
An Ontology-based Diagnosis of Mainstream Service Modeling Languages

Julio Cesar Nardi1, João Paulo A. Almeida2, Paulo Henrique A. da Silva1, Giancarlo Guizzardi2,3

1Informatics Department, Federal Institute of Espírito Santo, Colatina, Brazil
2Ontology & Conceptual Modeling Research Group (NEMO), Federal University of Espírito Santo, Vitória, Brazil

3Facoltà di Scienze e Tecnologie Informatiche, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
julionardi@ifes.edu.br, jpalmeida@ieee.org, pauloharaujos@gmail.com, giancarlo.guizzardi@unibz.it

Abstract— This paper presents a diagnosis of mainstream
service modeling languages (SoaML, USDL, and ArchiMate) in
light of UFO-S, a reference ontology for services. UFO-S is
intended as a broad ontology for service phenomena,
harmonizing different perspectives on services (e.g., “service as
commitment”, and “service as capability”), and addressing
several phases of the service lifecycle (service offering, service
agreement, and service delivery). As result, UFO-S is used as an
“analysis theory” to identify choices in these languages
concerning their focus and coverage of service phenomena. We
identify a number of possible improvements concerning the
representation of service participant (roles), the description of
service offerings, service agreements and service delivery.

Keywords: service modeling languages; service ontology;
SoaML; USDL; ArchiMate.

I. INTRODUCTION

The notion of service has been approached from various
perspectives, including: “service as commitment” [1],
“service as interaction” [2], “service as value co-creation”
[3], and “service as capability” [4]. These perspectives are
influenced by many aspects, such as, the point of view, the
level of maturity, and the practical problems faced by the
respective application area. For example, in the Business and
IT application areas, the perspective of “service as
capability” has been widely adopted [5][4]. The perspective
of “service as commitment”, in turn, has been advocated as a
useful way of dealing with service intangibility [4] and
raising the low-level of abstraction of service-oriented
architectures to reduce the gap between the Business and the
IT [6]. We have observed that these perspectives end up
being reflected in different ways in various service modeling
languages, resulting in different language facilities for the
representation of service relations. Despite the importance
of the different representation facilities, we believe that
service modeling languages need to be consistent to the
essence of service relation dynamics as a way of avoiding
semantic inconsistence and favor language interoperability.

This paper describes and analyses the service
representation support of three service modeling languages
that were subject to standardization. The analyzed languages
are: the Service-oriented Architecture Modeling Language
(SoaML) [7], the Unified Language for Service Description
(USDL) [8], and ArchiMate [9]. The SoaML specification
provides a metamodel and a UML profile for the
representation of services within a Service-Oriented
Architectures (SOA) [7]; USDL is a platform-neutral
language for describing technical and business services by
adding information useful to, e.g., providers, gateways, and

consumers [8]; and, ArchiMate, as a graphical service-
oriented modeling language, provides service representation
throughout enterprise architecture layers [9]. Together, these
languages represent a spectrum of concerns in service
modeling, reflecting the broad scope of application of
service notion: SoaML stems from a software-centric
setting, focusing on the technical specification and design of
services in UML; USDL is intended to complement web
services technical languages addressing business concerns
(e.g., pricing and policies in service provisioning); and
ArchiMate was designed originally with the intent of
bridging the gap between business and IT services,
facilitating communication in various architectural domains.

We aim to answer the following main research question:
“What are the representational capacities of SoaML, USDL
and ArchiMate with respect to the service phenomena?”. For
that, we have defined a research method focused on
addressing a set of derived research questions based on the
reference ontology UFO-S [10]. In this work, therefore,
UFO-S is applied as a kind of “analysis theory” [11],
grounding the research method definition and its execution
phases. It is suitable for this task as it was developed with the
purpose of harmonizing different service perspectives and
addressing several phases of the service lifecycle (service
offering, service agreement, and service delivery), revealing
service relations and service participant roles.

The results of the diagnosis can support prospective users
and language experts in future efforts of revision and
redesign. We show there is a particular gap in representation
of commitment-based aspects in the analyzed techniques.

This paper is further structured as follows: Section II
presents the methodological aspects, clarifying the role of
reference ontologies in the analysis of modeling languages;
Section III presents the reference UFO-S ontology; Section
IV refines the general research question into more six
specific ones, in light of UFO-S; Sections V to VII briefly
present and analyse the three service modeling languages
addressing the research questions; Section VIII summarizes
the analysis and position the modeling languages; and,
finally, Section IX presents the final considerations.

II. METHODOLOGICAL CONSIDERATIONS

There is an established tradition of almost three decades
of systematically analyzing and evaluating conceptual
modeling languages by employing the results of formal
ontological studies [12]. In ontological analysis (or
“representational analysis” [13]), a rigorously defined
reference ontology is used to assess a language (or its
metamodel) to uncover representation gaps and ontological
deficiencies in the language. The approach is based on the

observation that, since the main purpose of a language is to
represent and communicate certain aspects of phenomena of
interest, we must as best as possible understand and
characterize the nature of those phenomena; a task which is
undertaken systematically in reference ontology design. A
reference ontology serves in this case an “analysis theory”
[11] or “representation theory” [13].

Since the pioneering work of [12], a number of languages
have been evaluated and (re)designed using this approach,
whose effectiveness has been empirically demonstrated by a
myriad of studies over the years [14][15].

As discussed in [13], [12], and in [16], ontological
analysis is performed by “comparing the constructs of the
chosen representation theory with the constructs of the
modeling grammar and by identifying any representation
equivalence between these”. Two principal evaluation
criteria are ontological completeness, i.e., the extent to which
the modeling grammar has a deficit of constructs that map to
the set of representation theory constructs, and ontological
clarity, i.e. the extent to which the modeling grammar
constructs are deemed overloaded, redundant, or excessive
[12] (apud [13]). From the perspective of design science
research, language grammars can be regarded as designed
artifacts. In the rigor cycle, the design artifact is evaluated by
employing a knowledge base (such as ontologies) [17].

By using as a reference ontology the Unified
Foundational Ontology (UFO) [18], ontological analysis has
been successfully employed over the years to analyze,
(re)design and integrate conceptual modeling languages and
standards in different domains (e.g., RM-ODP [19],
TROPOS/i* [20], ARIS [21], BPMN [22], and ArchiMate
[23]). Of particular interest of this paper, UFO has been used
to develop core ontologies in the domain of Services (termed
UFO-S). As discussed in the next section, in the case of
service modeling, a suitable reference ontology must
characterize the multifaceted notion of service, harmonizing
its various perspectives. Given that services cross the
Business-IT line, we argue that such a reference ontology
should address the social nature of service relations, which
are invariably linked to various aspects of the service life-
cycle, covering from service offering to service delivery.

III. A REFERENCE ONTOLOGY FOR SERVICES

A number of works in Service Science [1][24] and
Service Computing [25][26] explicitly mention
commitments, promises and/or obligations for
characterizing the service relations established between
service participants. The benefits of a characterization based
on commitments have been discussed from the perspective
of business [24] as well as IT [27].

UFO-S is a core reference ontology for services based on
the notion of social commitments [10]. As a reference
ontology [28], UFO-S is intended to assist humans in
meaning negotiation and shared understanding. It is
grounded in a foundational ontology (the Unified
Foundational Ontology – UFO [18]) from which it reuses
foundational notions of objects, types, object properties,
object relations, events/processes, and further social concepts

that specialize the more general notions and account for
social reality. The social layer of UFO includes important
notions of social agents (e.g., enterprises), the objectives they
pursue, the roles they play, the social relations they establish
(commitments and corresponding claims), etc.

UFO-S focuses on the three basic phases of the service
life-cycle: (i) service offer (when a service is presented and
made available to a target customer community), (ii) service
negotiation (when providers and customers negotiate for
establishing an agreement), and (iii) service delivery (when
actions are performed to fulfill a service agreement).

Figure 1 presents a UFO-S model fragment regarding
service offer. A service offer is an event (e.g., the registration
of a service provider organization in a chamber of
commerce) that results in the establishment of a service
offering, which mediates the social relations between the
service provider and the target customer community. A
service offering is composed of service offering
commitments from the service provider towards the target
customer community, and the corresponding service offering
claims from the target community towards the service
provider. Service offering commitments refer to
commitments that can be established later in the negotiation
phase. The content of the service offering commitments and
claims may be described in service offering descriptions
(e.g., folders, registration documents in a chamber of
commerce, and artifacts in software service registries).

Service provider is the role played by intentional agents
(e.g., physical agents such as persons, and social agents such
as organizations) when these agents commit themselves to a
target customer community by a set of offering
commitments. Target customer community is a collective
that refers to the group of agents that constitute the
community to which the service is being offered. Target
customer is the role played by agents when become members
of the target customer community, and, as a consequence,
have claims for the fulfillment of the commitments
established by the agent playing the role of service provider.

Once a service is offered, service negotiation may occur.
Figure 2 presents UFO-S model fragment of this phase.
Service negotiation is an event involving a target customer
and a service provider. If service negotiation succeeds, a

Figure 1: Service Offer.

service agreement is established, and the service provider
starts to play the role of hired service provider, while the
target customer starts to play the role of service customer.

A service agreement mediates the social relations
between service customer and hired service provider, being
composed of commitments and claims established among
them. The content of commitments/claims of a service
agreement may be described in a service agreement
description (e.g., contract). The mutual service
commitments/claims established in the service agreement
will drive the service delivery.

Figure 3 presents UFO-S model fragment regarding
service delivery. Service delivery is an event composed by
actions performed by the hired service provider (hired
provider actions), actions performed by the service customer
(customer actions), and/or actions performed by both in an
interaction (hired provider-customer interaction).

These actions are the manifestation of dispositions (and
in particular capabilities) of service participants [29][23].
Service delivery concerns the execution of actions aiming at
fulfilling commitments established in the service agreement.
Depending on the business model, other agents can also

perform actions. E.g., the service provider can delegate some
actions to a third-party (e.g., actions performed by human
resources, or actions performed by third-business partners).
These actions are part of the service delivery process, but
they are not explicitly represented in Figure 3.

Besides the aforementioned commitment-based service
view, we can also find that one directly associated with the
use or application of resources/capabilities [30]. This
capability-based service view is discussed under different
banners, e.g: “service as capability” (capability of a provider
to produce benefits to customers) [23]; “service as
application of competences” (manifestation of one party’s
capability in benefit of another party) [31], and “service as
resource/capability applied in process” (integration between
service as resource and service as process) [32].

We consider the commitment-based service view and the
capability-based service view as complementary, and both
are required in a thorough account of services [33].
Concerning the application of resources (or the manifestation
of their capabilities), we consider that hired service provider
and service customer are mutually committed to apply their
resources (and their capabilities) to fulfill the established
service commitments. In the service delivery phase, those
resources (and capabilities) are used (manifested) as agreed.

As an important consequence of this theoretical
foundation is the fact that a (genuine) service relation is
inevitably a social phenomenon between intentional agents.
Therefore, only intentional agents can play the roles of
service provider and service customer, since only this kind
of agent can be committed to other agents. Enterprise
resources (e.g., applications and devices) do not themselves
play the role of service providers and customers. Instead,
service provider and service customers (agents) employ
resources as a means to fulfill their commitments.

Finally, when a service agreement is established, the
service customer delegates a goal/plan to the hired service
provider. A delegation in a service relation may be followed
by further (service) delegations, too common in supply
chains and economic networks. As such, a network of service
commitments is established between service participants that
acts as a “glue” and leads to the application of their
resources/capabilities to fulfilling their commitments. Thus,
this network of mutual service commitments drives a
network of Business- and IT-capabilities of different
enterprises for delivering the correspondent services [33].

IV. RESEARCH QUESTIONS

In line with our main research question (“What are the
representational capacities of SoaML, USDL and ArchiMate
with respect to service phenomena?”) and in light of UFO-S,
the following refined questions are defined for each of the
three analyzed modeling languages:

RQ1 – To what service characterization(s) is the
language committed?

Figure 2: Service Negotiation.

Figure 3: Service Delivery.

RQ2 – What are the representational capacities for
service participants (including their roles as target customer,
provider, service customer, and hired service provider)?

RQ3 – What are the representational capacities for
service offerings?

RQ4 – What are the representational capacities for
service agreements?

RQ5 – What are the representational capacities for
service delivery (including relationships between delivery
actions and the correspondent motivational service
commitments)?

RQ6 – What are the representational capacities for links
among service relations (e.g., service networking, and
service relations chaining)?

Below we present the analyzed language and report on
these research questions. The summary of the analysis with
recommendations are presented in Section VIII.

V. SERVICE MODELING IN SOAML

A. SOAML OVERVIEW

In the Service oriented architecture Modeling Language
(SoaML), a service is “the delivery of value to another party,
enabled by one or more capabilities” [7], and “[...] enable us
to offer our capabilities to others in exchange for some
value”. “A service represents a feature of a Participant that is
the offer of a service by one participant to others using well
defined terms, conditions and interfaces” [7]. “Capabilities
identify or specify a cohesive set of functions or resources
that a service provided by [...] participants might offer” [7].

A participant is defined as “specific entities or kinds of
entities that provide or use services. Participants can
represent people, organizations, or information system
components” [7]. Thus, in SoaML, service provider and
consumer entities may be people, organizations, technology
components or systems (being all these called participants).

A service description establishes how the participant
interacts to provide or use a service. Thus, it “specifies how
consumers and providers are expected to interact through
their ports to enact a service, but not how they do it” [7]. It
can be specified by means of a simple UML interface, a
service interface, and a service contract. A simple interface
focuses on a one-way interaction provided by a participant. It
is used with “anonymous” callers and the participant makes
no assumptions about the caller or choreography of the
service [7]. A service interface “is defined in terms of the
provider of the service and specifies the interface that the
provider offers as well as the interface, if any, it expects from
the consumer” [7]. Therefore, it defines the responsibilities
of a participant to provide or consume a service. A consumer
of a service, in turn, specifies the service interface she
requires. Compatibility of service interfaces determines if the
agreements are consistent and can be connected to
accomplish the real world effect of the service [7].

A service contract is a “formalization of a binding
exchange of information, goods, or obligations between
parties defining a service”, being a specification of an
agreement between the parties for how the service is to be
provided and consumed [7]. It includes the interfaces,

choreography, and any other terms and conditions [7]. In
SoaML, the “agreement” may be asserted in advance or
arrived at dynamically, as long as an “agreement” exists by
the time the service in enacted [7]. Each role, or party
involved in a service contract is defined by an interface or
service interface that is the type of the role.

SoaML supports, basically, two modeling approaches [7]:
(i) a contract-based approach, and an interface-based
approach. These approaches are, respectively, associated to
the use of the “service contract” and the “service interface”
elements. In the interface-based approach, we focus on
specifying the interfaces offered and used by service
consumer and service provider. In the contract-based
approach, we work on offering a wide view being most
applicable where an enterprise or a community SOA
architecture is defined, or when there are more than two
parties involved in the service. The fundamental differences
between interface- and contract-based approaches is whether
the interaction between participants are defined separately
from the participants in a service contract, or individually on
each participants’ service and request [7]. Despite the
stylistic difference, there is significant overlap in
specification capacities and both may be used in some cases.

Figure 4 presents a service interface diagram that
addresses the “Online Selling Books” service from the
“Bookstore” provider towards the “Bookstore Consumer”.
The diagram focuses on the provider’s view, thus the
presented service interface realizes the service provider
interface and uses the correspondent consumer interface.
Figure 5, in turn, presents a service contract diagram, the
“Online Selling Books (terms and conditions)”, which
focuses on representing the service relation established
between the “Bookstore Consumer” and the “Bookstore”.

Figure 4: Bookstore scenario fragment: service interface diagram.

Figure 5: Bookstore scenario fragment: service contract diagram.

As we can notice, differently from the service interface,
in the service contract diagram, the contractual aspects are
represented separately from the participants, not individually.
Finally, Figure 6 presents the “Online Selling Books
Provisioning” service architecture diagram, which represents
the service contracts established between consumers and
providers involved in a services network, since the purchase
order made by the “Bookstore Consumer” and addressed by
the “Bookstore”, until the goods shipping done by the
“Shipping Company” (as provider).

B. Research Questions Analysis

RQ1 - Service characterization. In SoaML we can find
three definitions for service, namely: (i) “delivery of value
[…] enable by […] capability”, (i) “feature of a participant”,
and (i) “resource that enables access to […] capabilities”. All
of them are thus built on the notion of capability. However,
considering the notion of capability in SoaML “as cohesive
set of functions or resources”, the emphasis is on capabilities
related to behavioral aspects. In this context, SoaML offers
the concept of contract that, as a UML collaboration, focuses
on the behavioral aspects of service agreement type to be
instantiated in a specific scenario. As a result, the notion of
commitments and claims for characterizing (genuine) service
relations, as advocated in UFO-S, is somewhat ancillary.

RQ2 – Service participant (roles). SoaML explicitly offers
two basic service participant roles, namely: the Service
Consumer, and the Service Provider. We could not find
constructs for denoting the UFO-S notions of Target
Customer, Hired Service Provider and Target Customer
Community. Thus, SoaML’s service participant roles,
Service Consumer and Service Provider, seem to collapse,
respectively: Target Customer and Service Customer, and,
Service Provider and Hired Service Provider roles defined
in UFO-S. We could find some textual references to
“community” and “marketplace”, which could be seen as
possible Target Customer Community (in UFO-S).
However, these terms appear only in the specification text
informally, not corresponding to a language construct.
Further, in SoaML there is no distinction between
intentional and non-intentional participants, e.g.:
“participants are either specific entities or kinds of entities
that provide or use services […]“, it “[...] can represent
people, organizations, or information system components”,
and it “[...] may provide any number of services and may
consume any number of services” [7]. As a result, even non-

intentional participants (e.g., system software) with its
computational capabilities put available could be considered
a service provider. Neglecting social aspects of service
relations does not contribute for a clear alignment between
Business and IT, since typical organizational resources (as
software systems, and processing nodes) may be grossly
considered service providers [33]. These typical resources,
differently from enterprises, departments, and persons
cannot themselves commit, delegate and claim. In case the
“Bookstore” hires a data storage service from the
“Warehouse, Inc.”, we cannot say that the data hosts/servers
themselves provide the service, because the provisioning
encompasses more than that. It is necessary, e.g., to
guarantee the electric power supply, hardware and software
upgrades. So, by means of the social aspects inherent to the
Business level it is possible to address the application of
capability/resources at IT level.

RQ3 and RQ4 – Service offerings and service
agreement descriptions. In SoaML, service descriptions can
be built by means of service interfaces, and service contracts.
Thus, we understand that service offerings (in terms of UFO-
S) could be represented in SoaML by means of service
interfaces as well as service contracts. For that, however,
there should be a way of representing the service provider
and the correspondent target customer, for who the offering
is established. In this case, service contracts and service
interfaces would represent the service offering commitments
from the service provider toward the target customers, and
the correspondent expected conditions to be satisfied by
possible actual service customers (in case of possible service
agreement establishment). An agreement, in SoaML,
between a consumer and provider may be also captured in a
common service contract, which may constrain both the
consumer’s request service interface and the provider’s
service interface. Service contracts and service interfaces can
also be used as a kind of patterns of services (service
agreement type in UFO-S), which can be instantiated by
specific individuals. However, considering the emphasis on
behavioral aspects in SoaML, service interfaces and service
contracts focus on interaction between service participants
more than on quality of service parameters, for example. As
such, service offering and agreement descriptions are based
on the descriptions of operations or sets of operations that are
typically characterized by a pair of interaction types and
constraints on them. In this case, an operation invocation
may count as (an implicit and trivial) service negotiation,
with the establishment of an agreement whose type is pre-
defined in the service offer. In any case, the notion of
commitment is instrumental in explaining both the semantics
of service description publication and the establishment of
Service-Level Agreements (agreements in UFO-S) [34].

RQ5 – Service delivery representation. In SoaML, a
service contract is represented as a UML Collaboration. The
sequence of actions between provider and consumer are
represented in service contract choreography, which is a
UML behavior and, therefore, can be represented by UML
behavioral diagrams (e.g., sequence diagram, and activity
diagram). As aforementioned, the behavioral specification of

Figure 6: Bookstore scenario fragment: service architecture diagram.

a service contract, as a UML collaboration, can be seen as a
service agreement type in UFO-S encompassing the actions
performed by service participants and resources. In SoaML,
however, there is no explicit relationship between the
actions/interactions performed by providers and customers
and the usage of resources, and the correspondent service
commitments established among these service participants,
which motivate these actions/interactions and usages. We
believe that establishing an explicit fine-grade relation
between the delivery actions/interactions (type) to the
correspondent motivational service commitments (not only
on the level of contract, as in SoaML by means of the
service contract choreography) would be useful. It would
allow to identify, e.g., (i) why some actions must be
performed in a such way, and (ii) which commitments may
be broken if a specific action is not performed as agreed.

RQ6 – Service relation links. SoaML offers the service
architecture diagram, by means of which it is possible to
represent a specific scenario encompassing a network of
service contracts linked to the correspondent consumers and
providers. This diagram offers a view of what are the service
agreements (types) that characterize the addressed service
provisioning scenario. However, as Figure 1 illustrates, there
is no specific relation among service contracts. Without these
relations, we could not explore, e.g., dependency and
conformance relationships among service contracts.

VI. SERVICE MODELING IN USDL

A. USDL OVERVIEW

The Unified Service Description Language (USDL) is a
platform-neutral language for describing services [8]. It is
designed for addressing technical services (e.g., WSDL and
REST), and business services (business activity provided by
a service provider to a service consumer) [8]. USDL aims at
complementing the technical languages stack by adding
business and operational information [8].

The USDL concepts are structured in 9 (nine) modules,
which address functional and non-functional aspects of
service provisioning [8]. They are described below and
Figure 7 presents a bookstore scenario illustrated by
representation of some USDL concepts.

Service module [8]. This module can be considered the
core of USDL. It addresses service description aspects that
crosscut the other modules. This module contains concepts
such as Service, ServiceBundle, CompositeService, and
AbstractService. Service concept encapsulates a functionality
offered by a provider. ServiceBundle allows to specify
bundles of services offered/hired in tandem.
CompositeService is a kind of service that establishes a
relation of execution. It can be ordered (e.g., a business
process phases) or non-ordered. AbstractService is used to
describe class of service (e.g., “Car Wash”), offering as a
model that can be instantiated in a specific situation.

Interaction module [8]. This module allows to describe
the sequence of individual functions or interactions with
other services and agents, including, therefore, the sequence
of interactions between consumer and provider and actors
involved in the service delivery. This module contains

concepts as Interaction Protocol (as mandatory or optional
interactions between service participants), Function,
Parameters, Conditions, etc.

Legal and Pricing modules [8]. The Legal module
describes legal aspects of service provisioning, e.g., terms
and conditions, licenses, rules of using, etc., while the
pricing module addresses segmentation rules within the price
structure, i.e., rules determining when and how different
consumers are charged different prices. It allows to model
scenarios with alternative price plans that may be assigned to
an offered service or bundle (e.g., by PricePlan concept).

Functional and Technical modules [8]. In order to
enable the description of human and automated services,
these modules capture service functionality in a conceptual
way. Conceptual, in this context, means independent of the
ways to technically access functionality. Thus, the concept of
service itself and service’s interface are addressed separately,
since a service can be accessed by means of various
interfaces. Interface means a set of concrete technologies
through which the service can be accessed. E.g., an
automated service can be available by means of a WSDL
interface, whereas a manual service can be available in-loco.

Participants module [8]. The Participants module deals
with information about service agents, such as: Business
Owner, Provider, Intermediary, Stakeholder and Target
Consumer. It also describes dependencies between these
agents and their relations with the Service module.

Service Level module [8]. This module deals with
service specifications addressing guarantees of quality of
service operation, which are claimed/requested by different
actors involved in the provisioning. A set of service level
specifications can be combined into one profile and are
offered, negotiated, or agreed upon as a whole. Different
profiles are used to specify different options of how service
levels may be grouped (e.g., as gold, silver, bronze profiles).

Figure 7: Bookstore scenario fragment represented by means of USDL.

Foundation module [8]. This module captures concepts
common among several aspects or that cannot be organized
in other module, e.g., concepts of naming and identification,
or concepts that are completely independent of “service”,
e.g., Organization, Person, Resource, and Artifact.

By analyzing the Figure 7, we can notice the service
participant roles (“Provider”, “Target Customer”, and
“Consumer”) and the correspondent individuals that
instantiate them; the services provided/consumed, the
interfaces by means of what services are provided/consumed;
and the functional/interactive aspects (which represent the
dynamics of service delivery). Finally, we can see the legal,
pricing and service level elements that addresses non-
functional properties of the service provisioning.

B. Research Questions Analysis

RQ1 - Service characterization. In USDL, a service is told
to “encapsulate a functionality from prior instrumental
artifacts”. This functionality, therefore, can be understood as
a capability inherent to an artifact. USDL grounds the notion
of service to the capability, similar to SoaML (despite the
latter focuses on behavioral aspects). A particularity of
USDL is to offer a set of specific concepts to represents
aspects related to terms of provisioning and usage of services
(e.g., Licence, and PricePlan). In terms of UFO-S, we could
say that these specific concepts would be useful to represent
the content of some service commitments, especially those
one related to non-functional provisioning aspects.
RQ2 – Service participant (roles). In USDL, we can find
the “Target Consumer” and the “Consumer” concepts, which
seem to have correspondence to the “Target Customer” and
“Service Customer” concepts in UFO-S, respectively. As a
result, it is possible to represent the notion of a service
offered to target customers, as well as, a service already
hired by an specific service consumer. In the language,
however, we could not identify a specific concept for
representing what in UFO-S is referred as “Hired Service
Provider”. As a consequence, the concept of “Provider” in
USDL seems to collapse both: the “Service Provider” (who
offers a service towards target customers) and the “Hired
Service Provider” (who is already committed to a specific
service provisioning agreed with a service consumer). USDL
offers other participant roles as a way of addressing a wider
setting of a service ecosystem (e.g., business networks),
such as [8]: service owners (cost center owners typically
having governance responsibility of services); stakeholders
(having regulatory, commercial or other designated interests
in the service); and intermediaries (having specialist
provisioning, such as a broker or cloud provider, beyond the
original provisioning). With these other participant roles, we
understand that new kinds of (social) relations arise among
them. This requires, therefore, a specification of these
relations and the dynamics among them, including, e.g.,
types of delegations between owners and intermediaries,
and between intermediaries and providers). These aspects
could be grounded on the notions of “open and close
delegations” or even “legal relations” in UFO-S
[10][33][35]. Finally, USDL presents a clearer distinction
between intentional and non-intentional aspects, if

compared to SoaML. It establishes a structural organization
between participants (as organizational actors) concerned
with service provisioning, delivery and consumption, and
artifacts/resources used to in the services.

RQ3 and RQ4 – Service offering and service
agreement descriptions. USDL offers a number of concepts
that can be applied to build service specifications, which can
be used along the service life-cycle, i.e., they are offered,
negotiated and agreed. For example, the ServiceLevel
concept captures a unique service level specification, and a
set of service levels can be combined into service level
profiles (e.g., as gold, silver, bronze profiles). Also, a
particular service offer’s price plan can be specified together
with functional, interface and interaction details. All of these
elements may be used in service descriptions, which are
applied in service offer events, when, in terms of UFO-S,
service commitments are published from the service provider
towards target customers. Regarding the service agreement
description, a service level profile also resembles the notion
of a service level agreement “template” (e.g., WS-
Agreement) [8]. This agreement “template”, when
instantiated, could be seen as a service agreement (in terms
of UFO-S) between provider and consumer individuals.

RQ5 – Service delivery representation. USDL
provides elements of the Interaction and Functional modules
(interaction protocol, phase, function, etc.) that allow to
represent the actions that service participants and resources
perform along service delivery. Also, USDL offers a number
of concepts, as aforementioned, that allow to specify non-
functional requirements relative to service delivery actions
(e.g., PricePlan, UsageRight, TimeRestriction), which
represent, in some sense, the content of service commitments
between service participants.

RQ6 – Service relation links. To support enterprises be
aware of dependencies across their layers and beyond its
boundaries (e.g, in service marketplaces), USDL offers a set
of dependency relationships that goes beyond the traditional
functional, compositional and bundling dependencies,
namely: includes, requires, enhances, mirrors, cansubstitute,
and canconflict. By means of these dependency
relationships, it is possible to link service provisionings.
From that, USDL widens the support to address third-party
service provisioning and intermediation traditionally found
in Web Services Architecture and SOA platforms [8].
Besides the service network established by means of these
relationships, USDL intends to address an orthogonal and
adjacent issue of service dependency, the set of resources
applied to supporting a service’s delivery. As discussed in
Section III, the dependency relationships arise in service
relations insofar provider and customer establish mutual
commitments and put their resources available to each other.
Differently from SoaML, which does not offer a well-
defined approach for representing dependencies between
service contracts, the aforementioned dependence
relationships in USDL seems to constitute a strategy of
explicitly representing the different dependencies among the
service provisioning relations (e.g., agreements).

VII. SERVICE MODELING IN ARCHIMATE

A. ArchiMate Overview

ArchiMate is a visual service-oriented modeling
language that provides a uniform representation through
enterprise architecture layers [9]. The Business Layer depicts
business services offered to customers, which are realized in
the organization by business processes, having an actor
responsible for it. The Application Layer depicts application
services that support the business layer, and the application
components that realize them. The Technology Layer depicts
technology services (e.g., processing, and storage services)
needed to run the software applications.

In ArchiMate, a service is “an explicitly defined exposed
behavior” [9]. This concept is specialized in ArchiMate into
business service, application service and technology service.
The realization of services in all layers is described by means
of behavior elements (business processes; business,
application, and technology functions; business, application,
and technology interactions, etc.). Services are provided and
consumed through interfaces.

The service provisioning aspects are regulated by the
contract element, which “represents a formal or informal
specification (rights and obligations) of an agreement
between a service provider and a service consumer” [9].
Services can be combined in product, which “represents a
coherent collection of services” that is offered as a whole to
(internal and external) customers [9].

A business actor is a business active element “capable of
performing behavior”. It can play a business role, by means
of which it gains the “responsibility for performing specific
behavior” [9]. An application component “represents an
encapsulation of application functionality” and “exposes
services, and makes them available through interfaces”. A
node “represents a computational or physical resource that
hosts, manipulates, or interacts with other computational or
physical resources” [9]. Application components and nodes
are IT active element used as resources to support service
provision. A capability is an ability that an active structure
element (e.g., an organization, person, or system) possesses.

Figure 8 illustrates the usage of the aforementioned
elements in a bookstore scenario.

The “@Books, Inc.” actor, as a bookstore, provides the
“Make Purchase Order” and “Complaint” business services
which are used by a “Bookstore Customer”. The bookstore
uses “Ship Books” service provided by the “FastShipping,
Inc.” company. All of these services are realized/provided by
means of resources. E.g., the “Complaint” business service is
realized by means of the “Handling Complaint” process that
uses an application service realized by the “Complaint
System” application component. (For the sake of simplicity,
we do not represent the whole scenario).

B. Research Questions Analysis

RQ1 - Service characterization. In ArchiMate, a service
“represents an explicitly defined exposed behavior” [9],
which ultimately represents the capability of an individual
(e.g., organization, person, application component, and
processing node) to realize that behavior. This capability-
based perspective, therefore, is reflected in the structure of
the modeling language, as discussed below.

RQ2 – Service participant (roles). In ArchiMate, there
is no clear distinction among the service participant roles in
service relations (as discussed in UFO-S). The modeler can
only represent (i) who uses the service, and (ii) who is
assigned to it (not necessarily who is responsible for the
service provisioning). As a consequence, a number of
semantic misunderstandings may arise, e.g. [36][37]: (i) who
are the target customers?, (ii) who are the actual customers
hiring services?, and (iii) who are the providers hired to
provider an specific service?. For addressing these
“limitations”, the modeler needs to create representation
mechanisms. Some of these mechanisms can be found in
[36] and [37], being structured in modeling patterns. In
ArchiMate, there seems to be a clearer distinction between
intentional and non-intentional service participants, if
compared to SoaML. We understand that this is a result of
the structure of the language that offers different constructs
for modeling, e.g., business actors and business roles, as
well as, application components, and devices. However,
there are some aspects in the language that need attention.
As discussed in [37], specially at Application and
Technology layers, where the focus in on Application and
Technology services provisioned and used by means of IT
resources (e.g., a “File Hosting” application service realized
by an application component and used by another software
application), ArchiMate does not offer a clear way of
representing the service provider and the service customer
involved in the service relations, focusing solely on the non-
intentional resources that contribute to the service delivery.

RQ3 and RQ4 – Service offerings and service
agreement descriptions. In ArchiMate, there is no specific
construct for representing service offerings (in terms of
UFO-S). In case of service agreements/contracts, the
language presents the “contract” construct, however, as
described in detail in [36][37] we can find a number of
service modeling limitations when trying to represent service
agreements in ArchiMate (the “contract” construct seems to
overload service offering types, service offerings, service

Figure 8: Bookstore scenario: ArchiMate example.

agreements). (A problem that was approached with
specialized modeling patterns in [36][37]).

RQ5 – Service delivery representation. Since, in
ArchiMate, the concept of service is based on the notion of
behavioral capability, the behavioral modeling elements of
this language (e.g., business process, and application
function) are useful for representing the realization of this
behavior. Thus, by means of business processes, e.g., one
can represent the sequence of actions to be performed by
human beings, social agents, and other organizational
resources. However, despite ArchiMate offers ways of
achieving a contract from the behavioral elements that
realizes the correspondent service, similar to SoaML and
USDL, ArchiMate does not provide a refined traceability
between delivery actions and the service commitments that
have motivated their performance (as discussed in [35]).

RQ6 – Service relation links. By means of some
modeling elements in ArchiMate (e.g., serving, realization,
and assignment relationships), the modeler can define ways
of linking some elements (e.g., services, business roles,
business process, and application components) in a service
provisioning scenario. The serving relationship, e.g.,
represents a control dependency relationship. However, since
ArchiMate does not offer direct relationships between
contracts, it lacks a clear way of representing, in a service
network, which contracts influence the other contracts.

VIII. DISCUSSION

Service characterizations. A common aspect regarding
service characterization in the three analyzed languages is
the notion of “capability”. SoaML, in turn, has a strong
concern on behavioral specification of service contracts.
Therefore, the notion of capabilities is central in these three
languages, and all of them focus on the capability-based
service view. As discussed in [10], UFO-S reveals an
important distinction between (i) possessing a capability to
perform certain actions or to produce certain outcome, and
(ii) employing capabilities in order to fulfill service
commitments. The former is not sufficient for characterizing
service provisioning, since the capability of an organization
to wash cars does not automatically make it a car wash
service provider. For characterizing a (genuine) service
relation, thus, there should be a set of service commitments
from the provider towards costumer for “guaranteeing” the
systematicity of applying such capabilities.

Service participants (roles). If we compare the service
participants roles offered by the analyzed languages to those
one defined by UFO-S, we can note some differences
specially related to degree of expressiveness: whereas USDL
presents at least five different participant roles, SoaML
presents two (Service Provider and Service Consumer) and
ArchiMate offers means of representing only who uses the
service and who is assigned to the service. We could also
identify some construct overload in those languages: in
SoaML, Service Provider and Service Consumer roles
overlap, respectively, Service Provider and Hired Service
Provider, and Target Customer and Service Customer (in
UFO-S); whereas in ArchiMate who uses the service could
be interpreted as Target Customers as well as Service

Customers with no distinction. One of the possible
mechanisms to overcome these limitations is the definition
of modeling patterns, as suggested in [36][37]. By being a
lightweight approach, it does not require any language
redesign. Finally, regarding the intentional characteristic of
service participants in (genuine) service relations (in terms of
UFO-S), we could identify that SoaML makes no distinction
between intentional and non-intentional participants,
differently from USDL and ArchiMate, which address some
distinctions, specially at Business level. By making a clear
distinction between theses aspects, it is possible to establish
a clear representation between capabilities/resources used in
service provisioning and agents committed to apply them.

Service Offering and Service Agreement Descriptions.
We consider that the analyzed languages present a partial
coverage concerning the representation of service relations
established along service life-cycle (especially service
offerings and agreements). This reflects the purpose of the
languages: more focused on the capabilities used, and less
focused on the social relations that guarantee the application
of such capabilities. Regarding representation of offering and
agreements elements, the analyzed languages offer concepts
that could be applied for representing both: SoaML offers
service interface and service contract constructs (focused on
specifying behavioral concerns); USDL offers concepts
(service level, profile, etc.) used to specify offering and
agreements; and ArchiMate provides the contract construct,
which may cover offerings and agreements indistinctively.

Service Delivery Representation. It is useful for
describing service choreography and the interactions
between provider and customers. The analyzed modeling
languages provide useful, and, in some degree, equivalent
elements/diagrams for representing service delivery actions
types. However, none of these languages explicitly offers
means to relate the (required) actions/interactions performed
by providers and customers to the correspondent service
commitments established among them and that ultimately
motivate these actions/interactions. This would allow us to
identify, e.g., (i) why some actions must be performed in a
specific way, and (ii) which commitments may be broken if
a specific action is not performed as agreed.

Service relation links. The analyzed languages present
different support for representing service networks. SoaML
offers the service architecture diagram, ArchiMate offers,
specially, the serving relationship as a control dependency
relationship, and USDL offers the richer set of dependency
relationships (includes, requires, enhances, mirrors,
cansubstitute, and canconflict) that allows to represent
relationships between services and applied resources.

IX. FINAL CONSIDERATIONS

The diagnosis presented in this paper reinforces that the
service phenomena is complex and encompasses a number of
service perspectives. We have shown that emphasis on a
particular service perspective may coincide with neglect of
other perspectives. Even with the focus on a specific service
perspective, it is important to be consist/aware to other
related perspectives as a way of avoiding language
inconsistence and favoring languages interoperability.

We have noticed little attention to important social
aspects in service relations. Service offerings and service
agreements, are prior to and regulate the existence of service
as behavior and/or application of capabilities and resources,
which occurs in service delivery phase. Offerings and
contracts are key elements to address the social nature of
commitments and claims established among intentional
agents in highly developed (and formal) social contexts.

Specifically, we reveal some aspects concerning (i) the
adopted service characterizations and its consequences; (ii)
representation of service participant (roles) for better dealing
with the different intentional agents involved in service
relations; (iii) description of service offering and agreements;
and (iv) representation of service delivery actions and their
relationships to the correspondent motivational aspects.

As future work, we intend to propose improvements in
the analyzed languages considering the diagnosis presented
here. Some of our observations concerning ArchiMate
already led to improvement proposals (see [37][33][36]). We
intend to extend these improvements to the other two service
modeling languages analyzed here, and design a conceptual
framework for supporting design and analysis of service
modeling languages in light of the aforementioned aspects.

ACKNOWLEDGMENT

This work has been supported by CNPq (407235/2017-5,
312123/2017-5), CAPES F. Code 001 (23038.028816/2016-
41), FAPES (69382549) and FUB (OCEAN Project).

REFERENCES

[1] R. Ferrario and N. Guarino, “Commitment-based Modeling of Service
Systems,” in Third Intern. Conference, IESS, 2012, pp. 170–185.

[2] D. A. C. Quartel, M. W. A. Steen, S. Pokraev, and M. J. van Sinderen,
“COSMO: A conceptual framework for service modelling and
refinement,” Inf. Syst. Front., vol. 9, no. 2–3, pp. 225–244, 2007.

[3] P. P. Maglio, S. L. Vargo, N. Caswell, and J. Spohrer, “The service
system is the basic abstraction of service science,” Inf. Syst. E-bus.
Manag., vol. 7, no. 4, pp. 395–406, 2009.

[4] OASIS, “Reference Model for Service Oriented Architecture 1.0:
OASIS Standard.” OASIS, pp. 1–31, 2006.

[5] OMG, “Service oriented architecture Modeling Language (SoaML)
Specification,” 2012.

[6] M. P. Singh, A. K. Chopra, and N. Desai, “Commitment-Based
Service-Oriented Architecture,” Computer (Long. Beach. Calif)., vol.
42, no. 11, pp. 72–79, 2009.

[7] OMG, “Service oriented architecture Modeling Language (SoaML),”
2012. [Online]. Available: http://www.omg.org/spec/SoaML/..

[8] D. Oberle, A. Barros, U. Kylau, and S. Heinzl, “A unified description
language for human to automated services,” Inf. Syst., vol. 38, no. 1,
pp. 155–181, 2013.

[9] The Open Group, “ArchiMate 3.0 Specification,” 2016.
[10] J. C. Nardi et al., “A Commitment-based Reference Ontology for

Services,” Inf. Syst., vol. 51, 2015.
[11] S. Gregor, “The Nature of Theory in Information Systems,” MIS Q.,

vol. 30, no. 3, pp. 611–642, 2006.
[12] R. Weber, Ontological Foundations of Information Systems.

Melbourne: Coopers & Lybrand and the Accounting Association of
Australia and New Zealand, 1997.

[13] M. zur Muehlen and M. Indulska, “Modeling languages for business
processes and business rules: A representational analysis,” Inf. Syst.,
vol. 35, no. 4, pp. 379–390, 2010.

[14] M. Verdonck, et al. “Comparing Traditional Conceptual Modeling
with Ontology-driven Conceptual Modeling: An Empirical Study,”
Inf. Syst., vol. 81, pp. 92–103, 2019.

[15] J. Recker, M. Rosemann, P. Green, and M. Indulska, “Do Ontological
Deficiencies in Modeling Grammars Matter?,” MIS 35, 1, 2011.

[16] G. Guizzardi, “Ontology-based evaluation and design of visual
conceptual modeling languages,” in Domain Engineering, Springer
Berlin Heidelberg, 2013, pp. 317–347.

[17] A. R. Hevner and S. Chatterjee, “Design Research in Information
Systems,” in Design Research in Information Systems: Theory and
Practice, Springer Science - Business Media, 2010, p. 320.

[18] G. Guizzardi, “Ontological Foundations for Structural Conceptual
Models,” University of Twente, 2005.

[19] J. P. A. Almeida and G. Guizzardi, “An Ontological Analysis of the
Notion of Community in the RM-ODP Enterprise Language,”
Comput. Stand. Interfaces, vol. 34, pp. 257–268, 2012.

[20] R. Guizzardi, X. Franch, and G. Guizzardi, “Applying a Foundational
Ontology to Analyze Means-end Links in the i* Framework,” in IEEE
Intern. Conf. on Research Challenges in Inf. Sciences, 2012, pp. 1–11.

[21] P. S. Santos, J. P. A. Almeida, and G. Guizzardi, “An Ontology-based
Analysis and Semantics for Organizational Structure Modeling in the
ARIS Method,” Inf. Syst., vol. 38, no. 5, pp. 690–708, 2013.

[22] G. Guizzardi and G. Wagner, “Can BPMN be used for making
simulation models?,” in Workshop on Enterprise and Organizational
Modeling and Simulation, 2011, pp. 100–115.

[23] C. L. B. Azevedo, et al. “An Ontology-Based Well-Founded Proposal
for Modeling Resources and Capabilities in ArchiMate,” in 17th IEEE
International EDOC Conference, 2013.

[24] S. Alter, “Service System Fundamentals: Work System, Value Chain,
and Life Cycle,” IBM Syst. J., vol. 47.1, pp. 71–85, 2008.

[25] L. da S. Santos, “A Goal-based Framework for Semantic Service
Provisioning,” University of Twente, 2011.

[26] M. Dumas, J. O’Sullivan, M. Hervizadeh, D. Edmond, and A. H. M.
Ter Hofstede, “Towards a Semantic Framework for Service
Description,” in IFIP TC2WG26 Ninth Working Conf. on Database
Semantics Semantic in ECommerce Systems, 2001, pp. 277–291.

[27] P. R. Telang and M. P. Singh, “Business Modeling via Commitments,”
in Service-Oriented Comp.: Agents, Semantics, and Eng. 2009.

[28] G. Guizzardi, “On Ontology, ontologies, Conceptualizations,
Modeling Languages, and (Meta)Models,” in Frontiers in Art.
Intellig. and Appl., Databases and IS IV, vol. 15, O. Vasilecas, J.
Edler, and A. Caplinskas, Eds. Amsterdã: IOS Press, 2007, pp. 18–39.

[29] G. Guizzardi, G. Wagner, R. de A. Falbo, R. S. S. Guizzardi, and J. P.
A. Almeida, “Towards Ontological Foundations for the Conceptual
Modeling of Events,” in 32th Intern. Conf. ER 2013, pp. 327–341.

[30] T. Ruokolainen, “A Model-Driven Approach to Service Ecosystem
Engineering,” University of Helsinki, 2013.

[31] S. L. Vargo and R. L. Lusch, “Evolving to a new dominant logic for
marketing,” J. Mark., vol. 68, pp. 1–17, 2004.

[32] B. Anderson, M. Bergholtz, and P. Johannesson, “Resource, Process,
and Use – Views on Service Modeling,” 2012, pp. 23–33.

[33] J. C. Nardi, R. de A. Falbo, and J. P. A. Almeida, “Revealing Service
Commitments in Service-Oriented Enterprise Architecture,” in The
Sixth Workshop on Service oriented Enterprise Architecture for
Enterprise Engineering, 2014, pp. 286–295.

[34] J. C. Nardi et al., “Towards a Commitment-based Reference Ontology
for Services,” in 17th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), 2013, pp. 175–184.

[35] C. Griffo, J. P. A. Almeida, G. Guizzardi, and J. C. Nardi, “From an
Ontology of Service Contracts to Contract Modeling in Enterprise
Architecture,” in The 21st IEEE EDOC 2017.

[36] J. C. Nardi, R. de A. Falbo, and J. P. A. Almeida, “An Ontological
Analysis of Service Modeling at ArchiMate’s Business Layer,” in
18th IEEE International EDOC, 2014, pp. 92–100.

[37] J. C. Nardi et al., “Service Commitments and Capabilities Across the
ArchiMate Architectural Layers,” in 20th IEEE EDOC, 2016.

	I. Introduction
	II. Methodological Considerations
	III. A Reference Ontology for Services
	IV. Research Questions
	V. Service Modeling in SoaML
	A. SoaML Overview
	B. Research Questions Analysis

	VI. Service Modeling in USDL
	A. USDL Overview
	B. Research Questions Analysis

	VII. Service Modeling in ArchiMate
	A. ArchiMate Overview
	B. Research Questions Analysis

	VIII. Discussion
	IX. Final Considerations
	Acknowledgment

	references

