
  

An Ontological View of Design in the Software Context 

Murillo V. H. B. Castro, Monalessa P. Barcellos, Ricardo de A. Falbo 

Ontology & Conceptual Modeling Research Group (NEMO) 
Computer Science Department, Federal University of Espírito Santo  

Vitória, ES - Brazil 
murillo.castro@aluno.ufes.br, monalessa@inf.ufes.br 

Abstract. Design plays a central role in software development. Design as a 
verb refers to the act of designing something, while as a noun refers to a 
specification resulting from the act of designing. When talking about design of 
objects in general, mental and physical elements should be considered. How-
ever, due to the software abstract nature, in the software development context, 
some ontological aspects related to design as a noun are still not clear, such 
as: what is the nature of design specifications, design objects and their com-
ponents and how are they connected to each other? In this paper, we present 
the Software Design Reference Ontology, which aims to provide a well-
founded conceptualization of design as a noun in the software context.  

1. Introduction 
Design is a key factor for software quality. It has been object of research for many 
years, but challenges continue to arise [Taylor and Van der Hoek 2007]. One of the top-
ics still under discussion concerns the nature of software design and the relations be-
tween design and other aspects, such as requirements and code [Osterweil 2007]. Since 
the activity of designing shares many common characteristics across different fields, 
understanding the meaning of design in general helps to learn about software design 
[McPhee 1996]. On the other hand, software has an intangible and abstract nature, 
which makes software design exceptionally different from fields that deal with physical 
objects [Osterweil 2007]. Hence, to understand design in the software context, we must 
consider both, general aspects of design and specific aspects of software. 
 In general, the term “design” can have different meanings [McPhee 1996]. As a 
noun, it represents a specification or a plan for creating something (the design object). It 
can even be manifested by the object itself [Ralph and Wand 2009]. As a verb, it repre-
sents the activity or the process of creating a design [Ralph and Wand 2009]. Many def-
initions of software design, such as “a process of defining the architecture, components, 
interfaces, and other characteristics of a system or component” [ISO 2010], or “a pro-
cess that is concerned with describing how a requirement is to be met by the design 
product” [Budgen 2003], focus on characterizing design as a verb, mentioning design as 
a noun merely as a result of the process. Consequently, some aspects of software design 
as a noun are not clear yet. For example, what is the essential nature and characteristics 
of a software design specification? How does it relate to software requirements and the 
implemented software? How can a software design specification address software ob-
jects or their parts, even when they do not exist yet? Questions like these call for a 
shared understanding of design (as a noun) in the software context.  



  

 Ontologies are useful in this matter, since they can be used for establishing a 
formal and common conceptualization of a domain of interest [Studer et al. 1998]. Pre-
vious works have already given some direction towards a shared understanding of de-
sign in general by using ontologies. For example, the works [Ralph and Wand 2009] 
and [Guarino 2014] have a similar view of the essential characterization of design by 
the existence of a specification detailing how intrinsic properties of the envisioned ob-
ject and its parts should be obtained. The specification can be in the designer’s mind, or 
be presented as a physical representation (e.g., a prototype), or even as the final object 
itself [Ralph and Wand 2009]. For example, if we consider a situation in which a soft-
ware design team works on a new feature of an existing software, there are specifica-
tions in those three forms simultaneously. It is not clear if they are different instances of 
specification or instances of different types of specifications for the same object. Nei-
ther it is clear what are the relations between these specifications. Guarino and Melone 
(2015) extended the discussion about the ontological status of design objects and their 
components by defining what the authors call conventional system components (i.e., 
what designers have in mind to be expected to exist in a particular place of the design 
object, playing a specific role). Is this definition also suitable for software, considering 
its intangible and abstract nature? If so, how can we characterize conventional system 
components in this context?  
 Considering the need for better understanding software design conceptualiza-
tion, in this paper we propose the Software Design Reference Ontology (SDRO). A ref-
erence ontology is a special kind of conceptual model; a solution-independent specifica-
tion with the aim of making a clear and precise description of domain entities for the 
purposes of communication, learning and problem-solving [Guizzardi 2007]. SDRO is 
grounded in the Unified Foundational Ontology (UFO) [Guizzardi 2005] and is inte-
grated to the Software Engineering Ontology Network (SEON) [Ruy et al. 2016]. By 
reusing SEON concepts, connections between requirements, design, coding and testing 
aspects can be represented, providing a more comprehensive view of software design in 
the software development context.   
 The remainder of this paper is organized as follows. Section 2 presents the back-
ground for the paper. Section 3 presents the Software Design Reference Ontology. Sec-
tion 4 discusses how SDRO helps explain some design aspects in the software devel-
opment context. Section 5 discusses related works and presents our final considerations. 

2. Background 

2.1. Design and Software Design 
“Design” can be either a verb (e.g., “to make or draw plans for something” [Design 
2020a]; “to conceive and plan out in the mind” [Design 2020b]) or a noun (e.g., “a 
drawing or set of drawings showing how a product is to be made and how it will work 
and look” [Design 2020a]; “a mental project or scheme in which means to an end are 
laid down” [Design 2020b]). One meaning does not exclude the other, rather, they are 
complementary and suggest different viewpoints of the design phenomenon.  
 In the Software Engineering literature, we can also find definitions referring to 
“software design” as a verb and as a noun. For example, it can be defined as the process 
of describing architecture, components, modules, interfaces, and data for a software sys-
tem, to specify how requirements are to be met by the implemented software, being ap-



  

plied regardless of the software process model [Budgen 2003; ISO/IEC/IEEE 2017; 
Pressman and Maxim 2020]. The result of the design process is a description that acts as 
a blueprint for building the software, which is also referred to as the software design.  
 A more formal conceptualization of “design” as a verb and as a noun was pro-
posed by Ralph and Wand (2009) and was based on a literature review of design defini-
tions across different fields, summarizing what they have in common and trying to re-
solve disagreements. Design as a noun is defined by these authors as “a specification of 
an object (the design object), manifested by an agent, intended to accomplish goals, in a 
particular environment, using a set of primitive components, satisfying a set of require-
ments, subject to constraints”. As a verb, design is defined as the process of creating a 
design [Ralph and Wand 2009]. Hence, a designer is the agent who manifests a specifi-
cation. A specification, in turn, is a detailed description of a design object’s structural 
properties and, it may be purely mental, presented as a physical or symbolic representa-
tion or as the object itself. This is in accordance with the aforementioned definitions 
(from the dictionary) and with the discussion provided by Guarino (2014). According to 
him, the design object is the thing being designed, which in the context of this work is 
software. It has essential characteristics that result from the design choices encoded in 
the design specification [Guarino 2014]. These choices involve the selection and ma-
nipulation of components (or primitives) that will compose the designed object. Guarino 
and Melone (2015) made a discussion about components referred by designers when 
designing and highlighted that they have a different ontological status from the physical 
components that constitute the realized design object. Those authors named these com-
ponents as conventional system components, which represent components that designers 
have in mind, existing in a particular place of the object and playing a specific role. 
Goals, requirements, constraints and the design object environment are considered in-
puts to the design process [Ralph and Wand 2009] and are all encompassed by the term 
“requirements” in the software development context. 

2.2. Ontologies 
An ontology is a formal, explicit specification of a shared conceptualization [Studer et 
al. 1998]. According to Scherp et al. (2011), ontologies can be organized in a three-
layered architecture. Foundational ontologies aim at modeling the very basic and gen-
eral concepts and relations that make up the world (e.g., objects, events and parthood). 
Core ontologies provide a refinement to foundational ontologies by adding detailed 
concepts and relations in a specific area (such as service, organizational structure) that 
spans across various domains. Finally, domain ontologies make the best possible de-
scription of knowledge that is specific for a particular domain (such as a domain-
specific medical ontology describing the anatomy of the human). Guizzardi (2007) 
points out another important distinction that differentiates ontologies as conceptual 
models representing a model of consensus within a community, regardless of its compu-
tational properties, called reference ontologies, from ontologies as computational arti-
facts (machine-readable ontologies), called operational ontologies. 
The Unified Foundational Ontology (UFO). SDRO is grounded in UFO. Figure 1 
shows the UFO fragment relevant to this paper. Concepts that are directly used in this 
work are highlighted in purple in the figure and are described in the following, based on 
[Guizzardi 2005] and [Guizzardi et al. 2008]. In the model description, UFO concepts 
are written in italics. 



  

 
Figure 1 – UFO fragment relevant to this work. 

 The first fundamental distinction in UFO is between Individuals (particulars) 
and Universals (types). Individuals are entities that exist in reality, possess a unique 
identity (e.g., a person, a car) and instantiate Universals, which are patterns of features 
that can be realized in a number of different individuals (e.g., Person, Car). In this work, 
our focus is on Individuals, which can be Abstract or Concrete. Abstract Individuals 
include numbers, sets, propositions, among others. Concrete Individuals are partitioned 
into Endurants and Perdurants (Events). Endurants are said to be wholly present when-
ever they are present (e.g., a person), while Events (Perdurants) are individuals com-
posed of temporal parts (e.g., a soccer match). Among the types of Endurants, two are 
detached: Substantials and Moments. Substantials are existentially independent individ-
uals (e.g., an apple), while Moments, in contrast, denote properties of individuals. Situa-
tions are special types of Endurants (i.e., complex entities constituted by possibly many 
Endurants, including other Situations) that represent a portion of reality that can be 
comprehended as a whole, also known as a state of affairs (e.g., John has the flu and a 
fever). A Situation may trigger an Event, which brings about a new Situation. Intrinsic 
Moments are moments dependent on one single individual (e.g., an apple’s color) and 
Dispositions are types of Intrinsic Moments that are only manifested in particular Situa-
tions on the occurrence of certain triggering Events (e.g., a magnet attracting property 
triggered after approaching to a metal object). 
 A basic distinction of Substantials is related to Agents and (non-agentive) Ob-
jects. Agents are agentive substantial individuals that can be Physical Agents (e.g., a 
person) or Social Agents (e.g., an organization, a society). Objects are non-agentive sub-
stantial individuals that can also be physical (e.g., a book, a table) or social (e.g., mon-
ey, language). Agents can bear special types of Intrinsic Moments named Intentional 
Moments. In this case, intentionality refers to the capacity of some properties of certain 
individuals to refer to possible situations in reality. Thus, Intentional Moments have a 
propositional content (Proposition), which is an abstract representation of a class of sit-
uations referred to by that Intentional Moment. A proposition can be satisfied by a Situ-
ation when the Situation actually occurs in the real world. Mental Moments are speciali-
zation of Intentional Moments referring to mental components of a Physical Agent. A 
specific type of Mental Moment is an Intention, which is the proper representation of 
“intending something” and has a Goal as its propositional content. 
Software Engineering Ontology Network (SEON). For large and complex domains, 
ontologies can be organized in an ontology network (ON), which consists of a set of 
ontologies connected to each other through relationships in such a way to provide a 
comprehensive and consistent conceptualization [Suárez-Figueroa et al. 2012]. SDRO is 



  

integrated to the Software Engineering Ontology Network (SEON) [Ruy et al. 2016],  
an ontology network that describes various subdomains of the Software Engineering 
domain (e.g., software requirements, coding, testing, software measurement, etc.). 
SDRO reuses concepts from three SEON ontologies, namely: Software Process Ontolo-
gy (SPO) [Bringuente et al. 2011], System and Software Ontology (SysSwO) and Soft-
ware Requirements Ontology (RSRO) [Duarte et al. 2018]. Figure 2 shows the integrat-
ed view of the concepts from these ontologies that are relevant for this work. In the fig-
ure, SPO concepts are presented in gray, SysSwO in green, RSRO in red and UFO in 
white. Blue relationships represent the grounding of concepts in UFO. In the descrip-
tion, UFO concepts are written in italics while bold is used in SEON concepts. 

 
Figure 2 – SEON fragment relevant to this work. 

 A Stakeholder is an Agent interested in a particular software project. It can be a 
person, an organization, or a team. In the first case, it is called Person Stakeholder. A 
Stakeholder may be responsible for Software Artifacts, which are Objects intentional-
ly produced to serve a given purpose in the context of a software project or organiza-
tion. Software Artifacts can be classified according to their nature. A Software Item is 
a piece of software, produced during the software process, not considered a complete 
product, but an intermediary result (e.g., a component). A Document, in turn, is any 
written or pictorial, uniquely identified information related to the software development, 
usually presented in a predefined format (e.g., a requirements document). An Infor-
mation Item is a piece of relevant information for human use, produced or used by an 
activity (e.g., a component description). A Model is a representation (abstraction) of a 
process or system from a particular perspective (e.g., a use case model, a class model). 
 A Software System (e.g., a system to buy airline tickets) is a Software Item 
constituted of Programs aiming to implement a System Specification (a subtype of 
Document). A Program, in turn, is also defined as a Software Item, a piece of soft-
ware, produced during the software process, not considered a complete Software Sys-
tem (e.g., the system component to select available flights on a certain date). A Pro-
gram aims at producing a certain result through execution on a computer, in a particular 
way, given by the Program Specification, which is a Document describing structural 
and functional information about the Program with enough detail that would allow im-
plementation and maintenance. A Hardware Equipment is a Physical Object used to 
process, transform, store, display or transmit information or data. A Hardware Equip-
ment that can run programs, process, transform and store data and information is a 
Computer Machine. A Computer System is a system containing one or more Com-
puter Machines and other Hardware Equipment connected to them. A Loaded Soft-
ware System is the materialization of a Software System (e.g., the system to buy air-



  

line tickets loaded in Mary’s computer machine) as a complex Disposition inhering in a 
Computer System, including one or more Loaded Program Copies. A Loaded Pro-
gram Copy, in turn, is the materialization of a Program (e.g., the component to select 
available flights in a certain date loaded in Mary’s computer machine) as a Disposition 
manifested by a Program Copy Execution (Event). A Program Copy Execution (e.g., 
the execution of the program copy to show flights available on a certain date) brings 
about a Computer Resulting State (e.g., a set of flights), a Situation involving proper-
ties of the Computer Machine in which the Loaded Program Copy inheres, as well as 
of entities residing in that Computer Machine (including the Loaded Program Copy 
itself). A Computer Resulting State can trigger other Program Copy Executions. 
 A Requirement is a Goal in the sense of UFO, i.e., the propositional content of 
an Intention that inheres in a Requirements Stakeholder. When a Requirement is rec-
orded in some kind of document, there is a Requirement Artifact describing that Re-
quirement. A Requirement Artifact is an Information Item responsible for keeping 
relevant information for human use. Requirements are connected to implemented soft-
ware through the following relation: a Program Specification intends to satisfy some 
Requirement Artifacts. Thus, a Program that intends to implement a Program Speci-
fication also intends to satisfy these Requirement Artifacts.  

3. Software Design Reference Ontology (SDRO) 
The Software Design Reference Ontology (SDRO) aims at providing a well-founded 
consensual conceptualization of software design (as a noun), describing the mental and 
physical elements involved in the design of software systems and the relations between 
them. Here, the term “physical” is borrowed from other works [Baker and Hoek 2006; 
Guarino 2014; Ralph and Wand 2009] referring to the perception of something through 
the senses. However, considering that software is abstract, there are differences in the 
way it is perceived when compared to physical objects like a chair or a car.  
 SDRO was developed by following SABiO [Falbo 2014], using the works by 
Ralph and Wand (2009) and Guarino (2014) as a reference to describe the core design 
notions and reusing concepts from SEON [Ruy et al. 2016] to address software particu-
larities. SABiO was chosen because it has been successfully used to develop domain 
ontologies, in particular Software Engineering reference domain ontologies, including 
the ones already integrated to SEON and reused in this work. Moreover, by combining 
general notions of design and specific aspects of Software Engineering, we can provide 
a comprehensive conceptualization of software design integrated to other related as-
pects, such as requirements, coding and testing. SDRO allows the instantiation of soft-
ware design situations regardless of the design paradigm, process, or method used in 
software development. It is focused on design as a noun, i.e., it is not concerned with 
describing activities involved in a general software design process, which is addressed 
in SEON by the Design Process Ontology [Ruy et al. 2016]. 
  We defined the ontology scope by means of competency questions, i.e., ques-
tions the ontology must be able to answer and are used as a basis to develop the ontolo-
gy conceptual model. Considering the ontology purpose, we raised the following set of 
Competency Questions (CQ): (CQ1) How does a software designer reason about the 
object being designed? (CQ2) What is a software design specification and (CQ3) which 
are its components? (CQ4) What is a software design object and (CQ5) which are its 



  

components? (CQ6) What is described in a software design specification? (CQ7) What 
is the motivation for a software design choice? (CQ8) How can a software design object 
be implemented from a software design specification? (CQ9) How can a software de-
sign object be evaluated against a software design specification? 
 Considering the distinction between mental and physical aspects of software 
design, we divided SDRO into two sub-ontologies, namely the Mental Aspects sub-
ontology and the Physical Aspects sub-ontology. Figure 3 shows the conceptual model 
of the Mental Aspects sub-ontology. In the figure, red double-dashed horizontal lines 
separate the layers of SEON architecture according to the classification proposed in 
[Scherp et al. 2011], while black single-dashed lines separate concepts from different 
ontologies at the same layer. Different colors are used to indicate concepts from differ-
ent ontologies. For SEON and UFO concepts, we kept the same colors from Figure 2. 
Concepts from the Mental Aspects sub-ontology are presented in light violet. In the de-
scription, SEON concepts are written in bold and SDRO concepts in bold italics. 

 
Figure 3 – SDRO Mental Aspects sub-ontology conceptual model. 

 Mental aspects are treated in SDRO as Software Designer Mental Moments that 
inhere in a Software Designer, which is a Person Stakeholder that uses his/her skills to 
directly contribute to the outcome of the design effort. The propositional content of a 
Software Designer Mental Moment is a Software Design Proposition, i.e., a sentence 
describing an idea in the designer’s mind about software design aspects of a certain ob-
ject. Thus, Software Designer Mental Moments represent mental properties of a Soft-
ware Designer that enable him/her to imagine possible solutions for software design 
problems, while Software Design Propositions are the expression of such solutions in a 
conversation or in the designer internal dialogue. The realization of design solutions is 
given by situations in reality where the propositional content of Software Designer 
Mental Moments (i.e., Software Design Propositions) are true. The number of design 
solutions that can be actually realized varies according to the intersection between de-
sirable situations that satisfy the requirements and feasible situations that respect the 
constraints (e.g., time, cost, computational resources) [Baker and Hoek 2006]. 
 Five different types of Software Design Propositions were identified, based on 
what their subject refers to. A Mental Software Design Object concerns the software 
object being designed, which may not exist yet (i.e., it represents what designers visual-
ize as the final design object when they refer to “the system”). A Mental Software De-
sign Object is specified by a Mental Software Design Specification, a detailed descrip-
tion of the object structure (i.e., how the object should be decomposed and organized 



  

into smaller elements and how these elements interact with each other). At the begin-
ning of the design process, this description usually represents the object structure in a 
higher level of abstraction (e.g., architecture aspects) and, as design iterations occur, it 
is refined into more detailed representations (e.g., components and modules) at lower 
levels of abstraction [Pressman and Maxim 2020]. The Mental Software Design Speci-
fication consists of one or more Mental Software Design Choices made by the Soft-
ware Designer. Each Mental Software Design Choice can be motivated by Require-
ments or by other Mental Software Design Choices and contains details about a deci-
sion made by the Software Designer concerning structural or behavioral properties of 
the designed object or about its components and their connections. Thus, a Mental 
Software Design Choice may concern Mental Software Design Components, which 
represent what the Software Designer expects to exist as a part of the designed object in 
a particular place, playing a specific role and having its own properties (e.g., modules, 
partitions and layers in which the system’s architecture is organized), also referred as 
“conventional system components” by Guarino and Melone (2015). A Mental Software 
Design Choice may also concern a Mental Computing Resulting State, which repre-
sents an expected result of a Mental Software Design Choice that can only be assessed 
in runtime (e.g., obtaining a certain return after the execution of a system’s module). 
 The Physical Aspects sub-ontology is presented in Figure 4. In the figure, con-
cepts from this sub-ontology are presented in dark violet. Physical aspects are treated in 
SDRO as sub-types of Software Artifact. For example, a Software Design Object is a 
Software System that implements one or more Mental Software Design Objects. This 
does not imply that every Mental Software Design Object results in the development of 
a new Software System. An existing Software System is also considered a Software 
Design Object when it implements at least one Mental Software Design Object speci-
fied by a Mental Software Design Specification. Software Design Objects are com-
posed of Software Design Components, which are Programs that play specific roles in 
the designed Software System, implementing Mental Software Design Components. 
Software Design Components can be composed of sub-components, allowing for the 
representation of more complex architectures. A (sub)component can also be part of 
more than one component (e.g., in situations where the code is properly modularized 
and reused). 

 
Figure 4 – SDRO Physical Aspects sub-ontology conceptual model. 



  

 In order to be executed and used, a Software Design Object and its Software 
Design Components must be materialized respectively as a Loaded Software Design 
Object (Loaded Software System Copy) and Loaded Software Design Components 
(Loaded Program Copies), which are respectively  the resulting designed software and 
its constituent programs inhering in a Computer Machine (i.e., the software must be 
loaded in the computer’s main memory). A Loaded Software Design Component can 
be executed as a Program Copy Execution that brings about a Computing Resulting 
State. If the program was implemented and executed correctly, this Computing Result-
ing State may satisfy a Mental Computing Resulting State associated in a Mental 
Software Design Choice with the corresponding Mental Software Design Component 
materialized by the executed Loaded Software Design Component. This relationship 
allows us to verify if the implemented software meets the design specification. 
 A Software Design Specification is a Software Artifact created by one or more 
Software Designers. It can be either a Model (e.g., a class diagram), a Document (e.g., 
a detailed textual description), or a Software Item (e.g., a functional prototype), provid-
ing an explicit representation that describes Mental Software Design Specifications 
(also referred to as Software Design Descriptions in IEEE 1016 [IEEE 2009]). A Soft-
ware Design Specification is an aggregation of one or more Software Design Choices, 
which are Information Items describing Mental Software Design Choices. Therefore, 
a Software Design Choice is a piece of information that physically represents choices 
made by a Software Designer and can be used for communication and evaluation pur-
poses (e.g., a sentence like “The system will be implemented in Java” or details added 
in a class diagram that indicates how entities and relations should be represented in the 
database). As a derived relation, a Software Design Choice is motivated by a Require-
ment Artifact when the Mental Software Design Choice it describes is motivated by 
the Requirement described by the Requirement Artifact. This connection establishes 
a traceability relation between design and requirements artifacts. 
 To evaluate SDRO, we performed Ontology Verification & Validation (V&V) 
activities by using two approaches: assessment by human approach and data-driven ap-
proach [Brank et al. 2005]. In the first, we performed a verification activity by means of 
expert judgment, in which we checked if the concepts and relations defined in SDRO 
were able to answer the competency questions. In the second, to validate SDRO, we 
instantiated its concepts and relations using data extracted from a real-world scenario. 
Table 1 presents part of the results of SDRO verification, which showed that the ontolo-
gy answers all the CQs and, thus, is able to cover the scope established to it. The com-
plete results of the verification can be found in the SDRO full specification available at 
https://bit.ly/SDRO-specification.  

Table 1. SDRO verification against some of its CQs. 
CQs Description, Concepts and Relations 

CQ2 
What is a software design specification? 
Software Design Specification is a Software Artifact created by Software Designers that describes Mental 
Software Design Specifications.  

CQ3 
Which are the components of a software design specification? 
Software Design Specification is composed of Software Design Choices, which are Information Items that 
describe Mental Software Design Choices. 

CQ6 

What is described in a software design specification? 
Software Design Specification describes a Mental Software Design Specification which specifies a Mental 
Software Design Object and is composed of Mental Software Design Choices, which may concern to Men-
tal Software Design Components or Mental Computing Resulting States. 

https://bit.ly/SDRO-specification


  

 For a brief validation, we took as an example of design object the car rental 
software system (here referred to as CRS) specified in [Falbo 2018] and used SDRO to 
instantiate and analyze a scenario considering the CRS design.  
 The CRS system aims to support rent-a-car companies in managing fleets of cars 
and rentals, as well as allowing customers to make car rentals via the internet. Based on 
this context, the following Requirements of CRS had been elicited: (i) a rent-a-car 
company wants to manage fleets of cars, customers and car rentals; and (ii) customers 
want to make car rentals via the internet. These Requirements were described and rec-
orded as Requirement Artifacts in a requirements document. Two students, John and 
Mary, were responsible for designing CRS (i.e., playing the role of Software Designers) 
and discussed how they would address these requirements in the system’s implementa-
tion. In their discussions, they referred to the software system being designed (i.e., the 
Mental Software Design Object) as “the system” or “CRS”, corresponding to what they 
had in mind (i.e., Software Designer Mental Moments) as a solution to satisfy the Re-
quirements. John made some Mental Software Design Choices to meet the require-
ment (ii) and communicated them to Mary, proposing to implement the system in Java 
using libraries that can run in different browsers, and implement the user interface (a 
Mental Software Design Component in this context) as an independent component 
from the rest of the application. These Mental Software Design Choices were also re-
lated to Mental Computing Resulting States corresponding to John’s visualization of 
the system’s user interface being executed in different browsers. Mary agreed with 
John’s suggestions and complemented that they could organize the system in an archi-
tecture based on a combination of partitions and layers, i.e., Mental Software Design 
Components related to each other in the Mary’s Mental Software Design Choices. She 
considered that the combination of the Mental Software Design Choices made by her 
with the ones made by John (i.e., Mary’s Mental Software Design Specification) was 
sufficient to start implementing the system. However, John had trouble in understanding 
the choices proposed by Mary (i.e., his Mental Software Design Specification was not 
equivalent to hers), so he asked her to produce a Software Design Specification describ-
ing what she had in mind. Mary presented to him a diagram encoding Software Design 
Choices (e.g., the representation of the partitions and layers as UML elements) describ-
ing the Mental Software Design Choices she had in mind. After seeing the diagram in 
the Software Design Specification produced by Mary, John understood what she pro-
posed (i.e., their Mental Software Design Specifications became equivalent) and then 
they decided to implement the system. They presented the Software Design Specifica-
tion to a developer and explained what they had in mind to him. The interpretation of 
the developer produced a Mental Software Design Specification in his mind, as well as 
other Software Design Propositions associated with it. After that, the developer pro-
duced a Software System written in Java, which satisfied the specification he had in 
mind (i.e., a Software Design Object implementing the Mental Software Design Object 
specified by his Mental Software Design Specification). Then, he asked John and Mary 
to assess if the implemented software corresponded to what they had designed. John and 
Mary first inspected the code and observed that the partitions and layers had been cor-
rectly implemented as Software Design Components (i.e., the Software Design Object 
realized the Software Design Specification). In the sequence, they loaded a copy of the 
system in the computer’s main memory (a Loaded Software Design Object composed 
of Loaded Software Design Components) and accessed the system’s user interface 
through different browsers. Each of those accesses produced a Program Copy Execu-



  

tion of the Loaded Software Design Component that materialized the implementation 
of a particular layer of a specific partition (i.e., a Mental Software Design Component), 
which, in turn, might have triggered the execution of the other components. When the 
execution was completed, it brought about a Computing Resulting State (e.g., an 
HTTP response code 200) that satisfied the Mental Computing Resulting State imag-
ined by John. Based on that, John and Mary concluded that the Software Design Object 
had been correctly implemented according to their Mental Software Design Objects. 

4. Discussion 
Since SDRO is integrated into SEON, it can also be used as a conceptual framework to 
discuss design aspects in a wider software development context, exploring questions 
such as: when a design succeeds or fails, the role of design documentation and the rela-
tion between software design and human-computer interaction. 
 A design effort is considered complete in SDRO when the design specification is 
realized, which can be satisfied by the following condition: if there are Software Design 
Components implementing all Mental Software Design Components concerned in all 
Mental Software Design Choices that are described in Software Design Choices of a 
Software Design Specification, then we can say that this Software Design Specification 
is realized by the Software Design Object composed of those Software Design Compo-
nents. Hence, an incomplete design occurs when at least one Mental Software Design 
Component is not implemented. However, a complete design does not mean necessarily 
that the software is correctly implemented, since Software Design Choices that pre-
scribe behaviors of the system can only be assessed when the system is running. There-
fore, the correct implementation occurs when all Mental Computing Resulting States 
concerned by these choices are satisfied by at least a Computing Resulting State. An 
incomplete or incorrect implementation may happen when a programmer does not fol-
low what was described in the Software Design Specification. In this case, the pro-
grammer’s interpretation of the Software Design Choices probably was not the same as 
the designer’s. Another reason could be that the Software Design Specification does not 
properly describe the Mental Software Design Specification created by the designer, 
maybe because the tools and the language used to create the specification were not ade-
quate [Baker and Hoek 2006]. 
 In SDRO, it is possible to represent a Software System (Design Object) devel-
oped without the existence of any physical Software Design Specification. This is the 
case where Ralph and Wand (2009) describe that the specification is presented as the 
Design Object itself. Although doing so could be considered a bad practice in software 
development, it addresses simpler situations where the designer creates the specification 
only in his mind and develops the system by himself or communicates the design ver-
bally to the developer. Since software development often involves teams and more 
complex systems, the use of artifacts to represent design specifications is essential to 
allow for evaluation in earlier stages and communication of design ideas between de-
signers and other stakeholders. Moreover, it also provides a form of reflexive conversa-
tion where the designer can have insights of improvements as she/he looks at the speci-
fication [Schön 1983; Simon 1996]. 
 SDRO conceptualization also helps highlight what makes software and software 
design unique compared to other fields involving design: there is a large gap between 



  

what is produced as the Software Design Object and what is perceived by the user in 
his/her interaction experience. The Software Design Object, a Software System consti-
tuted by code [Duarte et al. 2018], does not interact directly with the user as does a car 
or a house, for example. It must be loaded in a computer system (i.e., Loaded Software 
Design Object and Loaded Software Design Components) and then executed, so the 
user can interact with the result of this execution (i.e., Computing Resulting States). 
Therefore, software design methods, tools and languages should consider not only the 
internal structural aspects of software but also its external characteristics exhibited to 
the user. Traditionally, Software Engineering research is more focused on the former, 
while the latter is relegated to Human-Computer Interaction (HCI) studies [Taylor and 
Van der Hoek 2007]. Thus, to reduce the gap between software design and user experi-
ence, it is essential to have a holistic view of design and look at software as a whole. 

5. Final Considerations 
This paper presented SDRO, a reference ontology about software design grounded in 
UFO and integrated into a Software Engineering ontology network. From SDRO con-
ceptualization we showed that software design has mental and physical natures since it 
involves elements from both perspectives. We discussed the composition of mental and 
physical design elements and the relations between them, and how design relates to re-
quirements and code in a more comprehensive view of software development. 
 Concerning related works, [Ralph and Wand 2009] and [Guarino 2014] dis-
cussed ontological aspects of design in general, but did not explain the ontological dis-
tinction between design specifications that are purely mental and the ones encoded in 
artifacts, for example. In addition, specific aspects related to the abstract nature of the 
design object in the software development context (e.g., how developed software can be 
evaluated against its design specification) were also not addressed by these works as we 
did in SDRO. Some works, such as [Baker and Hoek 2006], [Ralph 2015] and [Gero 
1990; Gero and Kannengiesser 2014], also addressed design in general and did not dis-
cuss further details about design specifications and the composition of design objects. 
On the other hand, other works proposed ontologies addressing software design in spe-
cific contexts, namely domain-driven design [Saiyd et al. 2009], model-based design 
[De Medeiros et al. 2005] and design intent [Solanki 2015], and therefore did not pro-
vide a comprehensive conceptualization of software design as SDRO does. It is worth 
noting that, since we reused concepts from SEON ontologies, we have committed to the 
conceptualization provided by them. Similar concepts (e.g., document, software) are 
also addressed by other works, such as the Information Artifact Ontology [IAO 2020], 
the Ontology4 Language Ontology [Ontology4 2021] and the Functional Requirements 
for Bibliographic Records [IFLA 2009]. 
 As for SDRO applications, we have specialized it and created a more specific 
ontology to address HCI design, which was integrated into an HCI ontology network, 
allowing us to connect both Software Engineering and HCI domains. That ontology was 
used in the development of a tool to support knowledge sharing in HCI design [Castro 
et al. 2021]. As future work, we intend to improve SDRO validation by using formal 
validation techniques (e.g., using Alloy) and instantiating other scenarios from real-
world situations. By taking advantage of the existing connections between SDRO and 
other ontologies of SEON, we also plan to use SDRO in semantic documentation of 
design artifacts aiming to improve the traceability between requirements, code and tests. 



  

References 
Baker, A. and Hoek, A. Van der (2006). Examining Software Design from a General 
Design Perspective.  
Brank, J., Grobelnik, M. and Mladenić, D. (2005). A survey of ontology evaluation 
techniques. In In In Proceedings of the Conference on Data Mining and Data 
Warehouses (SiKDD 2005).  
Bringuente, A. C. de O., Falbo, R. de A. and Guizzardi, G. (2011). Using a 
Foundational Ontology for Reengineering a Software Process Ontology. Journal of 
Information and Data Management, v. 2, n. 3, p. 511–526.  
Budgen, D. (2003). Software design. 2nd ed ed. Harlow, England ; New York: Addison-
Wesley.  
Castro, M. V. H. B., Barcellos, M. P., Falbo, R. de A. and Costa, S. D. (2021). Using 
Ontologies to aid Knowledge Sharing in HCI Design. In XX Brazilian Symposium on 
Human Factors in Computing Systems (IHC’21). . ACM, New York, NY, USA.  
De Medeiros, A. P., Schwabe, D. and Feijó, B. (2005). Kuaba Ontology: Design 
Rationale Representation and Reuse in Model-Based Designs. [L. Delcambre, C. Kop, 
H. C. Mayr, J. Mylopoulos, & O. Pastor, Eds.]In Conceptual Modeling – ER 2005. , 
Lecture Notes in Computer Science. Springer.  
Design (2020a). Design meaning in the Cambridge English Dictionary.  
Design (2020b). Definition of Design in Merriam-Webster Dictionary.  
Duarte, B. B., De Castro Leal, A. L., Falbo, R. D. A., et al. (2018). Ontological 
foundations for software requirements with a focus on requirements at runtime. Applied 
Ontology, v. 13, n. 2, p. 73–105.  
Falbo, R. de A. (2014). SABiO: Systematic Approach for Building Ontologies. In 
CEUR Workshop Proceedings. , CEUR Workshop Proceedings. CEUR-WS.org.  
Falbo, R. de A. (2018). Car Rental Software Design Specification v1.0. 
http://www.inf.ufes.br/~jssalamon/wp-
content/uploads/disciplinas/projsistsoft/trabalho/Documento_Projeto_v1.0.pdf, 
[accessed on Jul 26].  
Gero, J. S. (1990). Design Prototypes: A Knowledge Representation Schema for 
Design. AI Magazine, v. 11, n. 4, p. 26.  
Gero, J. S. and Kannengiesser, U. (2014). The Function-Behaviour-Structure Ontology 
of Design. In: Chakrabarti, A.; Blessing, L. T. M.[Eds.]. . An Anthology of Theories and 
Models of Design: Philosophy, Approaches and Empirical Explorations. London: 
Springer. p. 263–283.  
Guarino, N. (2014). Artefactual Systems, Missing Components and Replaceability. In: 
Franssen, M.; Kroes, P.; Reydon, T. A. C.; Vermaas, P. E.[Eds.]. . Artefact Kinds: 
Ontology and the Human-Made World. Cham: Springer International Publishing. p. 
191–206.  
Guarino, N. and Melone, M. R. S. (2015). On the Ontological Status of Design Objects. 
[F. A. Lisi & S. Borgo, Eds.]In AIDE@ AI* IA. , CEUR Workshop Proceedings. 
CEUR-WS.org.  



  

Guizzardi, G. (2005). Ontological foundations for structural conceptual models. 
Telematica Instituut / CTIT.  
Guizzardi, G. (2007). On Ontology, ontologies, Conceptualizations, Modeling 
Languages, and (Meta)Models. In Proceedings of the 2007 conference on Databases 
and Information Systems IV: Selected Papers from the Seventh International Baltic 
Conference DB\&IS’2006. . IOS Press.  
Guizzardi, G., Falbo, R. de A. and Guizzardi, R. (2008). Grounding Software Domain 
Ontologies in the Unified Foundational Ontology (UFO): The case of the ODE Software 
Process Ontology. In CIbSE.  
IAO (2020). Information Artifact Ontology. http://purl.obolibrary.org/obo/iao.owl, 
[accessed on Oct 15].  
IEEE (2009). IEEE Std 1016-2009 (Revision of IEEE Std 1016-1998), IEEE Standard 
for Information Technology—Systems Design—Software Design Descriptions. v. 2009 
IFLA (2009). Functional Requirements for Bibliographic Records: Final Report. IFLA.  
ISO/IEC/IEEE (2017). ISO/IEC/IEEE 24765 - Int. Standard - Systems and software 
engineering Vocabulary.  
ISO (2010). 24765-2010 - ISO/IEC/IEEE International Standard - Systems and 
software engineering -- Vocabulary. Place of publication not identified: IEEE.  
McPhee, K. (1996). Design Theory and Software Design.  
Ontology4 (2021). Language Ontology. 
https://ontology4.us/english/Ontologies/Language%2520Ontology/Documents/index.ht
ml, [accessed on Oct 15].  
Osterweil, L. J. (2007). A Future for Software Engineering? In Future of Software 
Engineering (FOSE ’07).  
Pressman, R. S. and Maxim, B. R. (2020). Software engineering: a practitioners 
approach. 9th. ed. McGraw Hill.  
Ralph, P. (2015). The Sensemaking-Coevolution-Implementation Theory of software 
design. Science of Computer Programming, Towards general theories of software 
engineering. v. 101, p. 21–41.  
Ralph, P. and Wand, Y. (2009). A Proposal for a Formal Definition of the Design 
Concept. In Design Requirements Eng.: A Ten-Year Perspective. . Springer.  
Ruy, F. B., Falbo, R. de A., Barcellos, M. P., Costa, S. D. and Guizzardi, G. (2016). 
SEON: A Software Engineering Ontology Network. In Knowledge Eng. and Knowledge 
Management. . Springer.  
Saiyd, N. Al, Said, I. Al and Neaimi, A. Al (2009). Towards an ontological concepts for 
domain-driven software design. In 2009 First International Conference on Networked 
Digital Technologies.  
Scherp, A., Saathoff, C., Franz, T. and Staab, S. (2011). Designing core ontologies. 
Applied Ontology, v. 6, n. 3, p. 177–221.  
Schön, D. A. (1983). The reflective practitioner: how professionals think in action. New 
York: Basic Books.  



  

Simon, H. A. (1996). The sciences of the artificial. 3rd ed ed. Cambridge, Mass: MIT 
Press.  
Solanki, M. (2015). DIO: A Pattern for Capturing the Intents Underlying Designs. In 
Proceedings of the 6th Workshop on Ontology and Semantic Web Patterns (WOP 
2015). , CEUR Workshop Proceedings. CEUR-WS.org.  
Studer, R., Benjamins, V. R. and Fensel, D. (1998). Knowledge engineering: Principles 
and methods. Data & Knowledge Engineering, v. 25, n. 1, p. 161–197.  
Suárez-Figueroa, M. C., Gómez-Pérez, A., Motta, E. and Gangemi, A. (2012). Ontology 
Engineering in a Networked World. Springer.  
Taylor, R. N. and Van der Hoek, A. (2007). Software Design and Architecture: The 
once and future focus of software engineering. In Future of Software Engineering 
(FOSE ’07). . IEEE.  
 


	1. Introduction
	2. Background
	2.1. Design and Software Design
	2.2. Ontologies

	3. Software Design Reference Ontology (SDRO)
	4. Discussion
	5. Final Considerations
	References

