OOC-O: a Reference Ontology on
Object-Oriented Code

Camila Zacché de Aguiar, Ricardo de Almeida Falbo, and Vitor E. Silva Souza

Ontology & Conceptual Modeling Research Group (NEMO)
Federal University of Espirito Santo, Brazil
camila.zacche.aguiar@gmail.com, {falbo, vitorsouzal}@inf.ufes.br
http://nemo.inf.ufes.br/

Abstract. With the rise of polyglot programming, different program-
ming languages with different constructs have been combined in the same
software development projects. However, to our knowledge, no axioma-
tization demonstrating the existential commitments of a language have
been presented, nor is there effort to adopt a consensual conceptualiza-
tion between languages, in particular object-oriented ones. In this paper,
we propose OOC-O, a reference ontology on Object-Oriented Code whose
purpose is to identify and represent the fundamental concepts present in
OO source code. The ontology is based on UFO, was developed accord-
ing to the SABiO method, verified according to its competency questions
and validated by instantiation of concepts in OO code form and a process
of harmonization among popular object-oriented languages.

Keywords: Object-Oriented Ontology - Polyglot Programming - Object-
Oriented Programming Language.

1 Introduction

A Programming Language is defined by a formal grammar, however there must
also be a meaning for each construct of the language. Programs have their mean-
ings given by the semantics of their constructs which, generally, must be pre-
served across programs. Without the semantics of constructs, it would be dif-
ficult to verify if the code represents what it was designed to do. In general, a
programming language is presented through its syntax containing some informal
explanation of its semantics [27]. To the best of our knowledge, no axiomatization
demonstrating the existential commitments of object-oriented (OO) constructs
of a language have been presented, nor is there effort to adopt a consensual
conceptualization of object-oriented constructs between languages.

Thus, in this paper we propose OOC-O, a reference ontology on Object-
Oriented Code whose purpose is to identify and represent the fundamental con-
cepts present in OO source code. This reference ontology is based on UFO [14]
and was developed according to the SABiO method [11], in a modular way to fos-
ter its reuse. Ontology verification was guided by competency questions, whereas
its validation consisted of both instantiating its concepts in OO code form and

2 C. Z. Aguiar et al.

by harmonizing popular OO languages using the ontology as interlanguage. The
latter resulted from the ontology capture process, whose objective was to reduce
semantic and syntactic conflicts between languages.

Although OOC-O is applicable in several contexts, it is being built in the
context of polyglot programming, i.e., different programming languages with
different constructs combined in the same software development project. If on
the one hand the combination of different programming languages with specific
respousibilities can reduce the effort to implement solutions [12], on the other
hand, the effort to implement an algorithm may differ between programming
languages depending on its constructs [24]. In this context, OOC-O has been
used as support for both programmers to understand different syntaxes and se-
mantics of object-oriented constructs, as well as for integrated development tools
to interoperate different languages. The ontology has already been used to mi-
grate classes with object /relational mappings from one language to another [30]
and is currently being used in an effort to produce a unified solution for identi-
fying smells in OO source code. Furthermore, OOC-O is part of a larger effort
of creating an ontology network on software development frameworks.!

The remainder of this paper is organized as follows. Section 2 discusses briefly
the main concepts found in most OO programming languages as well as the
ontological foundations used for developing OOC-0O. Section 3 presents OOC-
O. Section 4 addresses ontology verification and validation. Section 5 discusses
related works. Finally, Section 6 concludes the paper.

2 Baseline

Object-oriented (OO) programming is defined as a software implementation
method in which programs are organized as cooperative collections of objects,
each of which representing an instance of some class, and whose classes are
members of a hierarchy of classes linked by inheritance relationships. A class
serves as a template from which objects can be created. It is a defined type that
determines the data structures (attributes) and methods associated with that
type. In order for the attributes and methods of a class to be used in defining a
new class, inheritance is applied as a means of creating abstractions.
Abstraction is the mechanism of representing only the essential characteris-
tics, ignoring the irrelevant details as a way of hiding implementation. To hide
data, encapsulation applies a packaging of methods and attributes accessible
or modifiable only via the interface. Moreover, abstraction can be defined by
polymorphism, attributing the ability to take on many forms and by genericity,
attributing the ability to take several types independently of the structure.
Abstraction, encapsulation, inheritance and polymorphism are the main prin-
ciples of object orientation [7]. In other words, if any of these elements is missing,
you have something less than an OO language [5]. Thus, we consider an OO pro-
gramming language as a tool that supports these four fundamental principles:

! https://nemo.inf .ufes.br/projects/sfwon/

OOC-0O: a Reference Ontology on Object-Oriented Code 3

Abstraction is realized in a OO code by means of classes containing attributes
and methods; Encapsulation is implemented by accessor methods hiding in-
ternal information of the class, avoiding direct access to its attributes, and by
element visibility avoiding unwanted access to these elements; Inheritance is
directly represented as a relation between a subclass that inherits characteris-
tics from a superclass; and, finally, Polymorphism takes place via the concepts
of method override, in which a method declaration in the subclass modifies
the method declared in the superclass, abstract class, whose abstract meth-
ods are implemented according to the subclass that inherits them, and generic
class/method, whose definition can be used by different data types.

Considering the range of existing languages, we selected languages that pro-
vide constructs for the basic OO principles discussed above in order to form
the baseline of our research, namely: Smalltalk, Eiffel, C++, Java and Python.
The selection took into account the first two OO programming languages ever
proposed and the three currently most popular OO languages according to the
TIOBE? IEEE Spectrum?® and Redmonk* indexes.

In order to build an ontology on OO source code, we followed a systematic
approach for building ontologies named SABiO [11], a method that considers ac-
tivities for the development of reference ontologies and to its implementation as
operational ontologies. In this paper, we developed only the reference ontology
and, therefore, only the early stages of SABiO were performed. In Purpose Identi-
fication and Requirements Elicitation, we identify the purpose and intended uses of
the ontology, define its functional requirements, by means of Competency Ques-
tions, and also non-functional ones (NFRs), and decompose the ontology into
appropriate modules. Ontology Capture and Formalization phase follows, aiming
at objectively recording the domain conceptualization based on an ontological
analysis using a foundation ontology and representing it in a graphic model.

In addition, SABiO suggests five support processes, applied as follows: Knowl-
edge Acquisition, to gather domain knowledge reliably through specialists and
bibliographic material; Reuse, to take advantage of conceptualizations already
established for the domain; Documentation, to record the results of the devel-
opment process by means of a Reference Ontology Specification; Configuration
Management, to control changes, versions, and delivery by means of a repos-
itory; and Evaluation, to evaluate the suitability of the ontology by means of
verification, ensuring that the ontology satisfies its requirements, and valida-
tion, ensuring that the ontology is able to represent real world situations.

For building our conceptual models, we used the OntoUML modeling lan-
guage, which is based on the UML 2.0 class diagram and incorporates im-
portant foundational distinctions made by the Unified Foundational Ontology
(UFO) [14]. Such distinctions are made explicit in the model by means of UML
class stereotypes, summarized as follows: «category», a rigid type whose instances
share common intrinsic properties but obey different principles of identity (non-

2 tiobe.com, January 2019.
3 spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages, July 2018.
4 redmonk. com/sogrady/2019/03/20/1anguage-rankings-1-19/, January 2019.

4 C. Z. Aguiar et al.

sortal, rigid entities); «kind», a rigid sortal type that is formed by distinct parts
(functional complex) and supplies an identity principle for its instances; «sub-
kind», a rigid sortal type whose instances inherit an identity principle from a
kind; «role», an anti-rigid sortal type whose specialization condition is given by
extrinsic (relational) properties; «relator», a concept connecting other concepts,
and thus existentially dependent on them; and «quality», a type whose instances
represent intrinsic properties of an individual associated with a quality structure.
This choice is motivated by UFO having a modeling language with stereotypes
covering the domain studied and the availability of an ontology network on soft-
ware engineering represented in such language, facilitating integration and reuse.

3 Object-Oriented Code Ontology (OOC-0O)

The Object-Oriented Code Ontology (OOC-0) aims to identify and represent the
semantics of the entities present at compile time in object-oriented (OO) code.
Given such scope, even though objects are the fundamental constructs in OO
programming and messages are responsible for exchanges between objects, they
are not covered by OOC-O, since they exist only at runtime. The intention is to
use the ontology to assist the understanding of different programming languages
and to support the development of tools that work with these languages, in the
context of polyglot programming and object-oriented frameworks.

We elicited the following non-functional requirements for OOC-O: NFR1 — be
modular or embedded in a modular framework to facilitate reuse of other ontolo-
gies and, consequently, its own reuse by other ontologies; and NFR2 — be based
on well-known sources from the literature. In response to NFR1 and to facili-
tate viewing, we decomposed the ontology into three modules, namely: OOC-O
Core (an overview of the main concepts), OOC-O Class (detailing concepts de-
rived from Class) and OOC-O Class Members (detailing concepts derived from
Class Members, i.e., Methods and Attributes). Moreover, we integrated OOC-O
into the Software Engineering Ontology Network (SEON) [23], to reuse relevant
concepts, as well as SEON’s grounding in UFO. Two ontologies from SEON were
reused: the Software Process Ontology (SPO) [19] and the Software Ontology
(SwO) [8]. Along the paper, fragments of these reused ontologies in OOC-O are
preceded by the corresponding acronyms (SPO:: and SwO::, respectively) and
highlighted using different colors. Regarding NFR2, ontology capture was sup-
ported by a process of knowledge acquisition that used consolidated sources of
knowledge referring to the five programming languages selected in this research,
including books [15,25, 18,17, 22, 28] and standards [13,9].

For functional requirements, we have iteratively defined twenty five compe-
tency questions (CQs) detailed in OOC-O’s Reference Ontology Specification
document [2], for instance: CQ1: What makes up an OO source code? CQ2:
What is the visibility of an element present in an OO source code? CQ3: How
are classes logically organized in an OO source code? CQ4: What elements com-
pose a class? CQ5: Which are the parent classes of a class? CQ6: What is a root
class? CQ7: What are the variables of a method? CQ8: What is the mutability

OOC-0O: a Reference Ontology on Object-Oriented Code 5

of a variable? CQ9: What types of classes are present in an OO source code?
CQ10: What types of methods are present in an OO source code?

During ontology capture and formalization, we performed ontological analysis
based on UFO, representing OOC-0O in OntoUML. Such process was conducted
iteratively, in order to address different aspects/refinements at each iteration,
and interactively, so domain experts and ontology engineers could discuss the
conceptualization of the domain in OntoUML. Finally, to ensure consensual un-
derstanding of the domain, the concepts were defined in a dictionary of terms
and mapped to the concepts of each selected programming language, detailed in
a technical report [1]. In what follows, we present the three modules of OOC-O.
More details of the ontology can be found in its specification document [2].

3.1 0O0C-0 Core Module

Figure 1 shows the core concepts of OOC-O and how they integrate with SEON
through the SPO and SwO ontologies.

<<kind>> - 0."
SPO::Language drepresented in

<<subkind>> J1. 0.1
SPO::Programming Languagel drepresented in
1.}

<<category>>

00C-0 SPO B
[aN

SPO::Artifact 00C-0 Swo
<<category>> 00C-O Core B

SPO::Software ltem

. <<kind>>
SwoO::Code
0.* T

<<subkind>>
SwO::Source Code

represented in

0. <<subkind>>
“~| _Object-Oriented Source Code

lo.x

<<category>>
Named Element
JAN

{complete, disjoint}

| <<subkind>> |1 o

Object-Oriented Progr ing L |] d by
P

«constituted of

1 _<<characterization>>
characterized by

<<quality>> 1

Name

<<quality>>
Element Visibility

<<characterization>>
characterized by

] <<kind>> |g.<<componentOf>>]
Class | 1 0.*| <<category>>
Member

<<kind>> |1
Variable
JAY

1 <<quality>>
JAN Mutability
<<characterization>> 1 - <<characterization>>
charagterized by <<kind>> characterized by 0.1
<<subkind>> v Method (Member Function) —
Physical Module {complete, disjoint} 0.1 <<quality>>
Value Type

<<subkind>>
Attribute (Member Variable)

<<quality>>
1 Return Type

<<subkinc>> 0.r

Logical Module

<<category>>
Type |

refers to

drefers to

Fig. 1. Object-Oriented Code Ontology: Core module.

SPO establishes a common conceptualization on the software process domain
(processes, activities, resources, people, artifacts, procedures, etc.). We reuse the
concept of software Artifact, object consumed or produced during the software
process, which is represented in a Language, a set of symbols used for encoding
and decoding information. A software artifact can be, among other things, a
Software Item such as a piece of software produced during the software process.

SwO further specializes this concept: a Software System is a Software ltem
that aims at satisfying a system specification. It is constituted of Programs,

6 C. Z. Aguiar et al.

which are Software Items that aim at producing a certain result through execu-
tion on a computer, in a particular way, given by a program specification. In
turn, Programs are constituted of Code, a Software ltem representing a set of
computer instructions and data definitions which are represented in a Program-
ming Language as a Source Code.

OOC-O is anchored in the concept of Object-Oriented Source Code, a
Source Code specialization represented in an Object-Oriented Programming
Language. Such code is constituted of Physical Modules, i.e., physical units in
which the physical files (ex: . java) are stored (e.g., a directory in the file system).
Physical Modules are composed of Classes organized in Logical Modules, i.e.,
packages or namespaces that group classes and allow programmers to control de-
pendencies, visibility, etc. Both Modules (Physical or Logical) can be decomposed
in their respective sub-Modules. However, decomposition can only take place
among modules of the same type, i.e., Vmy, ms : Module, Physical M odule(my)A
componentO f(my, ma) — Physical Module(ms) (A1) and Ymy, ma : Module,
Logical Module(my) A componentO f(my, mg) — Logical Module(ms) (A2).

Classes are composed of Members, be it a Method (Member Function),
function that belongs to the class and provides a way to define the behavior
of an object, being invoked when a message is received by the object [18]; or
be it an Attribute (Member Variable), variable that belongs to the class and
provides a way to define the state of its objects. Classes, Methods and Variables
are Named Elements characterized by a unique Name and a Visibility, which
defines the access type to the element. Attribute is a subtype of Variable, item
of information located in the memory whose assigned value can be changed or
not according to its Mutability. Analogously, a Method has a Return Type,
whose values refer to the Types of information that the language is capable of
manipulating, whether a Primitive Type, predefined by the language through a
reserved word; or a Class, predefined or not.

3.2 00C-0O Class Module

The purpose of the OOC-O Class module is to represent the relevant concepts
present in OO programming languages with respect to classes. Hence, OOC-
O Class module, shown in Figure 2, is centered on the Class concept already
presented in OOC-O Core earlier.

Every Class must either be a Concrete Class, implemented class that can
and intends to have instances, or an Abstract Class, incompletely implemented
class whose descendants will use as a basis for further refinement [9]. Abstract
class, in contrast to Concrete Class, should not have instances and should be
an Extendable Class. Further, every class must be either an Extendable Class,
class available to be extended through Inheritance, or Non-Extendable Class,
the opposite.

An Extendable Class can assume the Superclass role when relating to a Class
that assumes the Subclass role in an Inheritance relationship: Ve, ¢ : Class, i :
Inheritance, inheritsIn(cy,i)Ninherited From(cq,i) — subClassO f(cy, c2) (A3).

OOC-0O: a Reference Ontology on Object-Oriented Code 7

QO0C-0 Core H <<kind>> «
00C-O Class 2 Class 1 :
contains™ |+
Q
:Parameterization :Inheritanc <<relator>>
complete. disjoint} Nesting
= le>>
] ‘Implementation S
<< ==
sul?kmd {complete, disjoint} Subclass !
Generic Class ‘Extension | 1
1 - f f nested in
<<comppnent of>> <<subkind>> inhegts in 1
Non-Extendable Class 1
1.4 <<role>>
<<kind>> <<subkind>> Szl Nested Class
Type Parameter Extendable Class Inheritance
75 1‘3 A 1.7
<<subkind>> e inherited in
Concrete Class Root Class
1.1
<<subkind>> <<role>> <<quality>>
Abstract Class Superclass Inheritance Visibility

Fig. 2. Object-Oriented Code Ontology: Class module.

The relationship between a Superclass and a Subclass is established mainly by
the existence of a “is-a” relation between them [26].

In this context, Inheritance Visibility can be set to limit the Subclass per-
mission on the members of the Superclass. The Extendable Class inherited by
all classes directly or indirectly in an OO code is known as Root Class [9] and
introduces several general-purpose resources. When present, the Root Class is a
common ancestor for all other existing classes, i.e., Ve : Class,r : RootClass, c #
r — descendantOf(c,r) (A4), where descendantOf is defined in terms of the
subClassOf predicate introduced above, according to the following axioms:
Veq, co : Class, subclassO f(c1, ca) — descendantO f(cq, c2) (AB) and Ve, co, ¢3¢
Class, subclassO f(c1, ca) AdescendantO f(cq, c3) — descendantO f(c1,c3) (A6).

Finally, a Class can also assume the Nested Class role when relating to
another Class by means of its declaration being within the body of that Class [13]
(we refer to this as Nesting). Furthermore, a Class can be a Generic Class, when
it describes a template for a possible set of types [9]. A Generic Class is composed
of Type Parameters, which are identifiers that specify generic type names whose
instances must define recognized types that will replace the Type Parameter at
runtime.

3.3 00C-0 Class Members Module

The purpose of the OOC-O Class Members module is to represent the relevant
concepts present in OO programming languages with respect to the component
members of the classes. As methods and attributes are the key components of
a class, OOC-O Class Members module, shown in Figure 3, is centered on the

8 C. Z. Aguiar et al.

concepts of Method (Member Function) and Attribute (Member Variable) already
presented in OOC-O Core.

<<kind>> 1 <<componentOf>> 0.* | <<category>> <<kind>>
Class Member Variable

<<quality>> [0..1 <<characterization>> FAY %
Return Type < characterized by
<<subkind>> <<subkind>>
Attribute (Member Variable) Method Variable

<<subkind>>

Extendable Class 1

<<kind>>
Method (Member Function)

1
<<compopnentOf>>

{complete . g:/sé‘:rllndﬂe :Parameterization

<<subkind>>
Abstract Class

{complete. disjoint}

1 <<subkind>> ‘Implementation disjoint}
Overridable Method
<<subkind>>

<<conmponentOf>> Concrete Method
0.1 bkind:

Abstract Method 1

<<subkind>>
]] Generic Method

<<subkind>> 0.
Instance Method

<<kind>> <<compoentOf>>

Type Parameter 1

’_(d_iSjo_Liﬁ.m'm_mt:Iﬂ)—‘ 1 -+
0. <<kina=>
& Block
[<componentOf>> 0.7

Fig. 3. Object-Oriented Code Ontology: Class Members.

<<subkind>>
Non-Overridable Method

<<subkind>>
Local Variable

<<subkind>>
Class Method

0OOC-0 Class
0OC-0 Class Member

<<subkind>>
Accessor Method

<<subkind>>
Destructor Method

<<subkind>>
Constructor Method

Every Method of a Class must be either a Concrete Method, implemented in
its own (concrete or abstract) Class by means of Blocks; or an Abstract Method,
belonging to an Abstract Class and implemented (or “made concrete”) only in
its Subclasses. A Concrete Method can be specialized according to its execu-
tion context, either in the context of the class, invoked by the class in a Class
Method, or in the context of the object, invoked by the object in an Instance
Method. An Instance Method can be specialized in Accessor Method, which
provides an interface between the internal data of the object and the external
world [15], in Constructor Method, which specifies how an object should be cre-
ated and initialized, or in Destructor Method, which is responsible for cleaning
unusable objects. Return Type cannot characterize neither a Constructor nor a
Destructor Method: Vrt : ReturnType, m : Method, characterization(rt,m) —
—Constructor Method(m) A ~Destructor Method(m) (AT).

Further, every Method must be either an Overridable Method, method be-
longing to an Extendable Class that can be overwritten in descendant classes [25],
such as an Abstract Method declared in an Abstract Class to be implemented by
Subclasses; or a Non-Overridable Method, method that can be inherited but
is not allowed to be overwritten in descendant classes, such as Class Methods
and Constructor Methods. A Method can also be a Generic Method when de-
scribing a template for a possible set of methods composed of one or more Type
Parameters.

OOC-0O: a Reference Ontology on Object-Oriented Code 9

Variables, in turn, can be associated with methods, i.e., be a Method Variable,
or classes, i.e., an Attribute (Member Variable). In an indirect way, Method Vari-
able is member of a Class, since a Class is composed of Methods. Method Variable
can be a Parameter Variable declared within the signature of a Method or Local
Variable declared within a Block. Part-of relations among Methods, Blocks and
Local Variables are transitive in the following ways: Vv : LocalVariable, by, by :
Block, componentO f (v, by) AcomponentO f (b1, bs) — componentO f(v,by) (A8)
and Vv : LocalVariable,b : Block,m : ConcreteM ethod, componentO f(v,b) A
componentO f(b,m) — componentO f(v,m) (A9). An Attribute can be a Class
Variable when shared by all objects of the Class or an Instance Variable when
it represents the particular state of each object.

4 Evaluation

The evaluation of a reference ontology comprises activities of verification and
validation. For ontology verification, SABiO suggests identifying whether the
elements that make up the ontology are able to answer the competency questions
raised. Table 1 presents the results for some of the raised CQs (cf. Section 3),
showing which concepts and relations are used to answer a CQ.

Table 1. Results for OOC-O verification.

ID [Competency Question Axiom
Object-Oriented Source Code constituted of Physical Module; Class component of
CQ1)
Physical Module.
CQ2 [Named Element characterized by Element Visibility
CQ3 [Class organized in Logical Module
cQa Member component of Class; Attribute (Member Variable) and Method (Member
Function) subtype of Member
Subclass subtype of Class; Subclass inherits in Inheritance; Superclass inherited| A3,
in Inheritance A5, A6
Extendable Class subtype of Class; Root Class subtype of Extendable Class; Sub-| A3,
CQ6 [class subtype of Class; Subclass inherits in Inheritance; Superclass inherited in| A4,
Inheritance. A5, A6
Parameter Variable component of Method; Local Variable component of Block;
CQ7 |[Block component of Block; Block component of Concrete Method; Concrete| A8, A9
Method subtype of Method
CQ8 [Variable characterized by Mutability
Generic Class subtype of Class; Concrete Class subtype of Class; Abstract Class
CQ9 |[subtype of Class; Non-Extendable Class subtype of Class; Extendable Class subtype
of Class
Generic Method subtype of Method; Concrete Method subtype of Method; Ab-
CQI10 |stract Method subtype of Method; Overridable Method subtype of Method; Non-
Overridable Method subtype of Method

cQ5

For ontology validation, the ontology should be instantiated to check if it
is able to represent real world situations. For this, we use the same OO code
fragment written in the selected languages to instantiate the concepts of the on-
tology. Table 2 shows some results of the OOC-O instantiation. It is worthy to say
that since there are orthogonal generalization sets that are disjoint and complete
(e.g., :Implementation and :Extension in Class concept), each concept instance

10 C. Z. Aguiar et al.

Table 2. Results for OOC-O instantiation.

Language Code OOC-0O Instance
Smalltalk Code Polygon = Concrete Class & Extendable Class & Subclass
Object subclass: #Polygon Object = Superclass & Root Class
instanceVariableNames: ’side’ [side = Instance Variable
perimeter ... perimeter = Instance Method & Overridable Method
Eiffel Code
class Polygon Polygon = Concrete Class & Extendable Class & Subclass
feature{ANY} side = Instance Variable
perimeter() is do ... end |[INTEGER = Value Type
feature{NONE} perimeter = Instance Method & Non-Overridable Method
side : INTEGER NONE and ANY = Element Visibility
end
C++ Code Polygon = Concrete Class & Extendable Class
class Polygon{ side = Instance Variable
private: int side; perimeter = Instance Method
public: void perimeter(){}; private and public = Element Visibility
}; void and int = Value Type
Java Code Polygon = Concrete Class & Extendable Class & Subclass
public class Polygon{ side = Instance Variable & Overridable Method
private int side; perimeter = Instance Method
public void perimeter (){}; private and public = Element Visibility
} void and int = Value Type
Python Code Polygon = Concrete Class & Extendable Class & Subclass
class Polygon: side = Instance Variable
side = None None = Initial Variable Value
def perimeter(): ... perimeter = Concrete Method & Overridable Method

(e.g., the Polygon class) is classified in at least each of these generalization sets
(e.g., Concrete Class or Abstract Class, and Extendable Class or Non-Extendable
Class). The complete table is available in a technical report [1].

From OOC-O’s instantiation we can see that the code relative to class def-
inition incorporates the semantics of concrete and extendable class in the
ontology. Most languages, explicitly (Smalltalk) or implicitly (Eiffel, Java and
Python), incorporates subclass semantics, since all classes are subclasses of the
root class of these languages such as the Object class in Smalltalk, Java and
Python, and the Any class in Eiffel (C++ does not have a root class). Code rel-
ative to method definition in different languages incorporates a highly variable
semantics, including the semantics of instance, concrete, overridable and
non-overridable methods in the ontology. The element visibility is either
explicitly defined with keywords (private and public in Java and C++, and
none and any in Eiffel) or is private by default (Smalltalk) or is public by de-
fault (Python). The value type is explicitly defined in some languages (Eiffel,
C++, Java) and defined by the assigned value (Python) or defined as an object
(Smalltalk) in others.

We also performed a harmonization between the elements of the selected
languages and the concepts of OOC-0O, applying equivalence relations. Table 3
shows some of these matches and the complete table is available in a technical
report [1]. Although the OO principles are well established, the way they are
handled in the programming languages is not uniform. Each language adopts
different syntax and semantics for their constructs, resulting in different levels
in which those principles are addressed. In this context, OOC-O can be used to
support interoperability among them.

OOC-0O: a Reference Ontology on Object-Oriented Code 11

Table 3. Equivalence between selected OO programming languages and OOC-O.

Lang. Language concept OOC-O concept
Class Concrete Class & Extendable Class
Abstract Class Abstract Class
Template Generic Class
Smalltalk [Method Concrete Method & Overridable Method
Accessor Method Accessor Method
Instance Variable Instance Variable
Access Element Visibility
Class Concrete Class & Extendable Class
Deferred Class Abstract Class
Frozen Class Non-Extendable Class
Generic Class Generic Class
Eiffel [Routine Instance Method & Non-Overridable Method
Routine Redefinition Overridable Method
Accessor Routine Instance Method
Attribute Instance Variable
Access Element Visibility
Class Concrete Class & Extendable Class
Abstract Class Abstract Class
Final Class Non-Extendable Class
Template Generic Class
C+ Member Function Instance Method
Final Member Function Non-Overridable Method
Virtual Member Function Overridable Method
Accessor Member Function [Instance Method
Instance Variable Instance Variable
Access Modifier Element Visibility
Class Concrete Class & Extendable Class
Abstract Class Abstract Class
Final Class Non-Extendable Class
Generic Class Generic Class
Java Method Instance Method & Overridable Method
Abstract Method Abstract Method
Final Method Non-Overridable Method
Accessor Method Instance Method
Instance Variable Instance Variable
Access Modifier Element Visibility
Class Concrete Class & Extendable Class
Abstract Class Abstract Class
Python Generic Class Generic Class
Method Concrete Method & Overridable Method
Accessor Method Instance Method
Data Attribute Instance Variable

Therefore, Abstraction is represented by the class concept in the languages,
being composed by members such as method in Smalltalk, Java and Python, or
routine in Eiffel, or member function in C++, and by attribute in Eiffel, or data at-
tribute in Python, or instance variable in Smalltalk, C+-+ and Java. Inheritance
is represented by subclass in Smalltalk, Eiffel, Java and Python, or derived class
in C++, and by superclass in Smalltalk, Eiffel, Java and Python, or base class in
C++. Encapsulation is represented by access in Smalltalk and Eiffel, or access
modifier in C++ and Java, and by the public visibility in Python. Encapsulation
is represented also by accessor method in Smalltalk, however, the accessor method
concept in Eiffel, C++, Java and Python is not equivalent to accessor method
in the ontology because in these languages there is only a convention for treat-
ing an instance method as an accessor method. Polymorphism is represented
by routine redefinition in Eiffel or virtual function in C++. Smalltalk, Java and

12 C. Z. Aguiar et al.

Python incorporate the semantics of overridable method to the method concept.
Polymorphism is represented also by generic class/method in Eiffel, Java and
Python, or template in Smalltalk and C++. Polymorphism is represented also
by abstract class in Smalltalk, C++-, Java and Python, or deferred class in Eiffel.

Finally, in a separate research effort [30], the OOC-O reference ontology pre-
sented in this paper was implemented in OWL, giving rise to its operational ver-
sion OOC-OWL (also available in the aforementioned website). OOC-OWL was
then used by ORM-OWL (Object/Relational Mapping Ontology) to instantiate
source code with ORM annotations and migrate it from one language /framework
to another using the ontology as an interlingua.

5 Related Works

Concepts that were originally developed by OO programming languages have ap-
peared in many other areas such as database [3], development methodology [21],
data analysis [6], and others. Therefore, there are several works that discuss and
formalize fundamentals of programming language, discussing semantic theories
to be applied in the definition of programming languages ontologies [27], or of
the object orientation, using the ontological view to define the formal basis of the
object notion [29] or introducing a new view on the roles in OO programming
languages, such in the powerJava language extended from Java [4]. However, this
research is interested in identifying and formalizing the relevant concepts in OO
programming languages, little explored as far as we know.

Evermann & Wand [10] apply semantic mapping between ontological con-
cepts of the BWW ontology and OO programming language constructs to assign
semantics and rules in the context of software modeling. The BWW concepts
(thing, property and functional schema) are mapped to UML concepts (object,
class, attribute, attribute of ‘ordinary’ class and attribute of association class).
Although the research has applied an ontological analysis to map object-oriented
constructs, it covers only a small portion of that domain.

Kouneli et al. [16] apply an operational ontology of programming language
for representing the knowledge delivered by a distance learning course on com-
puter programming. Although the ontology is built following a methodology
and sources of information of the Java language, it is not based on any founda-
tion ontology. The concepts of the ontology are anchored in the Thing concept
and hierarchically organized from Java Element (Class, Constructor, Data Type,
Exception, Interface, Method (AbstractMethod, FinalMethod, ClassMethod and
InstanceMethod), Object, Operator, Package, Statement, Thread and Variable
(ClassVariable, InstanceVariable, LocalVariable and Parameter)), Keyword and
Literal Value. Unlike OOC-O, this ontology only represents the Java program-
ming language domain and incorporates non-object-oriented concepts such as
exception, operator, statement, and thread.

Pastor et al. [20] elaborate the O3 reference ontology, inspired by BWW
and the FRISCO framework to semantically map the concepts of the OO pro-
gramming paradigm. The concepts of BWW (thing, property, substantial and

OOC-0O: a Reference Ontology on Object-Oriented Code 13

relation) are specialized for the concepts of the OO paradigm (class (general-
ization, specialization), domain (primitive type)), attribute (variable, constant),
interface). Although the research has applied an ontological analysis to map
object-orientation concepts, it covers only a small portion of that domain and
incorporates non-object-oriented concepts such as constraint, service, relation,
agent, server and others.

6 Final Considerations

This paper presents a reference ontology about the concepts of object-oriented
programming code based on a foundation ontology. The OOC-O ontology is built
according to an ontology engineering method and based on well-known data
sources. Verification and validation activities were successfully accomplished, by
answering competency questions, instantiating the ontology in fragments of OO
code, harmonizing between object-oriented languages (Smalltalk, Eiffel, C++,
Java and Python) and checking the coverage of the fundamental OO concepts.

The OOC-O ontology is not intended to represent principles or philosophies of
object orientation, but rather the semantic representation of OO programming
language code. To the best of our knowledge, we have not found any related
work that covers the proposed domain in depth. Finally, in future work, we
intend to use the ontology at the foundation of tools in a polyglot programming
development environment and in the context of semantic interoperability among
different object-oriented frameworks.

References

1. Aguiar, C.Z.: Object-Oriented Code Ontology — Harmonization Document of
Object-Oriented Programming Language, available on: http://nemo.inf.ufes.
br/projects/sfwon/. Tech. rep., Federal University of Espirito Santo (2019)

2. Aguiar, C.Z.: Object-Oriented Code Ontology — Reference Ontology Specification
Document, available on: http://nemo.inf.ufes.br/projects/sfwon/. Tech. rep.,
Federal University of Espirito Santo (2019)

3. Atkinson, M., Dewitt, D., Maier, D., Bancilhon, F., Dittrich, K., Zdonik, S.:
The object-oriented database system manifesto. In: Deductive and object-oriented
databases, pp. 223-240. Elsevier (1990)

4. Baldoni, M., Boella, G., Van Der Torre, L.: powerjava: ontologically founded roles
in object oriented programming languages. In: Proceedings of the 2006 ACM sym-
posium on Applied computing. pp. 1414-1418. ACM (2006)

5. Booch, G.: Coming of age in an object-oriented world. IEEE Software 11(6), 33—41
(1994)

6. Brun, R., Rademakers, F.: Root—an object oriented data analysis framework.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 389(1-2), 81-86 (1997)

7. Conaway, C.F., Page-Jones, M., Constantine, L.L.: Fundamentals of object-
oriented design in UML. Addison-Wesley Professional (2000)

14

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.

20.

21.

22.
23.

24.

25.
26.

27.
. Tyrrell, A., Tyrrell, A.: Eiffel Object-oriented Programming. Springer (1995)
29.

30.

C. Z. Aguiar et al.

Duarte, B.B., Leal, A.L.C., Falbo, R.d.A., Guizzardi, G., Guizzardi, R.S.,
Souza, V.E.S.: Ontological foundations for software requirements with a fo-
cus on requirements at runtime. Applied Ontology 13(2), 73-105 (may 2018).
https://doi.org/10.3233/A0-180197

Eiffel, E.: Eiffel: Analysis, design and programming language. ECMA Standard
ECMA-367, ECMA (2006)

Evermann, J., Wand, Y.: Ontology based object-oriented domain modelling: fun-
damental concepts. Requirements engineering 10(2), 146-160 (2005)

Falbo, R.A.: Sabio: Systematic approach for building ontologies. In: ONTO.
COM/ODISE@ FOIS (2014)

Fjeldberg, H.C.: Polyglot programming. Ph.D. thesis, Master thesis, Norwegian
University of Science and Technology, Trondheim/Norway (2008)

Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D.: The java lan-
guage specification: Java se 10 edition, 20 february 2018 (2018)

Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications
of it in business modeling. In: CAiSE Workshops (3). pp. 129-143 (2004)

Hunt, J.: Java and object orientation: an introduction. Springer Science & Business
Media (2002)

Kouneli, A., Solomou, G., Pierrakeas, C., Kameas, A.: Modeling the knowledge
domain of the java programming language as an ontology. In: International Con-
ference on Web-Based Learning. pp. 152-159. Springer (2012)

Lafore, R.: Object-oriented programming in C++. Pearson Education (1997)
LaLonde, W.R., Pugh, J.R.: Inside smalltalk, vol. 2. Prentice Hall (1990)

de Oliveira Bringuente, A.C., de Almeida Falbo, R., Guizzardi, G.: Using a foun-
dational ontology for reengineering a software process ontology. Journal of Infor-
mation and Data Management 2(3), 511 (2011)

Pastor, O.: Disefio y Desarrollo de un Entorno de Produccién Automatica de Soft-
ware basado en el modelo orientado a Objetos. Ph.D. thesis, Tesis doctoral dirigida
por Isidro Ramos, DSIC, Universitat Politécnica de ... (1992)

Pastor, O., Insfran, E., Pelechano, V., Ramirez, S.: Linking Object-Oriented Con-
ceptual Modeling with Object-Oriented Implementation in Java. In: Database and
Expert Systems Applications, 8th International Conference, DEXA’97, Toulouse,
France, September 1-5, 1997, Proceedings. pp. 132-141 (1997)

Phillips, D.: Python 3 object-oriented programming. Packt Publishing Ltd (2015)
Ruy, F.B., de Almeida Falbo, R., Barcellos, M.P., Costa, S.D., Guizzardi, G.: Seon:
A software engineering ontology network. In: European Knowledge Acquisition
Workshop. pp. 527-542. Springer (2016)

Schink, H., Broneske, D., Schréter, R., Fenske, W.: A tree-based approach to sup-
port refactoring in multi-language software applications. In: Proceedings of the
2nd International Conference on Advances and Trends in Software Engineering,
Lisbon, Portugal. pp. 3—6 (2016)

Sebesta, R.W.: Concepts of programming languages. Boston: Pearson, (2012)
Tucker, A.B.: Programming languages> Principles and Paradigmas. Tata McGraw-
Hill Education (2007)

Turner, R., Eden, A.H.: Towards a programming language ontology. Citeseer (2007)

Wand, Y.: A proposal for a formal model of objects. In: Object-oriented concepts,
databases, and applications. pp. 537-559. ACM (1989)

Zanetti, F., Aguiar, C.Z., Souza, V.E.S.: Representacao ontologica de frameworks
de mapeamento objeto/relacional. In: 12th Seminar on Ontology Research in Brazil
(ONTOBRAS), to appear (2019)

