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Abstract

Software systems have an increasing value in our lives, as our society relies

on them for the numerous services they provide. However, as our need for larger

and more complex software systems grows, the risks involved in their operation

also grows, with possible consequences in terms of significant material and so-

cial losses. The rational management of software defects and possible failures

is a fundamental requirement for a mature software industry. Standards, pro-

fessional guides and capability models directly emphasize how important it is

for an organization to know and to have a well-established history of failures,

errors and defects as they occur in software activities. The problem is that each

of these reference models employs its own vocabulary to deal with these phe-

nomena, which can lead to a deficiency in the understanding of these notions

by software engineers, causing potential interoperability problems between sup-

porting tools, and, consequently, a poorer adoption of these standards and tools

in practice. In this paper, we address this problem of the lack of a consensual

conceptualization in this area by proposing two reference conceptual models: an

Ontology of Software Defects, Errors and Failures (OSDEF), which takes into

account an ecosystem of software artifacts, and a Reference Ontology of Software

Systems (ROSS), which characterizes software systems and related artifacts at
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different levels of abstraction. Moreover, we use OSDEF and ROSS to perform

an ontological analysis of the impact of defects, errors and failures of software

systems from a risk analysis perspective. To do that, we employee an existing

core ontology, namely, the Common Ontology of Value and Risk (COVR). The

ontologies presented here are grounded on the Unified Foundational Ontology

(UFO) and based on well-known and widely-accepted standards, professional

and scientific guides and capability models. We demonstrate how this approach

can suitably promote conceptual clarification and terminological harmonization

in this area.

Keywords: Software Defects, Errors and Failures, Ontological Foundations of

Software Systems, Conceptual Modeling, Methods and Methodologies,

Software System Risk, Unified Foundational Ontology (UFO)

1. Introduction

Software plays an essential role in modern society and it has become indis-

pensable in many contexts of our lives, such as social, business, and personal

contexts. This essential role motivates a number of research initiatives aimed at

understanding the nature of software, and its relation to us. A shared conception5

in those initiatives is that software is a complex (social) artifact [1, 2, 3]. This

notion comes from the fact that a modern software system can be understood

as the combination of a series of interacting elements, specifically organized to

provide a set of functionalities to fulfill particular human purposes [4, 5]. More-

over, software is constantly growing, not only in simple measures such as the10

number of lines of code, but also according to other factors, like complexity,

criticality and degree of heterogeneity [6]. This makes it harder and more costly

to maintain and evolve software, and this may be the starting point for many

problems in the software life-cycle.

Besides its importance in our society, software is special also because it is15

capable of existing through time, being replicated millions of times and having

dozens of different versions while still maintaining its identity [2]. A classic
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example of these intrinsic properties can be observed in Microsoft Windows,

an operating system that has been created over 30 years ago, received many

updates and was released under many different versions, but still maintains its20

identity as Microsoft’s operating system.

Despite their special properties, software systems are still artifacts, suscep-

tible to failures, defects and faults that can range from having a small impact

to being critical, thus, potentially causing significant material and social losses.

Concepts such as problem, anomaly, bug and glitch are usually treated indis-25

tinctly, while potentially having different ontological semantics. This informal

use, as common and practical as it may be in our daily conversations, can be the

source of ambiguity and false-agreement problems, since the concept anomaly

is frequently overloaded, thus, referring to entities with distinct ontological na-

tures. In a more formal environment, this construct overload may lead to com-30

munication problems and losses. Because of that, and as defended in scientific

literature, international standards and maturity models, it is important to have

a precise way of classifying different types of software anomalies.

For example, the Guide to Software Engineering Body of Knowledge (SWE-

BoK) [5] emphasizes the need of a consensus about anomaly characterization,35

and discusses how a well-founded classification could be used in audits and

product reviews. Moreover, the CMMI [7] model advocates that organizations

should create or reuse some form of classification method for defects and fail-

ures. It also suggests the use of a defect density index for many work products

that are part of the software development process.40

A proper classification scheme can enable the development of different types

of anomaly profiles that can be produced as an indicator of product quality.

Also, systematically classifying software anomalies that may occur at design-

time or runtime is a rich source of data that can be used to improve processes

and avoid the occurrence of anomalies in future projects [8]. Finally, defects,45

faults and failures have a negative impact on important aspects of software, such

as reliability, efficiency, overall cost and, ultimately, lifespan. Hence, a better

understanding of the ontological nature of these concepts and how they relate
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to other software artifacts (e.g. requirements, change requests, reports and tests

cases) can improve the way an organization deals with these issues, ultimately50

reducing costs with activities such as configuration management and software

maintenance.

Although there are some proposals for classifying different terms for software

anomalies, there is no reference model or theory that elaborates on the nature

of different software anomalies. In other words, to the best of our knowledge,55

there is no proper reference ontology [9] focused on representing software defects,

errors and failures. In order to address this gap, we propose a reference Ontology

of Software Defects, Errors and Failures (OSDEF ). This ontology takes into

account different types of anomalies that may exist in software-related artifacts

and that are recurrently mentioned in the set of the most relevant standards in60

the area. Furthermore, we recognize the importance of analyzing such anomalies

in terms of the risk their presence ensues to software systems and, in particular,

to these systems as bearers of value to some agent. In order to do that, we

needed to elaborate on the relation between software systems and other software

artifacts at different levels of abstraction. For this, we developed a Reference65

Ontology on Software Systems (ROSS). OSDEF and ROSS are then analyzed

from this risk analysis perspective by leveraging on the Common Ontology of

Value and Risk (COVR) [10].

OSDEF and ROSS are developed following the process defined by the Sys-

tematic Approach for Building Ontologies (SABiO) [11] and grounded on the70

Unified Foundational Ontology (UFO) [12, 13], including UFO’s Ontology of

Events (UFO-B) [14, 15]. In order to elicit consensual information about the

domain, we analyze relevant standards, guides and capability models such as

CMMI [7], SWEBoK [5], IEEE Standard Classification for Software Anomalies

[8], IEEE Standard for System, Software, and Hardware Verification and Vali-75

dation [16], as well as complementary current Software Engineering literature.

Finally, the ontologies are evaluated by verification and validation techniques

recommended by SABiO.

This paper is an extended version of [17]. In this version, we present as orig-
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inal contributions: an extension of the original OSDEF ontology to incorporate80

the notion of run-time vulnerabilities, which inhere in loaded program copies

as opposed to programs; the Reference Ontology on Software Systems (ROSS);

an ontological analysis of three famous cases of software failures. The latter is

done by instantiating them with the concepts from OSDEF, ROSS and the risk

analysis perspective provided by COVR.85

The remainder of this paper is structured as follows. Section 2 briefly

presents the foundations used for developing the ontologies proposed in this

work. In that section, we briefly introduce the reader to: the SABiO method,

the foundational ontology UFO, and three core ontologies, namely, COVR,

but also the Software Process Ontology (SPO) [18] and the Software Ontol-90

ogy (SwO) [19]). The last two ontologies have been reused to create OSDEF

and ROSS. OSDEF and ROSS are presented in Sections 3 and 4, respectively.

Section 5 evaluates the proposed ontologies That section also presents the in-

stantiation of ROSS and OSDEF from a risk analysis perspective by reusing

them in combination with COVR. Section 6 discusses related work. Finally,95

Section 7 concludes the paper by presenting some final considerations.

2. Ontological Foundations

This section presents the ontological foundations used by the reference mod-

els proposed in this article. Subsection 2.1 presents a fragment of UFO that

is germane to purposes of this work. Subsection 2.2 presents SPO and SwO,100

ontologies focused on the software domain that were reused. Subsection 2.3,

presents COVR, the Common Ontology of Value and Risk, a domain ontology

that allows us to analyze the impact of software defects, errors and failures un-

der a value and risk perspective. Finally, Subsection 2.4 presents SABiO, the

ontology engineering method adopted for the development of this work.105

2.1. The Unified Foundational Ontology (UFO)

We ground the ontologies presented in this article on UFO [14, 12, 9]. This

choice is motivated by the following: (i) UFO’s foundational categories address
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Figure 1: Fragment of UFO showing Events, Agents and Objects.

many essential aspects for the conceptual modeling of the intended domain, in-

cluding concepts like events, dispositions and situations; (ii) UFO has a positive110

track record in being able to successfully address different phenomena in Soft-

ware Engineering [20, 21, 22]; (iii) a recent study shows that UFO is among the

most used Foundational Ontologies in Conceptual Modeling and the one with a

fastest growing rate of adoption [23]. By adopting a foundational ontology that

is frequently used, we increase the reusability of this work, also facilitating its115

future integration in ontology networks in software engineering [24].

UFO is composed of three main parts: UFO-A, an ontology of endurants [12];

UFO-B, an ontology of perdurants/events [14]; and UFO-C, an ontology of so-

cial entities (both endurants and perdurants) built on top of UFO-A and UFO-

B [21]. Figure 1 presents a fragment of UFO that contains the categories that120

are essential for the purpose of this article. UFO has been formally character-

ized in [12, 25, 26, 15]. Its representation as UML diagrams is used here for

illustration/communication purposes only.

Particulars are (unique) Individuals that can be abstract or concrete, depend-

ing on their nature. Endurants and Perdurants are Concrete Particulars, i.e., enti-125

ties that exist in time and space possessing a unique identity. Endurants do not
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have temporal parts, but are able to change in a qualitative manner while keep-

ing their identity (e.g., a person). Perdurants (or Events, occurrences, processes),

are composed by temporal parts (e.g., a trip): they exist in time, accumulating

temporal parts and, unlike Endurants, they are immutable, i.e., cannot change130

any of their properties; cannot be different from what they are [14, 27]. More-

over, Events are transformations from a portion of reality to another, which

means that when a Situation S triggers an Event E, E can bring about another

Situation S′. Finally, Events can cause other Events. This causality relation is a

strict partial order (irreflexive, asymmetric and transitive) relation [15].135

Actions are Events that are performed by Agents (persons, organizations or

teams) with the specific purpose of satisfying intentions of that Agent. However,

if the agent’s intentions are based on the wrong assumptions, they can lead

to problems, i.e., they can bring about situations that do not satisfy (or that

even dent) the goals (i.e., propositional content) of the intention that motivated140

that action. Moments (also called aspects, or reified properties) are existentially

dependent entities. This means that they need to inhere in other Concrete

Particulars in order to exist. For example, if a person (as an Agent) or a chair

(Object) ceases to exist, their Moments (e.g., the Beliefs and Intentions of that

person, the texture, a bump or a scratch on that chair) will also disappear.145

Dispositions are a special type of Moment that are only manifested in certain

Situations and that can fail to be manifested. When Dispositions are manifested,

they do so via the occurrence of an Event [14]. Examples of Dispositions are

the capacity of a magnet to attract metallic material, or John’s competence

for playing guitar. Situations are complex Endurants that are constituted by150

possibly many Endurants (including other situations). Situations are portions of

reality that can be comprehended as a whole. See [28, 14] for a deeper discussion

about Events, Situations and Moments (including Dispositions).

2.2. The Software Process Ontology (SPO) and the Software Ontology (SwO)

For OSDEF and ROSS, we reuse the following concepts defined in the Soft-155

ware Process Ontology (SPO) [18]: Software Artifacts, which are objects in-
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tentionally made to serve a given purpose in the context of a software project

or organization; Stakeholders, which are Agents (a single person, a group or an

organization) interested or affected by the software process activities or their re-

sults, eventually being responsible for them (e.g., a user or a development team);160

Hardware Equipment (including Machine), which are physical objects used for

running software programs or to support some related action (e.g., a computer

or a tablet).

From the Software Ontology (SwO), which is depicted in Figure 2 we reuse

the concept of Program [19].1 A Program is an (Abstract) Artifact that is con-165

stituted by code but which is not identical to a code. In contrast, a Program

owes its identity principle to a Program Specification, which the Program intends

to implement. Besides, Programs are considered abstract because they are not

physical objects, like a printer or a circuit board, although they are artifacts

created for a specific purpose. A Program, when loaded inside a Machine, as a170

Loaded Program Copy, can be executed, a Program Copy Execution, in order to

produce an expected result and to fulfill its given purpose. The Program Copy

Execution is defined an Event that brings about Observable State result inside the

Machine. Finally, Programs can be aggregated to constitute Software Systems.

2.3. Common Ontology of Value and Risk (COVR)175

The Common Ontology of Value and Risk (COVR) [10] provides a rigor-

ous ontological analysis of Events, Objects, Qualities, Situations and relations

that can be used to characterize the notion of risk. The ontology is based on

three domain-independent perspectives: (i) the experiential perspective, which

represents both value and risk as events with their causes; (ii) the relational180

perspective, which presents the relational nature of value and risk; and (iii) the

quantitative perspective, which presents value and risk in terms of mensurable

qualities. COVR sees risk as intrinsically connected to the notion of value, in

1SwO reuses a fragment of SPO. The classes depicted in green in this figure are the SPO

classes specialized by that ontology.
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Figure 2: SwO Conceptual Model [19].

a way that risk assessment is seen as a particular case of value ascription. In

other words, the authors conceptualize value and risk as two sides of the same185

coin, thus, sharing intrinsic properties such as goal dependency2 and relativity.3

Furthermore, the authors present and discuss different types of value and risk

based on these intrinsic properties. Finally, it is important to mention that

since COVR also is grounded in UFO, we can reuse it with a reduced effort.

Figures 3 and 44 show two fragments of COVR that constitute its expe-190

2Roughly, value is related to the degree to which certain properties of the object can be

enacted to satisfy one’s goals. Analogously, the risk incurred to an object is roughly the

degree to which its vulnerabilities together with the capacities (and possibly, intentions) of a

threatening entity can be enacted to end one’s goals. Moreover, risk is always the risk of the

destruction of value.
3Value and risk are always defined in relation to one’s goals. As a consequence, they are

always relative notions.
4Figures 3 and 4 are shown here exactly as in the original article, i.e., using the OntoUML

language as well as a color code often used by that community. OntoUML is a UFO-based

conceptual modeling language [12]. In this color code, light red classes represent Endurant

types; blue classes represent Intrinsic Moment types; yellow classes represent Event types;
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Figure 3: Fragment of COVR presenting the concept of Value Event and their relations [10].

Figure 4: Fragment of COVR presenting the concept of Risk Event and their relations [10].

riential perspective. As these figures show, Value (also Risk) Events can be

decomposed into “smaller” events, all of which constitute the Value (Risk) Expe-

riences of an Agent. Value and Risk can be ascribed to Objects, which then play

the roles of Value Objects and Objects at Risk, respectively. They can also be as-

cribed to experiences (Events) focused on the relevant qualities and dispositions195

of these Objects. Other Objects that are not the focuses of these experiences can

also participate in the Value and Risk Events as Value (Risk) Enablers. Finally,

the central risk domain elements in COVR are specializations of the general cat-

egories of Events, Dispositions, Agents, Objects, and Situations organized around

the same ontological pattern that is used here as a basis for OSDEF, namely,200

the Events as Manifestations of Object Dispositions pattern [14].

finally, orange classes represent Situation types.
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2.4. Systematic Approach to Building Ontologies (SABiO)

The Systematic Approach to Building Ontologies (SABiO) [11] is a method

for building domain ontologies [9] that incorporates best practices from Soft-

ware Engineering and Ontology Engineering. We chose SABiO as the ontol-205

ogy engineering method for the development of ROSS and OSDEF because it

is focuses on the development of domain ontologies. Besides, SABiO explic-

itly recognizes the importance of using foundational ontologies in the ontology

development process to improve the ontology quality. Additionally, SABiO

has been successfully used in the development of several domain ontologies in210

Software Engineering, such as the Software Process Ontology (SPO) [20], the

Software Ontology (SwO) [19] and the Reference Ontology of Software Testing

(ROoST) [29], among other ontologies developed in the context of SEON, a

Software Engineering Ontology Network [24]. SABiO also provides support and

facilitates the reuse of those ontologies, which is very helpful, as we intend to215

reuse concepts of already established ontologies for the software domain.

Figure 5 depicts the five phases of SABiO and the support activities that

comprise the method. SABiO’s development process is composed of five main

phases: (1) purpose identification and requirements elicitation; (2) ontology cap-

ture and formalization; (3) operational ontology design; (4) operational ontology220

implementation; and (5) testing. Furthermore, these phases are supported by

well-known activities in the Requirements Engineering life-cycle, e.g., knowledge

acquisition, reuse, configuration management, evaluation, and documentation.

Finally, since the main objective for this work is to produce domain reference

ontologies as conceptual models, we focus on the first two phases of SABiO. The225

codification of the operational versions of OSDEF and ROSS shall be addressed

in a complementary work. These operational ontologies, in turn, shall allow us

to reason over requirements-data5 produced during a software system life-cycle.

5E.g., software system requirements and other information items, such as test cases, faults

and failures reports, and configuration management data produced during the development

and the operation of a software system.
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Figure 5: SABiO’s process [11].

3. An Ontology of Software Defects, Errors and Failures

As previously mentioned, the term anomaly is commonly used to refer to a230

variety of notions of distinct ontological nature. To target this problem, OS-

DEF provides an ontological conceptualization of the different types of software

anomalies that exist throughout the software life-cycle. To elaborate on these

different types of anomalies, we formulate a set of Competency Questions (CQ),

i.e., questions that the ontology should be able to answer [30].235

In a Requirements Engineering perspective, CQs are analogous to the func-

tional requirements of the ontology [11]. Moreover, CQs help to refine the scope

of the ontology and can also be used in the ontology verification process. For

OSDEF, CQs were conceived and refined in a highly-interactive way, through

analysis of the international standards mentioned in Section 1 and through sev-240

eral meetings with ontology experts. These CQs are listed below:

• CQ1: What is a failure?

• CQ2: What is a defect?

• CQ3: What is a fault?

• CQ4: What is an error?245
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Figure 6: Conceptual Model of the Ontology of Software Defects, Errors and Failures.

• CQ5: What is a usage limit?

• CQ6: In which type of situation can a failure occur?

• CQ7: What are the situations that result from failure?

• CQ8: What are the cases of failures?

Figure 6 depicts the conceptual model of OSDEF. The central concept of our250

ontology is Failure, since it is the occurrence of a failure that is usually perceived

by an agent operating the software system. As defined in standards [8, 16, 4]

and employed in general in the scientific literature [31], Failures are Perdurants

(Events). In that respect, the conceptual basis provided by UFO can help us to

understand how failures occur as events during the execution of software. In a255

software context, a Failure is defined as an event in which a program does not

perform as it is intended to, i.e., an event that negatively impacts these relevant

goals of stakeholders that motivated the creation of that software [32]. As

Events, Failures can cause other Failures in a chain of Events (e.g., a severe failure

in a web server such as Apache httpd can make all of its hosted applications260

undergo subsequent failures). As defined in UFO [14], causation is a relation

of strict partial order and, hence, failures cannot be their own causes or causes
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of their causes but failures can (perhaps, indirectly) trigger other failures in a

chain of causation.

As Events, Failures are directly related to two distinct Situations. The first265

one is the Situation that exists prior to the occurrence of that Failure and that

triggers the Failure. This Situation is represented in the ontology as a Vulnerable

State and denotes the situation that activates the Disposition (i.e., a Vulnerability)

that will be manifested in that Failure. The second one is the situation that is

brought about by the occurrence of the Failure, which is defined in the ontology270

as the Failure State, i.e., a situation that hurts the intentions of stakeholders..

Although it is out of the scope of this ontology to provide vocabulary for the

classification of post-failure situations, we note that Failure States can be: tran-

sient — when a failure happens but the software system is capable of recovering

itself; continued — when after the occurrence of the failure the Failure State275

becomes permanent, or at least perduring until some action is taken in order

to bring the software system back to a state in which it is capable to properly

execute its functions. Failures can also be classified by other properties, such as

severity, effect and how it is capable to affect a Software System. This concepts

are discussed in Section 4280

Failures are further refined in two distinct subtypes: Fault Manifestation Fail-

ures and User-Generated Failures. The former are Failures that are manifestations

of Faults; the latter are Failures that are directly caused by User Actions.

A Vulnerability 6 represents the Dispositions that can exist in software arti-

facts or in hardware equipment. This notion is then specialized in two distinct285

generalization sets. The first represents the types of Dispositions that can be

activated and manifest Failures: Defects and Usage Limit Vulnerabilities. The

second one represents the types of entities in which those Dispositions inhere: a

6The notion of vulnerability is frequently used in a way that is restricted to defects that

can be exploited by attacks. We take a more general Risk Management view [33, 10] of

vulnerabilities as Dispositions that can be manifested by events that can hurt stakeholder’s

goals [32] or diminish something’s value [10].
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Hardware Vulnerability inheres in a Hardware Equipment, while a Loaded Program

Vulnerability inheres in a Loaded Program Copy. Besides, it is also important290

to understand that hardware and software vulnerabilities are very different in

nature. As a Hardware Equipment is essentially a physical Artifact, an existing

Vulnerability can be manifested at any time. On the other side, as Programs are

Abstract Artifacts 7 a program-related Vulnerability can only be manifested if the

program is loaded inside the memory of a Machine, namely, if it inheres in inside295

a Loaded Program Copy.

A Defect is a common type of Vulnerability that can exist in physical artifacts

(e.g., Hardware Equipments), in the source code of a Program and even in the

Loaded Programs Copies inhering in a Machine. It is defined by the Standard

Classification for Software Anomalies [8] as an imperfection in a work product300

(WP) where that WP does not meet its specification and needs to be repaired or

replaced. What this and other definitions in the literature [5] have in common

is that Defects are understood as properties of Endurants. However, differently

from intrinsic moments that are always manifest, i.e., qualities (e.g., the color

of a wall), Defects, as Vulnerabilities may never be activated and, consequently,305

never be manifested into Failures. This means that a Vulnerability can exists in-

side a Loaded Program Copy for a long time, until it is activated and manifested.

For example, in one of the most famous of theses cases, the “Dirty Copy on

Write” [34] Vulnerability existed inside Linux Kernel for over nine years, until

a researcher discovered that it could be exploited to grant root access to an310

attacker with malicious intentions.

Defects can exist throughout the entire software life-cycle [35]. As previously

mentioned, some Defects can (contingently) refrain from being manifested across

software executions. When a Defect is manifested as a Failure, we term that

Defect a Fault (Runtime Defect). A Fault, hence, can be seen as a role played by315

a Defect in relation to a Failure. Furthermore, we countenance the occurrence of

Failures that are directly caused by User actions. In this scenario, a User performs

7The definition of Program as an Abstract Artifact is discussed in Section2.2
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an Erroneous User Action that causes a User-Generated Failure. In other words,

we name an Erroneous User Action a User action that causes such a Failure.

As discussed in [36], software artifacts are designed taking into consideration320

Domain Assumptions. When a software artifact makes incorrect assumptions

about the environment in which it will execute, we consider this a Program

Defect. However, there are cases in which the software makes explicitly defined

assumptions (disclaimers, usage guidelines), which are neglected by users in

their actions. In this case, it is the Erroneous User Action itself that is the cause325

of the Failure.

As discussed in [37], events (including Failures) are polygenic entities that can

result from the interaction of multiple dispositions. For instance, we take that a

User-Generated Failure can be caused by a combination of certain dispositions of a

software system combined with certain Mental Moments of Agents. These mental330

moments include Beliefs (including User False Beliefs about domain assumptions)

as well as Intentions (including User Malicious Intentions). A particular case of a

User-Generated Failure, is one in which this Usage Limit Vulnerability is exploited

in an intentional malicious manner, in what is termed an attack (e.g., a User

with Malicious Intentions can make a Web server fail with a Distributed Denial335

of Service attack). In this case, the server that is being attacked has no Defect

(and, hence, no Fault). This server just has a limited number of requests that

it can answer in a period of time (a capacity, which is a type of disposition). If

this number is exceeded for a long period, all system resources will be consumed

and the server will experience an Intentional User-generated Failure. This failure340

can be as simple as a denial of service due to lack of resources, or as critical

as a full system crash. In a different scenario, a Non-intentional User-generated

Failure can stem from the User False Belief of a collective of users simultaneously

accessing the system (e.g., as on Nike’s website during the 2017 Black Friday).
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4. A Reference Ontology of Software Systems345

As mentioned in Section 1, Software Systems are complex abstract artifacts

that can be composed by elements with distinct natures. In this section we

present the Reference Ontology of Software Systems (ROSS). ROSS character-

izes such software systems and the artifacts related to them at different levels

of abstraction.350

In their seminal work, Pamela Zave and Michael Jackson [38] discuss what

they term “the four dark corners of Requirements Engineering (RE)”. In doing

so, they clarify certain aspects of nature of RE, and demonstrate the impor-

tance of certain information items that are often neglected in that discipline. In

that paper, they proposed the following (by now, well-known) formula S,A ` R,355

which is meant to capture that in order to fulfill a set of requirements (R) are

satisfied by a specification (S) associated with a set of domain assumptions (A).

Later on [39], the formula was improved to take into account other software arti-

facts of relevance, such as the Machine (M), as the programming platform, and

the Program (P ), as the unity that is intended to implement the specification.360

In a previous work [19], we adopted Zave and Jackson’s contributions, to-

gether with the ontology of Software Artifacts proposed by Wang et al. [1, 2] to

develop the Software Ontology (SwO) and the Reference Software Requirements

Ontology (RSRO). SwO and RSRO are two reference ontologies created with

the purpose of being reused for the development of a more specific ontology,365

the Runtime Requirements Ontology (RRO) [40, 19]. RRO, in its turn, aims

at serving as a conceptual reference for the creation and the interoperability

of requirements at runtime frameworks and methods. However, as prescribed

in SABiO [11] (which was used in their development), SwO and RSRO were

designed in a general manner, containing only the concepts necessary for sup-370

porting extensions like RRO. As such, they neither contemplate socio-technical

aspects of software systems nor some of their aspects as multi-artifact entities [1].

However, these aspects are central for explaining how defects, errors and

failures impact software systems from a risk analysis perspective, in particular,
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due to the connection between (societal) risks and values. For example, they375

are needed to characterize the context in which software systems exists and

operate as well as the impact caused by failure events (in the sense described in

OSDEF). With this in mind, we developed the Reference Ontology of Software

Systems (ROSS), a domain reference model and knowledge representation tool

for software systems that reuses and complements these previous works. ROSS380

is based on widely accepted international standards, such as ISO 29148 [41],

ISO 12207 [42] and SWEBoK [5] but also on Zave and Jackson’s seminal work

on the nature of software requirements [38, 39].

Once more, as prescribed by SABiO, the requirements for this ontology are

expressed as a set of Competency Questions (CQs). The CQs for ROSS were385

produced by the same iterative process used for the CQs of OSDEF. In tandem

with that process, the ontology itself evolved as a sequence of versions following

the process of refining and answering these CQs. The latter are presented in

the sequel:

• CQ1: What are Software Systems?390

• CQ2: How are Software Systems composed?

• CQ3: What are the types of requirements that exist in the Software System

domain?

• CQ4: How are these requirements related?

• CQ5: How are these requirements described?395

• CQ6: What are the types of assumptions that are relevant in the Software

System domain?

• CQ7: How are requirements related to assumptions in the Software System

domain?

• CQ8: What are the constraints on the Software System domain? How400

they impact the Organization and their requirements?
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Figure 7: The Business Layer

To present the ontology, we adopted SABiO’s guidelines on ontology modu-

larization and divided ROSS in three modules. This decision was taken because

the software systems domain itself can be divided in three layers, namely: (i) the

business layer, in which Agents like Organizations and its members formulate405

goals and requirements for achieving these goals; (ii) the software system layer,

that has the purpose of providing requirements for functions able to satisfy the

goals of these business entities, as well as to connect these entities and machines;

and (iii) the Machine layer, in which the machine is able to execute a translation

of a program specification8 to realize these requirements. This division of the410

domain in layers is also used in ISO standards 29148 [41] and 12207 [42].

4.1. Business Layer

The first part of the ontology, depicted in Figure 7, represents the busi-

ness/organization environment in which a software system exists.

Business Requirements are high-level Goals of an Organization towards the415

8The source code of a Program is a translation of a Program Specification to a machine-

readable language.
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system-to-be. To represent the relation between Goals and Agents in ROSS,

we created the has goal relation. In UFO, Goals are Propositions, in particular,

they are the propositional content of an Intention that inheres is an Agent (in our

domain, either an Organization or an Stakeholder). The has goal relation is then

a derived relation associated to the following derivation rule: given a goal G,420

agent A, and intention I, we have that has-goal(A,G) iff G is the propositional

content of an intention inhering in A. This relation also appears in Figure 8,

between Stakeholder Requirement and Stakeholder.

In this contexts, goals represent the main reason for why a project is initi-

ated, what the project intends to achieve, and indicate which metrics can be425

used to measure the project’s success or failure [41]. Furthermore, as goals of

an Agent, Business Requirements are usually described by a requirements speci-

fication or description (a type of Artifact) which is used, traced and maintained

by the Organization). This Information Item (see Figure 2) is named Business

Requirements Specification (BRS) and, as a product of the system development430

process, it is created very early and will exist during the entire life-cycle of the

system.

Moreover, although specifications are usually defined (mainly in textbooks)

as document-type artifacts, they are not, necessarily, formal, documented de-

scriptions of requirements. For example, the description of the daily routine435

of an organization’s office is a frequent source of requirements, embedded with

World Assumptions about the domain of the system-to-be. These assumptions

will be further discussed in this work. They may or may not be explicit during

the system development process. Zave and Jackson [38] defend that Assumptions

should be treated as first class citizens in every software system project, being440

documented and managed as any other configuration item. Based on this, Wang

et al. [36] proposed a small ontology of assumptions, which is being reused in

ROSS with the prefix ASMP. In other words, a specification is a description of

requirements based on a set of assumptions, i.e., different assumptions will result

in different specifications and, if the assumptions are incorrect or incomplete,445

the specification might not be able to properly describe the requirements.
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Business Requirements, are constrained by Business Constraints, which are

Normative Descriptions recognized by the Organization. In our ontology, we de-

fine two types of Business Constraints: Business Rules and External Regulations.

In this domain, Business Rules are Normative Descriptions that define a policy,450

guideline or practice that constrains some aspects of a business project and its

intended results. Business Rules are not requirements themselves, but they can

be the origin/act as constraints of several types of requirements [43]. For ex-

ample, a software-factory organization that has the internal policy of producing

applications that are optimized for certain type of platform will have to create455

and implement specific requirements to satisfy this rule.

External Regulations are Normative Descriptions that exist outside of the or-

ganizational environment and that cannot be controlled by it. As examples we

can mention laws, business and engineering standards, market trends and even

external interface requirements. In a way analogous to Business Rules, External460

Regulations are important to all types of Organization, because they are capable

of constraining the Business Requirements. In line with CMMI [7], we argue that

the relationships between higher-level Business Requirements and the Normative

Descriptions that exist around (Business Rules) and over (External Regulations)

them are extremely important and must be traced and maintained during the465

entire software life-cycle.

As Business Requirements are high-level goals [41], they tend to be far from

particular implementable solutions. For example, an Organization that desires

to improve team productivity by reducing their dependence on spreadsheets as

a team management tool may decide to build their own team tool, or acquire470

one. At this point, the Organization is able to formulate a desired state of

affairs, without necessarily committing to what what solution to implement. If

they decide to create their own tool, a software system project will be initiated.

Because of this “distance” that exists between the initial need and the domain

of the solution, a more concrete (refined) requirement closer to the solution475

domain must be formulated.

Stakeholder Requirements are statements of the needs of a particular Stake-
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holder or a group of stakeholders, which are members of the Organization over

the system-to-be. They represent the needs of a stakeholder and they must

be somehow aligned with business requirements. In other words, Stakeholder480

Requirements can be seen as a stakeholder’s point of view towards an existing

Business Requirements. Finally, as they are more concrete than Business Re-

quirements but still exist in the business level, they serve as a bridge between

Business Requirements and the other types of requirements that are solution-

oriented. Stakeholder Requirements are Goals that are usually described in a485

specific Information Item called a Stakeholder Requirements Specification (StRS).

4.2. Systems Layer

The second part of the ontology, depicted in Figure 8, is centered around

the concept of Software System, which acts as an interface between the Machine

and the Environment. In their work, Zave and Jackson [38] briefly define a490

Software System as a general artifact with manual, automatic and even abstract

(data) components, separating it from the concept of Machine. In a more gen-

eral definition, Software System is defined by ISO 24765 [4] as a combination of

interacting elements organized to achieve one or more stated purposes. SWE-

BoK extends this definition by explaining the concept of Software System as495

a complex and heterogeneous artifact, as it can be composed by many System

Elements, such as software, hardware, firmware, people, data and even other

systems.

From an ontological point of view, software systems are complex social Ar-

tifacts, composed of other artifacts as System Components. System Components500

in turn, can be either System Elements or other (sub)systems.

For example, Microsoft Windows 10 is an (operating) system composed by

many subsystems, such as the memory-management system, the user interface

and the security system.

System Elements are also artifacts that are used by Software Systems dur-505

ing their operation, such as Programs or Hardware Equipment, such as servers,

sensors or peripherals.
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Figure 8: The System layer and the notion of Software System

Furthermore, the notion of software proposed here, in line with [2, 19], allows

for a software systems to be composed by many artifacts that exist in different

levels of abstraction, each with its own identity and purpose. As discussed by510

these authors, the simple term “software” is heavily overloaded. Moreover, Soft-

ware Systems and Programs are Individuals, which, however, in a sense “behave

like types” given that they can be made repeatable in various copies. For exam-

ple, Microsoft Outlook is Microsoft’s well-known mailing software that, as an

Individual, has properties and an unique identity, which makes it different from515

another individual of the same type (E-mail Client Software, e.g., Mozilla Thun-

derbird). Nonetheless, it can share a number of properties with their copies, in

a way that is analogous to how individuals of the same type share the same

properties, each of which, however, having a unique identity.

As a type of software Artifact [20], Software Systems are also developed based520

upon a set of requirements. System Requirements are solution-oriented Goals for

the system-of-interest, which are based on background information about the

high-level objectives to be achieved by a solution [41]. System Requirements are

different from Business Requirements and Stakeholder Requirements since they

exist in a solution perspective, whereas stakeholder and business requirements525

exist in a problem perspective. However, System Requirements are derived from
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Figure 9: The Machine Layer

Stakeholder Requirements. This relation between both types of requirements

provides the connection between the business layer and the system layer.

Furthermore, similarly from their higher-level counterparts, System Require-

ments are described in an Information Item called System Requirements Specifi-530

cation (SyRS) [41]. Moreover, as a software system can be composed by distinct

System Elements, the SyRS compiles, in a technical level, requirements, capa-

bilities and constraints of the system-of-interest as a whole. Because of that, it

depends on two types of assumptions, namely, the World Assumption, that were

previously presented and the Machine Assumption, i.e., an assumption about535

the machine’s internal operations, that are only visible to the machine. In other

words, for the SyRS to be created, it depends on assumptions about the envi-

ronment and about the machine.

4.3. Machine Layer

Finally, the last part of the ontology, presented in Figure 9, represents the540

parts of a software system that exist inside a Machine and is focused on the

concept of Program.

Wang et al. [2] promote an extensive discussion and a reference ontology of
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software artifacts.9 Based on Wang et al.’s work and in order to capture the

complex nature of software, in SwO [19], we argue that a Program is defined545

as an Artifact produced during a software process and having the purpose of

generating a result in the environment, through its execution in a Machine [36].

Moreover, Programs are artifacts constituted by source code, although not being

identical to code. Source code, as a sequence of symbols, can be altered without

changing the identity of the Program. In this context, Programs are System550

Elements related to the Machine. They can only fulfill their purpose when

loaded (as Loaded Program Copy) and executed as Events, called Program Copy

Execution, which occur inside a Machine. Moreover, the purpose of the Program

is directly related to its identity. In a very simple example: changing variable

names changes the set of expressions (i.e. the code of the Program) and it may555

even change how code is loaded inside the Machine, yielding Loaded Program

Copies with different characteristics. This type of change, however, does not

affect the identity of the Program, since it does not affect its requirements [2].

Furthermore, as artifacts produced through a development process, a Pro-

gram intends to implement a Program Requirements Specification that describes560

the Program Requirements related to such Program. In this context, we can say

that the Program10 intends to satisfy the Program Requirements. Program Re-

quirements are the lower-level goals for the part of a system that is commonly

understood as software. In other words, they are solution-oriented goals that

are refined from higher-level requirements, such as stakeholder and system re-565

quirements [41, 5], and are focused on a possible solution for the computational

part of the system-to-be. Figure 10 presents an adaptation of a figure pre-

sented in ISO 29148 [41], depicting how requirements exist in different levels of

abstraction, inside an organization, and how they are derived from high-level

organization needs to solution-specific goals.570

9In line with Wang et al.’s work, we avoid to use the word Software and prefer to use a

specific terms proper to each situation, e.g., Program, Machine or Software System.
10For a deeper discussion about the concept of Program, please see [19].
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Figure 10: Adaptation of an example of requirements scope in a business context. Figure

originally presented in ISO 29148 [41].

Moreover, as mentioned earlier in this section, a Program Specification is not

necessarily a formal document in natural language about requirements. As in

the original formula proposed by Zave and Jackson [38], Program Specification

is heavily related to the assumptions that exist in the context of the Machine.

For example, the source code of a Program is also a type of Program Specifi-575

cation, since it will be derived from the Program Requirements and, because of

that, it will heavily depend on the assumptions (Machine Assumptions that the

developers have towards the programming platform, i.e., the Machine).11 More

precisely, different developers, with different Machine Assumptions will produce

different implementations, which can satisfactory or not achieve the same re-580

quirements.

5. Evaluation

For ontology evaluation, SABiO prescribes that ontologies need to go through

ontology verification and validation techniques. These should be conducted in

a particular manner as described in the sequel.585

11Wang et al. defend that even the ‘plan about a program’ that exists in the mind of the

developer can be considered a type of abstract specification.
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5.1. Ontology Verification

For ontology verification, SABiO states the primary objective is to ensure

that the ontology is being built correctly, in the sense that it has no major

consistency and coherence problems, and that the output artifacts meet the

previously defined specifications. To achieve that, ontology verification should590

be Competency Question-driven, as such questions are used as the requirements

of the ontology. More precisely, the method suggests the creation of a table

that shows that the ontology elements are able to answer all raised competency

questions (CQs).

Table 1 illustrates the results of the OSDEF verification regarding the prede-595

fined CQs. Moreover, the table can also be used as a traceability tool, supporting

ontology change management. The table shows that the ontology can answer

all CQs appropriately.

Table 1: OSDEF verification table based on its CQs

CQ Concepts and Relations

CQ1 Failure is a subtype of Event that brings about a Failure State.

A User-generated Failure is a subtype of Failure is caused by an Erro-

neous User Action stemming from a User False Belief or a User Mali-

cious Intention.

A Fault Manifestation Failure is a subtype of Failure that is manifes-

tation of a Fault (a Runtime Defect).

CQ2 Defect is a subtype of Vulnerability

. Defect inheres in an Endurant

CQ3 Fault is a subtype of Defect which is manifested at runtime via a

Fault Manifestation Failure.

CQ4 Erroneous User Action is a subtype of User Action (Action) that is

performed by a User, which is a subtype of Stakeholder (Agent).

CQ5 Usage Limit Vulnerability is a subtype of Vulnerability that inheres in

an Endurant.
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Program Usage Limit Vulnerability) inheres in a Loaded Program Copy.

Hardware Usage Limit Vulnerability inheres in a Hardware Equipment.

CQ6 Vulnerable State is a subtype of Situation that activates a Fault and

triggers a Failure.

CQ7 Failure State is a subtype of Situation that is brought by a Failure.

CQ8 A Failure can be caused by another Failure, in a chain of Events.

A Vulnerable State can activate a Fault that is manifested into a Fault

Manifestation Failure.

An Erroneous User Action can cause a User-generated Failure, which is

a manifestation of a Usage Limit Vulnerability.

Following, table 2 presents the ROSS verification regarding its competency

questions. Once more, since ROSS is able to adequately respond to all proposed600

CQs, the verification is considered a success.

Table 2: ROSS verification table based on its CQs

CQ Concepts and Relations

CQ1 Software System is a subtype of Artifact.

CQ2 Software System is composed by many System Components, which is

also subtype of Artifact).

A Software System can be developed as with SubSystems or as an

simple system (no Subsystem).

CQ3 Business Requirements, Stakeholder Requirements, System Require-

ments and Program Requirements, are subtypes of Goal.

CQ4 Stakeholder Requirements are derived from Business Requirements.

System Requirements are derived from Stakeholder Requirements.

Program Requirements are derived from Stakeholder Requirements and

from System Requirements.

CQ5 Business Requirements are described in a Business Requirements Spec-

ification, which is a subtype of Information Item.
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Stakeholder Requirements are described in a Stakeholder Requirements

Specification, which is a subtype of Information Item

System Requirements are described in a System Requirements Specifi-

cation, which is a subtype of Information Item.

Program Requirements are described in a Program Requirements Spec-

ification, which is a subtype of Information Item.

CQ6 World Assumptions and Machine Assumptions are subtypes of Dispo-

sitions that are part of the Software System domain.

CQ7 Business Requirements Specification describes a set of Business Re-

quirements based on World Assumptions, which are Propositions about

the World Behavior.

System Requirements Specification describes a set of System Require-

ments based on World Assumptions and Machine Assumptions, which

are, respectively, Propositions about the World and the Machine Be-

haviors.

Program Requirements Specification describes a set of Program Re-

quirements based on Machine Assumptions, which are Propositions

about the Machine Behavior.

CQ8 Business Rules and External Regulations are subtypes of Business Con-

straints, which are recognized by the Organization.

Business Constraints constrains Business Requirements.

5.2. Ontology Validation

For ontology validation, SABiO states that its primary objective is to ensure

that the right ontology is being built. In other words, the ontology must fulfill

its intended purpose. The method suggests that a good and relatively simple605

validation technique is to check if the created reference ontology may be instan-

tiated to represent real-world situations that are related to the domain of the

ontology.

As previously discussed, we want to conduct here a particular type of evalu-
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ation of these two ontologies in terms of their capacities to support the analysis610

of software risks associated with systems’ anomalies. So, in order to do that,

we employed here real-world scenarios of famous cases of software failures. Our

aim is showing that the combination OSDEF, ROSS and COVR is capable of

representing these real-world situations. We choose these specific cases because

they are well-known and well-documented cases of failures of software systems615

that caused major damage. Besides, these cases are also good candidates be-

cause they are not based on software-only systems. More precisely, the described

human actions, hardware-based defects and value-risk situations exemplify sce-

narios that are appropriate for the validation of our proposed domain ontologies.

In what follows, we describe each case and present an instantiation model620

for each of them. These instance-level models have been used as an evalua-

tion technique associated with OntoUML models (e.g., in [10, 44]). The color

scheme used here is the same as the aforementioned OntoUML color conven-

tion12. Moreover, we here abuse the UML class diagram notation in the follow-

ing manner: boxes represent instances of the elements of the ontology; arrows625

represent links; in the lower partition of each of these boxes represent the types

from OSDEF, COVR and ROSS instantiated by each of these elements. This

convention is also used in Figures 12 and Figure 13.

Case 1 (see Figure 1113): the Therac-25 disaster [45]. Therac-25 was

a medical equipment that handled two types of therapy: a low-powered di-630

rect electron beam and a megavolt X-ray mode. The core of the incident was

that the Software System that was responsible for controlling the equipment was

reused from a previous model of the Diagnose Equipment (Hardware Equipment),

in such way that it was missing important upgrades to the existing routines

(parts of Programs that constituted the system) and adequate testing, condi-635

12Orange is used to represent situations; yellow - events; blue - intrinsic moments; light red

- objects.
13Please see [26] for the semantics of historical dependence. Moreover, following the goal-

oriented requirements engineering tradition, we use the relation of break here as an extreme

case of the hurt relation as in [10].
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tions that can be understood as a Vulnerabilities that inhered in those Programs.

The propensity of the system to cause race conditions (Fault), was manifested

into a critical Failure when an operator (Risk Enabler), unconsciously, changed

the therapy mode of the equipment too quickly, causing, instructions for both

treatments to be simultaneously sent to the diagnose equipment. The first in-640

struction to arrive would set the mode for the treatment to be applied (a kind

of fault known as race condition). The consequences were devastating, as pa-

tients (Objects at Risk) expecting to receive an electron-beam, could ended up

receiving the X-ray and because of that, ended up getting sick or even dying

from radiation poisoning. This was an example of a Fault Manifestation Failure645

happening as the manifestation of Fault that caused patients to be exposed to

high doses of radiation (Loss Event). Besides, although the Fault Manifestation

Failure was brought about by a User Action, as the operator quickly changed the

mode of the equipment (this action created a Threatening Situation), it cannot

be considered an Erroneous User Action, since this cannot be considered a user’s650

negligence of stated assumptions. In other words, the operator, as an User of the

Therac-25 Software System, even if unknowingly, participated as a Risk Enabler

for the Failure of the system and being responsible for creating the Mega-volt

X-Ray Activation (a Threat Event for the patient), which in its turn, caused the

Loss Event and brought about Loss Situations where patients ended up dying.655

Case 2 (see Figure 12): in 2013, Spamhaus, a nonprofit professional

protection service in the Web (a Web-based Software System, was the target of

what might have been the largest DDoS attack (Loss Event) in history. Hackers

redirected hundreds of controlled DNS servers (Threat Event), to send up to

300 gigabits of flood data to each server (Hardware Equipment) of the Spamhaus660

Network, with the Intention to suspend the service provided. In this case, the

occurrence of the User-generated Failure is directly related with deliberate Actions

of a group of hackers, acting as Risk Subjects, with User malicious intentions, to

cause a Loss Event and bring about a Loss Situation where the service becomes

unavailable.665

For this case, there was no particular Defect, nor any Fault was activated
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Figure 11: The Therac-25 Case as an instance of OSDEF, COVR and ROSS.

that could end up be manifested into a Failure in the system. As an Artifact,

the Spamhaus Software System had a Usage Limit concerning the number of

service requests to which it could respond. When this limit was far surpassed

by hundreds of hacker-controlled DNS servers, the Spamhaus Service Loaded670

Program Copy was compromised, because of a natural Usage Limit Vulnerability

that inheres in the servers of the network. Consequently, users of the system

(the Value Subjects for the owners of the Spamhaus project), had their Intention

to continue to use the system, also compromised.

Case 3 (see Figure 13): In 1991, during the Gulf War, the Patriot missile-675

system [46] failed to protect US Army Barracks from an incoming Scud missile,

resulting in the death of 28 soldiers, which were the Value Subjects for the system.

The heart of the patriot defensive system was the computer that controlled the

radar, responsible for detecting incoming threats. This computer was based on

a 1970s design, with a limited capability to perform high-precision calculations,680
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Figure 12: The Spamhaus System case as an instance of OSDEF, COVR and ROSS.

as it was based on a 24-bit architecture. This outdated architecture ended

up being a Vulnerability for the Patriot system. The system worked based on

communications between a radar, a computer, the missile turret component

and the Program that was responsible to calculate the trajectory of incoming

Threat Objects (usually SCUD Missiles). After the radar detected the incoming685

projectile, with electric pulses, the loaded missile surveillance program (Loaded

Program Copy) was responsible for calculating the next area where the incoming

object might be, in order to track down its trajectory (Software Function) and

trigger the launch of a patriot missile to intercept the incoming Threat Object,

before it hits base camp. To do that, the computer measured time, with the690

precision of tenths of a second, in an integer that could be 24-bits long.

The system lost precision over time, as the calculations were not precise

enough due to the outdated architecture (Israel army reported that the system

was operating with considerable deviation in the calculations, after only 8 hours

of runtime). The specific Patriot unit of the incident was online for over 100695
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hours (Loaded Program Copy), contributing to the loss of precision in the cal-

culations, a Defect that propagated and escalated over time. At the end, the

system was looking for the incoming Scud (Threat Object) meters away from its

precise location and, hence, never activated the defensive patriot missile. As in

the Therac-25 incident, the Object at Risk is not the software system by itself,700

but human lives, as the Patriot System was critical to support the lives of the

soldiers in the battlefield, which had the Intention to remain protected while in

base camp. Such Intention was broken as a SCUD missile goes undetected by

the radar (Threat Event) and ended up hitting the barracks, bringing about a

Loss Situation where 28 soldiers lives were lost.705

Besides, for this particular case, the Defect was not manifested in a split

of a second, resulting in a Failure as soon as a defective part of the system

was accessed during program execution. Instead, the Defect occurs because

after some hours at runtime, the system calculations were not correct anymore.

Consequently, the Fault manifests in the system. In other words, the software710

that controlled the Patriot Defense System entered in a Threatening Situation

of a high accumulation of calculation errors a few hours after being online.

However, this situation is not easily perceived, as in an ordinary Web-based

system. At this point, the system can suffer a critical failure at any time, as it

is no longer capable of fulfilling its most important requirement: protecting the715

soldiers in the camp from attacks.

6. Related Work

Del Frate [31] provides an ontological analysis of the notion of failure in

engineering artifacts. A theory that distinguishes between three types of failures

is built: function-based failures, specification-based failure and material-based720

failure. The author also discusses the relation between a failure — an event that

happens to an artifact — and a fault — a state of the artifact after the failure,

for each of the three types of failures that are proposed. The ontological analysis

provided by Del Frate shares with the work presented here the interpretation
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Figure 13: The Patriot Missile System case as an instance of OSDEF, COVR and ROSS.

of failures as events. However, honoring the terminology employed in software725

engineering standards, we conceive faults as processual roles [15] of defects in

an existing (occurred) failure. In contrast, Del Frate considers faults as states

(situations, in the sense of UFO) in a way that is similar to what we call a Failure

State. Moreover, another important difference is that we take into account other

types of anomalies, such as defects and errors (even those caused by the direct730

participation of human agents). Other distinction worth mentioning is that our

work is focused on software and grounded on a foundational ontology, whereas

Del Frate’s work is more generic (covering all engineering artifacts) and does

not reuse any particular foundational ontology.

Kitamura & Mizoguchi [47] performed an ontological analysis over the fault735

process and proposed an ontology of faults. The ontology of faults provides a

categorization of different types of Faults and relates them with other concepts

that are part of the fault process 14. Additionally, this ontology was used to

provide a vocabulary for specifying the scope of a fault diagnostic activity and

14faults are differentiated between: externally or internally caused; structural or property-

related; continued and intermittent or direct and indirect
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as conceptual model for the development of a ontology-based fault diagnostic740

system. The idea is that this ontology-based system would be capable of per-

forming a deeper analysis of a software system to uncover root causes of Faults.

In comparison with OSDEF, Kitamura & Mizoguchi’s ontology of faults has a

different focus, which is centered in the fault process and in specifying a com-

plete vocabulary centered in the concept of Fault. Besides, the ontology of faults745

is not grounded on any foundational ontology.

Avizienis et al. [48] proposes a taxonomy of faults, failures and errors in a

context of dependability, reliability and security. In comparison with OSDEF,

the taxonomy proposed there also understands Failures as Events and Faults

and Vulnerabilities as properties of a system, composed of software, hardware750

and people. However, the concept of Error used by the taxonomy is different

from the one that we use in OSDEF. Our notion of Error is the one of an

Erroneous User Action, being based on the IEEE 1044 standard. This notion

is similar to what is termed by Avizienis and colleagues as a Human Fault.

Moreover, the taxonomy presented by Avizienis et al. has a broader scope than755

OSDEF, presenting a larger vocabulary focused on properties such as criticality

and consistency. On the other hand, OSDEF is more focused on defining the

ontological nature of these concepts and the relations between then, using UFO

as foundation.

Finally, we should emphasize that, unlike these efforts, OSDEF has been760

conceived in connection with other UFO-based Software Engineering domain

ontologies [21], [20] and with the purpose of contributing to a Software Engi-

neering Ontology Network (SEON) [19]. Although these previous works do not

address aspects related to software anomalies, they provide context to our work.

7. Conclusions765

In this extended version of [17], we present OSDEF and complement it with

ROSS in order to provide an ontological analysis of defects, errors and failures

that are part of the Software Systems life-cycle. Moreover, we analyze these
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concepts from a risk analysis perspective, in light of the COVR ontology. In

order to provide a more rigorous definition and a better representation of their770

real-world semantics, the ontologies presented are grounded in UFO and the

definitions are based on international standards and on the scientific literature in

the domain of software failure. OSDEF and ROSS contribute to the conceptual

modeling and management of software systems and to the problems related to

them in a number of ways that are summarized as follows.775

Firstly, by making use of UFO’s foundational categories, the ontologies pro-

vide a conceptual analysis of the nature of different types of anomalies, sys-

tematizing the overloaded use of the term anomaly in the Software Engineering

literature. Furthermore, they can serve as a reference model for supporting the

ontological analysis and conceptual clarification of real-world failure cases. For780

instance, although sometimes used almost interchangeably, we manage to show

that notions such as Failure, Fault, Defect and (User) Error (Erroneous User Ac-

tion) refer to different types of phenomena. In a nutshell, a Failure is an Event

caused by a Vulnerability (a Disposition). A Defect is a Vulnerability inhering in

the Program\Loaded Program Copy or in a Hardware Equipment that is mani-785

fested at runtime. In this manifestation, the Defect plays the role of a Fault.

An Error (Erroneous User Action) is an Action (an Event brought about by an

Agent) that neglects the assumptions under which a Program was designed.

Secondly, both OSDEF and ROSS, as reference ontologies, can be used to

support the development of software systems management tools, such as issue790

trackers or knowledge and configuration management-related tools, since they

have their base on widely accepted standards. Moreover, they can also be used

to support interoperability of existing tools.

Thirdly, the ontologies establish a common vocabulary for their domains,

improving communication among software engineers and stakeholders, avoiding795

construct overloads and other types of communication problems.

Fourth, in addition to these uses as reference models, operational versions

of these ontologies, implemented in logical language (e.g., Common Logic or

OWL) can be used to semantically annotate configuration management and
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issue tracker data that are directly related to the occurrence of software anoma-800

lies. As result of this annotation, one may reason about anomalies in multiple

ways, by navigating the ontological model.

Finally, as future work, we intend to connect OSDEF and ROSS to our

Software Engineering Ontology Network (SEON) [24] and develop tools based

on them to help organizations perform analyses of their software system assets,805

using a value and risk perspective.
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