
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221142065

An Infrastructure for Managing Semantic Documents

Conference Paper · October 2010

DOI: 10.1109/EDOCW.2010.17 · Source: DBLP

CITATIONS

7

READS

29

2 authors:

Some of the authors of this publication are also working on these related projects:

Standards Harmonization View project

Knowledge Management in Software Testing View project

Lucas de Oliveira Arantes

Universidade Federal do Espírito Santo

5 PUBLICATIONS   15 CITATIONS   

SEE PROFILE

Ricardo de Almeida Falbo

Universidade Federal do Espírito Santo

172 PUBLICATIONS   1,661 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ricardo de Almeida Falbo on 21 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221142065_An_Infrastructure_for_Managing_Semantic_Documents?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221142065_An_Infrastructure_for_Managing_Semantic_Documents?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Standards-Harmonization?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Management-in-Software-Testing?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucas_De_Oliveira_Arantes?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucas_De_Oliveira_Arantes?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucas_De_Oliveira_Arantes?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-9105f6054ee4243f9b7aa9bb5c7c0de6-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0MjA2NTtBUzo5OTA5MDAzNzczOTU0MEAxNDAwNjM2MzE0NTA1&el=1_x_10&_esc=publicationCoverPdf


An Infrastructure for Managing Semantic Documents 
 

Lucas de Oliveira Arantes 
UFES – Univesidade Federal do Espírito Santo 

Vitória, Brazil 
lucasdeoliveira@gmail.com 

Ricardo de Almeida Falbo 
UFES – Univesidade Federal do Espírito Santo 

Vitória, Brazil 
falbo@inf.ufes.br

 
 

Abstract—Software Documentation is an important mean for 
stakeholders to collaborate in the software development 
context. However, several works point out that gathering 
relevant information from different documents can be so 
wearing that involved people may tend not to do it. Combining 
ontologies and documents by adding semantic annotations to 
documents can help diminish the burden of gathering 
information later on. However, this approach also adds an 
overhead in documentation, concerning the time spent on 
document annotation. In order to overcome some of these 
obstacles, we developed an infrastructure for managing 
semantic documents, combining semantic annotation on 
document templates, versioning data extracted from semantic 
documents and notifying interested people when extracted data 
has changed. 

Keywords: Semantic Web, Semantic Documentation, 
Ontology-based Semantic Annotation, Knowledge Management 

I.  INTRODUCTION  
Despite the current advances in electronic documentation 

along with the boom of collaborative text edition tools (such 
as wiki engines found nowadays), desktop text editors are 
still the most pitched solution used by software organizations 
when it comes to electronic documentation [1,2]. Whether on 
the modern approach (the use of wiki engines) or the 
classical approach (the use of desktop text editors), 
documents produced by these tools are still the main vehicle 
for knowledge dissemination [1, 3, 4]. 

In the context of a software project these documents 
holds a considerable amount of information (such as use case 
descriptions, requirements, human resource allocations, etc) 
that are mainly interpreted by human readers. Besides the 
fact that these documents are, normally, directed for human 
reading only, the process for producing and maintaining 
them can generate untrustworthy information [1]. Moreover, 
tracking down the evolution of the data contained in these 
documents is only achieved by reading each version of the 
document. Obviously this activity is often dull and could 
lead to misinterpretation. Additionally, gathering relevant 
information contained in different documents spread through 
the organization repositories demands a considerable effort 
and, because of that, this activity is often skipped [1].  

Communication between involved parties can be eased if 
the data embedded in the documents are reachable in a way 
that does not require a thorough reading through the whole 
document in order to achieve good understanding. In other 
words, the semantic content of the document could be 

exposed in order to allow visibility of the data and the 
relationships embedded in the document. Tracking the 
changes between document versions could be also facilitated 
if the semantic content of each document version is extracted 
and registered into a version control system. In order to make 
these scenarios possible and achieve semantic richness, it is 
essential to allow metadata annotation into documents. 
Additionally, strategies for metadata annotation, extraction 
and searches based on metadata are equally important.  

Taking into account this scenario, we developed an 
Infrastructure for Semantic Document Management (ISDM), 
covering the following features: semi-automated semantic 
annotation of documents through the use of semantic 
annotations embedded in document templates; data evolution 
traceability; advanced data searching based on extracted 
semantic content; and change notification subscription.  

This paper aims to present this infrastructure and discuss 
how it can be used to support the integration of information 
spread in several documents. The paper is organized as 
follows: Section II regards the theoretical background of the 
paper, discussing briefly the Semantic Web wave and its 
reflexes in documentation, giving rise to a new area of study, 
the Semantic Documentation; Section III briefly discusses 
related work and points out the existing gaps that motivated 
us to develop our work; Section IV presents the ISDM and 
its main components; Section V discusses an example of the 
use of ISDM in a requirements management context, 
showing how it can be used to support the integration of 
information spread in several requirements related 
documents; Section VI compares our work with the related 
works presented in section III; finally, Section VII presents 
our conclusions and future work. 

II. SEMANTIC WEB AND SEMANTIC DOCUMENTATION 
Since the conception of the World Wide Web, web pages 

were mainly written in formatting languages (such as 
HTML) in order to allow browsers to present information to 
human readers. Web pages were not initially meant to hold 
machine interpretation [5, 6].  

The increasing amount of web content started to show 
some serious problems. First, searching for particular 
information can be a burden, since the results generally 
include a considerable amount of material that is either 
irrelevant or does not contain the same semantics of what we 
are looking for. In other words, searches do not hold the 
desired precision, presenting many items that are not really 
relevant [6]. Another recurring problem is that the web pages 

2010 14th IEEE International Enterprise Distributed Object Computing Conference Workshops

978-0-7695-4164-8/10 $26.00 © 2010 IEEE

DOI 10.1109/EDOCW.2010.17

235

2010 14th IEEE International Enterprise Distributed Object Computing Conference Workshops

978-0-7695-4164-8/10 $26.00 © 2010 IEEE

DOI 10.1109/EDOCW.2010.17

235



that allow machine-readable solutions are not standardized 
and most of the time semantic information is not embedded 
into the page content, but as separate files. This scenario 
enhances the efforts applied on page maintenance and 
integration with other systems [6].  

The semantic web aims to tackle the lack of semantics by 
providing a way that both humans and computers can 
interpret the content of web pages [5]. In order to reach this, 
generally web pages are annotated with metadata that 
describe small fragments of the page content in a way that 
machines could read, interpret and use them for search 
disambiguation and reasoning. 

In order to achieve this purpose, metadata cannot be 
created in an ad-hoc way. It is essential to establish a 
common vocabulary that guides people and machines that 
are working with a page. In this context ontologies are of 
great value to establish concepts and relations that are used 
as metadata and to maintain relationships between these and 
external ontologies [7]. 

Even though there is an increasing movement towards 
the semantic web, relying on web pages in order to reach 
semantic interpretation by both human and machine is not 
enough. There is a considerable amount of work done in 
desktop electronic document tools, such as traditional text 
editors, that are very important for organizations. Some 
companies still rely on this kind of document for many 
activities such as: registering and controlling their 
knowledge, invoicing employees, managing  projects and so 
on. Thus, semantic web alone does not solve the issues that 
these sectors encounter themselves in. In this context, 
semantic documentation is the key for tackling these 
scenarios.  They combine documents and ontologies in the 
same way that the semantic web proceeds: ontology-based 
metadata is created and then attached to the document 
content. Since the annotations are based on a common 
ontology (or a set of ontologies) and all the data could be 
spread through different data sources (documents, legacy 
databases, etc), ontologies provides a framework for 
information integration [8]. Also, relating documents and 
ontologies through metadata annotation allows users and 
machines to navigate from the document to the concept that 
generated an annotation contained in the document, 
providing the necessary semantics to perform tasks such as 
search disambiguation [7,9]. Figure 1 presents the idea 
behind semantic documentation: annotation tools make use 
of ontologies to map text in documents to concepts, 
relationships and instances. 

Allowing users to add metadata annotations to documents 
can improve understanding and accessibility of the data 
contained on it. However the task of adding metadata 
manually can consume a considerable amount of time [7] 
and is susceptible to errors [8]. Therefore, using semi-
automated techniques for annotating is necessary. Mature 
companies normally maintain a set of document templates 
that guides creating and maintaining specific document 
types. Adding semantic annotation to these templates can be 
a simple approach that will diminish the overhead users may 
found when it comes to document annotation.  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Semantic Document and its relation with Annotation Tool and 
Ontologies 

Another important issue concerning software 
documentation is change control. Tracking the evolution of 
documents during the life cycle of a project can be vital for 
software organizations. A very common problem in software 
projects is the mismatch between what a specification 
document estates and what is implemented [10]. This 
happens as the software evolves. For instance, a change 
made on a requirement specification document can 
encompass a considerable amount of information. Be the 
following example where the scope of the project has 
changed and some requirements (namely 1, 2, 3 and 6) had 
their descriptions updated. In this example, developers 
working on these requirements should be aware of the 
changes, since they may critically affect their work. Without 
the use of tools for managing specific artifacts of the 
software project, in this case, it is very difficult to make sure 
that involved people receive the information they need in 
order to correctly perform their task, and ultimately change 
their code to make avoid mismatch between the specification 
agreed by clients and the program code. Reading the whole 
requirement specification document every time it changes is 
obviously a dull and error prone activity. In [11] this 
scenario is observed in order to enhance merging operations 
between groups of developers. In our work, the vision is 
extended to other software artifacts in order to provide data 
visibility (awareness) and to enhance the understanding of 
the data contained on the software artifacts. 

III. RELATED WORKS AND MOTIVATION 
There are several works that aims to deal with the 

problems related in the previous section. 
In [12], a framework for structuring and extracting 

information is proposed. This framework uses an extension 
of an existing ontology (OSM), including extra regular 
expressions, to extract fundamental keywords found at the 
ontology and ontology relationships connectors from a given 
web page. In a nutshell, the authors implemented a solution 
based on domain ontologies that extracts information from 
HTML pages, populating specific relational database that is 
created according to the domain ontologies. The entire 
process consists in: (1) obtain an HTML web page that is 
related to the given domain; (2) remove unwanted HTML 
tags from the document, maintaining only the textual 
interesting part; (3) apply a parser generated from an 
ontology of the same domain of the document and the 

236236



regular expressions; (4) include extracted data into the 
relational database. Since there is extracted semantic data 
persisted on the database, it is possible to execute SQL 
queries that are specific to the document’s domain. This way, 
this work provides semantic search and data extraction. 

In [7], Eriksson and Bang discuss the importance of 
managing organization’s documents inside a repository and 
how these documents could be incremented in order to 
become Semantic Documents. Basically the authors propose 
an approach to annotate electronic documents that will 
ultimately be published on a repository (Semantic Document 
Repository). The use of ontologies is a key in order to guide 
the metadata creation within the documents. Also, they 
propose an infrastructure for managing semantic documents, 
including services for advanced searches and reasoning using 
the documents’ metadata, among others.  

Concerning storage services, Eriksson and Bang examine 
three types of services that support semantic-document 
repositories: manual annotation, automated analysis and 
annotation, and document generation. In the first, users 
interact with annotation tools, relating concepts and 
individuals from an ontology to document text fragments. 
Despite the utility of this approach, it is clear that this is a 
time-consuming activity. An automated analysis and 
annotation approach can minimize manual annotation work 
by taking advantage of the document structure to add 
annotations manually. Finally, document generation aims to 
automating as much of the annotation task as possible by 
taking advantage of information available at document-
authoring time. It can use specific data sources and 
ontologies that describe the data in these data sources to 
generate annotated documents based on existing document 
source structures.  

For annotating documents, Eriksson and Bang proposed 
an infrastructure that involves three types of ontologies: (i) a 
domain ontology defining the vocabulary used for 
annotation; (ii) a document ontology defining the elements 
found on documents (such as text fragments, paragraphs, 
sections, tables, images, and so on); and (iii) an annotation 
ontology that links the document elements (found in the 
document ontology) and the elements in the domain 
ontology.  

Kim et al. [13] developed an architecture for managing 
electronic documents that use wrappers created based on 
domain ontologies to extract metadata from resources 
coming from the web or social desktops (collaborative 
desktops). Their main focus is to add annotation into PDF 
(Portable Document Format) documents. This is done by the 
use of XMP (eXtensible Metadata Platform), which allows 
users to embed data about a file in itself. To do that, a set of 
ontologies is used to create annotations: a document schema 
ontology, a document type ontology and domain ontologies. 
The first two ontologies are part of their platform and are 
used to guide the annotation. The document schema ontology 
defines the elements of a document. The document type 
ontology describes publication’s type of research 
communities and relevant concepts, such as proceedings, 
thesis, article, technical reports etc. Domain ontologies 
describe a certain subject which is closely related to a 

content of document. Domain ontologies can be added or 
edited by end users in order to fulfill their intention while 
annotating a document. 

In the proposed architecture, key functions or processes 
are extraction, generation, indexing, and search. Concerning 
data extraction, data embedded in documents are gathered 
using Jena RDF framework to generate RDF graphs. The 
resulting data contained in the extracted graphs are properly 
indexed and then persisted in a data repository for later 
advanced searches. Two main components compose the 
proposed architecture: (i) a data repository, which is 
responsible for indexing and storing the extracted data; and 
(ii) the main module, which is responsible for domain 
ontology edition, and metadata extraction and generation. 
This module also provides an advanced ontology-based 
search interface for searching the data repository. 

Semantic Word [14] provides utilities to annotate 
documents edited in Microsoft Word and to publish them on 
the web. Basically, Semantic Word extends MS Word 
allowing users to select resources from the web, such as 
ontologies and semantic web pages, and provides ways to 
use these resources to compose annotations that will be 
embedded in the document content. All annotations are 
written in the knowledge representation language 
DAML+OIL (DAML – Darpa Agent Markup Language, 
OIL – Ontology Inference Layer). 

When a user selects web resources, instances, concepts 
and relations are listed to her in order to create annotations in 
text fragments. Two types of semantic annotation are 
provided: instance references and triple bags. An instance 
reference links a text fragment selected by the user to an 
existing instance of a concept of the ontology. Triple bags 
describe the content of a text region with a collection of 
triples that follow DAML+OIL’s subject-predicate-object 
model. The subject is an instance, the predicate is a property 
defined in an ontology, and the object can either be an 
instance or a value.  

Besides the semantic annotation feature, Semantic Word 
provides an integration with AeroDAML, an information 
extraction system. AeroDAML processes text and produces 
DAML markup that relates instances and values to the web 
resources retrieved. This can enhance significantly the 
manual annotation procedure, thus reducing the overhead of 
annotating an entire document from scratch. 

Another important feature of Semantic Word is the 
ability to create semantic templates. This feature allows a 
user to annotate a document template, providing semantic 
annotation reuse and therefore improving the creation of 
semantic documents. 

Besides the problem of creating semantic documents, 
another problem to be considered is to control changes on 
them. In this context, the Molhado framework [10] goes a 
step ahead. This framework aims to manage software of any 
domain using a logic approach. Based on version control 
systems and the software configuration management (SCM) 
process, Nguyen developed this framework in a way that 
developers must execute their software configuration 
management activities centered on the objects generated by 
them without worrying about  the object’s representation in a 

237237



file, like the standard version control systems do. In order to 
use the framework properly, developers must model their 
domain in terms of Java classes, extending the abstract 
classes provided by the Molhado framework. There also 
must be specialized tools that can generate instances of the 
model constructed by the developer that are connected to the 
SCM modules of the Molhado framework. As a result, data 
generated by these tools will be versioned as it evolves and 
possible mismatch that may appear between files and objects 
can be diminished. An alternative for existing tools is to 
build converters that can use services provided by the 
framework in order to convert data or use SCM functions. 

The work carried out by Ognyanov and Kiryakov [15] 
also highlights the importance of tracking data evolution. In 
this work the authors focused on knowledge bases, proposing 
data versioning for RDF(S) repositories. Knowledge base 
repositories are materialized as RDF(S) graphs and a 
repository change history is treated as a sequence of RDF(S) 
graph states over time. Therefore a state is a snapshot of the 
actual situation of the knowledge base 

As we can see by the analysis of the works briefly 
discussed before, features such as document annotation, 
automated document annotation, data extraction from 
metadata, data indexing and searching is somehow the base 
for semantic documentation. Moreover, we need to concern 
about changes on these documents. Looking at the analyzed 
approaches it is possible to observe some common aspects 
between them and therefore there is a chance to advance by 
tying important features together and adding some other 
ones. In resume, the works analyzed before contribute to the 
development of our Infrastructure for Semantic Document 
Management in the following ways: 

• Embley et al. [12] described a way to extract data 
from web documents, persist them on a relational 
database and allow data search later on. However, 
the authors do not provide a way to annotate web 
pages, and so the content of the pages does not carry 
any metadata. Other important point is that this work 
does not address any kind of architecture for 
managing semantic documents. 

• Tallis [14] provided semantic annotation to MS 
Word documents, semantic templating, semantic 
web document publishing and semi-automated 
annotation with an information extraction system 
(AeroDAML). Nevertheless, Tallis did not provide a 
way to manage the document itself and relied on the 
web as the document repository. Although this is 
useful, in most cases, the reality within a project is 
that the document will evolve and tracking its 
evolution can be crucial. 

• Nguyen [10] constructed a flexible framework that 
provides an abstract model for data and service 
versioning. In order to get domain-specific data 
versioning, it is necessary to: (i) model a target 
domain (by extending an abstract data versioning 
model); (ii) create specialized tools (or converters) to 
generate instances of that model; (iii) use the SCM 
functions provided by the framework. Although the 
contribution is clear (diminishing the mismatch 

between versioned files and objects by providing a 
way to version the objects themselves), creating a 
domain model, or modifying an existing one, and 
providing a tool (or converter) to generate instances 
of that model can be a time-consuming effort. 

• Eriksson and Bang [7] and Kim et al. [13] described 
not only ways to enrich the content of a document 
with semantic metadata, but they also proposed an 
architecture that allow the storage of semantic 
documents along with indexing and searching over 
the extracted semantic data. Despite the considerable 
contribution, these authors did not mention the use 
of semantic templates, like Tallis [14] suggested. 
Using templates has shown to a good practice for 
software documentation and we believe that 
annotating document templates can considerably 
decrease the time spent on document annotation. 
Moreover, annotating document templates can also 
make the document annotation procedure transparent 
for the end user. 

• Ognyanov and Kiryakov [15] raised the importance 
of tracking changes on knowledge bases. Their focus 
is on providing strategies in order to maintain 
traceability between updates made upon a 
knowledge base. Although their work is somewhat 
in line with the discussion done in this section,  they 
are not  concerned with semantic documentation and 
how to manage semantic documents as a whole. 

Summing up some of the features found at the works 
discussed in this section, it is clear that managing semantic 
documents as a whole is necessary. During the creation of a 
semantic document, the annotation procedure must be as 
transparent to the end-user as possible. During its 
maintenance, the changes applied to it must be tracked in 
order to provide visibility of its evolution, thus providing 
some level of understanding of exactly what has changed in 
the document. The common aspects treated in the proposals 
discussed before, if summed, can lead to a robust model. 
Therefore there is no need to supply a new model but an 
enhanced architecture that are able to fulfill possible existing 
gaps. This is the purpose of our Infrastructure for Semantic 
Document Management, which is presented in the next 
section. 

IV. AN INFRASTRUCTURE FOR SEMANTIC DOCUMENT 
MANAGEMENT 

In essence, the Infrastructure for Semantic Document 
Management (ISDM) we developed provides: 

1. a way to semantically annotate document templates; 
2. a mechanism for control version of the semantic 

content extracted from each semantic document 
version, therefore providing a way to track the 
evolution of the data embedded inside a semantic 
document; 

3. data visibility to end-users, allowing searches and 
data-change notification subscription, to aid a 
developer to get a refined up-to-date information 
about something he/she is interested in. 

238238



In this paper, we use the term “semantic content of a 
document” to refer to the set of individuals (instances of the 
concepts of the ontology) and their relationships that can be 
extracted from the semantic document. We also use the term 
“graph” as a technical synonym for this expression.  

Figure 2 shows an overview of the ISDM architecture, 
which comprises two main elements: (i) the Semantic 
Document Repository (SDR) that is responsible for storing 
semantic documents; and (ii) the Main Module, which is 
composed by the following sub-modules: 

• Semantic Annotation Module (SAM): responsible 
for allowing users to semantically enrich a document 
template; 

• Data Extraction and Versioning Module (DEVM): 
responsible for extracting the semantic content from 
an annotated document whenever a new version of 
that document is checked into the Semantic 
Document Repository. After extraction, the semantic 
content is stored, along with version information in 
another repository, called Data Repository, that is 
also part of this module; 

• Search and Traceability Interface Module (STIM): 
responsible for providing an API (Application 
Programming Interface) that allows users and other 
systems to perform ontology-based searches and 
data traceability towards the Data Repository. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Overview of the ISDM Architecture. 

In a nutshell, document engineers (human icon with a tie 
on the left side of Figure 2) annotate organization’s 
document templates using the Semantic Annotation Module 
(SAM). Later on, developers and analysts may instantiate 
that template, generating a semantic document. This 
semantic document can be checked into the Semantic 
Document Repository (SDR). When a new version of a 
semantic document is available at the SDR, the Data 
Extraction and Versioning Module (DEVM) unwraps the 
semantic content of that version and store it into the Data 
Repository, making the information of that semantic content 
version available. At this point, it is possible to further 
enhance the integration of information scattered throughout 
various semantic documents contained in the Semantic Data 
Repository. This can be done by merging the graphs 

corresponding to the last versions of the documents 
contained in this repository. Finally, users and other systems 
(on the right side of Figure 2) may interact with the Search 
and Traceability Interface Module (STIM) in order to 
perform searches and queries about the evolution of a 
particular semantic content stored in the Data Repository. 

The Semantic Document Repository is, in fact, a 
repository in a version control system such as Subversion 
[16]. In the sequence, the components of the Main Module 
are presented and discussed in more details. 

A. Semantic Annotation Module – SAM 
As discussed in Section III, there are several ways of 

annotating documents described in the literature. Notably, 
almost all of them make use of ontologies in some extent. 
Vocabulary standardization and metadata generation are the 
most pitched scenarios where it comes to ontology use in 
document annotation [4, 13]. Our approach, such as the one 
proposed in [7], uses domain ontologies, an annotation 
model and a document model.  

The simpler way to semantically annotate a document is 
to create annotations manually. This scenario is known to be 
problematic, because the annotator may make mistakes and 
the annotation procedure is notably time consuming [4, 8]. 
As pointed by Eriksson and Bang [7], it is necessary to 
automate as much as possible the annotation procedure. 
Additionally, it is interesting to give some level of 
transparency to the end user, making her mostly unaware 
that she is actually producing a semantic document.  

Tallis [14] proposed an interesting way of annotating 
desktop Microsoft Word documents. In this approach, 
document templates were annotated in order to reuse 
annotations made priori. This way both automation and 
transparency are achieved. Summing that to the fact that 
most mature software organizations use templates to produce 
documents, this approach can help companies organize and 
control their data retained in their document repositories. 
Thus, our approach consists in making domain ontology-
based annotations in document templates. 

The Semantic Annotation Module should provide the 
tooling for document engineers annotate document 
templates. For this purpose, we selected a standard document 
format and a tool to be the basis for template annotations. As 
the standard format for annotation, we chose the Open 
Document Format (ODF) [17], since it is an open format, 
with great span.  Open Office [18] was chosen as the base 
office document editor for composing annotations in 
document templates. 

In order to allow annotation in ODF document templates 
and make sure that these annotations are properly spread into 
an instance of that template, a mid level structure was 
developed. It is worthwhile to point out that we are working 
on document template annotation. Therefore, annotations 
must be specialized for the document element kinds that may 
exist in a document. Also an annotation must give directives 
to perform actions when the document is instantiated from 
the template, such as to create an instance, or to create a 
relation between instances and values.  

239239



Specialized annotations for annotating text fragments and 
tables were produced using Open Document Text (ODT) 
files. These kinds of annotations (template annotations) 
encapsulate annotations directed for document instances, 
allowing document engineers to add a set of instructions 
directly in these document elements (tables and text 
fragments). These instructions will be performed when the 
document instance is analyzed by the Data Extraction and 
Versioning Module that will ultimately generate instances 
and relations accordingly. An instruction is specialized in a 
way that it is the annotation itself and it is also an interface 
with the data extraction module, allowing it to create 
variables during extraction time and, therefore, granting 
ways of relating instances inside a document instance.  

Instructions can be used for creating instances and 
relations. The syntax for the instance creation instruction is: 

instance(arg,concept, accessVariable) 
This instruction creates an instance of the concept (a 

concept of an ontology that is available in a given URL), 
using as identifier the value of arg. The result is a reference 
to the created instance and it is set on the accessVarible for 
later use.    

The syntax for the relation creation instruction is: 
property(arg1,prop, arg2) 

This instruction establishes a relation prop between the 
instance referenced in arg1 and an instance or a value given 
by arg2.  

The first thing to do when creating a semantic template is 
to set a hidden input field in the corresponding ODT file with 
name = “SemanticDocument” and value = “true”. This way 
the platform will be aware that this document is a semantic 
document and will start searching for semantic annotations. 
Also it is important for the extraction mechanisms to know 
what are the ontologies treated in the semantic document. To 
inform that, the user must create another hidden text field on 
the document with name = “Ontologies” and value equals a 
comma-separated list of complete URLs containing the path 
to the ontologies. So far, all the ontologies must be 
implemented in OWL (Ontology Web Language) [19].  

As mentioned before, it is possible to annotate a text 
fragment with a set of instructions. In order to accomplish 
this appropriately, the user must define a text formatting 
style and give it a name. The style name will be related with 
a hidden field that will contain all the instructions defined for 
that particular text fragment. Following there is an example 
of a text fragment annotation:  
[[textspan]]instance({content},http://localhost/ontologies/SE
/onto.owl#Project,$project); 

The tag [[textspan]] indicates that this annotation refers 
to a text fragment. Ultimately this annotation points out that 
the content of the text fragment (formatted using the style 
created before) will be used as the identifier of the created 
individual of the concept Project of the ontology available at 
http://localhost/ontologies/SE/onto.owl. The resulting 
individual will be recorded in the variable $project in the 
data extraction map and can be accessed and used later 
during the semantic document extraction procedure.  

Annotations on tables are usually more complex, because 
each column might have a different set of instructions. To 
annotate a table in a template, it is necessary to first set a 
name to the table. This name will also be related to a hidden 
field with instructions for each column as value, as illustrated 
in the following example. 
[[at0]]instance({content},http://localhost/ontologies/SE/onto
.owl#FunctionalRequirement,$req); 
property($req,http://localhost/ontologies/SE/onto.owl#artifa
ctProducedIn,$project); 
[[at1]]property($req,http://localhost/ontologies/SE/onto.owl
#description,{content}); 

In this example the first instruction says that, for each 
line of the annotated table, from column 0 (the first column, 
indicated by the tag [[at0]]), the extractor will create an 
individual of the concept Functional Requirement of the 
ontology available at http://localhost/ontologies/SE/onto.owl, 
using as its identifier the content of this cell. The second 
instruction says that there is a relation (artifactProducedIn) 
between the requirement $req created by the first instruction 
and the individual $project. Finally, the last instruction says 
that the content of column 1 will be set as the property 
description of the requirement $req. 

So far, all the annotations in the template are done 
without using a specialized Open Office plug in.  

B. Data Extraction and Versioning Module - DEVM 
The Data Extraction and Versioning Module is 

responsible for extracting semantic content out of the 
semantic document versions and store them appropriately in 
the Data Repository. All the semantic documents must reside 
in the Semantic Document Repository (SDR), which is, as 
said before, simply a repository in a version control system. 
In the current version of the ISDM, we are using a 
Subversion [16] repository as SDR.  

Most version control systems allows the use of hooks, 
which are programs triggered by some repository event, like 
a file being checked into the repository. Taking advantage of 
this feature, when a semantic document is checked into the 
SDR (added for the first time or updated), a hook installed 
there calls the semantic content manager application, which 
starts the extraction procedure. First, semantic content 
manager checks whether the file being stored in the 
repository is a version of a semantic document, i.e., if it has a 
hidden input field with name = “SemanticDocument” and 
value = “true”. Second, the semantic content manager 
extracts data from this file and creates a graph of the 
extracted data. Finally, it stores the derived graph in the Data 
Repository (DR). Figure 3 shows the behavior of the DEVM. 
It is worthwhile to highlight that each version of a semantic 
document (for instance SD 'A') located at the SDR have a 
corresponding graph on the Data Repository. 

Basically the extraction process transforms the 
annotations in the semantic document into an OWL graph 
using the Jena OWL framework [20]. All the information 
extracted about the document version is registered in the 
Data Repository. The relation between the version of the 

240240



semantic document and the registry created in the Data 
Repository is also maintained.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Overview of the Data Extraction and Versioning Module 

The SDR is filled not only with different versions of a 
single semantic document, but also with different semantic 
documents that may have many purposes. Thus, there is a 
considerable amount of extracted and versioned data coming 
out from different versions of different semantic documents. 
In the context of software development, organizations 
generally have a version control repository per project. Thus, 
the SDR and the corresponding Data Repository contain 
valuable information about a given project. Requirements, 
use cases, personal allocations, stakeholders, and so on are 
all of them located somewhere in a graph of the Data 
Repository. Since these graphs are treated as sets (as in Set 
Theory) it is possible to combine them through set union 
operations, thus integrating different information contained 
in the Data Repository. Taking advantage of this feature, the 
platform performs a union operation, combining all graphs 
corresponding to the latest versions of each semantic 
document contained in the SDR, generating an overall 
integrated graph. This graph is also persisted in the Data 
Repository, in order to allow reasoning and advanced 
searches over the data. A fragment of the DEVM class 
diagram that encompasses the extraction and versioning is 
presented in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  A partial class diagram of the DEVM regarding the structure of 
data versioning. 

The class SemanticDocumentRepository represents the 
SDR and is located in a URL. A SDR has several semantic 
documents (represented by the class SemanticDocument), 
each one located in a specific path within the SDR. Each 
semantic document version (SemanticDocumentVersion 
class) maps the evolution of a single semantic document by 
registering the extracted graph and its version number. The 
class ContentModelVersion represents the union graph 
putting together all the graphs referring to the latest versions 
of the existing semantic documents in the SDR. 

The technologies used for implementing the Data 
Repository, the office document reading, the persistence 
operations and the graph operations are, respectively, the 
PostgreSQL relational database, ODFDOM [21], Java with 
Hibernate Object Relational Mapping framework, and Jena 
OWL framework [20].  

C. Search and Traceability Interface Module – STIM 
The STIM focus on providing a common interface for 

external use. Applications may interact with this module to 
accomplish tasks such as:  

• Searching for data in the Data Repository; 
• Tracking the evolution history of a given 

individual; 
• Subscribing change notification. 

Searching interface is allowed by the use of SPARQL 
[22] queries over the union graph and over versions of it.  

The term “evolution” used here is concerned to the 
different relations that a given individual may have 
throughout different graphs. There are two ways of checking 
the evolution of an individual: document level check and 
union graph (or content model) level check. The first allows 
applications to check how an individual evolved in a set of 
versions of a semantic document, such as checking how a 
given requirement evolved along the versions of a 
requirement specification document. The union graph level 
check allows checking an individual evolution throughout 
different versions of the union graph. Since the union graph 
gathers data from different documents, the amount of 
information is usually greater than the document level check. 
Both approaches use the following procedure: 

1. Retrieve all the desired version graphs that contains 
the individual (whether it is at document-level or 
union graph level); 

2. For n retrieved graphs, apply graph difference 
operation between graph n and graph n-1, including 
the resulting graph in a list;  

3. For each difference graph in the list, query 
statements about the individual and return them. 

Providing change notification subscription can improve 
greatly the understanding of a given SDR. In the context of a 
software project, it may help subscribers to take necessary 
actions, such as change the code to comply with a new 
requirement description that has just been changed. A user 
subscribed for change notification of a given individual will 
receive messages (email, so far) triggered when the Data 
Repository received a new version of that individual. 
Relationships to other individuals and values of properties 
are the main information presented to the subscriber. 

241241



V. USING THE ISDM FOR MANAGING SEMANTIC 
REQUIREMENTS DOCUMENTS 

To illustrate the use of ISDM, a simple case in the 
requirements engineering domain is presented in this section. 
It encompasses template annotation, and data extraction 
inside a software project repository. The template we used is 
the requirements document template shown in Figure 5. It 
basically indicates the project name and lists its 
requirements. Figure 5 shows this template along with an 
exemplar instance of it.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  A Requirements Document template and an instance of it. 

Figure 6 presents a fragment of the conceptual model of 
the software requirements ontology used as the domain 
ontology for creating the annotations. This ontology is 
presented in [23] and, for the purposes of this work, it was 
partially implemented in OWL and published locally in the 
following URL: http://localhost/ontologies/SE/onto.owl. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  A fragment of the conceptual model of the Requirements 
Ontology used as the domain ontology for template annotation. 

Defined the template structure and domain ontology to be 
used to annotate it, annotations were done in the template. 
The following text fragment annotation was defined to 
capture the project name in the first line of the document: 

[[textspan]]instance({content},http://localhost/ontologies/SE
/onto.owl#Project,$project); 

When an analyst instantiates the template, she must 
overwrite the text into double brackets ([[project]]) by the 
corresponding content (in the case, the name of the project).   

The following table annotations were defined to deal 
with the requirements table in the semantic template: 
[[at0]]instance({content},http://localhost/ontologies/SE/onto
.owl#FunctionalRequirement,$req); 
property($req,http://localhost/ontologies/SE/onto.owl#artifa
ctProducedIn,$project); 
[[at1]]property($req,http://localhost/ontologies/SE/onto.owl
#description,{content}); 

Following we present a resumed OWL representation of 
the first check in of the requirements document of the project 
ExampleProject. In this excerpt of the resulting graph, for 
sake of simplicity, we omitted several elements, such as class 
definition, property definition, disjoint class statements and 
data types. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Looking to this excerpt of the OWL file, it is possible to 

see the results of the extraction process. Two requirements, 
REQ001 and REQ002, were created along with their 
descriptions and were related to the newly created project, 
named ExampleProject. 

<rdf:RDF …
    xmlns="http://localhost/ontologies/SE/onto.owl#" >  
  <rdf:Description 
rdf:about="http://localhost/ontologies/SE/onto.owl#Example
Project"> 
    <rdf:type 
rdf:resource="http://localhost/ontologies/SE/onto.owl#Projec
t"/> 
  </rdf:Description>… 
  <rdf:Description 
rdf:about="http://localhost/ontologies/SE/onto.owl#REQ001
"> 
    <description ...>System must expect calls from external 
applications</description> 
    <artifactProducedIn 
rdf:resource="http://localhost/ontologies/SE/onto.owl#Exam
pleProject"/> 
    <rdf:type 
rdf:resource="http://localhost/ontologies/SE/onto.owl#Functi
onalRequirement"/> 
  </rdf:Description> 
  <rdf:Description 
rdf:about="http://localhost/ontologies/SE/onto.owl#REQ002
"> 
    <description ...>System must provide data change 
notification subscription for users </description> 
    <artifactProducedIn 
rdf:resource="http://localhost/ontologies/SE/onto.owl#Exam
pleProject"/> 
    <rdf:type 
rdf:resource="http://localhost/ontologies/SE/onto.owl#Functi
onalRequirement"/> 
  </rdf:Description> … 

242242



In the sequel, we needed to update this document by 
adding a new row in the requirements table. The description 
of the new requirement, REQ003, was “System must provide 
version registration for document check in operations”. We 
also have to change the description of requirement REQ001 
to “System must provide a common API, allowing access 
through external systems”. When these changed were 
checked in, a new version of this semantic document was 
generated. The resulting OWL file is presented in the next 
frame. Since the graph difference removes every node that 
exists on both graphs, things such as namespaces and class 
definitions are also cut off by the Jena framework. Thus, the 
difference graph displays only the new requirement 
(REQ003) and the description change on REQ001. 

 
 

 

VI.  

VII.  

VIII.  
 
 
 
 
 
 
 
 
 

VI. COMPARISON WITH RELATED WORKS 
As discussed in section III, during the development of 

this work, many related approaches have influenced our job. 
In this section we compare our work with some of the ones 
cited in section III.  

Embley, Campbell and Smith [12] proposed a framework 
for performing data extraction from HTML pages and store 
them in a relational database, thus allowing further searches 
around the extracted information. One key aspect of their 
work is that it relied on text parsers in order to extract data. 
Although their work bring the idea of extracting semantic 
content from documents and filling up a relational database 
with it, somehow like our proposal does, they rely, basically, 
in parsing the document by using regular expressions and 
does not consider the idea of using semantic annotations 
directly on the document to support the extraction. Also their 
focus is on already existing documents, while we focus on 
providing ways to annotate template documents, making the 
annotation procedure more transparent for the end user.  

Tallis [14] contributed with the construction of semantic 
document templates using a semantic annotation tool. One 
difference between his work and our work is that Tallis 
relied on a proprietary document format in order to produce 
semantic documents. He also relied on the web as the main 

document repository. Moreover, his work does not cover 
semantic document management as a whole, treating 
basically semantic annotation and automated information 
extraction. Our approach embraces the idea of semantic 
document templates and additionally focuses on keeping 
documents on a version control repository, which is inline 
with the reality of many software projects nowadays. Also 
our proposal intends to use an open document format (ODF) 
that is gradually been used in many government applications 
throughout the world [24].  

The Molhado framework [10] is specialized in 
diminishing the impedance mismatch between versioned 
files contained in version control systems and the actual 
objects that they intend to represent. The main difference 
between Molhado and our approach is that the first is 
focused on specializing a version control system in order to 
provide semantic capability to it. Our work, on the other 
hand, aims to provide ways to enrich documents through the 
use of semantic document templates, extract their data and 
control their evolution. Additionally, we do not promote any 
changes to the file-oriented aspect of version control 
systems, since they are a de-facto standard.  

Eriksson and Bang [7] and Kim et al. [13] proposed 
architectures to manage semantic documents that provide 
data indexing and searching capabilities. Similarly, ISDM 
allows searching. Moreover, ISDM combines the concept of 
semantic document template, initially proposed in [14], and 
the idea of tracking the evolution of extracted data, as 
proposed in [15]. Besides, a change notification subscription 
is proposed in order to provide change awareness. 

Ognyanov and Kiryakov [15] proposed strategies for 
maintaining traceability in knowledge bases materialized as 
RDF(S) graphs. The approach used by them was considered 
very interesting and thus it was combined into ISDM. 
However, these authors focused mainly on providing ways to 
track changes in knowledge based and do not embrace the 
idea of managing semantic documents, which is the focus of 
our work. 

The features proposed by our approach, such as 
annotating document templates, graph versioning and 
integration of semantic data, seems to be promising, but 
ISDM has also limitations and it needs to be tested in a 
production environment. The Semantic Annotation Module 
(SAM) is still in its early days and in the current version it 
does not provide ways to annotate several elements 
commonly used in documents, such as sections, images, lists, 
etc. Additionally SAM does not provide an easy way to 
annotate document templates. Thus, major work on usability 
must be carried on, in order to allow document engineers to 
better use this module. Finally, since ISDM has not yet been 
used in large scale, it is not possible to say if it does scale on 
large demanding environments. 

VII. CONCLUSION AND FUTURE WORKS 
This paper presented an Infrastructure for Semantic 

Document Management (ISDM). ISDM encompasses the 
following features: semi-automated and transparent 
annotations using the idea of semantic template documents 
(template documents with specific annotations); data 

<rdf:RDF … 
  <rdf:Description 
rdf:about="http://localhost/ontologies/SE/onto.owl#REQ001"> 
    <j.0:description ...>System must provide a common API 
allowing access through external systems </j.0:description> 
  </rdf:Description> 
  <rdf:Description 
rdf:about="http://localhost/ontologies/SE/onto.owl#REQ003"> 
    <rdf:type 
rdf:resource="http://localhost/ontologies/SE/onto.owl#Functio
nalRequirement"/> 
    <j.0:artifactProducedIn 
rdf:resource="http://localhost/ontologies/SE/onto.owl#Exampl
eProject"/> 
    <j.0:description ...>System must provide version 
registration for document check in operations 
</j.0:description> 
  </rdf:Description> 
</rdf:RDF> 

243243



extraction and versioning, making use of a version control 
system and graph operations; change notification 
subscription for people that is interested on a particular 
content residing in the Data Repository.  

Despite of the considerable number of opportunities 
within the work done so far, much work has to be done in the 
future.  

The Data Extraction and Versioning Module (DEVM) 
only considers the main development line, known as 'trunk', 
of the Semantic Document Repository (so far a Subversion 
repository) for semantic information gathering. The model 
for registering version information must be extended to 
attend to any different development lines. These different 
lines of development are called branches in version control 
systems. 

Although our annotation procedure is functional, it is 
better to use W3C standards, as Uren et al. [8] pointed out. 
The latest versions of the ODF specification (version 1.2) 
define ways to annotate office documents with RDF. This is 
particularly desirable, in order to provide some level of 
standardization. By the time the implementation of this work 
was being executed, the first version of an open source tool 
for editing office documents was being released. Open 
Office version 3.2 claimed to be fully compliant with ODF 
1.2, but at the same time there was no Standard Development 
Kit (SDK) that allowed annotations. Later on, a library for 
RDF manipulation was added to the latest Open Office SDK 
[25]. With this new library, it is possible to be fully 
compliant to ODF 1.2 and use W3C standards as a whole. 
However, since the examples shown in [25] are entirely 
displaying situations where a document instance is being 
annotated, a challenge must be explored: how to maintain 
annotations at a document template level. In order to do that, 
our strategy of the semantic templating must be reviewed.  

Other important point is to improve the change 
notification subscription. This feature can be enhanced to 
notify users not only when a given individual has changed, 
but also when a given situation occurs. For instance, a user 
may want to know when any activity is delayed. One way to 
address this scenario is to produce business rules and run 
them together with a reasoner in order to catch situations like 
that. Additionally a small front-end should be constructed in 
order to display user friendly notifications, searches and 
traceability results. 

ACKNOWLEDGMENT 
This research is funded by the Brazilian Research Funding 
Agencies FAPES (Process Number 45444080/09) and CNPq 
(Process Number 481906/2009-6). 

REFERENCES 
[1] Lethbridge, T. C., Singer, J., Forward, A., "How Software Engineers 

Use Documentation: The State of the Practice", IEEE Software, vol. 
20, no. 6, pp. 35-39, Nov./Dec. 2003.  

[2] Forward, A., Lethbridge, T.C., The relevance of software 
documentation, tools and technologies: a survey. Document 
Engineering. DocEng ’02, 2002. 

[3] Bruggemann, B. M.; Holz K.P.; Molkenthin F. Semantic 
Documentation in Engineering, Proceedings of the Eighth 
International Conference held in Stanford, California, August 2000. 

[4] Eriksson, H., The semantic-document approach to combining 
documents and ontologies, International Journal of Human-Computer 
Studies Volume 65 ,  Issue 7. 2007. 

[5] Berners-Lee, T., Hendler, J., Lassila, O., The semantic web. Scientific 
American 284 (5), 2001, 34–43. 

[6] Fensel, D., Hendler, J.A., Lieberman, H., Wahlster W. Spinning the 
Semantic Web: Bringing the World Wide Web to its Full Potential. 
Mit Press. 2003 

[7] Eriksson H., Bang M., Towards document repositories based on 
semantic documents, Proceedings of I-KNOW ’06. 2006.  

[8] Uren, C. , Cimiano, P. , Iria, J. , Handschuh, S. , Vargas-Vera, M. , 
Motta, E. , Ciravegna, F. Semantic annotation for knowledge 
management: Requirements and a survey of the state of the art. Web 
Semantic: Science, Services and Agents on the World Wide Web 4. 
2005. 

[9] Happel, H.; Seedorf, S.; Applications of Ontologies in Software 
Engineering,  In 2nd International Workshop on Semantic Web 
Enabled Software Engineering . 2006. 

[10] Nguyen, T. N. Object-Oriented Software Configuration Management. 
22nd IEEE International Conference on Software Maintenance 
(ICSM'06). 2006. 

[11] Estublier, J. , Garcia, S. Process Model and Awareness in SCM, in 
Proceedings of the 12th international workshop on Software 
configuration management, Lisbon, Portugal. 2005. 

[12] Embley, D.W., Campbell, D.M, Smith, R.D. Ontology-Based 
Extraction and Structuring of Information from Data-Rich 
Unstructured Documents, at Conference on Information and 
Knowledge Management (CIKM 98), 1998. 

[13] Kim H.L., Kim H.G., Decker S. Semantic Documentation using 
Semantic Web Technologies and Social Web Services, Proceedings 
of the International Conference on Next Generation Web Services 
Practices (NWeSP'06), 2006. 

[14] Tallis, M., Semantic Word Processing for Content Authors. Second 
International Conference on Knowledge Capture, Sanibel, Florida, 
October 2003. 

[15] Ognyanov, D., Kiryakov, A., Tracking changes in RDF(S) 
Repositories, In Proceedins of EKAW’02. Spain. 2002. 

[16] Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M, Version Control 
with Subversion (For Subversion 1.5). Available at 
http://svnbook.red-bean.com/en/1.5/svn-book.pdf 

[17] OASIS Open Document Format for Office Applications. Visited in 
April, 30th 2010. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=office 

[18] OpenOffice.org – The Free and Open Productivity Suite. Visited in 
April, 30th 2010. http://www.openoffice.org/ 

[19] McGuinness, D.L., Harmelen, F.V., OWL Web Ontology Language, 
W3C recommendation February 2004. Available at 
http://www.w3.org/TR/owl-features/ 

[20] Jena Framework website. Visited in April, 30th 2010. 
http://jena.sourceforge.net/ 

[21] The ODF Toolkit Project website. ODFDOM - the OpenDocument 
API. Visited in April 30th 2010. 
http://odftoolkit.org/projects/odfdom/pages/Home 

[22] Prud’Hommeaux, E., Seaborne, A., SPARQL Query Language for 
RDF, W3C recommendation, January 2008. 
http://www.w3.org/TR/rdf-sparql-query/ 

[23] Falbo, R. A.,  Nardi, J., C., Evolving a Software Requirements 
Ontology. In: Proceedings of the XXXIV Latin-american Conference 
on Informatics - CLEI´2008, Santa Fé, Argentina, 2008. p. 300-309. 

[24] ODF Alliance, ODF Annual Report 2008. Available at 
http://www.odfalliance.org/resources/Annual-Report-ODF-2008.pdf 

[25] RDF metadata website. Visited in April, 30th 2010. 
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/Of
ficeDev/RDF_metadata 

 

244244

View publication statsView publication stats

https://www.researchgate.net/publication/221142065

