
An Agile Approach for Web Systems Engineering
Vítor Estêvão Silva Souza
Computer Science Department,

Federal University of Espírito Santo
Av. Fernando Ferrari, S/N
Goiabeiras – Vitória, ES

+55 (27) 3335-2134

vitorsouza@gmail.com

Ricardo de Almeida Falbo
Computer Science Department,

Federal University of Espírito Santo
Av. Fernando Ferrari, S/N
Goiabeiras – Vitória, ES

+55 (27) 3335-2167

falbo@inf.ufes.br

ABSTRACT
In the last few years, Web applications have evolved from static
hypertext documents to complex information systems. This
evolution leads to the necessity of methodologies specifically
designed for development of Web-based systems, focusing on
agility in the process. This paper presents an agile approach for
the development of Web applications that applies the concept of
agile modeling, adopts a standard software architecture and is
heavily based on frameworks, speeding up system analysis,
design and implementation.

Categories and Subject Descriptors
D.2.2 [Sofware Engineering]: Design Tools and Techniques –
Object-oriented design methods.

General Terms
Documentation, Design.

Keywords
Web Engineering, Agile Development, Web Application,
Frameworks, Rapid Development, Java.

1. INTRODUCTION
In the beginnings of the World Wide Web, the software

infrastructure behind it supported static Web pages only, i.e., pure
hypertexts organized in files that were delivered to browser
clients upon requests handled by a Web server. From 1993 on,
with the emergence of CGI (Common Gateway Interface) and
Web programming languages such as PHP (94), ASP (95) and
Java Servlets (96) / JSP (99), these Web servers became much
more powerful, allowing programmers to develop software to run
on them.

Soon enough, enterprise systems, such as online stores (B2C
– Business-to-Consumer), or supply chain management (B2B –
Business-to-Business), were being developed for the Web, taking
advantage of their remote nature and ease of deployment. Any
computer connected to the Internet with a browser installed could

use a Web-based system and usually there is no need for software
installation on the client side.

First generation Web applications (WebApps) were usually
developed in an ad hoc manner, with no concern for Software
Engineering principles. However, to develop increasingly
complex WebApps nowadays, the adoption of an engineering
approach is imperative. Web Engineering (WebE) borrows many
conventional Software Engineering’s fundamental concepts and
principles. In addition, it incorporates specialized process models,
software engineering methods adapted to the characteristics of
this kind of application, and a set of enabling technologies [1].

WebE is relatively new and, thus, a broad and fertile field for
research. For example, technologies for codifying WebApps are
evolving very quickly. Several frameworks are becoming
available, especially if we consider popular technologies, such as
Java, .NET and PHP. Once learned, these frameworks make the
development much faster and more productive. This makes them
very attractive, especially because agility is very important for the
development of WebApps [1].

In this context, the Software Engineering Lab (LabES) of the
Federal University of Espírito Santo (UFES) is working on an
approach for rapid development of Java WebApps, based on
Agile Modeling [2] and the existence of many free and open-
source Java frameworks. This paper presents the proposed
approach (section 2) and what we’re planning for future work
(section 3).

2. RAPID DEVELOPMENT OF WEBAPPS
USING JAVA AND FRAMEWORKS

As with conventional software engineering, the WebE
process starts with the identification of the business needs,
followed by project planning. Next, requirements are detailed and
modeled taking into account the analysis and design perspective.
Then the application is built using tools and methods specialized
for the Web. Finally, the system is tested and delivered to end-
users [1]. Four activities of this generic process framework
deserve more attention in the context of the approach presented in
this paper:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WebMedia’05, December 5–7, 2005, Poços de Caldas, Minas Gerais,
Brazil.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

• Requirement Specification: a document defining the
project scope and presenting the use case diagrams and
their descriptions is written, documenting all system
functionalities;

• Analysis: to better understand and describe the business
domain, structural and behavioral models are built based
on the requirements;

• Design: once the implementation platform is chosen,
system architecture must be defined. In the approach
presented here, a standard architecture is given. For each
package of this architecture, a class diagram should be
developed. Also an user interface design activity should
be performed, considering Web-specific aspects, such as
HTML pages and the classes that integrate the current
system with the frameworks used;

• Implementation: design models are transformed into
source code using frameworks in order to reduce the
coding effort.

These four activities form a core process framework that
should be applied in an iterative fashion, allowing for user
feedback and requirements and system evolution.

Requirements specification and analysis do not take the
implementation platform into account, and, thus, are very similar
to the corresponding activities in the conventional software
engineering. However, since agility is desired, the principles of
Agile Modeling should be followed, among them:

• Model with a purpose: the developer must have an
specific goal in mind before creating a model;

• Use multiple models: each model should present a
different aspect of the system and only those models that
provide value to their audience should be built;

• Travel light: as work proceeds, keep only those models
that will provide long-term value;

• Content is more important than representation: modeling
should impart information to its intended audience.

• Know the models and the tools you use to create them.

Design, on the other hand, is heavily dependent on the
implementation platform. During design the system architecture
must be defined. The approach proposed here defends the use of a
standard software architecture for WebApps, shown in figure 1.
Moreover, for developing the models required to design those
packages in detail we advocate the usage WAE, a Web
Application Extension of UML, proposed in [3].

Figure 1. The proposed standard architecture for WebApps.

The presentation logic layer contains the classes that are
responsible for the user interface, in this case Web pages (View
package), and the classes that control the interaction (Controller
package). The controller classes receive user input from the view,

call system functions (Application package), and return the
control to the view to display the results.

It is important to highlight that the dependency between
controller and application is unidirectional, keeping the business
logic layer independent of the presentation layer. The
dependencies identified with the <<weak>> stereotype denote
loose coupling between the packages. View and Controller, for
instance, use domain objects (Domain package) only to display its
data or to pass them around as parameters.

The business logic layer is also composed by two packages:
Application and Domain. Domain classes represent the business
domain concepts identified and modeled in class diagrams during
requirement analysis and refined during design. Typically, these
classes are very simple, resembling mere data structures most of
the time (and thus commonly called “dumb objects”). The
“intelligence” that is missing in these objects is set to the
application classes, which maps to code what was defined as use
cases in the requirement specification phase. An application class
typically implements one or more use cases, and its methods
implements the various flows of events described by the
corresponding use cases. In this way, it is up to the application
classes to create, retrieve, update and delete domain objects from
the persistent media, according to the use case descriptions.

Finally, the data access logic layer is responsible for storing
persistent objects in long-term duration media, such as databases.
Given that the commonest scenario nowadays is the use of
relational databases, we advocate the use of an object/relational
(O/R) mapping framework along with the DAO (Data Access
Object) design pattern [4]. Many of the existing O/R frameworks
not only provide transparent persistence for objects configured by
the developer, but they also generate the database schema,
relieving us from the necessity of building relational models for
the database logical and physical design.

The DAO pattern adds an extra abstraction layer, decoupling
the data access logic layer from the persistence technology,
allowing developers to change to another O/R framework, if
needed. DAO classes are modeled during design stage, only
making explicit the queries that can be made to retrieve objects
from the database, since all DAO objects have, naturally, the
ability to store and delete objects.

It is still possible to improve the interaction among the
design components discussed previously using Dependency
Injection [5] and Aspect Oriented Programming (AOP) [6]. With
the former, dependencies among objects are declared in
configuration files and a container is responsible for instantiating
objects as they are needed and automatically link their
dependencies. The latter allows us to separate cross-cutting
concerns into aspects, which are written in one single place
instead of being spread all over the source code. For both
concepts there are frameworks available to support their adoption.

Finally, concerning the implementation phase, there is a
great number of frameworks for WebApps development. They
allow developers to focus on writing code for business logic
instead of writing infrastructure code (sometimes referred to as
“plumbing” code). In a case study following the proposed
approach, we are developing a “lite” version of an existing

Cooperative Learning Environment, called AmCorA [7]. In this
project, the following frameworks are being used:

• For the Object/Relational mapping framework, Hibernate
was chosen and is used together with DAO classes to
persist objects;

• The controller component is implemented with the
support of WebWork, which also provides other features
for validation of form fields, automatic type conversion,
internationalization, and so on;

• In the view component, FreeMarker was chosen to build
Web pages from templates. Using it Web designers can
work in parallel with programmers, each focusing on their
expertise;

• Also in the view component, a framework for the
decoration of Web pages, SiteMesh, is used in order to
keep a consistent layout through all pages;

• Covering all layers, Spring Framework performs
dependency injection to integrate the different packages
and also provides other services, such as automatic
transaction management, using AOP;

• Integrated to Spring, the framework Acegi Security
performs authentication and authorization services for
components of both controller and application packages.

The frameworks above compose one of the many possible
combinations of frameworks, since for each role there is more
than one framework available. We intend to apply the proposed
approach on various combinations of frameworks in order to
prevent it from becoming over-fitted for this one.

3. CONCLUSIONS AND FUTURE WORK
From the case studies conducted using the proposed

approach, we can conclude that the creation of agile software
processes for WebApps development using frameworks is

promising. The directives drawn for future work in this line of
research include:

• Development of many web applications to refine the
proposed approach;

• Use of several frameworks and evaluation of their impact
in the proposed approach, generalizing it in some aspects
or creating specific proposals for specific frameworks;

• In particular, we plan to study and evaluate the Java
standards for the Java EE platform (JSF and EJB) in their
new versions to be officially released soon and already
available for testing.

4. REFERENCES
[1] R.S. Pressman, Software Engineering: A Practitioner’s

Approach, 6th edition, Mc Graw Hill, 2005.
[2] S. Ambler, “What Is Agile Modeling (AM)?”, 2002,

http://www.agilemodeling.com/index.htm.
[3] J. Conallen. Building Web Applications with UML. 2nd

edition, Addison-Wesley, 2002.
[4] Core J2EE Patterns – Data Access Object.

http://java.sun.com/blueprints/corej2eepatterns/Patterns/Data
AccessObject.html.

[5] Inversion of Control Containers and the Dependency
Injection Pattern. http://www.martinfowler.com/articles/
injection.html.

[6] G. Kiczales, et al., Aspect-Oriented Programming.
Proceedings of the European Conference on Object-Oriented
Programming, 1997.

[7] Netto, H.V., Menezes, C.S., Pessoa, J.M. AmCorA: uma
Experiência com Construção e Uso de Ambientes Virtuais no
Ensino Superior, XIV Simpósio Brasileiro de Informática na
Educação, Rio de Janeiro, 2003 (in Portuguese)

	INTRODUCTION
	RAPID DEVELOPMENT OF WEBAPPS USING JAVA AND FRAMEWORKS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

