GORE perspective. In other words, GORO reuses UFO and the ontologies from
SEON to define concepts that are usually proposed by the GORE literature, such as Goals,
Softgoals, Assumptions and Tasks. Furthermore, from a foundational perspective, GORO is
heavily based on the concepts and ontological patterns discussed in UFO-C, the part of
UFO that is focused on social aspects.

4.5.2 Core Ontology of Requirements

The Core Ontology for Requirements (CORE) (JURETA; MYLOPOULOS; FAULKNER,
2008; JURETA; MYLOPOULOS; FAULKNER, 2009) was created to conceptualize about
stakeholders communication with the Software Engineer. CORE presents four modalities
of the mental states underlying the communication acts between stakeholder and software
engineer: belief (B), desire (D), intention (I), and attitude (A). The engineer associates a
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Figure 28 – GORO first sub-ontology, which depicts Goals and Assumptions.

Figure 29 – GORO second sub-ontology, which depicts Tasks and their relations to Goals
and Resources.
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modality to the content of a given communication act, and then proceeds to determine if
the obtained result is an instance of a concept or relationship in the core ontology.

The concepts of the core ontology are Goal, Softgoal, Quality Constraint, Plan, and
Domain Assumption. The relationships between these concepts are: attitude-based optionality
and preference, justified approximation, and non-monotonic consequence. Moreover, the
concepts of Goal and Quality Constraint are introduced into CORE to cover the classical
taxonomic dimension for the requirement concept: the distinction between the notions of
functional and nonfunctional requirement. Attitudes are given by expressive speech acts.
Plans denote the content of communicated intentions of stakeholders in order to satisfy
Goals. Domain Assumptions denote the content of an assertive speech act and are directly
associated with the beliefs of the stakeholder. Softgoals are Goals that cannot be satisfied
to the ideal extent, not only because of subjectivity, but also because the ideal level of
satisfaction is beyond the resources available to (and including) the system. Due to its
concepts that are intrinsically related to the Goal-Oriented Requirements Engineering
domain and its support on DOLCE, CORE was adopted as a conceptualization for the
creation of the GORE language Techne (BORGIDA et al., 2009).

In comparison to ROSS, the Core Ontology for Requirements (CORE) is also based
on the knowledge presented in Zave and Jackson’s work. However, CORE is grounded in
DOLCE (MASOLO et al., 2003), although a part of DOLCE that is similar to the conceptu-
alization presented in UFO. Furthermore, CORE conceptualizes about the communication
between stakeholders and software engineers and not about the software systems domain.

4.6 Chapter Summary
This chapter presented the first contribution of the thesis, the Reference Ontology of

Software Systems, ROSS. ROSS is a domain ontology grounded on UFO and implemented
under gUFO which is divided into three sub-ontologies, that represents three parts of the
Software System environment.

ROSS contributes to the software research field by representing the nature of a soft-
ware system, and the entities that are directly and indirectly related to it. Software systems
are not simple programs/computational artifact as it was thought decades ago (LEHMAN,
1980). They are socio-technical artifacts, capable of transforming our world, even if not
in an agentive way,11 but based on the assumptions that we have over them. ROSS was
created over an ontological analysis of the scientific literature and modern industrial
standards to improve Zave & Jackson’s and Wang’s works, as a complete reference model
for software systems focused on the different types of requirements, their representations
as specifications, the assumptions used in the process and the other Artifacts that exist
11 In UFO, Agents are entities capable of performing Actions, based on their Goals and Intentions.
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around them. Moreover, based on its modularized structured, designed to represent the
three parts of the environment in which a software system exists, ROSS was intended to
be used as a backbone ontology, into which other more domain-specific ontologies can
be merged and reused, in order to represent more specific parts of the software system
domain.

In Section 4.5 we discussed GORO and the Core Ontology for Requirements.
Ontologies about the software requirements domain and that are related to ROSS through
Zave and Jackson’s work. GORO is a domain ontology about goals and the domain of Goal-
Oriented Requirements Engineering. GORO is also grounded on UFO and is a networked
ontology of SEON. The Core ontology for Requirements focus on the conceptualization of
speech acts between stakeholders and software engineers. CORE is grounded on DOLCE
and discusses concepts as intentions, goals and beliefs, which are also depicted in UFO-
C. Besides, CORE was adopted for the development of the GORE modeling language
Techne (BORGIDA et al., 2009).
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5 An Ontology of Software Defects, Errors
and Failures

This chapter presents the Ontology of Software Defects, Errors and Failures (OS-
DEF). OSDEF is a domain reference ontology that presents an ontological analysis of
software systems failures, defects, faults and errors, which are often collapsed in the
commonly used term software anomaly, that is usually used to denote a situation in which
a Software System deviates from its expected behavior. OSDEF was based on the interna-
tional standards such as the Standard Classification for Software Anomalies (IEEE, 2009)
and the Standard for System, Software, and Hardware Verification and Validation (IEEE,
2016).

OSDEF is intended to represent Artifacts, Agents and Events related to Failures in
Software Systems. This part of the domain is very specific and is not discussed in ROSS
or any other ontology that is part of SEON. Due to that, OSDEF is also a very specific
ontology, in the sense that it was designed to be used, in the requirements traceability
context, together with ontologies like ROoST (an ontology about software testing) and
CMPO (an ontology about configuration management), as part of our ontology-based
reference model for requirements traceability. Moreover, OSDEF could also be reused with
ontologies of the cybersecurity domain. The work presented in this chapter was published
as part of (DUARTE et al., 2018).

Section 5.1 briefly discusses the motivations and requirements for OSDEF. Sec-
tion 5.2 presents the reference conceptual model of OSDEF. Section 5.3 presents related
works. Finally, Section 5.4 concludes and summarizes this chapter.

5.1 Motivation and Requirements
As previously mentioned, the term anomaly and others, such as bug or glitch, are

commonly used within the Software Systems domain to represent a situation in which the
Software System, or a part of it, behaves in an abnormal, irregular or even inconsistent
way. This usually collapses a variety of concepts with distinct ontological natures in a
single term that gives very few or even no context to the real problem. This kind of issue,
is very common and it is know on the ontology-based conceptual modeling literature as
the construct overload problem (GUIZZARDI, 2005).

Because of that, OSDEF was developed to provide an ontological conceptualization
of the different types problems that exist throughout the software system operation.
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To elaborate on these different types of entities we followed SABiO’s directive and
raised a set of Competency Questions (CQ) for OSDEF. CQs were raised and refined in a
highly-interactive way, through analysis of the aforementioned international standards and
through several meetings with ontology experts. The CQs raised for OSDEF are listed
below:

• CQ1: What is a failure?

• CQ2: What is a defect?

• CQ3: What is a fault?

• CQ4: What is an error?

• CQ5: What is a usage limit?

• CQ6: In which type of situation can a failure occur?

• CQ7: What are the situations that result from failure?

• CQ8: What are the cases of failures?

CQs 1 to 5 are related to the concepts that usually are collapsed under the term
“Software Anomaly”. The ontology is intended to answer the ontological nature of each
concept that are commonly used to denote problems and situations that deviate from
expected in Software Systems. CQs 6 and 7 are about the state of affairs that is related to
the occurrence of a software system failure, a loss event. Both CQs are based on the concept
of Situation that are part of the ontological pattern of Events from UFO-B. Finally, CQ 8
was raised because of the necessity for the ontology to represent not only the sub-types of
Software System failures, but also the other entities that are related to these sub-types.

5.2 OSDEF Reference Model
Figure 30 depicts the conceptual model of OSDEF. The central concept of our

ontology is Failure, since it is the occurrence of a failure that is usually perceived by an
agent operating the software system. As defined in standards (IEEE, 2009; IEEE, 2016;
ISO, IEC, 2017b) and employed in general in the scientific literature (DELFRATE, 2012),
Failures are Perdurants (Events). In that respect, the conceptual basis provided by UFO
can help us to understand how failures occur as events during the execution of software. In
a software context, a Failure is defined as an event in which a program does not perform as
it is intended to, i.e., an event that negatively impacts these relevant goals of stakeholders
that motivated the creation of that software (GUIZZARDI et al., 2013). As Events, Failures
can cause other Failures in a chain of Events (e.g., a severe failure in a web server such
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Figure 30 – Conceptual Model of the Ontology of Software Defects, Errors and Failures.

as Apache httpd can make all of its hosted applications undergo subsequent failures). As
defined in UFO (GUIZZARDI et al., 2013), causation is a relation of strict partial order
and, hence, failures cannot be their own causes or causes of their causes but failures can
(perhaps, indirectly) trigger other failures in a chain of causation.

As Events, Failures are directly related to two distinct Situations. The first one is
the Situation that exists prior to the occurrence of that Failure and that triggers the Failure.
This Situation is represented in the ontology as a Vulnerable State and denotes the situation
that activates the Disposition (i.e., a Vulnerability) that will be manifested in that Failure.
For example a Software System with security issues that is exposed to the possibility of a
hacker attack.

The second one is the situation that is brought about by the occurrence of the
Failure, which is defined in the ontology as the Failure State, i.e., a situation that hurts the
intentions of stakeholders.

In this context, the occurrence of the failure transforms a portion of reality to
another: in its pre-situation, the software in execution has the disposition (i.e., a Vul-
nerability) to manifest the failure, but it has not occurred yet, since the disposition was
not yet activated; in its post-situation, the (failure) event was triggered and reality was
“transformed” to a situation in which the software is not executing its functions properly.

Although it is out of the scope of this ontology to provide vocabulary for the
classification of post-failure situations, we note that Failure States can be: transient —
when a failure happens but the software system is capable of recovering itself; continued —
when after the occurrence of the failure the Failure State becomes permanent, or at least
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perduring until some action is taken in order to bring the software system back to a state
in which it is capable to properly execute its functions. Failures can also be classified by
other properties, such as severity, effect and how it is capable to affect a Software System.

Failures are further refined in two distinct sub-types: Fault Manifestation Failures
and User-Generated Failures. The former are Failures that are manifestations of Faults; the
latter are Failures that are directly caused by User Actions.

A Vulnerability1 represents the Dispositions that can exist in software artifacts or
in hardware equipment. This notion is then specialized in two distinct generalization
sets. The first represents the types of Dispositions that can be activated and manifest
Failures: Defects and Usage Limit Vulnerabilities. For example. not treating exceptions in
code or not using tools to avoid SQL injections are very common Defects that can lead
into Failures. The second one represents the types of entities in which those Dispositions
inhere: a Hardware Vulnerability inheres in a Hardware Equipment, while a Loaded Program
Vulnerability inheres in a Loaded Program Copy. For example, two well-known Hardware
Vulnerabilities were Meltdown and Spectre, which affected Intel and ARM processors for
almost an decade. These Hardware Vulnerabilities were abused by hackers and crackers for
many years, without the knowledge of Intel or users, since at least four generations of
processors were created with these Vulnerabilities in them.

Besides, it is also important to understand that hardware and software vulnerabili-
ties are very different in nature. As a Hardware Equipment is essentially a physical Artifact,
an existing Vulnerability can be manifested at any time. On the other side, as Programs are
Abstract Artifacts,2 a program-related Vulnerability can only be manifested if the program
is loaded inside the memory of a Machine, namely, if it inheres in a Loaded Program Copy.

A Defect is a common type of Vulnerability that can exist in physical artifacts (e.g.,
Hardware Equipments), in the source code of a Program and even in the Loaded Programs
Copies inhering in a Machine. It is defined by the Standard Classification for Software
Anomalies (IEEE, 2009) as an imperfection in a work product (WP) where that WP
does not meet its specification and needs to be repaired or replaced. What this and other
definitions in the literature (BOURQUE; FAIRLEY et al., 2014) have in common is that
Defects are understood as properties of Endurants. However, differently from intrinsic
moments that are always manifest, i.e., qualities (e.g., the color of a wall), Defects, as
Vulnerabilities may never be activated and, consequently, never be manifested into Failures.
This means that a Vulnerability can exists inside a Loaded Program Copy for a long time,
until it is activated and manifested. For example, in one of the most famous of theses
1 The notion of vulnerability is frequently used in a way that is restricted to defects that can be exploited

by attacks. We take a more general Risk Management view (HOGGANVIK; STØLEN, 2006; SALES et
al., 2018) of vulnerabilities as Dispositions that can be manifested by events that can hurt stakeholder’s
goals (GUIZZARDI et al., 2013) or diminish something’s value (SALES et al., 2018).

2 The definition of Program as an Abstract Artifact is discussed in Section 3.5.2.
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cases, the “Dirty Copy on Write” (ALAM et al., 2017) Vulnerability existed inside Linux
Kernel for over nine years, until a researcher discovered that it could be exploited to grant
root access to an attacker with malicious intentions.

Defects can exist throughout the entire software process (CHILLAREGE, 1996).
As previously mentioned, some Defects can (contingently) refrain from being manifested
across software executions. When a Defect is manifested as a Failure, we term that Defect
a Fault (Runtime Defect). A Fault, hence, can be seen as a role played by a Defect in
relation to a Failure. Furthermore, we countenance the occurrence of Failures that are
directly caused by User actions. In this scenario, a User performs an Erroneous User Action
that causes a User-Generated Failure. In other words, we name an Erroneous User Action
a User action that causes such a Failure. As discussed in (WANG et al., 2016), software
artifacts are designed taking into consideration Domain Assumptions. When a Program is
created based on incorrect assumptions about the environment in which it will execute,
we consider this a Program Defect. However, there are cases in which the software makes
explicitly defined assumptions (disclaimers, usage guidelines), which are neglected by users
in their actions. In this case, it is the Erroneous User Action itself that is the cause of the
Failure.

As discussed in (FRICKER; SCHNEIDER, 2015), events (including Failures) are
polygenic entities that can result from the interaction of multiple dispositions. For instance,
we take that a User-Generated Failure can be caused by a combination of certain dispositions
of a software system combined with certain Mental Moments of Agents. These mental
moments include Beliefs (including User False Beliefs about domain assumptions) as well
as Intentions (including User Malicious Intentions). A particular case of a User-Generated
Failure, is one in which this Usage Limit Vulnerability is exploited in an intentional malicious
manner, in what is termed an attack (e.g., a User with Malicious Intentions can make a
Web server fail with a Distributed Denial of Service attack). In this case, the server that
is being attacked has no Defect (and, hence, no Fault). This server just has a limited
number of requests that it can answer in a period of time (a capacity, which is a type
of disposition). If this number is exceeded for a long period, all system resources will be
consumed and the server will experience an Intentional User-generated Failure. This failure
can be as simple as a denial of service due to lack of resources, or as critical as a full
system crash. In a different scenario, a Non-intentional User-generated Failure can stem
from the User False Belief of unconsciously performing a wrong action in a software syste
(e.g deleting necessary configuration files in Debian Linux).

Regarding SEON integration, OSDEF is grounded on UFO and also specializes
concepts from SwO and RSRO. OSDEF specializes three concepts from SPO and three
from SwO. Furthermore, since OSDEF is not focused on software requirements, it does
not need to be integrated into ReqON sub-network. Figure 31 depicts OSDEF integrated
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Figure 31 – Integration of OSDEF to SEON

to SEON. The color scheme adopted in Figure 31 is the same one used in Figure 17, in
Section 3.5.

5.3 Related Works
This Section presents the works that are related to OSDEF. OSDEF is also related

and reuses concepts from SPO and SwO. However, as those ontologies were discussed in
Section 4.5, they will not be repeated here.

5.3.1 Del Frate’s Ontology of Failure Engineering Artifacts

DelFrate (2012) provides an ontological analysis of the notion of failure in en-
gineering artifacts. A theory that distinguishes between three types of failures is built:
function-based failures, specification-based failure and material-based failure. Del Frate also
discusses the relation between a Failure, as an Event that happens to an Artifact and a
Fault, which is the state of the artifact after the Failure, for each of the three types of
Failures that are proposed.

The ontological analysis provided by Del Frate shares with our work the inter-
pretation of failures as events. However, honoring the terminology employed in Software
Engineering standards, we conceive faults as processual roles of defects in an existing
(occurred) failure. In contrast, Del Frate considers faults as states (Situations, in the sense of
UFO) in a way that is similar to what we call a Failure State. Moreover, another important
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Figure 32 – Ontology of Faults (KITAMURA; MIZOGUCHI, 1999a).

difference is that we take into account other types of anomalies, such as defects and errors
(even taking in consideration the direct participation of human agents in the occurrence
of failures). Other distinctions worth mentioning is that our work is focused on software
systems and grounded on a foundational ontology, whereas Del Frate’s work is more generic
(covering all engineering artifacts) and does not reuse any particular foundational ontology.

5.3.2 Kitamura and Mizoguchi’s Ontology of Faults

Kitamura and Mizoguchi (1999b) propose an ontological analysis of the fault
process and an ontology of faults, depicted in Figure 32, that provides a categorization
of different types of Faults considering different properties for specifying the scope of
a diagnostic activity. Distinct properties, relations and constraints of different types of
faults are presented, e.g., faults are differentiated between: externally or internally caused;
structural or property-related; or depending on their ontological nature. The ontology is
intended to be used as a tool for characterization of model-based diagnostic systems and
as a formal vocabulary, for human use, during the diagnostic activity.

In comparison to ours, this work has a different focus, which is centered on the
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fault process and on defining a glossary of faults by specifying different characteristics
and constraints of Faults (events) and Failures, which are called Fault States. Besides that,
although their ontology is not grounded on a foundational ontology, they recognize and
discuss, at a minor level, concepts and ontological aspects that are presented in our work,
such as the concepts of Event, State (as a Situation in UFO) and also causality and parthood
relations.

5.3.3 Avizienis Taxonomy of Faults

Avizienis et al. (AVIZIENIS et al., 2004) proposes a taxonomy of faults, failures
and errors in a context of dependability, reliability and security. In comparison with
OSDEF, the taxonomy proposed there also understands Failures as Events and Faults
and Vulnerabilities as properties of a system, composed of software, hardware and people.
However, the concept of Error used by the taxonomy is different from the one that we
used in OSDEF. Our notion of Error is the one of an Erroneous User Action, being based
on the IEEE 1044 standard. This notion is similar to what is termed by Avizienis and
colleagues as a Human Fault. Moreover the taxonomy presented by Avizienis et al. has a
broader scope than OSDEF, presenting a larger vocabulary focused on properties such
as criticality and consistency. On the other hand, OSDEF is more focused on defining
the ontological nature of these concepts and the relations between then, using UFO as
foundation.

5.3.4 Common Ontology of ValuE and Risk (COVER)

The Common Ontology of ValuE and Risk (COVER) (SALES et al., 2018) provides
a rigorous ontological analysis of Events, Objects, Qualities, Situations and relations that
can be used to characterize the notion of risk. The ontology is based on three domain-
independent perspectives: (i) the experiential perspective, which represents both value
and risk as events with their causes; (ii) the relational perspective, which presents the
relational nature of value and risk; and (iii) the quantitative perspective, which presents
value and risk in terms of mensurable qualities. COVER sees risk as intrinsically connected
to the notion of value, in a way that risk assessment is seen as a particular case of value
ascription. Value is related to the degree to which certain properties of the object can be
enacted to satisfy one’s goals. Analogously, the risk incurred to an object is roughly the
degree to which its vulnerabilities together with the capacities (and possibly, intentions)
of a threatening entity can be enacted to end one’s goals.3 Moreover, risk is always the
risk of the destruction of value. In other words, the authors conceptualize value and risk
as two sides of the same coin, thus, sharing intrinsic properties such as goal dependency
3 Value and risk are always defined in relation to one’s goals. As a consequence, they are always relative

notions.
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Figure 33 – Fragment of COVER presenting the concept of Value Event and their rela-
tions (SALES et al., 2018).

and relativity. Furthermore, the authors present and discuss different types of value and
risk based on these intrinsic properties.

Figures 33 and 34 show two fragments of COVER that constitute its experiential
perspective. Both figures are shown here exactly as in the original article, i.e., using the
OntoUML language as well as a color code often used by that community. OntoUML is a
UFO-based conceptual modeling language (GUIZZARDI, 2005). In this color code, light
red classes represent Endurant types; blue classes represent Intrinsic Moment types; yellow
classes represent Event types; finally, orange classes represent Situation types.

Value (also Risk) Events can be decomposed into “smaller” events, all of which
constitute the Value (Risk) Experiences of an Agent. Value and Risk can be ascribed to
Objects, which then play the roles of Value Objects and Objects at Risk, respectively.
They can also be ascribed to experiences (Events) focused on the relevant qualities and
dispositions of these Objects. Other Objects that are not the focus of these experiences can
also participate in the Value and Risk Events as Value (Risk) Enablers. Finally, the central
risk domain elements in COVER are specializations of the general categories of Events,
Dispositions, Agents, Objects, and Situations organized around the same ontological pattern
that is used here as a basis for OSDEF, namely, the Events as Manifestations of Object
Dispositions pattern (GUIZZARDI et al., 2013).

In comparison to OSDEF, COVER is also grounded on UFO, it conceptualizes over
the same ontological pattern of Events, Dispositions and Situations presented by UFO-B. In
this context, the concepts of Failure and Failure State presented in OSDEF are, respectively,
sub-types of of Loss Event and Loss Situation, defined in COVER. Besides that, both
ontologies define Vulnerability as Dispositions that can be manifested in Artifacts. In a direct
comparison, COVER is a more generalist ontology, one can understand COVER as a
core ontology that conceptualizes about value and risk. OSDEF is domain ontology that
conceptualizes about failures, defects and errors in the context of software systems.
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Figure 34 – Fragment of COVER presenting the concept of Risk Event and their rela-
tions (SALES et al., 2018).

5.4 Chapter Summary
This chapter presented the second contribution of the thesis, the Ontology of

Software Defects, Errors and Failures, OSDEF. Like ROSS, OSDEF was grounded on UFO
and developed using SABiO, following an ontological analysis process that was based over
the ontological pattern (FALBO et al., 2016) of Events, presented in UFO-B (GUIZZARDI
et al., 2013).

However, differently from ROSS, it was created to represent a very specific part of
the Software System domain, which is the understanding of the ontological nature of the
problems that affect Software Systems and that are erroneously condensed into the term
anomaly. Differently from works like the Orthogonal Defect Classification (CHILLAREGE,
1996), OSDEF was not created to define a vocabulary about types of Failures and Faults,
but to represent the ontological nature of each of these concepts, and how they are related
to each other and to elements of the software systems domain.

In the requirements traceability context, OSDEF was not created to be used on
its own, but to be reused with other ontologies, such as ROSS; ROoST, the Reference
Ontology of Software Testing (SOUZA; FALBO; VIJAYKUMAR, 2013; SOUZA; FALBO;
VIJAYKUMAR, 2017); and CMPO (RUY et al., 2016). OSDEF represents concepts like
Failures, Defects and Vulnerabilities that: (i) are directly related to a software system
operation cycle, (ii) are not represented or discussed in any other ontology that are part of
SEON and (iii) that provide a wide perspective for the requirements traceability domain
when reused together with the concepts of the previously mentioned domain ontologies.4

Finally, we ended the chapter by presenting and briefly discussing proposals from
the scientific literature that are directly related to OSDEF.

4 Concepts of OSDEF are reused with concepts of ROSS and CMPO in the queries presented in Chapter 7.
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6 Ontology Evaluation and Implementation

This chapter presents the implementation and evaluation processes of ROSS and
OSDEF. SABiO prescribes that ontologies need to go through ontology verification and
validation techniques, in a process analogous to the verification and validation of software
systems.

Based on this normative, in the next sections we discuss the verification and
validation techniques applied for ROSS and OSDEF. Section 6.1 presents the ontology
verification technique, based on competency questions. Section 6.2 presents the validation
of OSDEF and ROSS, based on ontology instantiation. Section 6.3 discusses the design and
implementation process for both ROSS and OSDEF. Section 6.4 summarizes the chapter.

6.1 Ontology Verification
For ontology verification, SABiO states the primary objective is to ensure that

the ontology is being built correctly, in the sense that it has no major consistency and
coherence problems, and that the output artifacts meet the previously defined specifications.
To achieve that, ontology verification should be Competency Question-driven, as such
questions are used as the requirements of the ontology. More precisely, the method suggests
the creation of a table that shows that the ontology elements are able to answer all raised
competency questions (CQs).

Table 1 presents ROSS’ verification regarding its competency questions. Once
more, since ROSS is able to adequately respond to all proposed CQs, the verification is
considered successful.

Table 1 – ROSS verification table based on its CQs.

CQ Concepts and Relations
CQ1 Software System is a subtype of Artifact.
CQ2 Software System is composed by many System Components, which is also subtype

of Artifact).
A Software System can be developed as with SubSystems or as an simple
system (no Subsystem).

CQ3 Business Requirements, Stakeholder Requirements, System Requirements and
Program Requirements, are subtypes of Goal.

CQ4 Stakeholder Requirements are derived from Business Requirements.
System Requirements are derived from Stakeholder Requirements.
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Program Requirements are derived from Stakeholder Requirements and from
System Requirements.

CQ5 Business Requirements are described in a Business Requirements Specification,
which is a subtype of Information Item.
Stakeholder Requirements are described in a Stakeholder Requirements Specifica-
tion, which is a subtype of Information Item
System Requirements are described in a System Requirements Specification, which
is a subtype of Information Item.
Program Requirements are described in a Program Requirements Specification,
which is a subtype of Information Item.

CQ6 World Assumptions and Machine Assumptions are subtypes of Dispositions that
are part of the Software System domain.

CQ7 Business Requirements Specification describes a set of Business Requirements
based on World Assumptions, which are Propositions about the World Behavior.
System Requirements Specification describes a set of System Requirements based
on World Assumptions and Machine Assumptions, which are, respectively, Propo-
sitions about the World and the Machine Behaviors.
Program Requirements Specification describes a set of Program Requirements
based on Machine Assumptions, which are Propositions about the Machine
Behavior.

CQ8 Business Rules and External Regulations are subtypes of Business Constraints,
which are recognized by the Organization.
Business Constraints constrains Business Requirements.

Analogously, Table 2 illustrates the results of the OSDEF verification regarding
the predefined CQs. Moreover, the table can also be used as a traceability tool, supporting
ontology change management. The table shows that the ontology can answer all CQs
appropriately.

Table 2 – OSDEF verification table based on its CQs.

CQ Concepts and Relations
CQ1 Failure is a subtype of Event that brings about a Failure State.

A User-generated Failure is a subtype of Failure is caused by an Erroneous User
Action stemming from a User False Belief or a User Malicious Intention.
A Fault Manifestation Failure is a subtype of Failure that is manifestation of a
Fault (a Runtime Defect).

CQ2 Defect is a subtype of Vulnerability
Defect inheres in an Endurant
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CQ3 Fault is a subtype of Defect which is manifested at runtime via a Fault Manifes-
tation Failure.

CQ4 Erroneous User Action is a subtype of User Action (Action) that is performed by
a User, which is a subtype of Stakeholder (Agent).

CQ5 Usage Limit Vulnerability is a subtype of Vulnerability that inheres in an Endurant.
Program Usage Limit Vulnerability) inheres in a Loaded Program Copy.
Hardware Usage Limit Vulnerability inheres in a Hardware Equipment.

CQ6 Vulnerable State is a subtype of Situation that activates a Fault and triggers a
Failure.

CQ7 Failure State is a subtype of Situation that is brought by a Failure.
CQ8 A Failure can be caused by another Failure, in a chain of Events.

A Vulnerable State can activate a Fault that ismanifested into a Fault Manifestation
Failure.
An Erroneous User Action can cause a User-generated Failure, which is a mani-
festation of a Usage Limit Vulnerability.

6.2 Ontology Validation
For ontology validation, SABiO states that its primary objective is to ensure that

the right ontology is being built. In other words, the ontology must fulfill its intended
purpose. The method indicates that a good and relatively simple validation technique is to
check whether the created reference ontology may be instantiated to represent real-world
situations that are directly related to the domain of the ontology.

In this context, we conducted a particular type of validation, of ROSS and OSDEF
in terms of their capacities to support the analysis of software risks associated with systems’
anomalies. So, in order to do that, we reused COVER, the Common Ontology of Value
and RISK (SALES et al., 2018) (cf. Section 5.3.4) and employed it in combination with
ROSS and OSDEF to instantiate real-world scenarios of famous cases of software failures.
Our objective is showing that the combination OSDEF, ROSS and COVER is capable of
representing these real-world situations in the best possible way, as we believe that the
risk analysis perspective given by COVER complements the representation provided by
the combination (reuse) of ROSS and OSDEF. Furthermore, we choose these specific cases
because they are well-known and well-documented cases of failures of software systems
that caused major damage, in our society. Besides, these cases are also good candidates
because they are not based on software-only systems. More precisely, the described human
actions, hardware-based defects and value-risk situations exemplify scenarios that are
appropriate for the validation of our proposed domain ontologies.
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In what follows, we describe each case and present an instantiation model for each
of them, based on the UML object diagram. These instance-level models have been used
as an evaluation technique associated with OntoUML models (e.g., in (SALES et al., 2018;
AMARAL et al., 2019)). The color scheme used here is the same as the aforementioned
OntoUML color convention.1

Moreover, we here abuse the object diagram notation in the following manner:
boxes (object names) represent instances of the domain elements; arrows represent links;
base class notation represents the concepts from OSDEF, COVER and ROSS instantiated
by each of these elements. This convention is used in figures 35, 36 and 37.

Case 1 (Figure 352): the Therac-25 disaster (LEVESON; TURNER, 1993).
Therac-25 was a medical equipment that handled two types of therapy: a low-powered
direct electron beam and a megavolt X-ray mode. The core of the incident was that the
Software System that was responsible for controlling the equipment was reused from a
previous model of the Diagnose Equipment (Hardware Equipment), in such way that it was
missing important upgrades to the existing routines (parts of Programs that constituted
the system) and adequate testing, conditions that can be understood as Vulnerabilities that
inhered in those Programs. The propensity of the system to cause race conditions (Fault),
was manifested into a critical Failure when an operator (Risk Enabler), unconsciously,
changed the therapy mode of the equipment too quickly, causing, instructions for both
treatments to be simultaneously sent to the diagnose equipment. The first instruction to
arrive would set the mode for the treatment to be applied (a kind of fault known as race
condition). The consequences were devastating, as patients (Objects at Risk) expecting to
receive an electron-beam, could ended up receiving the X-ray and because of that, ended
up getting sick or even dying from radiation poisoning. This was an example of a Fault
Manifestation Failure happening as the manifestation of Fault that caused patients to be
exposed to high doses of radiation (Loss Event). Besides, although the Fault Manifestation
Failure was brought about by a User Action, as the operator quickly changed the mode
of the equipment (this action created a Threatening Situation), it cannot be considered
an Erroneous User Action, since this cannot be considered a user’s negligence of stated
assumptions. In other words, the operator, as an User of the Therac-25 Software System,
even if unknowingly, participated as a Risk Enabler for the Failure of the system and being
responsible for creating the Mega-volt X-Ray Activation (a Threat Event for the patient),
which in its turn, caused the Loss Event and brought about Loss Situations where patients
ended up dying.

Case 2 (Figure 36): in 2013, Spamhaus, a nonprofit professional protection
1 Orange is used to represent situations; yellow - events; blue - intrinsic moments; light red - objects.
2 Please see (FONSECA et al., 2019) for the semantics of historical dependence. Moreover, following the

goal-oriented requirements engineering tradition, we use the relation of break here as an extreme case
of the hurt relation as in (SALES et al., 2018).
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Figure 35 – The Therac-25 System instantiation with OSDEF, COVER and ROSS.
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service on the Web (a Web-based Software System), was the target of what might have
been the largest DDoS attack (Loss Event) in history. Hackers redirected hundreds of
controlled DNS servers (Threat Event), to send up to 300 gigabits of flood data to each
server (Hardware Equipment) of the Spamhaus Network, with the Intention to suspend
the service provided. In this case, the occurrence of the User-generated Failure is directly
related with deliberate Actions of a group of hackers, acting as Risk Subjects, with User
malicious intentions, to cause a Loss Event and bring about a Loss Situation where the
service becomes unavailable.

For this case, there was no particular Defect, nor any Fault was activated that could
end up be manifested into a Failure in the system. As an Artifact, the Spamhaus Software
System had a Usage Limit concerning the number of service requests to which it could
respond. When this limit was far surpassed by hundreds of hacker-controlled DNS servers,
the Spamhaus Service Loaded Program Copy was compromised, because of a natural Usage
Limit Vulnerability that inheres in the servers of the network. Consequently, users of the
system (the Value Subjects for the owners of the Spamhaus project), had their Intention to
continue to use the system, also compromised.

Case 3 (Figure 37): In 1991, during the Gulf War, the Patriot missile-system (DE-
FENSE, 1992) failed to protect US Army Barracks from an incoming Scud missile, resulting
in the death of 28 soldiers, which were the Value Subjects for the system. The heart of
the patriot defensive system was the computer that controlled the radar, responsible for
detecting incoming threats. This computer was based on a 1970s design, with a limited
capability to perform high-precision calculations, as it was based on a 24-bit architecture.
This outdated architecture ended up being a Vulnerability for the Patriot system. The
system worked based on communications between a radar, a computer, the missile turret
component and the Program that was responsible to calculate the trajectory of incoming
Threat Objects (usually SCUD Missiles). After the radar detected the incoming projectile,
with electric pulses, the loaded missile surveillance program (Loaded Program Copy) was
responsible for calculating the next area where the incoming object might be, in order to
track down its trajectory (Software Function) and trigger the launch of a patriot missile to
intercept the incoming Threat Object, before it hits base camp. To do that, the computer
measured time, with the precision of tenths of a second, in an integer that could be 24-bits
long.

The system lost precision over time, as the calculations were not precise enough
due to the outdated architecture (Israel army reported that the system was operating
with considerable deviation in the calculations, after only 8 hours of run-time). The
specific Patriot unit of the incident was online for over 100 hours (Loaded Program Copy),
contributing to the loss of precision in the calculations, a Defect that propagated and
escalated over time. At the end, the system was looking for the incoming Scud (Threat
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Figure 36 – The Spamhaus System case instantiation with of OSDEF, COVER and ROSS.
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Object) meters away from its precise location and, hence, never activated the defensive
patriot missile. As in the Therac-25 incident, the Object at Risk is not the software system
by itself, but human lives, as the Patriot System was critical to support the lives of the
soldiers in the battlefield, which had the Intention to remain protected while in base camp.
Such Intention was broken as a SCUD missile goes undetected by the radar (Threat Event)
and ended up hitting the barracks, bringing about a Loss Situation where 28 soldiers lives
were lost.

Besides, for this particular case, the Defect was not manifested in a split of a
second, resulting in a Failure as soon as a defective part of the system was accessed during
program execution. Instead, the Defect occurs because after some hours at run-time, the
system calculations were not correct anymore. Consequently, the Fault manifests in the
system. In other words, the software that controlled the Patriot Defense System entered
in a Threatening Situation of a high accumulation of calculation errors a few hours after
being online. However, this situation is not easily perceived, as in an ordinary Web-based
system. At this point, the system can suffer a critical failure at any time, as it is no longer
capable of fulfilling its most important requirement: protecting the soldiers in the camp
from attacks.

6.3 Ontology Design and Implementation
Ontology Design and Implementation are respectively the third and fourth phases

of SABiO ontology development process. SABiO defines that in order to create operational
ontologies, it is necessary to design and implement the reference ontology in a machine-
readable language (e.g OWL).

Regarding Ontology Design, the operational versions of ROSS and OSDEF are based
on gUFO (ALMEIDA et al., 2019), the lightweight/gentle version of UFO created with
the specific purpose of providing support for the development of operational ontologies.3

This decision was taken because we were aiming to produce a lightweight version of ROSS
and OSDEF without losing all the properties that were present on the reference ontologies
and gUFO was originally designed to tackle this aspect.

Besides, both ROSS and OSDEF were implemented with Protégé (NOY et al.,
2001; NOY et al., 2003) and linked data technologies: RDF, OWL and SPARQL. These
design decisions were based on the fact that the graph structure of RDF (subject, predicate
and object) is a very good option to represent the requirements traceability data, which is
composed by many instances of concepts of ROSS and OSDEF and the relations that exists
between them. The concepts of the ontologies are the nodes and the relations are the edges
3 gUFO was presented in Section 3.3.2.
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Figure 37 – The Patriot Missile System case instantiation with of OSDEF, COVER and
ROSS.
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Figure 38 – Concepts of ROSS as sub-types of concepts of gUFO being represented in
Protégé (left) and in Turtle syntax (right)

in the graph structure. Moreover, RDF format is necessary to query data with SPARQL.4

Besides that, the concepts defined in OWL and RDF could be used to semantic annotate
resources in a configuration management context. Finally, Protégé is a free, open-source
ontology editor that is supported by a strong and active academic community, with full
support for the technologies mentioned above.

The development process was thus conducted using the Protégé tool. Basically, the
file that contains the implementation of gUFO, written in Turtle syntax (W3C, 2014b), is
imported into Protégé and the concepts of ROSS and OSDEF are created as sub-classes of
the concepts of gUFO. This process is, to a certain extent, analogous to the one of reusing
UFO as a foundational ontology, when developing a domain reference ontology. However,
it is important to understand that the artifact (the operational ontology) that is being
created is not a perfect representation of the reference ontology. Differently from reference
ontologies, operational ontologies are not focused on representation adequacy, but are
designed with the focus on guaranteeing desirable computational properties (FALBO,
2014). Both operational ontologies can be found in <purl.org/brunoborliniduarte>.

Figure 38 depicts the concepts of Program Requirement, System Requirement, Stake-
holder Requirement and Business Requirement, all sub-types of Requirement in Protégé (left)
and in the original Turtle syntax (right). Moreover, it is important to explain that the
requirements being represented in the operational ontologies are, in fact, Requirements
Artifacts, specifications of the Goals that are depicted in the reference ontologies. This
design decision is based on the fact that, in the context of a software process, Require-
ments (as UFO::Goals) are described into Requirements Artifacts (specifications) which are
implemented into Programs. These Requirements Artifacts are traceable to Programs and to
other Artifacts, during the Requirements Traceability process.

Analogously the implementation of ROSS, Figure 39 depicts part of the concepts
of OSDEF in the Protégé graphical tool (left) and in the original Turtle syntax (right).
4 SPARQL is used as a tool to support Requirements Traceability in Chapter 7.

purl.org/brunoborliniduarte
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Figure 39 – Concepts of OSDEF as sub-types of concepts of gUFO being represented in
Protégé (left) and in Turtle syntax (right).

Moreover, although it is not shown in Figures 38 and 39, we also imported and
reused the object and data properties that are defined in gUFO.

6.4 Chapter Summary
This chapter presented the evaluation and implementation processes performed for

ROSS and OSDEF. Ontology implementation process was based on gUFO, the “gentle”
version of UFO which was created for the development of operational ontologies. Moreover,
SABiO, the ontology engineering method adopted for the development of ROSS and OSDEF
states that the ontology evaluation process should be performed based on verification and
validation techniques.

For ontology verification, we answered the competency questions that were raised
as the ontology requirements. This activity aims to demonstrate that the ontologies are
build correctly, since they need to be capable to answer the competency questions that
were raised for them to answer.

For ontology validation, we used real world-scenarios of well-known cases of catas-
trophic failures in software systems to demonstrate that the ontology developed is capable
to represent such situations.
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7 Ontology-based Requirements Traceability

In chapters 4 and 5, we proposed two domain reference ontologies about software
systems and about the types of failures and defects that can happen during the software
system operation. In this chapter, we present our approach for the use of operational
ontologies and SPARQL queries (cf. Section 3.3) as tools for recovering traceability links
and reasoning over the requirements data with the ontologies proposed in this thesis.

Section 7.1 starts the discussion of our approach for Ontology-based Requirements
Traceability. Section 7.2 presents the data of the ATM System that will be used to
demonstrate our approach. Section 7.3 presents our approach using the data previously
mentioned and discusses the implications, possibilities and limitations of it. Section 7.4
presents a prototype tool created to provide graphical visualization of the SPARQL queries
performed in our approach. Section 7.5 discusses proposals for requirements traceability
that are related to this thesis. Finally, Section 7.6 summarizes this chapter.

7.1 From Ontologies to Traceability Reference Models
The current literature has many works that intend to create real-semantic or

fully-automated requirements traceability approaches, as it is considered to be a very
important but, at the same time, very difficult activity to be performed in a continuous
way.1 Many of these works are based on very complex formal approaches, that would require
a considerable effort and resources to be properly executed. Due to that, they become
almost prohibitive for low-end traceability users (RAMESH; JARKE, 2001). Besides, some
other proposals are dependent on prototype tools that may never be fully developed or
are just not available anymore.

Due to that, we do not advocate for or intend to propose an approach for automatic
or “effortless” requirements traceability. Instead, we believe that requirements traceability
and the requirements management process, as the name implies, are management processes,
in the sense that they probably will not be conducted in a fully automatic mode. Moreover,
our proposal is based on knowledge and tools that can be easily found in the scientific
literature, such as domain reference ontologies and linked data technologies.2

Furthermore, differently from some proposals in the literature, our reference models
(ontologies) are not focused on the definition of the traceability process. More precisely, we
are not focused on defining concepts like Trace or Trace Artifact and associating them with
1 Requirements Traceability benefits and major problems were discussed in Section 2.2.
2 Ontologies and linked data technologies used in this work were presented in Chapter 2.
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elements of the software process. Our proposal is focused on using reference ontologies
for the software domain and implementing them to support ontology-based requirements
traceability. In other words, our proposal is focused on defining conceptual models about the
software system domain and implementing them to support semantic-based requirements
traceability. Due to that, the concept of Trace is implicit in the relations between concepts
that are part of the reference models. In other words, every relation that exists between
Requirements and other Artifacts that is represented in the reference models is a possible
trace that can be retrieved.

The benefit of this approach is that the semantics of the relationships is maintained.
For example, the Semantic Traceability model, discussed in Section 7.5.3, defines the
concept of Trace as a relation between a TraceObject, an Operation and a Client. In this
case, the concept of trace becomes generic, as a relevant relation between a ClientAgent
C,an Operation O and a TraceObject T. We argue that, in this case, the knowledge that
may exist between the specific relationships between each specialization of TraceObject,
Operation and Client is lost. The alternative is to explicitly define each relationship,
between each type of concept in the reference model (as done in this work). However,
this alternative raises the complexity of the model. In order to avoid the increase of
complexity, some strategies can be executed, for example, divide the reference model in
modules (or sub-ontologies, as in our case), that can be used according to the user needs.
Another possible strategy is to create multiple models, in such a way that all models will
share the same basic knowledge, but each one will have its own intrinsic complexity. This
approach is used by Ramesh and Jarke, in their Semantic Traceability Model, discussed in
Section 7.5.1.

Furthermore, on other types of proposals, such as the Traceability Meta-Model
proposed by Espinoza and Garbajosa (2011), a simpler model is defined and the user is
responsible to extend the model by specializing its concepts. For example, the authors
define the concept of Traceability link and instruct the user to specialize this concept with
the sub-types of Traceability links that are relevant for their use case. We did not chose
this modeling approach for our reference model because it places a big responsibility in
the users hands, which is being responsible for completing modeling activity for their own
reference model, a task that can be complex if the users have no experience in conceptual
modeling. Instead, we suggest to the users of our reference model to reuse the concepts
of the ontologies that are part SEON, since both ROSS and OSDEF were designed with
this type of reuse in mind. In other words, our user is instructed to reuse the ontologies
in SEON to represent concepts that are not discussed in ROSS and OSDEF. We believe
that this was the best case for our approach since all ontologies are grounded on UFO and
based on SPO and, because of that, the ontology reuse process should be facilitated. The
difference of this two approaches lies in the fact that, for our reference model, the final
users do not need to finish the modeling activity of their reference model, by specializing
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concepts of the base model and defining the existing relations between them. Instead, the
user only needs to connect the parts of the software systems domain (represented by the
ontologies in SEON plus ROSS and OSDEF) that are already fully modeled, according to
their needs.

Analogously to ROSS and OSDEF, we also define CQs for the queries, presented
here. This CQs are intended to be answered by the SPARQL queries presented below and to
depict some of the traceability information that can be retrieved by reusing the networked
ontologies of SEON (SwO, RSRO, ROSS, OSDEF, CMPO and ROoST), together.

• CQ1: How are Business Requirements traced to Programs?

• CQ2: How are Change Requests related to Programs and to the Requirements that
they implement?

• CQ3: How are Defects related to Requirements?

• CQ4: How are Stakeholder Requirements refined into Program Requirements and
implemented into Programs?

• CQ5: How are Test Cases related to Requirements?

In this context, Figure 40 depicts a graphical representation of the ontologies used
in the SPARQL queries reported in this chapter. SPO is represented in the center and in
a different color because it is a core ontology. The numbers inside each circle correspond
to the number of concepts of the ontology. The lines connecting ontologies represent the
number of concepts that the two connected ontologies share. It is important to emphasize
that this figure only represents the ontologies used for this particular example of the ATM
Machine. In another situation, other networked ontologies from SEON, such as GORO or
CPO also could be used.

Moreover, the ontologies depicted in Figure 40 are designed to be reused together
through this concepts in common or through specialization. For example, ROSS and
OSDEF are reused together through the concept of Program, which is common for both
ontologies. On another example, CMPO does not have a concept in common with ROSS
or OSDEF, however, it also adopts SPO as its core ontology, defining that an Change
Request (the concept that we intend to reuse) addresses an Configuration Item, which is a
specialization of Artifact (from SPO). Since the requirements described into specifications
are Artifacts in the same context, we can reuse both ontologies together, through the concept
of Artifact. In other words, requirements artifacts (specifications) are specializations of a
concept described in CMPO, due to that, we can reuse these ontologies together. External
ontologies can also be reused in our traceability model, however, the external ontologies
will need to be adapted or re-engineered, if they are not grounded on UFO.
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Figure 40 – Graphical Representation of SEON ontologies used for SPARQL queries
performed

From the operational ontology perspective, the concepts of Test Case from ROoST
and Change Request from CMPO are included into the same RDF file that contains ROSS
and OSDEF, which were developed on top of gUFO.3 Relations between concepts from
two different ontologies should be defined as object properties in the operational ontology.
The reused concepts and relations should be defined as specializations of concepts from
gUFO, as it was done with ROSS and OSDEF.

7.2 ATM System Scenario
In order to demonstrate our ontology-based requirements traceability approach, we

adopted the ATM Software System as the scenario for our proof of concept. The ATM
System was chosen because it is a well-know case inside the Software Engineering/Re-
quirements Engineering literature, as it has been discussed and used as a proof of concept
tool by many authors (DALPIAZ et al., 2013; TALLABACI; SOUZA, 2013; WANG et al.,
2009). Further, a publicly available complete implementation of an ATM System, with
detailed requirements, design models, implemented classes and test cases are provided
by Bjork (2009). These common software development information items, can be used as
base for the development of the different types of requirements that are proposed by our
ontologies.
3 This hierarchy is presented in Section 6.3.
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Finally, the ATM system provides a viable scenario for a proof of concept because
it is not purely software-based, since it has hardware-parts, external components, and
connections to other systems (bank system), which are vital for the correct operation of
the system, but that have to be controlled and managed by the embedded software system.
This type of heterogeneity adds an amount of complexity to the scenario and approximate
it to a real-world software system demand, which is beneficial for our objective, which is
demonstrate that we can use domain ontologies without making it too complex, to a point
that would make it impracticable.

7.2.1 ATM System Scope and Objective

It is important to clarify that a real ATM system is very complex, mainly because of
the security protocols that are adopted in order to avoid frauds. For this proof of concept,
we focus the scope on the core elements and features of an ATM System prototype
and develop the proof of concept over the requirements, design elements and contextual
information that are originally provided by Bjork (2009).

The main objectives of this proof of concept is to: (i) demonstrate that ROSS and
OSDEF, as reference models, are able to properly represent the Software System domain,
with a focus on the different types of requirements and software anomalies, with different
levels of abstraction that exist throughout its implementation; (ii) demonstrate that an
operational version of ROSS and OSDEF, properly built upon a series of axioms and rules
that are provided by the operational version of UFO, gUFO, can be used as a linked data
tool to properly classify requirements-based data and to provide traceability and reasoning
capabilities over this data.

In order to achieve these objectives, we used the ATM System data provided by
Bjork, in the format of textual requirements, design models and implementation classes,
test cases and reported issues to instantiate the concepts defined in ROSS and OSDEF.
However, as the data available in Bjork’s artifacts were not enough to instantiate the entire
ontology, some concepts had to be derived from them. For example, Bjork provides a set
of textual Stakeholders Requirements, a series of design elements and Java-based classes
that are based on these requirements. However, properly described System and Program
Requirements are not provided. Furthermore, in order to obtain the complete list of system
and program requirements for this experiment, we adopted the definition provided by ROSS
that System Requirements and Program Requirements are solution-oriented refinements
of the Stakeholder Requirements and reverse-engineered the Design Elements provided,
based on each individual Stakeholder Requirement to obtain a list of program and system
requirements that are consistent with this particular version of the ATM System.

Besides that, it is important to clarify that the data used in this proof of concept is
based on the different types of requirements of the ATM System and on the relations that
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Table 3 – Business Requirements for the ATM System.

Requirements Description
BREQ001 Reduce service time for customer
BREQ002 Reduce costs with human personnel
BREQ003 Allow customer service outside of business hours
BREQ004 Improve reliability through process automation

exist between them, as it is proposed in ROSS’ reference model. Moreover, for simplicity
reasons, data was manually written in OWL files using the Protégé tool (NOY et al., 2001;
NOY et al., 2003), as it is out of the scope of this thesis to provide or discuss semantic
annotation methods and data retrieval approaches from documents or other types of
Information Items that exist during Software System operation. However, we understand
and point out to the fact that for large and very-large projects, some form of automation
in the data retrieval process may be required. Finally, all queries were executed in Protégé
using its native SPARQL plugin.

7.2.2 ATM System Requirements Data

As explained in the previous section, the data used for this proof of concept was
directly reused from the data originally made available by Bjork (2009) and refined to fit
ROSS’ reference model.

This section presents the requirements data of Bjork’s ATM system adapted to our
proof of concept. The data consists of all the requirements for the ATM system and the
other (Software) Artifacts that are related to them. For example, Change requests, Test
cases and Programs of the ATM System.

The first step is to define the Business Requirements, which, as it was discussed
in Chapter 4, represent the top-level requirements and the organization’s goals towards
the system-of-interest. As Bjork’s prototype does not directly provide this specific type of
requirement, we defined four Business Requirements based on the original ATM Software
System description provided by Bjork and by the ones presented in the literature by other
authors (TALLABACI; SOUZA, 2013; WANG et al., 2009) that used the same example.
The four Business Requirements defined for this ATM System are presented in Table 3.

Following, the Stakeholder Requirements proposed in (BJORK, 2009) are presented
in Table 4.
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Table 4 – Stakeholder Requirements for the ATM System.

Requirements Description
STREQ001 The ATM will communicate with the bank’s computer over an appro-

priate communication link.
STREQ002 The ATM will service one customer at a time. A customer will be

required to insert an ATM card and enter a personal identification
number (PIN) – both of which will be sent to the bank for validation
as part of each transaction. The customer will then be able to perform
one or more transactions. The card will be retained in the machine
until the customer indicates that he/she desires no further transactions,
at which point it will be returned – except as noted below.

STREQ003 A customer must be able to make a cash withdrawal from any suitable
account linked to the card, in multiples of $20.00. Approval must be
obtained from the bank before cash is dispensed.

STREQ004 A customer must be able to make a deposit to any account linked to
the card, consisting of cash and/or checks in an envelope. The customer
will enter the amount of the deposit into the ATM, subject to manual
verification when the envelope is removed from the machine by an
operator. Approval must be obtained from the bank before physically
accepting the envelope.

STREQ005 A customer must be able to make a transfer of money between any
two accounts linked to the card.

STREQ006 A customer must be able to make a balance inquiry of any account
linked to the card.

STREQ007 A customer must be able to abort a transaction in progress by pressing
the Cancel key instead of responding to a request from the machine.

STREQ008 The ATM will communicate each transaction to the bank and obtain
verification that it was allowed by the bank. Ordinarily, a transaction
will be considered complete by the bank once it has been approved.

STREQ009 If the bank determines that the customer’s PIN is invalid, the customer
will be required to re-enter the PIN before a transaction can proceed.
If the customer is unable to successfully enter the PIN after three
tries, the card will be permanently retained by the machine, and the
customer will have to contact the bank to get it back.

STREQ010 If a transaction fails for any reason other than an invalid PIN, the
ATM will display an explanation of the problem, and will then ask the
customer whether he/she wants to do another transaction.
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Table 4 – Stakeholder Requirements for the ATM System.

Requirements Description
STREQ011 The ATM will provide the customer with a printed receipt for each

successful transaction, showing the date, time, machine location, type
of transaction, account(s), amount, and ending and available balance(s)
of the affected account (“to” account for transfers).

STREQ012 The ATM will also maintain an internal log of transactions to facilitate
resolving ambiguities arising from a hardware failure in the middle of
a transaction. Entries will be made in the log when the ATM is started
up and shut down, for each message sent to the Bank (along with the
response back, if one is expected), for the dispensing of cash, and for
the receiving of an envelope. Log entries may contain card numbers
and dollar amounts, but for security will never contain a PIN.

As proposed by ROSS, the Stakeholder Requirements must be further refined
into System Requirements and Program Requirements, as they are the solution-oriented
goals towards the system-of-interest. Tables 5 and 6, respectively, present the System
Requirements and the Program Requirements for the ATM Software System and the
Stakeholder Requirement from which they were derived.

Table 5 – System Requirements for the ATM Software System.

Requirements Description Derived from
SYSREQ001 The ATM must have a proper internet connection

in order to communicate with the bank system.
STREQ01

SYSREQ002 Internet Connection must be encrypted with AES
encryption all the time.

STREQ01

SYSREQ003 System must be implemented with Java EE tech-
nologies, in order to maintain consistency with
other systems in the bank.

STREQ01

SYSREQ004 The ATM must have a Card reader installed. The
Card reader driver must be natively compatible
with the OS installed in the ATM Machine.

STREQ02

SYSREQ005 The ATM must have a Cash Dispenser peripheral
installed. The Cash Dispenser driver must be na-
tively compatible with the OS installed in the ATM
Machine.

STREQ04
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Table 5 – System Requirements for the ATM Software System.

Requirements Description Derived from
SYSREQ006 The ATM must have an Envelope Acceptor pe-

ripheral installed. The peripheral driver must be
natively compatible with the OS installed in the
ATM Machine.

STREQ05

SYSREQ07 The ATM must have a printer installed. Printer
driver must be natively compatible with the OS
installed in the ATM machine.

STREQ12

Table 6 – Program Requirements for the ATM Software System.

Requirements Description Derived
From

PROGREQ001 Following the organization’s pattern, class Network-
ToBank must implement methods for opening and
closing a connection with the banking system.

STREQ001

PROGREQ002 Operations for reading, ejecting and retaining a card
must be implemented in the system.

STREQ002

PROGREQ003 The withdrawal screen must confirm with the cus-
tomer the amount of cash to be withdrawn.

STREQ003

PROGREQ004 Before a withdrawal transaction starts, the ATM Sys-
tem must confirm if the customer has funds (money
plus account limits) to perform the withdrawal. If
the customer has not enough funds a message shall
be displayed to the customer: “Not enough funds to
perform this operation”. A log must be recorded.

STREQ003

PROGREQ005 An operation for dispensing cash must be implemented
in the software. The amount of cash dispensed must
be checked by the peripheral and persisted in the
system.

STREQ003
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Table 6 – Program Requirements for the ATM Software System.

Requirements Description Derived
From

PROGREQ006 The ATM must confirm that the envelope was prop-
erly deposited by reading a bar code printed in the
envelope. A message shall be displayed in for the cus-
tomer: “Deposit is now subject of bank analysis”. If
the customer fails to deposit the envelope within the
timeout period, or presses cancel, the transaction will
be considered canceled and a message shall be dis-
played to the customer: “Deposit not concluded”. A
log must be recorded.

STREQ004

PROGREQ007 Before a transfer transaction starts, the ATM System
must confirm with the bank system if the customer
has funds (money plus account limits) to perform
the transfer. If the customer has not enough funds
a message shall be displayed to the customer: “Not
enough funds to perform this operation”. A log must
be recorded.

STREQ005

PROGREQ008 The transfer screen must ask the customer to confirm
both accounts (number, owner and agency), before
the transaction starts.

STREQ005

PROGREQ09 Balance Inquiry must be primarily presented at the
screen. The balance screen shall also present a button
where the customer can choose to print the balance.

STREQ006

PROGREQ010 A constraint must be implemented to prevent the
customer to print the balance more than 2 times in
the same day.

STREQ006

PROGREQ011 The Cancel button present in the customer console
shall throw an exception that needs to be captured
and for the session to cancel the ongoing transaction.

STREQ007

PROGREQ012 Every major service provided by the ATM (with-
drawal, transfer, deposit and balance inquiry) is con-
sidered a transaction and must be communicated to
the bank. The implementations of these services shall
verify if the transaction to be executed is available to
the customer.

STREQ008
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Table 7 – ATM Software System Programs.

Program Description Program Requirement
Prog001 Bank System Connection ProgReq001
Prog002 ATM Session ProgReq002, ProgReq014
Prog003 Withdrawal ProgReq003, ProgReq004, ProgReq005
Prog004 Deposit ProgReq006
Prog005 Transfer ProgReq007, ProgReq008
Prog006 Balance Inquiry ProgReq009, ProgReq010
Prog007 General Transaction ProgReq011,ProgReq012
Prog008 Operator Terminal ProgReq013
Prog009 Receipt Printing ProgReq015
Prog010 Log Creation ProgReq016

Table 6 – Program Requirements for the ATM Software System.

Requirements Description Derived
From

PROGREQ013 An Operator Terminal shall be implemented and
present the functionalities of: release retained card
and consult/print system logs.

STREQ009

PROGREQ014 An option for using another service should be available
for the customer after completing or canceling the
ongoing transaction.

STREQ010

PROGREQ015 Deposit, transfer and withdrawal services shall print
a receipt for the customer after transaction is com-
pleted. The receipt shall display the type of operation
executed, the day, the value of the transaction and
the accounts involved.

STREQ011

PROGREQ016 Transactions, envelope, cash-dispenser and error logs
shall be implemented and should be accessible only
through the operator terminal.

STREQ012

With all requirements for the experiment listed, we need to define the data relative
to the Programs.4 Furthermore, it is important to explain that in order to adapt Bjork’s
ATM System requirements data for this experiment, we used the source code and the
design models provided by Bjork. Table 7 presents the list of the Programs for the ATM
and the Program Requirements from which they implement.

Besides, Bjork also provides lists of Test Cases and Change Requests to the ATM
Software System example, which we will use to capture a small list of Defects that may
4 As discussed in Chapter 4, the concept of Program was reused from SwO, it denotes a System Element

(a part of the Software System) that is responsible to produce a result when executed inside a machine.
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Table 8 – List of Defects on the ATM Software System and the Programs in which they
inhere.

Defect Description Program
Defect001 Withdrawal Screen is not double checking the amount

of money to be withdrawn by the customer.
Prog003

Defect002 The constraint that prevents the customer from printing
more than one receipt of balance inquiry in the same
banking session is not working.

Prog006

Defect003 Receipt for transfer is not being properly printed. Prog009
Defect004 ATM is closing the session after printing a receipt, with-

out asking the client if she desires to perform another
operation.

Prog002

Defect005 ATM is not persisting a log with information of retained
cards.

Prog010

exist in the ATM Software System, shown in Table 8. This piece of data will be useful for
querying data using the concepts defined in OSDEF.

Table 7.2.2 presents a small list of test cases proposed for the ATM Machine, with
the related use cases, functionality being tested and expected output to the test.
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Table 9 – Test Cases for ATM

Test Case Use Case Function Being Tested Expected Output

TC001 Session System reads a customer’s ATM card
Card is accepted;
System asks for entry of PIN

TC002 Session System rejects an unreadable card
Card is ejected;
System displays an error screen;
System is ready to start a new session

TC003 Session System accepts customer’s PIN System displays a menu of transaction types
TC004 Transaction System handles an invalid PIN properly The Invalid PIN Extension is performed

TC005 Withdrawal
System asks customer to
choose an account to withdraw from

System displays a menu of account types

TC006 Withdrawal
System asks customer to
choose a dollar amount to withdraw

System displays a menu of
possible withdrawal amounts

TC007 Deposit
System asks customer to
choose an account to deposit to

System displays a menu of account types

TC008 Deposit
System asks customer to
enter a dollar amount to deposit

System displays a request for
the customer to type a dollar amount

TC009 Deposit
System asks customer to
insert an envelope

System requests that customer insert an envelope

TC010 Transfer
System asks customer to
choose an account to transfer from

System displays a menu of
account types specifying transfer from

TC011 Transfer
System asks customer to
choose an account to transfer to

System displays a menu of
account types specifying transfer to
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TC012 Transfer
System asks customer to
enter a dollar amount to transfer

System displays a request for
the customer to type a dollar amount

TC013 Inquiry
System asks customer to
choose an account to inquire about

System displays a menu of account types

TC014 Inquiry
System performs a legitimate inquiry
transaction properly

System prints a correct receipt showing correct balance;

TC015 Transaction Transaction Recording in the log System records transaction correctly in the log.
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Figure 41 – Stakeholder Requirements represented as individuals in Protégé

7.3 Traceability and Information Recovery as SPARQL queries
From a Requirements Management perspective, it is very important for an Organi-

zation to be able to develop and maintain traceability over the requirements of Software
Systems in operation. This type of capability is considered one of the bases for software
system quality improvement, being repeatedly discussed and encouraged in standards (ISO,
2017; ISO, IEC, 2017a) and maturity models (CMMI Institute, 2018).

In this context, we propose that operational ontologies developed based on domain
reference ontologies and populated with data generated during the software process can
support requirements traceability through SPARQL queries. The queries are able to
navigate the graph defined in the operational ontologies, using the relations and concepts
of the ontology. Moreover, the data structured in a graph facilitates the visualization of
indirect relations that exists between artifacts that are part of the software process.

Based on the presented list of software-related artifacts, we can use SPARQL
for querying over the data of the ATM System that is registered as Individuals in the
operational versions of ROSS and OSDEF. Figure 41 depicts the Stakeholder Requirements
from the ATM System being represented as Individuals in Protégé.
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Moreover, it is important to explain that SPARQL was chosen over SQL, as it was
done in (DALL’OGLIO; SILVA; PINTO, 2010), because of the way that data is organized.
Both SPARQL and SQL are languages created to query data, in RDF and in the relational
model, respectively. The relational model structures data based on tables, columns and
rows. Moreover, columns, as attributes, can be defined as keys, to create relations between
tables. In general, the primary key of table A is used as foreign key in table B, thus
creating an association between A and B. In other words, the relations between tables in
the relational model are defined by values that are used to connect rows (one or many) in
table A to rows in table B.

On the other side, RDF structures data in graphs, using the subject, predicate
and object format. The relationship between two nodes of the graph is represented by the
predicate, the edge between both nodes.

For many years, the ontologies/conceptual modeling community have been working
under the assumption that the knowledge that exists in a conceptual model is within
the relations between the concepts of the model, not in the concepts themselves. In this
context, we have chosen SPARQL as the query language adopted for this work over SQL
because of the way that relations (predicates) between concepts (subject and object) are
represented in RDF/SPARQL. We believe that the graph format is naturally compatible
with the structure that is defined by the ontologies. In other words, we believe that the
knowledge in the Requirements Traceability process is in the relations (traces) between
Requirements and other Software Artifacts, which are better represented in RDF/SPARQL
than in the Relational Model/SQL.

Figure 42 presents a very simple example of direct utilization of the concepts and
relations of the ontologies to recover a piece of information about the ATM Software
System. The results are a list of the Stakeholder Requirements,5 that are refined from
Business Requirement6 BREQ002.

Moreover, SPARQL also allows the user to query on the opposite direction of the
relations (Object Properties) that are defined in the ontology. This can be very useful when
the user wants to retrieve information from a trace that exists in the opposite direction of
a relation in the ontology. It also helps to avoid overly-complicated queries, as all relations
in a operational ontology will have a Domain and a Range that represents its intended
direction. Figure 43 presents this case: the original relation presented in ROSS is that
System Requirements7 and Program Requirements8 are refined from Stakeholder Requirements,
however we can use the caret operator (^)9 to create a much simpler query to discover
5 Stakeholder Requirements for the ATM were presented in Table 4.
6 Business Requirements for the ATM were presented in Table 3.
7 System Requirements for the ATM were presented in Table 5.
8 Program Requirements for the ATM were presented in Table 6.
9 Caret operator semantic is get inverse property.



Chapter 7. Ontology-based Requirements Traceability 112

Figure 42 – Query 1 - Queries all Stakeholder Requirements which are refined from Business
Requirement BREQ002.

Figure 43 – Query 2 - Searches System Requirements and Program Requirements that are
refined from StReq003.

all system and program requirements that are refined from StReq003. More precisely, the
caret operator is used to get the inverse path of the object property isRefinedFrom that
are associated with the entity StReq003.

Furthermore, as operational ontologies are designed as graphs, it is possible to
navigate the entire graph based on the relations (object properties) defined in the ontology.
For this particular case, supposing that a Requirements Engineer wants to discover if a
Business Requirement is related to a Program, a part of the ATM system, he would need to
navigate the whole ontology in order to retrieve such information, as Business Requirement
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is a concept that exists in the Business Layer and Program exists in the Machine Layer.

Figure 44 uses the concept of sub-query to navigate the graph to show that Program
Prog003 is indirectly related to Business Requirements Breq001, Breq002, Breq003 and
Breq004. The relation is retrieved by navigating the ontology between the concepts of
Programs, Program Requirements, Stakeholder Requirements and Business Requirements.
More precisely, the inner part of the query, which is always executed first, recovers the
Program Requirements that are implemented by Prog003, this information is used as input
data for the middle query, which presents the Stakeholder Requirements related to Prog003
and finally, the outer query uses the result of the middle one as input to deliver the
final answer. The DISTINCT clause in SELECT works exactly like in normal SQL, by
returning only unique values in the result.

This type of query is particularly useful because it is capable to be used as a
powerful requirements traceability tool, as it is able to “travel” through the ontology and
use the results of each SPARQL query as input for another one, in other part of the
ontology. For example, another sub-query could be added to retrieve data about change
requests in the ATM Software System, as the engineer can easily associate Programs and
Program Requirements with Change Requests, and use the same type of query to navigate
through them. For illustration purposes, Figure 45 depicts the results of Query 3 in an
instance diagram.

Besides, as mentioned earlier in this thesis, ROSS is intended to act as a backbone
ontology in the Software System domain. This means that it is intended to be reused in
combination with related ontologies to further extend the capability, to classify and reason
over a dataset. For example, ontologies that are part of SEON (cf. Section 3.5) and grounded
on UFO, like as the Reference ontology on Software Testing (ROoST) (SOUZA; FALBO;
VIJAYKUMAR, 2013), the Goal-Oriented Requirements Ontology (GORO) (BERNABÉ
et al., 2019) and the Configuration Management Process Ontology (CMPO) can be reused10

in the model to enhance its capability to represent certain parts of the domain, as it
allows that more information can be classified, retrieved and reasoned with. This type
of ontology reuse is important and highly suggested by SABiO because, although ROSS’
reference model was designed to be complete on its own, it obviously does not account
for all Artifacts that are produced during the Software process. In this context, reusing
ontologies that are all part of an ontology network, interlinked, created under the same
design parameters and grounded on the same foundational ontology, becomes a much
simpler task.

Figure 46 depicts the reuse of the concept of Change Request (CR) from the
Configuration Management Process Ontology (CMPO). Change Request is a Information
Item that describes a request for modification on other software artifacts that are under the
10 Ontologies are usually reused together through existing common concepts or by directly specialization.
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Figure 44 – Query 3 - Association between Program Prog003 with the Business Requirements
that are directly impacted by it

Figure 45 – Instance Diagram representing Query 3 and its result.
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Figure 46 – Query 4 - Counts the number of Change Requests that are related with the
Programs that are part of the ATM System.

Configuration Management process. The query searches for all registered CRs, counts and
classifies them, based on which Program they are associated. This kind of information is
important because it allows the engineer to clearly see which parts of the software system
are generating more requests for changes.

Finally, as ROSS and OSDEF share the concept of Program, we can use it to
connect both ontologies, in order to be able to represent a relation between Defects and the
Program Requirements. Figure 47 depicts the execution of SPARQL query that associates
the Defects11 and Program Requirements, based on Programs which implement them.

Besides, it is important to explain that the variables in the query, which respectively
represent Defects, Programs and Program Requirements may be repeated in the result
multiple times because of the cardinality of the relations that exist between these concepts.
For example, defect001 is repeated three times in the results because as it inheres in
Prog003, which is responsible to implement three Program Requirements and the existence of
the Defect may have a negative impact on all Program Requirements that are implemented
in the specific Program. On the other side, as defect005 exists in Prog010, which only
implements one Program Requirement, ProgReq016, it is only displayed on the results one
time, as it is only able to directly impact on ProgReq016. Besides, if the the query was
more complex and associated Defects with Business Requirements, the same phenomenon
would be accentuated, since a Business Requirement can be associated with a very large
11 A list of known defects of the ATM is presented in Table 8.
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Figure 47 – Query 5 - Relates Defects from OSDEF with Program Requirements in ROSS
based on concept of Program that exist in both ontologies

amount of Defects that may occur in a Software System over the years.

Obviously, the decision of how many Programs will be responsible to implement
each Program Requirement that is raised for a project is based on the design created for
the software system by the responsible Organization. For example, the Organization may
decide that each Program Requirement must be implemented in only one Program in a
one-to-one relation, which could be done, based on the reference model of ROSS. On the
other side, the complete opposite can also be done, and the relation between Programs
and Program Requirement could be from m-to-n cardinality. Figure 48 depicts a part of
the results of Query 5 in an instance diagram.

A variation of Query 5 is depicted in Figure 49. Query 6 lists and associates all
Stakeholder Requirements with the Programs that are part of the ATM System, using the
concept of Program Requirement that exists between them. This query structure can also
be used to created a Traceability Matrix (RAMESH et al., 1995), associating all types
of requirements and even other Artifacts that are part of the Software System. Moreover,
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Figure 48 – Instance Diagram representing a part of Query 5’s result.

the query structure can be further extended to associate more elements of the domain, by
adding other variables in the query (concepts of the domain). For example, it is possible to
create a variation to include the concepts Business Requirements and Defects as variables
in the query. However, as more variables are added, the query becomes more complex,
which can make the query unpractical or at least, require some kind of front-end system
interface to support the software engineer with the results that are retrieved.

Finally, Query 7, depicted in Figure 50, represents the relation between Test Cases
and Program Requirements. To do that, we reuse the concept of Test Case presented in
ROoST, in our operational ontology. The Test Case is associated with the concept of
Program that exists in ROSS. According to the definition in ROoST, a Text Case tests
a specific part of the code (Programs are constituted by code) to verify if the expected
behavior of that code is capable to fulfill what was specified in the Requirements. Figure 51
depicts a part of the results of Query 7 in an instance diagram.

7.4 Prototype Tool: Requirements Tracker
The ontologies and queries presented in this thesis were used to create a user-

friendly web-based prototype tool for requirements traceability. The development of
the tool was conducted as a Computer Science undergraduate thesis (DUARTE, 2021),
supervised by us. For this work, we used the Apache Jena framework (MCBRIDE, 2002)
and Java EE technologies, such as JavaServer Faces (JSF) (BURNS; KITAIN, 2006) and
PrimeFaces (PRIMEFACES, 2021), to create a tool that provides a friendly, web-based,
user interface for the SPARQL queries presented in this thesis. The tool used components
provided by JSF and by PrimeFaces to create graphs that represent the relations between
the requirements of the ATM Machine, presented in Section 7.2. Moreover, the tool also
removed the necessity of using Protégé to perform queries.

Figures 52 and 53 are screen captures of the tool being used. Figure 52 represents
the execution of query 1, depicted earlier in Figure 42, and executed with Business
Requirement BREQ004 as input. The graph is generated using the mindmap component
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Figure 49 – Query 6 - Lists all Stakeholder Requirements and relates them with Programs
that are part of the ATM System
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Figure 50 – Query 7 - Relates Test Cases to the Program Requirements based on the
association between Test Case-Program

Figure 51 – Instance Diagram representing a part of Query 7’s result.
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Figure 52 – Execution of query 1 in the Requirements Tracker tool.

of the PrimeFaces library. The edges in the graph represents the relation refined from that
exists between Business and Stakeholder Requirements.

In turn, Figure 53 shows the result of executing query 3, depicted earlier in Figure 44,
and executed with Program Prog003 as input. The edges in the graph represent the indirect
relation that exists between Business Requirements and Programs.

The components used for the creation of the graphs support Asynchronous JavaScript
and XML (AJAX) technology. This means that the graphs generated are not static, they
are objects of the system, with which the user can interact. In this case, when the user
interacts with any of the requirements depicted in the graph, the system will present
additional information about the requirement.

7.5 Related Works
This section presents other proposals about the use of reference models for require-

ments traceability that are related to the work that is developed in this thesis.

7.5.1 Traceability Reference Model

As mentioned earlier in Section 2.2, the traceability reference model proposed
by Ramesh and Jarke (2001) is one of the most referenced studies in the requirements
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Figure 53 – Execution of query 3 in the Requirements Tracker tool.

traceability research field. They focus their model in the analysis and the representation
of the objects (artifacts) and trace link types that are commonly used and produced
in Software Systems projects to create a reference model for traceability around them.
Moreover, they distinguish their models according to its use. The low-end traceability
model (Figure 54) is suitable to users that do not require a complex traceability system. As
it is shown in the present work, the traceability links are the relations that exist between
system elements. In other words, low-end traceability can be successfully applied to model
requirements dependencies or the relation between a requirement and a system component.

The authors defend that organizations that choose to adopt a more advanced
traceability model do so because of the necessity for much richer traceability schemes
than low-end users. Due to that, authors decided to divide the high-end model in four
sub-models: Requirements Management, Design Allocation, Compliance Verification and
Rationale Management, so that each sub-model is focused on a specific part of the of
the process. Figure 55 depicts the Requirements Management sub-model. Moreover, it is
important to explain that we choose to show the requirements management sub-model
instead of the other models that are proposed because it is focused on the relations that
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Figure 54 – Low-end traceability model (RAMESH; JARKE, 2001).

exist around the concept of requirement, which is one of the focuses of the work being
presented here.

Further, they also propose the utilization of four types of traceability links, to sup-
port the semantics between the information items that are being managed: (i) dependency
links, to represent dependency between elements; (ii) satisfies links, to represent which
elements are created to satisfy a requirement; (iii) evolution links to identify the origin
of an element; and (iv) rationale links to identify the reasons behind the creation of an
element.

7.5.2 Traceability Meta-Model

The traceability meta-model (GOKNIL; KURTEV; BERG, 2014), depicted in
Figure 56, is an approach for trace generation and validation of traces between requirements
and system architecture elements. The authors’ argument is that establishing traces between
requirements and architecture elements can be beneficial for change management, at source
code level, as software architects base their architectural design decisions on the essential
system requirements, thus making direct relations between those requirements and the
architectural elements of the system, which in its turn can be used as a reference model for
traceability. Authors also provide a tool that supports the approach, based on the Eclipse
platform. The traces for the approach can be generated manually into the provided tool or
with a degree of automation, when the tool is combined with an Architecture Description
Language with support for code generation.

The proposed meta-model is divided in three parts: a requirements and an architec-
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Figure 55 – Requirements Management Traceability sub-model (RAMESH; JARKE, 2001).

ture meta-model and a trace meta-model that is responsible for connecting the previous
two and defines two types of traces: Satisfies and AllocatedTo, which are reused from the
work of Ramesh and Jarke (2001).

In comparison with our work, the meta-model proposed by Goknil and colleagues
is fairly simple, as it does not take into consideration other artifacts that are part of the
software process. Besides, their meta-model focuses only on the definition of a single type
of requirement that is connected to a single type of architecture component by the Satisfies
and AllocatedTo traces. Furthermore, in our approach we do not specifically define a Trace
super-type for all the relations that exist in the ontology or a concept the defines Trace
as piece of information that must be retrieved/recovered, such as a Configuration Item.
Instead, we consider that all elements that are directly or indirectly connected through
the ontology network can be traced, based on the the utilization of inference tools and
SPARQL queries with the operational ontology.

7.5.3 Semantic Traceability Model

The Semantic Traceability Model (ALONSO-RORÍS et al., 2016) is part of a
platform that is composed by three major models: a technical business model, the Semantic
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Figure 56 – Trace meta-model for requirements and architecture elements (GOKNIL;
KURTEV; BERG, 2014).
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Figure 57 – Semantic Traceability Model concepts and trace characterization (ALONSO-
RORÍS et al., 2016).

Model and a reference architecture. Figure 57 depicts concepts and relations defined for the
traceability domain by Alonso-Rorís and colleagues. Trace and TraceObject are the main
concepts of the model, they are responsible to represent the core information retrieved in
a operation and also are connected to the other concepts of the model, such as User and
Item.

The model is composed by an ontology and a set of inference rules that were built
under the principles of the NeOn methodology (SUÁREZ-FIGUEROA; GÓMEZ-PÉREZ;
FERNÁNDEZ-LÓPEZ, 2012), an ontology engineering method focused on the development
of operational ontologies. Since the model was built over the NeOn methodology, it is based
on Semantic Web technologies, such as the RDF framework (W3C, 2004; W3C, 2014a)
and also reuses other well-known Semantic Web ontologies, such as the friend-of-a-friend
(FOAF) vocabulary (BRICKLEY; MILLER, 2015). The Semantic Traceability Model is
intended to provide explicit ground knowledge about the traceability domain. Authors
also argue that the model can be extended to fit the particular needs of a user, however,
they do not explicit how this extension should be performed by users.

The semantic model is probably the approach that most resembles ours, as it
is based on an ontology specifically developed for it and it intends to use operational
ontologies as a tool to provide support for the traceability process. However, different from
our model, the work of Rorís and colleagues is focused on the operational ontology, in the
sense that their ontology is not grounded on a foundational ontology. Besides that, their
approach is focused on the traceability domain, where they specifically present the concepts
of Trace as a process and TraceObject as an object. However, these concepts are not further
developed and there is no support from an foundational ontology. In other words, the
concepts used in the model are not formally defined and supported by a well-grounded
theory.

In comparison, our model is grounded on a foundational ontology and is based on
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the artifacts and relations that are part of software systems domain, specially the different
types of software requirements that were discussed in Chapter 4.

Because of that, we do not specifically define the aforementioned concepts in our
ontologies. Instead, we believe that the traces between software artifacts are already
defined as the relations between ontology concepts. In other words, every software system
artifact that exists in the software process is a possible TraceObject in our model, even
the ones that are not specifically defined in ROSS or in OSDEF, as we design our model
in modules, with the objective of supporting reuse with other ontologies on the software
system domain.

Table 10 lists the concepts of ROSS, OSDEF and the ones that are reused from
the ontologies in SEON and compares them with the concepts proposed by the works
presented in this section. The table provides an easy visualization of all concepts that are
part of each reference model for requirements traceability discussed in this thesis.

Moreover, it is important to point out that none of the proposals presented in this
section nor ours claim to represent all possible concepts and relations of the domain in
their models. Furthermore, we believe that it is not possible to provide a solution/proposal
that is capable of mapping and representing all the concepts and relations of the software
domain, since every Organization is unique, with their own processes, daily activities
and artifacts. In this context, we propose conceptual models about software systems and
the capability to use a Software Engineering ontology network (SEON) as a tool for
implementing ontology-based requirements traceability based on the relations that exist
between domain concepts.

7.5.4 Infrastructure for Semantic Document Management

The Infrastructure for Semantic Document Management (ISDM) (ARANTES;
FALBO, 2010; MACHADO; ARANTES; FALBO, 2011; FALBO; BRAGA; MACHADO,
2014) is an ontology-based architecture and tool, developed to provide requirements
traceability based on the semantic annotation of text documents. The semantic annotation
is done based on the conceptualization of the Software Requirements Ontology (NARDI;
FALBO, 2008). The authors’ argument is that despite the current advances in electronic
documentation along with the boom of collaborative management tools (such as wiki
engines), desktop text editors are still the most frequently solution used by software
organizations when it comes to electronic documentation.

They explain that Requirements Documents hold a considerable amount of informa-
tion that are to be mainly interpreted by human readers, such as requirements statements
and use case descriptions. Their hypothesis is that requirements traceability can be more
easily achieved if the semantic content of the requirements documents could be exposed in
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Table 10 – Comparison between the concepts of ROSS and OSDEF with the Approaches
presented in Section 7.5.

ROSS/OSDEF/Reused
Traceability
Reference
Model

Traceability
Metamodel

Semantic
Traceability
Model

Organization Operational Need Requirements
Model Organization

Stakeholder Strategic Need Requirement User
Business Rule Resource Relation Trace
Business
Regulation

Change
Proposal Trace Model Location

Business
Requirement Scenario Satisfies

Trace
Temporal
Entity

Business
Requirement
Specification

Requirement Allocatedto
Trace Item

World Assumption Constraint Architecture
Model

Control
Point

Machine Assumption Standard Architectural
Element

Control
Param

Stakeholder
Requirement Policy Component Monitoring

Operation
Stakeholder
Requirement
Specification

Method Information
Operation

System Requirement Component
System Requirement
Specification Design Element

System Component Assumption
Program Argument
Hardware Equipment Function
Program Requirement External System

Program Requirement
Specification

Critical
Sucess
Factor

Loaded Program Copy Test
Machine Prototype
User-Generated
Failure Simulation

User
Fault Manifestation
Failure
Defect
Fault
Change Request
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order to allow visibility of the data and the relationships embedded in the document, and
if the semantic content of each document version is extracted and registered into a version
control system.

Their architecture is composed of three parts: (i) the Semantic Annotation Module
is responsible for allowing users to semantically enrich an Open Document Format (ODF)
template; (ii) the Data Extraction and Versioning Module, which is responsible for ex-
tracting the semantic content from an annotated document whenever a new version of
that document is checked into the Semantic Data Repository (SDR); (iii) the Search and
Traceability Interface Module is responsible for providing an API (Application Program-
ming Interface) that allows users and other systems to perform ontology-based searches
and data traceability towards the Data Repository.

The approach for requirements traceability presented by the authors is based on
searching for information into requirements documents and specifications. In comparison
to our work, they use a software requirements ontology as the conceptualization behind
the proposed architecture, however, the ontology is implicit inside the documentation
structure and tools provided, in the sense that it is not explicitly presented as a reference
model. Moreover, our work could benefit from this proposal by using their approach with
our models, in order to import requirements data from documents into our operational
ontologies.

7.6 Chapter Summary
This chapter presented the last contribution of our work, an ontology-based ap-

proach for requirements traceability that uses domain ontologies as both reference models
and operational tools for recovering traceability information.

To demonstrate our approach in an experimental way, we adapted a prototype
of an ATM System (BJORK, 2009) that is well-know in the requirements literature and
imported the prototype data provided into our operational versions of ROSS and OSDEF,
using the RDF language (W3C, 2014b) and the Protégé tool (NOY et al., 2001).

After that, we queried the ontology data using the SPARQL language (W3C, 2013)
to recover traceability links information and to enable an easy visualization of relations
that exist between the software system requirements and the other Artifacts that are
part of the domain. We used relations that exist between the concepts in the ontologies
act as the traceability links that are recovered, instead of defining a concept of trace
directly in the reference model, as other proposals did to represent a generic relation that
exist between multiple information items. In other words, every relation that exists in
the ontologies is a traceability link that can be used to connect two or more concepts,
even if they are not directly related. This situation can be clearly seen in Query 3, which
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relates two concepts that are not directly connected in ROSS, (Business Requirement and
Program), but that can be associated using the other concepts that exist around them
(Stakeholder and Program Requirements).

Although the ATM prototype system is a fairly simple, it is big enough to demon-
strate our approach, as it provides useful data about many artifacts produced during
the software process, such as requirements, programs, test cases, change requests, known
defects, among others. For time reasons, in this proof of concept we created the operational
ontologies and entered the data of the ATM system manually. However, we do understand
that for larger datasets, manual input of data becomes impractical. To work around this
limitation, frameworks and tools for extracting data from text-based documents, such
as requirements specifications, change requests and bug reports could be found in the
literature. After that, the user only needs to adapt the data into Turtle Syntax (W3C,
2014b) using some type of string manipulation.

Unfortunately, the data of the prototype ATM system provided by Bjork is limited
in some aspects. For example, it does not provide information about the business constraints
and external business regulations that may exists towards the implementation of a real
ATM system, by a bank. Because of that, we could not create queries using all concepts
presented in ROSS and in OSDEF, such as the concept of Business Constraint, that is
part of the Business Layer of ROSS (cf. Section 4.2). However, as mentioned earlier in
this work, both ontologies are created to be as complete and to represent their respective
domains as best as possible, so if a user of our ontologies has this type of data, it can be
used in new queries very easily.

In fact, a very important aspect of this work is that it can be adapted based on
the needs of the user with little effort. Starting with the operational implementation of
ROSS and OSDEF, a user can reuse concepts and relations of other existing ontologies
in the model. For example, in Query 4 the concept of Change Request was not originally
part of the models of ROSS and OSDEF. However, as it originally defined in CMPO,
the reuse was simplified. That happens because: (i) CMPO is also grounded in UFO;
(ii) operational ROSS and OSDEF, built on top gUFO, already present several concepts
and relations from UFO that can be specialized, if needed; and (iii) since CMPO is a part
of SEON, it also reuses SPO as its core ontology. More precisely, it reuses concepts of
the artifact sub-ontology of SPO, the same sub-ontology that ROSS and OSDEF also
reuse. The direct consequence of these facts is that the connection between CMPO and
our ontologies already exists, through SPO and UFO, it only needs to be properly defined
in the operational level, with the support of gUFO.

Besides, the queries presented in this work can be altered and others can be created
by the user, as the knowledge and the necessary technologies are free, open-source and
widely available on the Web. For example, a user may want to create a query that relates
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different Stakeholders (sales and financial departments), with the Stakeholder and System
Requirements of a new software system. As these concepts already exist in ROSS, the user
would only need to create a new query that respects the relations between the concepts.

In section 7.4 we have discussed the implementation of a requirements tracker
system prototype, based on the ontologies presented in this thesis. The prototype uses
Jena, JSF and PrimeFaces to depict the results of the SPARQL queries presented in
Section 7.3 as graphs. This prototype is our first attempt at developing an ontology-based
requirements management system that can support the visualization of the relations that
exist between requirements and other artifacts that are produced during the software
process. We believe that such visualization can improve requirements traceability activity
and enhance change impact management.

Finally, the chapter ended by summarizing and discussing different proposals that
are part of the requirements traceability literature which are related to the work developed
for this thesis.



131

8 Conclusions

This final chapter summarizes the main contributions of this thesis to the state-
of-the-art in the conceptual modeling of the Software System domain in Section 8.1.
Section 8.2 discusses research limitations of this work and Section 8.3 presents our ideas
for future research, involving ROSS, OSDEF, and the Software Systems domain.

8.1 Research Contributions
In Section 1.2, we defined the research hypothesis for this thesis as follows:

Well-grounded domain ontologies can support semantic requirements traceability.
Reference ontologies about the software systems domain can define the important domain
concepts (entities) and the relations that exists around them. Operational ontologies act as
machine-readable tools that provide the support for querying over the system artifacts data
produce during the software process.

Based on this hypothesis, we develop the following general and specific objectives
for this work:

The general objective was to: provide a reference model for the software systems
domain that focuses particularly on requirements traceability, that allows us to trace from
low-level concepts such as programs at runtime all the way to high-level concepts such as
business requirements.

which was further decomposed into the following general objectives:

• Develop a set of reference ontologies that are able to properly represent and cover
the software system domain, by proposing new reference models and reusing existing
ones;

• Apply the knowledge from the reference models into operational ontologies, in order
to allow the implementation of ontology-based traceability;

• Demonstrate, through a proof of concept, the feasibility of a requirements traceability
based on operational ontologies;

In order to tackle these objectives, we performed a research in the scientific literature
and in software-related international standards, in search of the base knowledge that would
be the foundation for the development of this work and for the tools that would enable
us to test our hypothesis. Throughout the research, it became clear that requirements
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were a crucial part for the development of the reference models that already exist in the
literature.

Because of that, we would need to develop a reference model that was able to
improve over the existing ones, expanding over the concept of Requirement itself and
relating it, with higher level business objectives, rules, internal policies and lower level
program-related information, such as change requests and defect/failure reports. This part
is, in particular, is very important because the lack of connection between all stages of
the software process was a limitation encountered on most of the proposals found in our
research.

In this context, the first two contributions for this work were two domain refer-
ence ontologies that could be reused together. The first one, ROSS (Chapter 4), is an
ontology about the software systems domain focused on requirements and that inherits
the contributions of the seminal work from Zave and Jackson (1997). ROSS extends our
previous work (DUARTE et al., 2018) since it reuses and improves the notion of software
presented in SwO by associating it with other relevant concepts that were not represented
in SwO and also by focusing on the figure of the software system as an entity that connects
the machine with our world. ROSS also extends the concept of Requirement presented in
RSRO to a much broader sense, since it define four types of Requirements, with distinct
properties, that are a relevant part to the software system domain.

The second one, OSDEF (Chapter 5), is an ontology built over a well-know
ontological design-pattern of events, proposed by Guizzardi et al. (2013), that was created
to represent how software anomalies such as Defects, Errors and Failures are related to
system elements.

Both ROSS and OSDEF were created using SABiO (Section 3.4) and grounded on
UFO (Section 3.2), respectively, the ontology engineering method and the foundational
ontology that were adopted.

Following, for the second and third general objectives, we developed operational
versions of both, ROSS and OSDEF, using gUFO, the “gentle” version of UFO and used
them with linked data technologies, through a proof of concept, to demonstrate that
domain ontologies can be used as traceability and management tools for the data produced
during the software process.

In this context, the last contribution is an approach to enable ontology-based re-
quirements traceability over the artifacts produced during the software process (Chapter 7)
using domain ontologies (reference and operational) and linked data technologies. This
data was classified according to the concepts defined in ROSS and OSDEF. In addition,
SPARQL queries were used to recover the relations between the data as traceability links.
For example, this type of query enables an extended perspective of the data, in such a
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way that a user can see the relationship (traceability link) that exists between a defect
that inheres in a component of the system (a program) and higher level stakeholder or
business requirements. This perspective is possible because of the way that the model was
designed and all types of requirements defined are related to other elements of the domain,
following and expanding the original formula created by Zave and Jackson.

In other words, our first contribution are conceptual models about the software
systems domain that compliment the theory already presented in SEON. The second
contribution is the capability to use these conceptual models as a tool for implementing
ontology-based requirements traceability based on the relations that exist between domain
concepts.

In Section 7.4 we presented a prototype requirements tracker tool created using
the knowledge presented in this thesis, in combination with Jena, JSF and PrimeFaces
frameworks. The prototype provides a web-based user interface and a graph-visualization
of the query results. The tool also eliminates the necessity of loading the operational
ontologies files in Protégé to execute the queries.

Finally, we believe that the objectives defined in Chapter 1 were reached, although
we also believe that the models produced can be further improved.

8.2 Research Limitations
ROSS and OSDEF were built following SABiO’s recommendations for verification

and validation, they systematically answer all competency questions that were raised
and both ontologies were instantiated using real-world scenarios. However, a significant
limitation for both ontologies is that we were not able to empirically evaluate them using
data from software systems that are in current operation. The direct consequence of that
was that we were not able to conclude the Design Science Methodology, since it requires
that the solution (the artifacts) being designed are used in a real-world context. To contour
this limitation and to perform an empirical evaluation, we used data from a well-known
exemplar in the literature (BJORK, 2009).

This particular limitation brings about another potential one, that we could not
evaluate the performance of the queries when executed with data from very large systems,
i.e., we could not perform a test with thousands of requirements, change requests, relations
and some degree of dependency between the elements of the software system. However,
it is important to highlight that this potential limitation does not, necessarily, bring
about a make-or-break type of situation, since, in the last few years, OWL and SPARQL
computational performance greatly improved with the release of OWL 2 and SPARQL 1.1.

Another possible limitation is related to the fact that SABiO does not prescribe
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any activities or support processes for anti-pattern detection and simulation in the models
created based on it. Anti-patterns (GUIZZARDI; SALES, 2014) are modeling structures
that are syntactically valid parts of conceptual models, but are prone to result in unintended
domain representations. A study has shown (SALES; GUIZZARDI, 2015) that anti-patterns
are recurrent even in models produced by experienced researchers, because of the increasing
complexity of the models being created. In this context, the addition of a support process
for anti-pattern detection and treatment after phase 2 of SABiO, Ontology Capture and
Formalization, could improve the overall quality of the models created based on the
method.

Besides that, as we mentioned in Section 7.6, we could not create queries using
many concepts that are presented and discussed in both ontologies because of the limited
data used during the proof of concept. That lack of a robust dataset is not a major concern
on its own, as we believe that the hypothesis behind the experiment could be demonstrated
without a “perfect” dataset. However, with a more complete data we could have created
other types of queries and explored other parts of the ontologies, focusing more on OSDEF
and even on reusing external ontologies.

This work does not provide a technique or tool to capture requirements data from
text documents or from project management tools and import them into the operational
ontologies used in Chapter 7. Due to that, a user would need to create such a tool for herself
or to input the data manually into the operational ontology, which becomes unfeasible for
very large software projects.

Finally, our work does not provide any process or technique for the users to develop
and maintain their requirements management process. However, we do indicate that the
user needs to have some degree of management over the data produced during software
projects. We believe, based on earlier studies and on the fact that both ontologies were built
using the knowledge presented in the scientific literature and on international standards,
that organizations that follows ISO 12207 or that implements the early levels of CMMI
can use and benefit from our work.

8.3 Future Work
As mentioned in Section 8.2, we do not provide a technique or tool to import

requirements data into the operational ontologies. In this context, a possible future work
is the development of a tool capable of importing data from management tools, such as
Jira,1 Trello2 or Monday.com.3 This importing tool can be developed without much effort,
since project management tools usually provide the functionality of exporting data to
1 <https://www.atlassian.com/software/jira>
2 <https://trello.com/>
3 <https://monday.com/>

https://www.atlassian.com/software/jira
https://trello.com/
https://monday.com/


Chapter 8. Conclusions 135

widely supported formats, such as CSV and JSON. After the data is properly exported, the
proposed tool can covert it to the RDF/Turtle syntax, obeying the concepts and relations
defined in the operational ontologies.

Another possible tool-related future work for this thesis is to improve the prototype
tool presented in Section 7.4. The requirements tracker could be improved by the utilization
of other Web-based technologies focused on the development of rich user interfaces. For
example, traceability matrices could be easily derived from the queries presented Section 7.3.
Moreover, a dashboard that associates all the important artifacts of the software system
could be built to depict the relations between these software-based artifacts. Furthermore,
although PrimeFaces does not provide “Dashboard” or “Data Matrix” components natively,
they can be implemented in the prototype system by using existing JavaScript libraries,
specifically designed for the development of software systems management tools. In this
context, traceability matrices and dashboards would be used as knowledge representation
tools for the relations between requirements and other software artifacts, a representation
that complements the graph-based one presented in the prototype. The impact analysis
capability provided by such management tools can be a very useful business resource for
an organization, specially for the ones that have software systems as their main product.
Because of that, we believe that a professional tool can be developed, using the knowledge
presented in this thesis.

An important future work for this thesis is applying the artifacts produced herein
in the context of a real-world software system project. A design science project iterates
over the activities of designing and investigating a problem. This project must exist in
a larger Engineering Cycle, in which the result of the Design Cycle made, is transferred
to the real world. For this thesis, we conducted the Design Cycle; however, we did not
conclude the Engineering Cycle, due to the lack of data on a fully operational software
system or an engineering sample that could be used. This kind of data is usually sensible
data in the industry, being out of our scope for this thesis.

Another possible future work is to expand ROSS to discuss Software Systems in
the context of their operation and to the services they provide in our world. These System
Services are the entities that are responsible for creating the Value Experience4 over the
utilization of operating software systems. In order to pursue this part of the research, we
intend to reuse and to adopt the definitions and concepts presented in UFO-S (NARDI et
al., 2015b; GRIFFO et al., 2017; GRIFFO et al., 2019; SALES et al., 2018), a core ontology
of services that is grounded on UFO. Our preliminary hypothesis is that as Programs need
to be loaded and executed inside a Machine to fulfill their ultimate function and produce
value, Software Systems must be in constant operation, in order to provide the System
4 A Value Experience is defined in COVER as a complex Event that is related to the achievement of the

Goals of an Agent, that participates in the Value Experience as a Value Subject.
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Services that are needed for our modern society. These System Services are responsible for
creating the Value Experience that we perceive, for instance, when we listen to a music on
Spotify or search for a product on Amazon.

Additionally, the queries presented in our proof of concept (cf. Chapter 7) are
only demonstrating of what could be achieved when we associate reference ontologies
of the software domain, like ROSS and OSDEF, with linked data technologies. In this
context, another future work is based on the use of inference engines in the proposed
models. Inference Engines (or Semantic Reasoners) are software applications that derive
new facts or associations from existing information, based on inference rules (SINGH;
KARWAYUN, 2010). This research is relevant because the use of semantic reasoners
allow ontology engineers to derive new data from data that is already known. In other
words, new information can be discovered based on the data that already exists in the
operational ontology (SUÁREZ-FIGUEROA et al., 2012). Furthermore, inference engines
like Pellet (SIRIN et al., 2007), Hermit (GLIMM et al., 2014) and Fact++ (TSARKOV;
HORROCKS, 2006) are available as plugins inside Protégé. Besides that, linked data
technologies are constantly evolving, supported by scholars and practitioners. Since this
part of our research is related to this technologies, as the field evolves, our research will
evolve as well.

Another important research that is strongly related to the work developed here is
the one that relates requirements with software evolution (LEHMAN, 1980; LEHMAN,
1996). We intend to pursue this research directive as we believe that the domain ontologies
discussed here and in previous works (DUARTE et al., 2018) are able to bring new
arguments to the discussion and to improve the work that was already published by Wang
et al. (2016).

Furthermore, we introduced COVER in this work to reuse it with the objective
validate our ontologies based on its well-founded theory about value and risk, in order to
demonstrate that our ontologies are capable to represent real-world situations. However, as
we go further on the discussions about Software Systems as Service Providers and about
Software System Evolution, the theory presented in COVER can be very useful for us, as
the following questions emerge: How changes in the software system affect the service and
the value perspective of the users over it? or Since a Software System exists in partitions,
is the risk experience caused by changes the same in all partitions? and What are the
reasons for a software system to evolve? Does the value perspective and the value produced
by the system also evolve with it?

In this context, we can also reuse ROSS, OSDEF and COVER together to support
the development of a (software) risk management ontology, as part of a more extended
research in the software cybersecurity domain. ROSS defines the software artifacts and the
requirements that are their essential properties. OSDEF ontologically defines the concepts
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of Failures, Errors and Faults, their relations based on the theory of Events presented
in UFO and is associated to COVER through the concept of vulnerability, a disposition
that in a cybersecurity domain must be discovered and treated, in order to avoid its
manifestation as a (software) failure. COVER defines the concepts of value and risk as
properties that are directly related to each other. COVER also associates value and risk
in a complete model that represents the objects and events in a situation of lost of value
over unmanaged risks. We believe that a software risk management reference ontology
used together with other conceptual modeling works in the software cybersecurity area
can support the development of behavior-based intrusion prevent systems (IPS).

Moreover, the assumptions used in this work, are originally part of a preliminary
ontology of assumptions presented by Wang et al. (2016) that was not fully developed.
Based on that, a possible future work lies in the proper definition of a (core) reference
ontology of assumptions, based on an ontological analysis over the scientific literature,
grounded on existing foundational ontology and that extends Wang and colleagues’ work
by fully characterizing the uncovered concepts and relations that exist around the concept
of assumption. We believe that the development this ontology of assumptions can be
very positive for our work, as it will allow us to further extend ROSS and OSDEF,
by understanding the relations that exist between the assumptions reused in it and
consequentially, improving the presented reference model to take full advantage of it.
These relations are not defined by Wang. Our hypothesis here is that the assumptions that
exist in the superior layers of the software systems act as constraints for the requirements
and system components in the lower layers. For example, the assumptions made for the
development of a software product in a Business environment will constrain the definition
of System and Program Requirements. However this relations are not fully discovered and
are objects for future research.

Technical Debt is defined as the obligation that a software organization incurs when
it chooses a design or construction approach that is expedient in the short term but that
increases complexity and is more costly in the long term. The ability to track and manage
the technical debt is crucial for organizations, since the decision of cutting costs in the
short term can lead to increasing complexity and costs in the long term (MCCONNELL,
2008). In this context, a possible future work is to associate techniques for calculating and
managing the technical debt with our approach for requirements traceability based on
reference models. We believe that the work presented here can be useful for the technical
debt managing process, since it can capture the relations between high-level business
requirements and the programs that are part of the software system.

Finally, we believe that many concepts and techniques related to domain ontologies
presented in this thesis could be applied outside the specific area of software systems, in
other domains such as governmental, medical and economic. We intend to research the
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possible applications of the techniques used here outside of the software system domain.
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