

An Ontology-Based Approach for Software Measurement
Systems Integration

Vinícius Soares Fonseca, Monalessa Perini Barcellos, Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO), Department of
Computer Science, Federal University of Espírito Santo – Vitória – ES – Brazil

{vsfonseca, monalessa, falbo}@inf.ufes.br

Abstract. Software measurement is performed in the context of various software processes
that, generally, have different supporting tools. Thus, organizations have to deal with
integration issues to enable the communication between tools and to properly support the
measurement process. A key factor for integration is that tools share a common understanding
regarding the meaning of the exchanged terms and services, i.e., it is important to deal with
integration at the semantic level. Ontologies have been acknowledged as an important means
to address semantic integration. In this paper we present the Ontology-Based Approach for
Measurement Systems Integration (OBA-MSI), an approach that uses ontologies as a basis to
integrate tools aiming at supporting the software measurement process. In order to evaluate
OBA-MSI, it was applied to integrate tools in a software development organization.

1. Introduction
Software measurement is a process applied by organizations in several contexts. For
instance, in project management, measurement is used to help to develop realistic plans,
monitor project progress, identify problems and justify decisions [McGarry et al. 2002].
In process improvement initiatives, measurement supports analyzing process behavior,
identifying needs for improvement and predicting if processes will be able to achieve
the established goals [Florac and Carleton 1997].
 Typically, organizations use different tools to support different processes. For
example, schedule and budget tools are used to support project management, and
development environments and version control systems are used to support coding and
source code management. Although these tools are not usually conceived to support
software measurement, many times they store useful data related to the supported
processes (e.g., number of defects, time and cost spent on activities, etc.). In order to
properly support the software measurement process, tools must be integrated, but this is
not an easy task. The heterogeneity between systems is the major difficulty. In general,
each tool runs independently and implements its own data and behavioral models,
which are not shared between different tools, leading to several conflicts [Izza 2009].
 Semantic conflicts occur when applications use different meanings to the same
information item, i.e., when information items seem to have the same meaning, but they
do not. To reduce these conflicts, integration initiatives should address semantic issues.
Ontologies can be used as an interlingua to map the concepts used by different
applications, enabling data and services understanding [Calhau and Falbo 2010].
 Considering that, the purpose of the work described in this paper is to define an
approach for integrating measurement tools aiming to support the software
measurement process. We started by investigating the state-of-art through a systematic
mapping and a systematic literature review [Fonseca et al. 2015a, 2015b]. 12 initiatives

were identified. By analyzing them, we noticed a lack of concern with semantics and
failure to consider a holist view of the software measurement process. Besides, none of
the found initiatives followed a systematic approach to integrate tools. Since integration
is not a trivial task, it is important to adopt an approach that helps deal with the
complexity of the task by providing well-established steps, separation of concerns and
reduction of subjectivity. Taking these gaps into account, we developed the Ontology-
Based Approach for Measurement Systems Integration (OBA-MSI), a systematic
approach that uses the Reference Software Measurement Ontology (RSMO) [Barcellos
et al. 2013] and the Software Measurement Task Ontology (SMTO) [Barcellos and
Falbo 2013] to guide applications integration to support software measurement process.
OBA-MSI extends the Ontology-Based Approach for Semantic Integration (OBA-SI)
[Calhau and Falbo 2010], which can be applied to carry semantic integration of
applications in any domain. However, applications integration in the software
measurement domain has some peculiarities that are not properly addressed by OBA-SI.
Finally, aiming to evaluate OBA-MSI, we applied it to integrate tools to support the
measurement process in a software development organization and ran a survey to obtain
feedback from the organization development team and manager.
 This paper is organized as follows: Section 2 addresses aspects related to
software measurement and integration, and introduces OBA-SI, the approach from
which OBA-MSI was developed; Section 3 presents OBA-MSI; Section 4 discusses the
use of OBA-MSI to integrate tools in a software development organization; Section 5
covers related works; and Section 6 presents our final considerations.

2. Background

2.1 Software Measurement
Software measurement is the continuous process of defining, collecting, and analyzing
data regarding software processes and products in order to understand and control them,
as well as supply meaningful information to their improvement [Solingen and Berghout
1999]. It is a primary support process for managing projects, and it is also a key
discipline in evaluating the quality of software products and the performance and
capability of organizational software processes [ISO/IEC 2007]. The software
measurement process includes: measurement planning, measurement execution, and
measurement evaluation [ISO/IEC 2007].
 For performing software measurement, initially, an organization must plan it.
Based on its goals, the organization has to define which entities (processes, products
and so on) are to be considered for software measurement and which of their properties
(size, cost, time, etc.) are to be measured. The organization has also to define which
measures are to be used to quantify those properties. For each measure, an operational
definition should be specified, indicating, among others, how the measure must be
collected and analyzed. Once planned, measurement can start. Measurement execution
involves collecting data for the defined measures, storing and analyzing them. Data
analysis provides information to decision making, supporting the identification of
appropriate actions. Finally, the measurement process and its products should be
evaluated to identify potential improvements [Barcellos et al. 2013].

2.2 Integration and Interoperability
Integration can be defined as the act of incorporating components into a complete set,
conferring it some expected properties. The components are combined in a way to form
a new system constituting a whole and creating synergy [Izza 2009]. Interoperability, in
turn, can be understood as the ability of applications or application components to
exchange data and services [Wegner 1996]. It provides two or more business entities
with the ability of exchanging or sharing information (wherever it is and at any time)
and of using functionality of one another in a distributed and heterogeneous
environment. It preserves component systems as they are. Due to the interrelation
between the terms integration and interoperability, they are often used in an indistinct
way [Nardi et al. 2013a]. In this paper, the term integration is adopted in a broader
sense, covering both integration and interoperability meaning.

 Integration can be performed considering different dimensions. Izza (2009)
proposed a framework synthesizing integration approaches through four main
dimensions: scope, viewpoint, layer and level. Scope dimension distinguishes two main
approaches: intra-enterprise and inter-enterprise integration. The first one concerns
scenarios that imply internal enterprise applications. The second one aims to connect
applications from different partners. Viewpoint dimension, in turn, considers three
viewpoints: user's view (external), concerning the different views from domain experts
and business users; designer's view (conceptual), referring to the different models used
during information system design; and programmer's view (internal), which regards
information system implementation.

 As for layers, integration can address one or several information system layers.
Data integration deals with moving or federating data between multiple data stores.
Integration at this layer assumes bypassing the application logic and manipulating data
directly in the database, through its native interface. Message or service integration
addresses messages exchange between the integrated applications. Any tier of an
application, such as GUI, application logic or database, can originate or consume the
message. Process integration views enterprises as a set of interrelated processes and it
is responsible for handling message flows, implementing rules and defining the overall
process execution. It constitutes the most complex integration approach.
 Regarding integration levels, four main levels can be distinguished: hardware,
platform, syntactical and semantic levels. Hardware level covers differences in
computer hardware, networks, etc. Platform level encompasses differences in operating
system, database platform, etc. Syntactical level addresses the way the data model and
operation signatures are written down. Semantic level deals with the intended meaning
of the concepts in a data schema or operation signature. Each level depends on the
previous one, so it is not possible to consider semantics if syntax is not considered yet.

2.3 Ontology-Based Approach for Semantic Integration (OBA-SI)
OBA-SI [Calhau and Falbo 2010] is an approach that uses ontologies to address
semantic integration problems in the context of tool integration. It considers the
integration process as a software development process and, as such, it is composed by
requirement elicitation, analysis, design, implementation, tests and deployment phases.
OBA-SI is centered on the analysis phase, wherein semantics must be defined. It is
necessary to establish semantic agreement before designing and coding any integration

solution, i.e., integration at conceptual level should not depend on any technology and
specific solution. To achieve this, the structural and behavioral conceptual models of the
applications are compared with the aid of domain and task ontologies, used for
assigning semantics to the items shared between systems. Figure 1 shows OBA-SI
integration process.

Figure 1. OBA-SI process [Calhau and Falbo 2010].

 The integration starts with the Integration Requirements Elicitation phase, when
the integration requirements and goals must be established. In this phase the integration
scenario is produced, indicating the business process activities that will be supported by
the integration initiative, the tools that will be integrated to support those activities, the
domains involved into the integration scenario and the generic tasks related to the
integration. Next, in the Integration Analysis phase, integration requirements are
analyzed and modeled, features to be provided and concepts involved are specified, and
the overall behavior of the integrated set of systems is defined. The output of this phase
is the integration model, whose purpose is to model structural and behavioral aspects of
the integration at conceptual level, taking the specified requirements into account. This
phase starts by getting the structural and behavioral models of the selected tools. Then,
domain and task reference ontologies are selected (or developed) and vertical mappings
(VMs) between tools' elements (e.g., concepts and relations) and ontologies' elements
are established aiming to assign meaning to the tools' elements by relating them to
elements in the reference ontologies. Once VMs are established, the integration model is
built based on the ontologies and the tools' models in a way that each element of the
integration model has a meaning. Next, horizontal mappings (HMs) between the
elements of the tools and of the integration model are established. HMs focus on the
integration scenario, defining how the tools will be seen in the integration solution and
how the interaction between them will occur. Both structural and behavioral mappings
should be done. Structural mappings concern the data integration layer, while
behavioral mappings regard process and service integration layers.

Last, there are the design, implementation, tests and deployment phases. There
are several ways of building an integration solution, thus OBA-SI does not commit to
any specific solution but proposes some guidelines to assure that semantics established
in the integration analysis phase is maintained during the next phases. The tools can be
integrated without being changed. In this context, typically a mediator is used for
interconnecting tools and it has an overview of the integrated systems. The integration
model is critical for the mediator because it provides information to design the mediator
and the communication between it and the integrated tools.

3. Ontology-Based Approach for Measurement Systems Integration (OBA-MSI)
OBA-MSI extends OBA-SI and, as such, uses reference ontologies as basis to perform
semantic integration. In OBA-MSI semantic integration is carried out based on the
Reference Software Measurement Ontology (RSMO) [Barcellos et al. 2013], which
describes a conceptualization to the software measurement domain, and on the Software
Measurement Task Ontology (SMTO) [Barcellos and Falbo 2013], which describes the
main activities of the software measurement process, their inputs and outputs, being
consistent with RSMO. The main extension occurs in the requirements elicitation phase,
which is detailed and conducted by using a goal-based approach that follows GQM
[Basili et al. 1994] principles to guide software measurement aligned to organizational
goals. Besides, the extension helps organizations to define an appropriate measurement
process (if the organization does not have a measurement process) or to improve it (if
the organization has a measurement processes).

 The integration process defined by OBA-MSI includes the same phases defined
by OBA-SI with differences in Integration Requirements Elicitation and Integration
Analysis phases. Figure 2 presents these two phases in OBA-MSI. After the figure,
these phases are described. The other phases are not shown because they are the same as
the ones defined in OBA-SI.

 Figure 2. First phases of OBA-MSI process.

3.1 Integration Requirements Elicitation

In the Integration Requirements Elicitation phase, OBA-MSI uses a goal-based
approach to assure that measurement is aligned to organizational needs. By doing this,
the organization will measure only what really matters and will be prevented from
collecting useless data not able to provide information for decision making. Besides,
OBA-MSI advocates that the software measurement process should be appropriately
defined in order to be supported by the integrated solution. Thus, the organizational
measurement process should be aligned to the measurement process established in
SMTO. Figure 3 details the Integration Requirements Elicitation phase.

Figure 3. OBA-MSI – Integration Requirements Elicitation phase.

 Identify and Align Software Measurement Process activity deals with the
alignment of the organizational software measurement process to SMTO to ensure that
the organizational software measurement process includes all activities necessary for
measurement to be carried out properly and that these activities are properly defined.
Contrasting with OBA-SI, OBA-MSI brings the alignment between the measurement
process and the task ontology to the beginning of the semantic integration effort,
intending not just an integrated set of tools to support the organizational measurement
process, but also the process improvement. It turns the integration initiative (and the
resulting integrated set of tools) an agent of change for the organization, allowing the
measurement process improvement. This activity is composed of four sub-activities (not
shown in Figure 3) that are described in the following and highlighted in underlined
italic font.
 For aligning the organizational software measurement process to SMTO, it is
necessary to Verify the Existence of Organizational Software Measurement Process.
Some organizations have a defined measurement process, while others carry out
measurement activities implicitly during their development process. There are also
organizations that do not perform software measurement and will start the practice from
the tool integration initiative. An organization with a defined measurement process
should Align the Software Measurement Process to SMTO. If the organization does not
have a defined measurement process, but performs measurement along its development
process, then it should Identify Measurement Activities in the Organizational Software
Development Process, (i.e., activities in which measurement takes place must be
identified) and, then, the measurement process must be defined and aligned to SMTO.
Finally, if the organization does not have a defined measurement process and does not
perform software measurement, it should Define the Software Measurement Process
from SMTO, i.e., SMTO must be used as a basis to establish the organizational software
measurement process.

Identify Measurement Activities in the Organizational Software Development
Process requires the organizational development process to be carefully analyzed in
order to identify activities wherein there is some measurement-related activity. For
instance, if the development process has an activity “Code and Test Software” in which
data regarding source code is collected, measurements occur in the context of that
activity. Some techniques can be applied, such as interviews and meetings, in a way that
information obtained about the development process allows identifying activities related
to measurement. Ideally, to perform this activity, the software development process
should be formally defined (e.g., textually or in a diagram). If the organization does not
have a defined development process, it should be defined in order to allow for
identification of measurement activities. Once the activities related to measurement are
identified, they should be analyzed to verify if they can be decomposed to turn
measurement activities explicit. For instance, the “Code and Test Software” activity
cited before could be split into “Code and Test Software” and “Collect Source Code
Data”, being the last one devoted to perform measurements regarding source code.
 The identified measurement activities (if the organization performs measurement
in the context of the development process activities) or the activities of the
organizational software measurement process (if the organization has a defined
measurement process) must be aligned to SMTO. To Align the Software Measurement
Process to SMTO, the measurement activities must be mapped to activities of the

measurement process established in SMTO. After that, the measurement process must
be defined by following the three main SMTO activities (Plan Measurement, Perform
Measurements and Analyze Measurements). Each activity of the measurement process
must be detailed based on the organizational measurement activities or SMTO activities
(when measurement activities are missing in the organizational process).
 Once the software measurement process is consistent with SMTO, it is
necessary to Identify Goals, Information Needs and Measures relevant to the
Organization. This activity is responsible for ensuring the alignment between
measurement and organization’s goals, and takes into account the principle that
software measurement must be goal-based for providing useful information. In this
sense, in order to integrate tools and aggregate value to the organization, the goals
should be established before starting measure. For this, organization's business goals
relevant to measurement must be identified. From them, the measurement goals may be
derived, determining which information needs must be attained and the necessary
measures for it. Goals, information needs and measures identification must follow the
GQM paradigm [Basili et al. 1994]. However, since in OBA-MSI goals, information
needs and measures identification should be aligned to the tools to be integrated, the
established goals must be liable from measures that can be obtained from the tools.
Therefore, this activity should be performed iteratively with Identify Tools to provide
Data and Services for Software Measurement activity, ensuring that the defined goals,
information needs and measured are in line with the tools to be integrated.

 Identify Tools to provide Data and Services for Software Measurement is the
activity in which the tools to be integrated are selected. Tools must be analyzed aiming
at supporting goal monitoring by providing the required measures. Tools that the
organization already uses (tools developed in-house or acquired) as well as others
unused until then should be considered. Among the tools used by the organization, it
should be considered the ones that support activities related to the measurement process,
even if they are not tools dedicated to this purpose. OBA-MSI provides guidelines to
assist the selection of tools able to supply data and services for software measurement.

Record the Integration Scenario consists in recording the results of the previous
activities in the integration scenario, which contains: goals, information needs and
measures to be addressed by the integration initiative, tools to be integrated, domains
involved in the integration initiative (domains in which measurement will be applied),
and activities of the measurement process that will be supported by integrated solution.
3.2 Integration Analysis

Once defined the integration scenario, the Integration Analysis phase can start. This
phase has the same activities defined by OBA-SI (Obtain Conceptual Models, Select
Ontologies, Perform Vertical Mappings, Build the Integration Model, and Perform
Horizontal Mappings). However, there are two main differences.

First, in OBA-SI ontologies must be selected according to the domains involved
in the integration. In OBA-MSI, apart from the selected tools or their domains, the
ontologies to be used are RSMO and SMTO, since the process to be supported is
software measurement. Thus, instead of selecting ontologies, in OBA-MSI one must
identify RSMO and SMTO fragments relevant to the integration. If the domains to
which measurement is to be applied are not addressed by RSMO, it should be extended.

Second, to accomplish integration at service and process layers, OBA-SI uses
task ontologies to assign meaning to tool services and process activities. Mapping is
used to establish a semantic equivalence between the service and the activity it supports.
Since measurement is applied to several processes, OBA-MSI deals with the integration
of tools supporting different processes and the integrated solution has always to support
the same process: software measurement. In this sense, there are tool services that are
not equivalent to activities of the software measurement process, because they are
services of tools that support other processes. For instance, the service responsible for
performing check-in of configuration items in a configuration management system can
also collect data regarding configuration items (e.g., number of checked-in
configuration items), however the service is not semantically equivalent to the Perform
Measurement activity, although it supports this activity. In fact, the service is
semantically equivalent to an activity of the configuration management process. Thus,
in OBA-MSI, a mapping between a service and an activity of the software measurement
process does not indicate semantic equivalence, but that the service supports performing
the measurement activity.

Figure 4 illustrates the mapping between activities and services. First, activities
of the organizational software measurement process are mapped to SMTO activities
(solid arrows), indicating that there is semantic equivalence between them. This is done
during the Integration Requirements Elicitation phase. For instance, in Figure 4, A1’ is
mapped to A1, meaning that the A1’ activity of the organizational measurement process
is semantically equivalent to the A1 activity of the SMTO measurement process. Then,
tool services are mapped to SMTO activities (dashed arrows), meaning that the services
support the corresponding activities. For instance, in Figure 4, S2 supports A1, and S4
supports A2. Finally, from the mappings it is possible to verify the support provided by
tools services to the organizational measurement process. For example, service S2
supports activity A1. Since A1’ is equivalent to A1, then S2 supports A1’. Similarly, S4
supports A2, and A2’ is equivalent to A2, then S4 supports A2’. A3’ is equivalent to
A3, however, there is no service supporting A3. Thus, to support A3 it is necessary to
provide a service in the integrated solution.

Figure 4. Mapping between services and activities.

4. Applying OBA-MSI in a Software Organization
OBA-MSI was used in an integration initiative to support the software measurement
process at the Software Development Extension Laboratory (LEDS) [LEDS 2016], a
software development organizational unit of a Brazilian Federal Institute. LEDS
develops software by following Scrum [Cohn 2009] principles, and adopts tools to
support project management and software development. The software manager reported
the need of obtaining data for monitoring software projects and product quality.
According to him, required data were scattered among tools, hindering access to them.

He also pointed out that getting additional data derived from data provided by the tools
would be useful to support decision making. Due to space limitations, in this section we
present only few results of the use of OBA-MSI at LEDS. Further information can be
obtained in [Fonseca et al. 2016].

 As described in the previous section, the first OBA-MSI activity (Identify and
Align Software Measurement Process) concerns the alignment of the organization
measurement process with SMTO. At the time OBA-MSI was applied, LEDS did not
have a measurement process formally defined. Thus, following OBA-MSI, we analyzed
its development process in order to identify activities related to software measurement.
The results showed that in the context of the software development process there were
some activities related to data collection. For instance, the development process had the
Estimate Project activity, wherein values are estimated to project team velocity, user
stories size and number of story points. The process also had the Perform Continuous
Integration activity, in which source code is integrated and data regarding the source
code is collected and stored. In order to make the measurement activity explicit, we split
the last activity into Perform Continuous Integration, which deals with the continuous
integration itself, and Measure Source Code, being devoted to perform measurements
regarding source code.

After identifying the measurement-related activities, we defined the
organizational measurement process considering the identified activities and SMTO.
We started by mapping the measurement-related activities with SMTO activities. The
mapping revealed that only activities related to the Perform Measurements activity
could be clearly identified in the LEDS’ development process. However, although not
defined in the development process, activities related to Plan Measurement and Analyze
Measurements were also performed at LEDS. For instance, when starting a project, the
manager planned targets to be achieved, such as a desired value interval for source code
duplications rate in the project. At the end of a sprint or of the project, he checked if the
established targets were achieved.

Taking the three main SMTO activities as basis, we detailed each one of them
considering the identified measurement-related activities or SMTO activities. Figure 5
shows the resulting measurement process. Activities in grey boxes are measurement-
related activities that occurs in the context of the development process. The others were
included based on SMTO. It is worth noticing that the measurement-related activities
identified from the development process and included in the measurement process
contributes to establish a direct connection between the LEDS’ measurement and
development processes, and makes explicit in which points of the development process
measurements should occur.

Once the software measurement process was defined and aligned with SMTO,
the Identify Goals, Information Needs and Measures relevant to the Organization
activity was performed aiming to establish the goals to be monitored and the measures
to be addressed by the integration initiative. As defined in OBA-MSI, this activity was
performed iteratively with the selection of the tools to be integrated, aiming to ensure
that identified measures could be obtained from the selected tools. Two business goals
(BG) were identified: Improve software projects management and Improve source code
quality. From these BGs, 7 measurement goals (MG) were derived (e.g., Monitor sprint
performance), and 34 information needs (IN) and measures (ME) were identified (e.g.,
Sprint User Story Conclusion Rate and Sprint Task Conclusion Rate).

Figure 5. Measurement Process defined from the LEDS Development Process and SMTO.

In the Identify Tools to provide Data and Services for Software Measurement
activity, we followed OBA-MSI guidelines to select the tools to be integrated. Initially,
we identified the tools used by LEDS for supporting the measurement-related activities.
At this moment, Taiga1 (a tool supporting agile project management) and SonarQube2 (a
tool supporting source code quality evaluation) were selected. Since none of these tools
was developed to support the measurement process, a specific software measurement
tool had to be selected. We chose SoMeSPC3, a tool supporting software measurement
and statistical process control, developed in the authors’ research group for supporting
activities of the software measurement process. After selecting the tools, the integration
scenario is established.

Once the integration scenario was established, the Integration Analysis phase
started. SMTO and RSMO were used for guiding semantic integration. Since the
integration scenario includes aspects related to agile software processes (Scrum), it was
necessary to extend RSMO by integrating concepts related to that domain. Then, the
conceptual estructural models of Taiga, SonarQube and SoMeSPC were obtained by
analyzing the tools and their documentation. After getting the tools’ conceptual models,
we used RSMO as basis to establish vertical mappings, assigning semantics to the tools’
elements by relating them to RSMO elements. After vertical mappings, we built the
integration model to enable integration at data layer. In order to address service and
process layers, following OBA-MSI guidelines, we identified services available in the
tools’ APIs able to support SMTO measurement process activities. For instance, the
services Measurement Registration, Source Code Registration and Sprint Registration,
provided respectively by SoMeSPC, SonarQube and Taiga, are able to support the
Collect Data activity (a sub-activity of Perform Measurements in SMTO). The use of
services to tools communication regards to integration at the service layer, since
services are used to exchange data.

Considering the mappings between services and activities of the SMTO
measurement process, and the alignment of the organizational measurement process
with SMTO (established when the measurement process was defined based on SMTO),
the services were mapped to the activities of the LEDS’ measurement process,
indicating the activities by the tools' services. Thus, once tool integration is performed

1 http://taiga.io/
2 http://www.sonarqube.org/
3 http://github.com/nemo-ufes/SoMeSPC

considering the identified services, an integrated support is provided for the
organizational measurement process, covering also the integration at the process layer.

 Integration design and implementation were done by the means of a mediator,
which was developed based on the integration model and the services mapped to
activities of the measurement process. The mediator consists of a Java web application
developed as a SoMeSPC module extension. It is responsible for coordinating services
in order to support all activities of the measurement process, considering a holistic view
of it. Three main features are provided:

(i) A wizard for guiding the definition of Project Measurement Plans, as a result of
the Plan Measurement activity. User is guided step-by-step from goal selection
(each measurement goal is associated to information needs and to measures
identified during Integration Requirements Elicitation phase) to the
establishment of operational definition of measures. For each measure included
in the Project Measurement Plan, a job is created to automatically collect data
for the measure, considering the periodicity indicated in its operational
definition.

(ii) A panel to manage (execute, pause or delete) the created jobs to collect data
from the integrated tools.

(iii) A goal-based analysis feature that renders measured values into charts,
supporting measurement analysis by providing useful information to monitor the
established goals and to make decisions. Figure 6 illustrates selected data
represented in a chart to support measurements analysis. In the figure, data
related to the number of concluded user stories for sprints of two projects are
plotted, providing information regarding the sprint performance.

Figure 6 – Goal-based analysis feature provided by the mediator.

 The integrated solution was made available for the organization usage and some
weeks later we applied a survey in order to collect feedback from the team and the

manager. The survey consisted of 12 questions regarding adequacy and utility of the
features provided, and the benefits obtained from the use of the integrated set when
compared to the isolated use of the tools. Also, an interview was conducted with the
LEDS’ manager. The results showed that the features were suitable and useful to
support the measurement process at LEDS. The participants commented that make the
measurement process explicit helped them to understand the process as a whole and
measure what is really important to the organization. Also, all the participants stated
that the integrated solution provides more benefits than using the tools in isolation.

5. Related Work
In the literature, there are some tool integration initiatives that support software
measurement. We carried out a systematic investigation and identified 12 integration
initiatives involving tool integration to support software measurement (see [Fonseca et
al. 2015a, 2015b]). Most of the investigated initiatives integrate code-related tools.
Consequently, most of the measures addressed in the initiatives are code-related
measures (e.g., cyclomatic complexity, number of methods). The predominance of
code-related tools might be due to the fact that code-related measures are prone to
automatic collection. In the integration initiative we conducted at LEDS, we have
integrated, besides a code-related tool, tools supporting project management and
software measurement.
 None of the found initiatives addresses integration at process layer. When
applying OBA-MSI, the integration at process layer is addressed by using a task
ontology (SMTO) as basis to assign semantics to services and process activities.
Besides, the starting point to the integration in OBA-MSI is the software measurement
process to be supported, stimulating integration at process layer.
 Only one of the found initiatives is concerned with semantic aspects (SOFAS
[Ghezzi and Gall 2011]). However, although SOFAS uses ontologies during integration,
two issues can be highlighted: (i) SOFAS applies ontologies related to the tools domain
(issue tracking, version control and source code ontologies), while when applying OBA-
MSI, the integration initiative uses software measurement ontologies (task and domain
ontologies); (ii) the ontologies used by SOFAS are considered lightweight ontologies
whose purpose is guaranteeing desirable computational properties [Guizzardi 2005],
while ontologies used in OBA-MSI are reference ontologies, whose purpose is to make
the best possible description of the domain in reality, regardless technological issues
[Guizzardi 2005].

None of the investigated initiatives presented the method followed to perform
the integration. Thus, we presumed that they have used ad-hoc approaches for
integrating the tools. Not using a systematic approach for performing the integration can
be seen as a gap regarding methodological aspects. Systematic approaches can structure
the integration process into different levels of abstractions and define guidelines on how
to perform the various integration activities. This is essential for establishing an
engineering approach for application integration [Nardi et al. 2013b]. In this sense,
OBA-MSI is a systematic approach that guides integration through the use of ontologies
to assign semantics to the elements involved in the integration.

We did not found any proposal of a systematic approach to carry out tool
integration aiming at supporting the software measurement process. There are some

systematic general integration approaches, such as [Yan et al. 2008] and [Liu et al.
2012]. However, both the approaches do not address integration at process layer neither
at semantic level.

6. Final Considerations
Software measurement is an important practice that provides useful information for
decision making at organizational and project levels. In order to be appropriately
performed and to provide the expected benefits, software measurement should be based
on organizational and project goals [Florac and Carleton 1997].

 The efficiency of software measurement is strongly related to the support
provided by software tools [Dumke and Ebert 2007]. Although some tools used by
organizations are not devoted for supporting the measurement process, they collect and
store data useful for decision making and need to be integrated to support the
measurement process. Tool integration is not an easy task [Themistocleous et al. 2004].
The heterogeneity of systems is the major problem faced during an integration initiative
because each tool has its own data and process models and is implemented in an
independent way [Izza 2009]. This leads to several conflicts, mainly related to the
semantics of data and services shared between the tools [Pokraev 2009].
 Ontologies are considered an important means to achieve semantic integration
since they provide formal specifications for shared conceptualizations [Nardi et al.
2013a]. They can be used to establish a common understanding of the universe of
discourse, serving as an interlingua for communication between systems and avoiding
semantic problems [Calhau and Falbo 2010].
 This paper presented OBA-MSI, an Ontology-Based Approach for Measurement
Systems Integration. OBA-MSI helps organizations to establish an appropriated
measurement process and tool support by using software measurement reference
ontologies. OBA-MSI extends OBA-SI focusing on the Integration Requirements
Elicitation phase and uses RSMO and SMTO ontologies to aid semantic integration.
OBA-MSI considers a holistic view of the software measurement process by using
SMTO as basis and by requiring the organizational software measurement process to be
aligned with it. OBA-MSI treats measurement planning by following a goal-based
approach. Besides, it allows for integration at data, service and process layers.

 OBA-MSI was applied to integrate tools to support the measurement process in
a software development organization in order to help software projects monitoring and
software quality improving. Tools supporting project management, code analysis and
software measurement were integrated by using a mediator. Feedback provided by the
organization's team and manager showed that the measurement process was better
supported by using the integrated solution than using the tools in isolation. Besides, by
applying OBA-MSI, the organizational measurement process was made explicit and
integrated to the development process.

 The main contributions of this work are: (i) the Ontology-Based Approach for
Measurement Systems Integration (OBA-MSI); (ii) the systematic mapping describing
the panorama of integration initiatives for supporting software measurement [Fonseca et
al. 2015a]; (iii) the systematic literature review that provides a deeper investigation into
integration initiatives for supporting software measurement [Fonseca et al. 2015b]; and

the integrated set of tools provided to LEDS aiming to support its software
measurement process and that can also be used by other organizations.

 The integration initiative at LEDS was conducted by one of the researchers
involved in the OBA-MSI development. As future work, we plan to apply OBA-MSI to
integrate tools without the researchers intervention. By doing that, we can evaluate the
viability of other people use the proposed approach. We also intend to run a new survey
to get feedback from LEDS team and manager after a longer time using the integrated
set. We also plan: (i) use core measurement ontologies to define an approach to
integrate measurement tools in any domain, and (ii) explore the use of the integrated set
of tools implemented to LEDS as a tool to aid software measurement teaching.

Acknowledgement

This research is funded by the Brazilian Research Funding Agency CNPq (Processes
485368/2013-7 and 461777/2014-2). The authors acknowledge the Software
Development Extension Laboratory (LEDS) for the opportunity of applying and
evaluating OBA-MSI.

References
Barcellos, M. P. and Falbo, R. A. (2013). A Software Measurement Task Ontology. In

Proc. of the 28th Annual ACM Symposium on Applied Computing. ACM Press, p.
311–318.

Barcellos, M. P., Falbo, R. A. and Rocha, A. R. (2013). A Strategy for Preparing
Software Organizations for Statistical Process Control. Journal of the Brazilian
Computer Society, v. 19, n. 4, p. 445–473.

Basili, V. R., Caldiera, G. and Rombach, H. D. (1994). Goal Question Metric Approach.
Encyclopedia of Software Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc.

Calhau, R. F. and Falbo, R. A. (2010). An Ontology-Based Approach for Semantic
Integration. In Proc. of the 14th IEEE International Enterprise Distributed Object
Computing Conference. IEEE, p. 111–120.

Cohn, M. (2009). Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley Professional.

Dumke, R. and Ebert, C. (2007). Software Measurement: Establish - Extract - Evaluate
- Execute. Berlin, Heidelberg: Springer Berlin Heidelberg.

Florac, W. a. and Carleton, A. D. (1997). Measuring the Software Process: Statistical
Process Control for Software Process Improvement. Boston, USA: Addison Wesley.

Fonseca, V. S., Barcellos, M. P. and Falbo, R. D. A. (2016). Integrating Tools to
Support Software Measurement. In Proc. of the 15th Brazilian Simposium on
Software Quality (SBQS 2016), Maceió, Brazil.

Fonseca, V. S., Barcellos, M. P. and Falbo, R. de A. (2015a). Integration of Software
Measurement Supporting Tools: A Mapping Study. In Proc. of the 27th International
Conf. on Software Engineering and Knowledge Engineering (SEKE). Knowledge
Systems Institute, p. 516–521.

Fonseca, V. S., Barcellos, M. P. and Falbo, R. de A. (2015b). Tools Integration for

Supporting Software Measurement  : A Systematic Literature Review. iSYS -
Information Systems Brazilian Journal, v. 8, n. 4, p. 80–108.

Ghezzi, G. and Gall, H. C. (2011). SOFAS: A Lightweight Architecture for Software
Analysis as a Service. 2011 Ninth Working IEEE/IFIP Conference on Software
Architecture, p. 93–102.

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models, ISBN
90-75176-81-3, Universal Press, The Netherlands, 2005.

ISO/IEC (2007). IEEE Standard Adoption of ISO/IEC 15939:2007—Systems and
Software Engineering—Measurement Process.

Izza, S. (2009). Integration of Industrial Information Systems: from Syntactic to
Semantic Integration Approaches. Enterprise Information Systems, v. 3, n. 1, p. 1–
57.

LEDS (2016). Software Development Extension Laboratory. http://leds.sr.ifes.edu.br/,
[accessed on Mar 14].

Liu, C., Wang, J., Wen, Y. and Han, Y. (jun 2012). A Unified Data and Service
Integration Approach for Dynamic Business Collaboration. In 2012 IEEE First
International Conference on Services Economics. IEEE, p. 54–61.

McGarry, J., Card, D., Jones, C., et al. (2002). Practical Software Measurement:
Objective information for decision makers. Boston, USA: Addison Wesley.

Nardi, J. C., Falbo, R. A. and Almeida, J. P. A. (2013a). A Panorama of the Semantic
EAI Initiatives and the Adoption of Ontologies by these Initiatives. In: IWEI 2013,
LNBIP 144. Lecture Notes in Business Information Processing. Berlin, Heidelberg:
Springer Berlin Heidelberg. v. 144p. 198–211.

Nardi, J. C., Falbo, R. A. and Almeida, J. P. A. (2013b). Foundational Ontologies for
Semantic Integration in EAI: A Systematic Literature Review. In: I3E 2013, IFIP
AICT 399. IFIP Advances in Information and Communication Technology. Berlin,
Heidelberg: Springer Berlin Heidelberg. v. 399p. 238–249.

Pokraev, S. (2009). Model-Driven Semantic Integration of Service-Oriented
Applications. University of Twente.

Solingen, R. and Berghout, E. (1999). The Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software Development. New York, McCraw-Hill
Publishers.

Themistocleous, M., Irani, Z. and Love, P. E. D. (2004). Evaluating the Integration of
Supply Chain Information Systems: A Case Study. European Journal of Operational
Research, n. 159, p. 393–405.

Wegner, P. (mar 1996). Interoperability. ACM Computing Surveys, v. 28, n. 1, p. 285–
287.

Yan, W. J., Tan, P. S. and Lee, E. W. (jul 2008). A Web Services-enabled B2B
Integration Approach for SMEs. In 2008 6th IEEE International Conference on
Industrial Informatics. IEEE, p. 774–779.

