
An Ontological Approach to Domain Engineering
Ricardo de Almeida Falbo

falbo@inf.ufes.br
Giancarlo Guizzardi
gguizz@inf.ufes.br

Katia Cristina Duarte
duarte@inf.ufes.br

Computer Science Department, Federal University of Espírito Santo
Fernando Ferrari Avenue, CEP 29.060-900,

Vitória, Espírito Santo, Brasil
055-27-33352167

ABSTRACT
Domain engineering aims to support systematic reuse, focusing on
modeling common knowledge in a problem domain. Ontologies
have also been pointed as holding great promise for software
reuse. In this paper, we present ODE (Ontology-based Domain
Engineering), an ontological approach for domain engineering
that aims to join ontologies and object-oriented technology.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable software – domain
engineering.

General Terms
Design, Theory.

Keywords
Ontology, software reuse.

1. INTRODUCTION
In order to get the main benefits of software reuse, we need first to
develop for reuse, so then we can develop with reuse. Domain
engineering concerns developing for reuse, and ontologies can
play an important role in this context. An ontology can promote
common understanding among developers, and can be used as a
domain model.

However, one of the major drawbacks to a wider use of ontologies
in Software Engineering is the lack of approaches to insert
ontologies in a more conventional software development process.
Since the current leading paradigm in Software Engineering is the
object-oriented technology, to put ontologies in practice, we need
an approach to derive object models from ontologies in order to
derive widely reusable assets.

 In this paper, we propose an ontology-based approach to domain
engineering that considers two main phases: building ontologies
and deriving object frameworks from them. Section 2 discusses
domain engineering and why ontologies are useful in this context.
In sections 3 and 4, we present our ontological approach to

domain engineering and a study case in the software quality
domain, respectively. Section 5 discusses related works. Finally,
section 6 report our conclusions.

2. DOMAIN ENGINEERING AND
ONTOLOGIES
Domain engineering concerns the work required to establish a set
of software artifacts that can be reused by the software engineer.
The purpose of domain engineering is to identify, model,
construct, catalog and disseminate a set of software artifacts that
can be applied to existing and future software in a particular
application domain [1].

As pointed by Arango [2] in its forerunner paper, a domain
engineering process should encompass at least three main
activities: domain analysis, infrastructure specification and
infrastructure implementation.

Domain analysis involves identification, acquisition and analysis
of domain knowledge to be reused in software specification and
construction. The purpose of domain analysis is to produce a
model of the problem domain. The domain model should serve as:
(i) an unified source of reference when ambiguities arise in the
analysis of problems or latter during the implementation of
reusable components; (ii) a repository of the shared knowledge for
teaching and communication; and (iii) a specification to the
developer of reusable components [3].

However, generally, a domain model is not directly useful to
operational reuse. There exists a gap between the kinds and forms
of the domain knowledge in a domain model and the content and
form of software assets that can be reused in software
construction. To bring this gap, we need to build a reuse
infrastructure. This infrastructure should support the efficient
operation of a reuse system and should also be adapted to its
technology [3].

The purpose of the infrastructure specification activity is to define
the aspects of the problem domain that should be supported by the
component repository in order to achieve the reuse system
requirements. This involves selecting and organizing the reusable
information, and determining how it should be packaged into
components and how these components should be indexed. The
result is an architecture that specifies the components that should
be available to the reuse system [3].

This infrastructure specification, together with the semantics
captured by the domain model, are the input to the infrastructure
implementation step that actually produces and tests the
components [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
International Conference on Software Engineering and Knowledge
Engineering, SEKE’02, July 15-19, 2002, Ischia, Italy.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

In domain engineering, ontologies can play several roles.
According to Uschold [4], “an ontology may take a variety of
forms, but necessarily it will include a vocabulary of terms, and
some specification of their meaning. This includes definitions and
an indication of how concepts are inter-related which collectively
impose a structure on the domain and constrain the possible
interpretations of terms”. Thus, an ontology consists of concepts
and relations, and their definitions, properties and constrains
expressed as axioms. An ontology is not only an hierarchy of
terms, but a fully axiomatized theory about the domain [5].

In a general point of view, applications of ontologies can be
classified in four main categories, emphasizing that an application
may integrate more than one of these categories [6]:

• Neutral Authoring: an ontology is developed in a single
language and it is translated into different formats and used
in multiple target applications.

• Ontology as Specification: an ontology of a given domain is
created and it provides a vocabulary for specifying
requirements for one or more target applications. In this case,
an ontology can be viewed as a domain model. The ontology
is used as a basis for specification and development of
domain applications, allowing knowledge reuse.

• Common Access to Information: an ontology is used to
enable multiple target applications (or humans) to have
access to heterogeneous sources of information that are
expressed using diverse vocabulary or inaccessible format.

• Ontology-based Search: an ontology is used for searching an
information repository for desired resources, improving
precision and reducing the overall amount of time spent
searching.

Although we are most interested in the use of ontologies as
specification, i.e. as domain models, the other purposes are also
important to domain engineering.

The neutral authoring scenario is important, mainly when
applications will be developed using different technology (e.g.,
objects and logics). This insight shows that we need to define
different approaches to implement different reuse infrastructures,
each one suitable to the corresponding system reuse technology.

Common access to information scenario is essential to avoid
misunderstanding among developers. It is vital for reuse tasks,
such as adapting components and creating new assets based on
existing ones, as well as for selecting black-box components and
for providing access to shared data and services.

Finally, an ontology-based search has great potential to improve
structuring and searching in component libraries. An ontology
can be used for structuring and organizing the information
repository (in our case, a component library). It may be used as a
conceptual framework to developers think about this repository
and formulate queries. Also it can be used to perform inference to
improve the query [6].

Analyzing these scenarios, we can notice that domain engineering
can take several advantages from the use of ontologies. However,
an ontology-based domain engineering process must be flexible
enough to consider all these scenarios.

First, we need a systematic approach for building ontologies
(domain analysis). Second, we need several approaches for reuse
infrastructure specification and implementation, each one
considering a specific reuse system technology. Since nowadays
the object-oriented technology is widely used, we proposed an
approach to derive object frameworks from ontologies.

3. ONTOLOGY-BASED DOMAIN
ENGINEERING
In this section, we present ODE (Ontology-based Domain
Engineering), an ontological approach to domain engineering, that
considers ontology development (domain analysis), its mapping to
object models (infrastructure specification), and Java components
development (infrastructure implementation).

3.1 A Systematic Approach for Building
Ontologies
Figure 1 shows the main activities in ODE’s ontology
development process [5]. The dotted lines indicate that there is a
constant interaction, albeit weaker, between the associated steps.
The filled lines show the main work flow in the ontology building
process. The box involving the capture and formalization steps
enhances the strong interaction, and consequently iteration,
between them.

Figure 1 - Steps in the ontology development process.
A brief description of the activities is presented below:

• Purpose identification and requirement specification:
concerns to clearly identify the ontology purpose and its
intended use, that is, the competence of the ontology. To do
that, we suggest the use of competency questions [7].

• Ontology capture: the goal is to capture the domain
conceptualization based on the ontology competence. The
relevant domain entities (e.g. concepts, relations, properties,
role) should be identified and organized. A model using a
graphical language, with a dictionary of terms, should be
used to facilitate the communication with domain experts.

• Ontology Formalization: aims to explicitly represent the
conceptualization captured in a formal language. This
language should be able to represent in a precise and
unambiguous way the elements that model the existing
domain entities. One should be able to write formal axioms

Formal Ontology

Purpose Identification and
Requirement Specification

Ontology Capture

Ontology
Formalization

Integrating Existing
Ontologies

Evaluation and
Documentation

that constrain the interpretation of the structure formed by
these entities.

• Integrating Existing Ontologies: during ontology capture
and/or formalization, it could be necessary to integrate the
current ontology with existing ones to use previously
established conceptualizations. Indeed, it is a good practice
to develop general modular ontologies, more widely
reusable, and to integrate them, when necessary, to obtain the
desired result.

• Evaluation: the ontology must be evaluated to check
whether it satisfies the specification requirements. It should
be evaluated in relation to the ontology competence and
some design quality criteria, such those proposed by Gruber
[10]. It should be noticed that the competency questions play
an essential role in the evaluation of the completeness of the
ontology, specially when considering its axioms.

• Documentation: all the ontology development must be
documented, including purposes, requirements, textual
descriptions of the conceptualization, and the formal
ontology. A potential approach to document an ontology is
to use a hypertext, allowing browsing along term definitions,
examples and its formalization, including the axioms. The
use of XML can be worthwhile.

As pointed above, during ontology capture, we need a graphical
language to improve the communication with domain experts. We
have proposed LINGO [5] as a graphical language for expressing
ontologies. LINGO basically represents a meta-ontology, and
thus, it defines the basic notations to represent a domain
conceptualization. That is, in its simplest form, its notations
represent only concepts and relations. Nevertheless, some types of
relations have a strong semantics and, indeed, hide a generic
ontology. In such cases, specialized notations have been
proposed. This is the striking feature of LINGO and what makes it
different from other graphical representations: any notation
beyond the basic notations for concepts and relations aims to
incorporate a theory. This way, axioms can be automatically
generated. These axioms concern simply the structure of the
concepts and are said epistemological axioms. Figure 2 shows
part of LINGO notation and some of the axioms imposed by the
whole-part relation. These axioms form the core of the
mereological theory as presented in [8].

Figure 2 - LINGO main notation and some axioms.

Besides the epistemological axioms, other axioms can be used to
represent knowledge at a signification level. These axioms can be
of two types: consolidation axioms and ontological axioms [5].
The former aims to impose constraints that must be satisfied for a
relation to be consistently established. The latter intends to
represent declarative knowledge that is able to derive knowledge
from the factual knowledge represented in the ontology,
describing domain signification constraints.

Someone could argue that another graphical language is
unnecessary. Cranefield and Purvis [9], for example, advocate the
use of UML as an ontology modeling language. We partially
agree with their arguments, but we decided not to use some
existing graphical language due two main related reasons. First,
an important criterion to evaluate ontology design quality is
minimum ontological commitments [10]. Based on this principle,
a graphical language in this context must embody only notations
that are necessary to express ontologies. This is not the case of
UML and majority graphical languages available. Second, since
an ontology intends to be a formal model of a domain, it is
important that the language used to describe it has formal
semantics. Again, this is not the case of the majority graphical
languages available, including UML. However, we cannot ignore
that UML is a standard and its use is widely diffused. Moreover,
there are efforts to define UML semantics, such as pUML [11].
Based on that, we are also studying to define a subset of UML
that can play the same role of LINGO following the same thread
of [9].
We advocate, based on our experience in ontology development,
that the approach described easies the development of ontologies,
specially in those aspects concerning minimum ontological
commitments criterion. However, when considering ontology as a
specification, this striking feature is also a problem, since the
ontology is built generally in a high abstraction level to be directly
reused in software development. We have experimented to reuse
ontologies in the development of knowledge-based systems,
information systems (using object technology) and hypermedia
systems. In all cases, we identify a need to lower the abstraction
level of our ontologies to actually put them in practice. To deal
with this problem, we have been working in ways to create more
reusable assets from the ontologies. Next, we present our
approach to derive object-based artifacts from ontologies.

3.2 From Domain Ontologies to Objects
If we want an object-based reuse infrastructure, we need an
approach to derive objects from ontologies. We developed a
systematic approach that is composed of a set of directives, design
patterns and transformation rules [12]. The directives are used to
guide the mapping from the epistemological structures of the
domain ontology (concepts, relations, properties and roles) to
their counterparts in the object-oriented paradigm (classes,
associations, attributes and roles). Contrariwise, design patterns
and transformation rules are applied in the mapping of ontological
and consolidation axioms, respectively. The application of these
guidelines is supported by a Java Set framework that implements
the mathematical type Set [12].

To derive objects from domain ontologies, it is worthwhile to
adopt a formalism that lies at an intermediate abstraction level
between first-order logics and objects. For this purpose, we used a

concept relation

(A1) ∀x ¬partOf(x,x)
(A2) ∀x,y partOf(y,x) ↔ wholeOf(x,y)
(A3) ∀x,y partOf(y,x) → ¬ partOf(x,y)
(A4) ∀x,y,z partOf(z,y) ∧ partOf(y,x) → partOf(z,x)
(A5) ∀x,y disjoint(x,y) → ¬∃z partOf(z,x) ∧ partOf(z,y)
(A6) ∀x atomic(x) → ¬∃y partOf(y,x)

Aggregation

Part 1

Part N

Super-type

Sub-type 1

Sub-type N

hybrid approach based on pure first-order logic, relational theory
and, predominantly, set theory. The choice to create a language
mainly based on set theory was highly motivated by an important
issue: set theory is a complementary extensional perspective to the
intentional nature of first-order logic. For example, let the
intention of the concept mortal be "A mortal is an entity whose
life ceases in a point of time". The logic predicate mortal(x) states
that x is a mortal and, therefore, the characteristics defined by the
intention of this concept applies to x. It also (implicitly) states that
x ∈∈∈∈ Mortal, i.e. to the set of all elements in the considered world
to which the intention of the concept applies. In an object-
oriented perspective, if x is an instance of Mortal, it means that x
belongs to the Mortal class, i.e. to the set of all instances that
share the same properties and the same definition.

In our approach, concepts are defined as sets, and, as mentioned
before, the statement x ∈∈∈∈ Person commits x to the concept
Person, both intentionally and extensionally.

 Another fundamental building block in the LINGO meta-
ontology is the relation primitive. This primitive represents a
semantic link that exists among concepts. In our approach,
relations are mapped to the synonymous primitive in set theory. In
set theory, a n-ary relation can be defined by the n-tuple R =
(C1,C2,...,Cn, p(x1,x2,...,xn)), where each Ci represents a different
set involved in the relation and p(xi,) is a functional predicate
open in n variables that maps each element from the cross-product
C1 ×××× C2 ×××× ... Cn in a true or false value. In this case, the set R*
(solution set) is the subset of C1 ×××× C2 ×××× ... Cn whose members ei
all satisfy the predicate p(ei). From now on, the propositional
function p(x1,x2,...,xn) will be used as synonym of the n-tuple that
defines the relation, assuming that it is defined in some cross-
product C1 ×××× C2 ×××× ... Cn.

Figure 3 shows an example of a binary relation that links the
concepts Person and Organization in a context of Enterprise
Modeling. In this figure, age is a property of Person. The
equivalent description of the contract relation in set theory is
contract = ((Organization, Person, contract(x,y)).

Fig

Finally, it is im
a mapping from
For this reason
and y ∈∈∈∈ Person
one must use th
contract~.

In set theory, so
relations betwe
Intersection; \ -
(# - cardinality)
relations betwe
In addition to
conjunction; ∨
negation; → - c

universal; ∃ - existential; ∃! - exists one and only one) to form the
core of the formalism employed in this work.

In order to extend this core formalism, some additional functions
were defined. The two most important among them are the
functions set relational Image (Im) and the element relational
image (Im+). The definitions1 of Im and Im+ are given as follows:

Im+(_,_): X ×××× (X ⇔⇔⇔⇔ Y) →→→→ ℘(Y)

Im+(x,R) = {x:X,y:Y | ((x,y) ∈∈∈∈ R*) •••• y }

∀∀∀∀ a:A,b:B,R:(A ⇔⇔⇔⇔ B) b∈∈∈∈Im+(a,R) ↔↔↔↔ a ∈∈∈∈ Im+(b,R~)

Im(_,_): ℘(X) ×××× (X ⇔⇔⇔⇔ Y) →→→→ ℘(Y)

Im(S,R) = ∪∪∪∪a ∈∈∈∈ S Im+(a,R)

Using the relation of figure 3 as an example, a possible valid
image set could be: Im+(Org1, contract) = {John, Paul, Mary}
and, consequently, Im+(John,contract~) = {Org1}. It is important
to notice that, as stated by the axioms above, the set Im function
distributes over the element Im+ function, i.e.,
Im({John,Mary},contract~) = Im+(John, contract~) ∪∪∪∪
Im+(Mary, contract~).

The use of cardinality constraints of type (1,1) in this example
implies that ∀∀∀∀ p: Person #Im+(p,contract~) = 1 and cardinality
constraints of type (1,n) implies that ∀∀∀∀o:Organization
#Im+(o,contract) ≥≥≥≥ 1.

The axiom below completes the formal definition of our set-based
language providing the semantics of the selection operator in this
context. In this definition we assume the set Φ as the superset of
all basic types, such as, ℵ, ℜ, Boolean, Strings, and so on.

σσσσ(_,_,_,_):℘(X) ×××× (X →→→→ ΦΦΦΦ) ××××(ΦΦΦΦ ⇔⇔⇔⇔ ΦΦΦΦ) ×××× ΦΦΦΦ →→→→ ℘(X)

σσσσ(X,R,O,z) ={x:X,y,z:ΦΦΦΦ | ((x,y)∈∈∈∈R*) ∧∧∧∧((y,z)∈∈∈∈O*) •••• x}

The selection operator takes as parameters: (i) a set X (e.g.
Person); (ii) a property (function) existent between X and the a
subtype of ΦΦΦΦ (e.g. age, where the subtype of ΦΦΦΦ is ℵℵℵℵ); (iii) a
relation (operation) defined for the specific subtype of ΦΦΦΦ (e.g., ≥≥≥≥);
(iv) and an instance value of ΦΦΦΦ (e.g., 20). Organization

Person

age: W

 contract
1,1
ure 3 - Example of a binary relation.

portant to notice that the relation contract defines
 the set Organization to the powerset of Person.

, for each (x,y) in Contract*, x ∈∈∈∈ Organization
. Therefore, to navigate in the opposite direction,
e reverse mapping defined by the inverse relation

me essential operations are defined to express the
en sets (such as ⊂ - subset; ∪ - Union; ∩ -
 difference and ℘ - power set), properties of sets
, restriction on relations (~ - inverse relation) and

en sets and their members (∈ - Membership) [12].
 this, we use the basic logic operators (∧ -
 - disjuntion; ⊕ - exclusive disjunction; ¬ -
onditional; ↔ - biconditional) and quantifiers (∀ -

Since we have defined this set-based formalism to support
ontology to objects mapping, the first step in our approach is the
complete axiomatization of the domain theory using this
formalism.

Once defined the Set-based axioms, we can initiate the object
mapping. First, we should consider the epistemological aspects
captured by LINGO. Concepts and relations are naturally mapped
to classes and associations in an object model, respectively.
Properties of a concept shall be mapped to attributes of the class

1 One shall notice that the symbol ⇔⇔⇔⇔ (used as in Α⇔Β) is a meta-

mathematical construct that represents the set of existent
relations between the sets A and B. Differently, the symbol ↔↔↔↔,
represents the logical biconditional. Moreover, although the
symbol →→→→ is used both for functions definition and for logical
implication, its semantics shall be made clear by the usage
context.

that is mapping the concept. In the example of Figure 3, Person
and Organization would be mapped to classes, and age would be
modeled as an attribute of Person.

Although this approach works well in most cases, it is important
to point out some exceptions:

• some concepts can be better mapped to attributes of a class
because they do not have a meaningful state in the sense of
an object model;

• some concepts should not be mapped to an object model
because they were defined only to clarify some aspect of the
ontology, but they do not enact a relevant role in an object
model;

• relations involving a concept that is mapped to an attribute
(or that is not considered in the mapping) should not be
mapped to the object model.

 A class defines a formation rule for its instance and, therefore,
can be seen as a set. Consequently, the classification relations in
the formalism do not require any specific implementations, i.e.
relations such as a ∈∈∈∈ A, are totally resolved by the programming
language typing mechanism through the creation of an object a of
type A. Likewise, subtype-of relations among concepts can be
directly mapped to generalization/specialization relations among
classes. However, it is not the case of Whole-Part relations. The
UML notation for aggregation does not guarantee the fulfillment
of the mereology theory constraints. To deal with this problem,
we developed the whole-part design pattern [12].

For the mapping of relations, there are some issues that still must
be discussed. As shown in Figure 3, there is a relation contract
between the concepts Person and Organization. In our approach,
this relation is translated to an association between the
corresponding two classes in the object model and both classes
have a method contract(). In this case, with the invocation of
method contract() in an object o1 of type Organization,
it is possible to have access to all the people that work at o1. This
resulting set is formally specified by the formula
Im+(o1,contract)). Likewise, the method invocation in a Person
instance p1 returns its employer Organization, or,
Im+(p1,contract~). The returned type of the relation methods
depends directly on the cardinality axioms associated to the
relation. For instance, since in the scope of the contract relation
an Organization may employ several Persons, contract is
mapped to a Set variable in the Organization class and,
hence, this is the type returned by the invocation of the
synonymous method on this class.

Once mapped the epistemological structure, we should consider
consolidation and ontological axioms. To address the
consolidation axioms mapping, we developed a design pattern
(consolidation pattern) whose purpose is to describe preconditions
that must be satisfied or properties that must hold so that a
relation could be established between two objects [12].

Finally, it is necessary to map ontological axioms to the object
model. Methods are derived from ontological axioms, using a set
of transformation rules, partially presented below.

T0: ∀∀∀∀ x:X, ∀∀∀∀ y:Y r1(x,y) ↔↔↔↔ y ∈∈∈∈ C ⇒⇒⇒⇒
 Im+(x, r1):Type = C, such that if # Im(x, r1) = 1
 then Type = Y else Type = Set

This rule states that the type returned by the method that
implements the function in the derived class depends on the
cardinality of the relation. Hence, if x is related to only one
instance of Y, the returned value shall be of type Y, otherwise, it
shall be of type Set, in the case a set of Y.

T1: Im+(x, r1) ⇒⇒⇒⇒ x.r1()

T2: Im+(y, r1~) ⇒⇒⇒⇒ y.r1()

T3: r1(x,y) ⇒⇒⇒⇒ x.r1()

T4: r1(x) ⇒⇒⇒⇒ x.r1()

A relation r1 between two concepts X and Y is mapped to
methods in the corresponding classes. Given an instance x, the
invocation x.r1() returns the set of objects from Y associated to x
in the relation r1.

T5: A SetTheoryOperation a ⇒⇒⇒⇒
A.SetTheoryOperationImplementation(a)

This rule deals with the translation between the essential set
theory operations and the corresponding method implemented in
the Set class. For instance, the set theory expression A ∩ C is
translated to A.intersection(C), where A and C are instances of the
class Set.

T6: Im(A, r1) ⇒⇒⇒⇒ Set.Im(A," r1")

This rule promotes the replacement of the Set Relational Image
function by the corresponding syntax through which it is
implemented in the Set class.

T7: x.r1():Y ≡ C ⇒ public class X
 {

public Y r1()
 {
 return C;
 }
 }

Finally, this last rule directly translates the axiom written in the
left side to the corresponding Java implementation syntax. All the
existing references to the instance x in the scope of set C (to
which x belongs) are replaced by the Java reserved word this,
so that references to methods of the same class can be made.

4. APPLYING ODE IN SOFTWARE
QUALITY DOMAIN
We have been using ODE in several domains, such as software
process modeling [12], software quality and video on demand. In
this section we present partially its application in the software
quality domain.

As pointed by Crosby, cited by Pressman [1], “the problem of
quality management is not what people don’t know about it. The
problem is what they think they do know”. Before we can devise a
strategy for producing quality software, we must understand what
software quality means. But this is not an easy task. There are
several information sources (books, standards, papers, experts,
and so on) using many different terms with no clear semantics
established. There is not a consensus about the terminology used,
what causes misunderstanding and several problems in the
definition of a quality program. To deal with these problems, we

1,n

Quality
characteristic

subcharacteristic

Non mensurable
quality

characteristic

1,n

1,n

1,1

Metric

quantification

Mensurable
quality

characteristic

relevance

Product quality
characteristic

Artifact

applicability

Paradigm

developed an ontology of software quality. Several books,
standards, and experts were consulted and a consensus process
was conducted.

4.1 A Software Quality Ontology
Due to limitations of space, we present only part of this ontology,
concerning the following competency questions:

1. Which is the nature of a quality characteristic?

2. In which sub-characteristics can a quality characteristic
be decomposed?

3. Which characteristics are relevant to evaluate a given
software artifact?

4. Which metrics can be used to quantify a given
characteristic?

5. To which paradigm a quality characteristic is
applicable?

To address these competency questions, the concepts and relations
shown in Figure 4 were considered. As shown in this figure, a
software quality characteristic can be classified according to two
criteria. The first one says if a quality characteristic can be directly
measured or not. A non mensurable characteristic must be
decomposed into subcharacteristics to be computed by the
aggregation of their subcharacteristic measures. A mensurable
characteristic can be directly measured applying some metric. The
second classification enforces that product characteristics should
only be used to evaluate software artifacts. Finally, there are some
quality characteristics that can be useful only to evaluate
processes or artifacts developed following some paradigm.
Artifact and Paradigm are highlighted since they are concepts
from the software process ontology [5], which were integrated
with the quality ontology been presented.

Figure 4 - Part of the software quality ontology.

From LINGO notation, the following epistemological axioms can
be derived:
(∀ qc) (nmensqc(qc) → qchar(qc)) (E1)

(∀ qc) (mensqc(qc) → qchar(qc)) (E2)

(∀ qc) (prodqc(qc) → qchar(qc)) (E3)

(∀ qc1, qc2) (subqc(qc1, qc2) → ¬ subqc(qc2 , qc1)) (E4)

(∀ qc1, qc2) (subqc(qc1, qc2) ↔ superqc(qc2 , qc1)) (E5)

(∀ qc1, qc2, qc3) (subqc(qc1, qc2) ∧ subqc(qc2, qc3) →
subqc(qc1 , qc3)) (E6)

(∀ qc) (mensqc (qc) ↔ ¬ (∃ qc1) (subqc(qc1, qc))) (E7)

(∀ qc) (nmensqc(qc) → (∃ qc1) (subqc(qc1, qc))) (E8)

(∀qc,m)(mensqc(qc) → (∃ m) (quant(m, qc)) (E9)

(∀qc,a)(prodqc(qc) → (∃ a) (relev(a, qc)) (E10)
where the predicates qchar, nmensqc, mensqc and prodqc
formalize the concepts of quality characteristic, non mensurable
quality characteristic, mensurable quality characteristic and
product quality characteristic, respectively, and the predicates
subqc/superqc, quant and relev formalize the whole-part,
quantification and relevance relations, respectively.

Axioms (E1) to (E3) are derived by the subsumption theory.
Axioms (E4) to (E7) are some imposed by the whole-part relation.
Finally, axioms (E8) to (E10) are given by cardinality
constraints.Several consolidation axioms were defined, such as:

(∀qc,qc1)(subqc(qc1,qc)∧ prodqc(qc)→ prodqc(qc1)) (C1)

This axiom says that if a product quality characteristic (qc) is
decomposed in subcharacteristics (qc1), then these
subcharacteristics should also be a product quality characteristic.

Also several ontological axioms were defined, such as:

(∀qc) ¬(∃p)(applicability(qc,p)→ pdgInd(qc) (O1)

This axiom states that if there is not a paradigm to which a quality
characteristic qc is applicable, than qc is paradigm-independent.

4.2 Object-based Domain Reuse
Infrastructure
From the ontology presented, we derived a framework, shown in
Figure 5, following the approach described in subsection 3.2.

All classes derived directly from the ontology are prefixed by the
character “K”, indicating that their objects represent knowledge
about the software quality domain. The remainder classes are from
the Whole-Part design pattern used. The Whole class, for instance,
is a handler that maintains a reference to the parts associated to
this whole. The interfaces IWhole and IPart must be implemented
by the concrete classes (respectively KNonMeasurableQC and
KQualityCharacteristic). The methods whole() and part() on these
interfaces provide access to its respective handlers (Whole and
Part).

Figure 5 - Part of the Knowledge Package.

The consolidation axiom (C1) was implemented by the method
addSuperQC, using the consolidation pattern [12], as shown in
Figure 6.

addSuperQC (KNonMeasurableQC: qc): boolean
{
 boolean result = false;
 if (result = (qc.isProductQC && this.isProductQC))
 {
 superQC.add(qc);
 qc.addSubQC(this);
 }
 return result;
}

Figure 6 - Consolidation axiom mapping.
The ontological axiom (O1) was translated to the set-theory
formalism and mapped to method pdgInd(), following the
transformation rules, as follows:

1.∀∀∀∀qc:QualityCharacteristic pdgInd(qc,True) ↔↔↔↔
 #Im+(qc,applicability) = 0 O1

2. qc.pdgInd():Boolean ≡≡≡≡ #Im+(qc,applicability) = 0
 1,T0
3. qc.pdgInd():Boolean ≡≡≡≡ (qc.applicability().card()) = 0
 2,T1,T5
4. public class KQualityCharacteristic
 { 3,T7
 public Boolean pdgInd()
 {
 return(this.applicability()).card()== 0);
 }

 }

where method card() returns the number of elements of a given
set, and is defined in the Set class [12].

5. RELATED WORK
There are several domain engineering methods described in the
literature, such as FODA, RSEB and ODM. FODA [13] (Feature
Oriented Domain Analysis) emphasizes descriptions of domain
features as a way of capturing commonality and variability
information. Features are captured in a feature model with
semantics roughly equivalent to an AND-OR graph. However, the
semantics of feature is not precisely defined, i.e. it is not formally
clear what is meant by “feature” [14].

RSEB (Reuse-driven Software Engineering Business) [15] is a
systematic model-driven approach to domain-specific, object-
oriented software reuse. Use case models are central to all steps in
RSEB. However, as pointed by Griss et al. [15], RSEB is
incomplete with respect to domain analysis, since its domain
analysis activities are distributed across various processes and
RSEB does not provide explicit concepts/feature models. To solve
this problem, the FODA’s feature model was adapted to RSEB,
originating FeatuRSEB [15]. The feature model is used as a
catalog of feature commonality and variability and it is similar to
a data dictionary (in domain engineering context, a domain
terminology dictionary).
In ODM [14] a domain can be any “realm of discourse” where
commonality and variability of multiple exemplars are examined.
The core ODM model describes the conceptual and organizational
processes that occur in such a modeling context. A goal of ODM
is to define the core domain modeling process in a manner
independent of assumptions about the specific modeling
representation used. ODM uses a multi-modeling approach based
on a mathematical formalism, called Sigma. In Sigma, the
“feature” relation is formally defined as an essential property for
its associated concept (a necessary condition). A concept is
adequately modeled when its set of related features provides both
necessary and sufficient conditions.
Comparing these methods with our approach, we should observe
some aspects:
• Many methods commit a priori with a technology, mainly

object technology. Like ODM, our ontology-based approach
to domain analysis aims to be independent of reuse
technology.

• Methods like FODA and particularly RSEB, which is use-
case centered, are very interested in capturing domain
functionality instead of capturing domain conceptualizations.
In ODE, we agree with Guarino [16] who defends the thesis
of the independence between domain knowledge and
problem-solving (task) knowledge. So, in a domain ontology,
we do not capture task knowledge. To deal with domain
functionality, we are studying task ontologies and how to
integrate them with domain ontologies in a more general
reuse approach.

• Most methods do not define formal axioms to constrain the
interpretation of terms. The feature model in FeatuRSEB, for
example, resembles a data dictionary. In ODE, we advocate
that formal axioms must be explicitly defined. This is very
important for automated tools.

KMetric

quantification()

KMeasurableQC

quantification()

0..*

1

0..*

1

Knowledge

name
description

KArtifact

relevance()

IWhole

whole() : Whole

<<I nterface>>

IPart

part() : Part

<<Interface>>

Whole

part : Set
KNonMeasurableQC

subQC() : Set

KQualityCharacteristic

isProductQC : boolean

superQC() : Set
relevance() : Set
part() : Part
addSuperQC() : boolean

0..*

1..*

0..*

1..*

0..* 0.. * 0..* 0..*

Part

whole : Set

• In ODE, we are most interested in capturing domain
conceptualizations. So, a model of concepts is the main
output of ODE’s domain analysis step. We do not explicitly
treat features. As ODM, we think that features can be
described as properties and axioms (conditions in ODM’s
vocabulary).

There are also several works that are related to some part of our
approach. Uschold and King [17] proposed what they called “a
skeletal methodology for building ontologies”, defining a small
number of stages that they believed would be required for any
future comprehensive methodology. In this sense, the method here
proposed followed some of their guidelines and stretched it
towards a more systematic approach for building ontologies. In
[18] a set of design patterns for constraint representation in
JavaBeans components is presented. Constraints are equivalent to
what we call consolidation axioms and our approach to implement
these axioms is also based on design patterns. However, these
axioms represent only a subset of the knowledge that must be
made explicit at the ontological level. Thus we need other
mechanisms to capture, for example, ontological axioms, such as
the transformation rules we have proposed.

6. CONCLUSIONS
Ontologies have great potential to be used as a domain model. In
this paper we presented ODE, an ontological approach to domain
engineering, matching ontologies and objects, and we showed its
application in software quality domain. We argue that using ODE,
we can put ontologies in practice. We have tested ODE in
different domains and we have obtained good results.
Since several steps of ODE can be at least partially supported by
automated tools, we are working on a tool, an ontology editor,
that supports ODE.

7. REFERENCES
[1] R.S. Pressman, "Software Engineering: A Practitioner's

Approach", 5th Edition, New York: McGraw-Hill, 2000.

[2] G. Arango, “Domain Analysis - From Art Form to
Engineering Discipline”, in Proc. of the 5th Int’l Workshop
on Software Specification and Design, CS Press, Los
Alamitos, California, USA, pp.152-159, 1989.

[3] G. Arango, R. Prieto-Diaz, “Domain Analysis Concepts and
Research Directions”, in Domain Analysis and Software
Systems Modeling, IEEE Computer Society Press, 1991.

[4] M. Uschold, “Knowledge level modelling: concepts and
terminology”, Knowledge Engineering Review, vol. 13, no.
1, 1998.

[5] R.A. Falbo, C.S. Menezes, and A.R.C. Rocha, “A Systematic
Approach for Building Ontologies”, in Proceedings of the
IBERAMIA’98, Lisbon, Portugal, 1998.

[6] R. Jasper, and M. Uschold, “A Framework for Understanding
and Classifying Ontology Applications”, in Proc. of the 12th
Workshop on Knowledge Acquisition, Modeling and
Management (KAW’99), Canada, 1999.

[7] M. Grüninger and M.S. Fox, “Methodology for the Design
and Evaluation of Ontologies”, Technical Report, University
of Toronto, April 1995.

[8] W.N. Borst, "Construction of Engineering Ontologies for
Knowledge Sharing and Reuse", PhD Thesis, University of
Twente, Enschede, The Netherlands, 1997.

[9] S. Cranefield and M. Purvis, “UML as an Ontology
Modelling Language”, in Proc. of the IJCAI’99 Workshop
on Intelligent Information Integration, Sweden, 1999.

[10] T.R. Gruber; “Towards principles for the design of
ontologies used for knowledge sharing”, Int. Journal of
Human-Computer Studies, vol. 43, no. 5/6, 1995.

[11] A.S.Evans and S.Kent, “Meta-modelling semantics of UML:
the pUML approach”, in Proc. of the 2nd International
Conference on the Unified Modeling Language. Editors:
B.Rumpe and R.B.France, Colorado, LNCS 1723, 1999.

[12] G. Guizzardi, R. A. Falbo and J.G. Pereira Filho, “Using
Objects and Patterns to Implement Domain Ontologies”, in
Proc. of the 15th Brazilian Symposium on Software
Engineering, Rio de Janeiro, Brazil, 2001.

[13] K. Kang, S. Cohen, et al. Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-
TR-21, SEI, Pittsburgh, 1990.

[14] M. Simos and J. Anthony, “Weaving the Model Web: A
Multi-Modeling Approach to Concepts and Features in
Domain Engineering”, Proc. 5th Int’l Conference on Software
Reuse, Victoria, Canada, 1998.

[15] M. Griss, J. Favaro, and M. Alessandro, “Integrating Feature
Modeling with the RSEB”, Proc. 5th Int’l Conference on
Software Reuse, Victoria, Canada, 1998.

[16] N. Guarino, “Understanding, building and using ontologies”,
Int. Journal Human-Computer Studies, v. 45, n. 2/3
(Feb/Mar) 1997.

[17] M. Uschold and M. King, “Towards a Methodology for
Building Ontologies”, in Proc. Workshop on Basic
Ontological Issues in Knowledge Sharing, IJCAI’95, 1995.

[18] H. Knublauch, M. Sedlmayr and T. Rose, “Design Patterns
for the Implementation of Constraints on JavaBeans”, in
Proc. of the Net Object Days 2000, Erfurt, Germany, 2000.

	INTRODUCTION
	DOMAIN ENGINEERING AND ONTOLOGIES
	ONTOLOGY-BASED DOMAIN ENGINEERING
	A Systematic Approach for Building Ontologies
	From Domain Ontologies to Objects

	APPLYING ODE IN SOFTWARE QUALITY DOMAIN
	A Software Quality Ontology
	Object-based Domain Reuse Infrastructure

	RELATED WORK
	CONCLUSIONS
	REFERENCES

