
A Well-founded Software Process Behavior Ontology to Support Business Goals

Monitoring in High Maturity Software Organizations

Monalessa Perini Barcellos
1, 2

, Ricardo de Almeida Falbo
1
, Ana Regina Rocha

2

1
Department of Computer Science,

Federal University of Espírito Santo

Vitoria – Brazil

2
COPPE

 Federal University of Rio de Janeiro

Rio de Janeiro – Brazil

monalessa@inf.ufes.br, falbo@inf.ufes.br, darocha@cos.ufrj.br

Abstract - Organizations define strategies and establish

business goals aiming to be competitive. The process

performance analysis supports goals monitoring, allowing

to detect and to treat threats to goals achievement. In this

context, measurement is essential. The collected data for

measures are used to analyze the process performance and

to guide informed decisions that lead to the achievement of

business and technical goals. For software organizations,

the process performance analysis is a high maturity

practice. In this context, although there are several

standards that address the importance of software

measurement and its use in process performance analysis,

the vocabulary used by these standards concerning

software measurement is diverse. In order to establish a

conceptualization regarding this domain, we developed a

Software Measurement Ontology (SMO), grounded in the

Unified Foundational Ontology. In this paper, we present

a fragment of SMO with focus on software process

behavior analysis.

Keywords - Software Process Behavior Ontology, Software

Measurement, Software Measurement Ontology, Domain

Ontologies, Foundational Ontology.

I. INTRODUCTION

Competitiveness is a determining factor to the success of

organizations. Each organization has an explicit or implicit

competitive strategy [1]. Typically, the strategy of an

organization is materialized in its strategic planning, which

defines the organization’s business goals, established with

focus on organizational competitiveness and considering a

certain period of time. Goals provide orientation and reflect

the desired conditions for improving the organization global

performance, guiding both decision-making and daily

activities [2]. Thus, actions related to the goals defined in the

strategic planning are planned and carried out aiming

achieving the goals.

In addition to defining goals, it is important to monitor

them continuously, verifying if they are being achieved [3].

The monitoring of the goals achievement should be based on

organizational performance analysis, which is accomplished

from the processes performance analysis [4]. Process

performance analysis consists of analyzing data collected

throughout the process executions to know process behavior

and provide guidelines for taking corrective and improvement

actions, aiming to achieve the established goals [5].

Since the process performance analysis uses data from the

processes executions, measurement is one of its main pillars.

To obtain and use quantitative information about the

processes, a measurement program should be carried out. The

measurement program defines measures aligned to

organizational goals. These measures, in turn, are collected

and analyzed to provide the information needed for decision-

making.

In the context of software organizations, the organizational

performance monitoring becomes more rigorous as the

organizational maturity increases. Organizations that are in

high maturity levels (characterized by levels 4 and 5 of the

Capability Maturity Model Integration – CMMI [6]) perform

measurement in order to control statistically their processes.

Statistical Process Control (SPC) is performed to analyze the

processes behavior, in order that they be managed, predicted,

controlled and improved to meet the organizational business

and technical goals [5].

There are several process quality standards and maturity

models, such as ISO/IEC 12207 [7], CMMI [6] and MR

MPS.BR [8], which support software organizations in

achieving maturity in software development, including

software measurement aspects. There are also several

standards and methodologies devoted specifically to assist

organizations in defining their software measurement process,

such as ISO/IEC 15939 [9] and PSM [10]. Unfortunately, the

vocabulary used by those standards and models, and as a

consequence by the software organizations, is diverse. This

leads to misunderstanding and problems related to the jointly

use of different standards.
To deal with these problems, it is important to establish a

common conceptualization regarding the software

measurement domain. Thus, we need a domain reference

ontology, i.e., a domain ontology that is constructed with the

sole objective of making the best possible description of the

domain in reality, with regard to a certain level of granularity

and viewpoint [11].

A reference ontology is a special kind of conceptual model

representing a model of consensus within a community. It is a

solution-independent specification with the aim of making a

clear and precise description of domain entities for the

purposes of communication, learning and problem-

solving. Ideally, a reference ontology should be represented by

mailto:monalessa@inf.ufes.br
mailto:falbo@inf.ufes.br

an ontologically well-founded language [11]. Such a language

must explicitly commit to fundamental ontological distinctions

in their metamodels, given by a foundational ontology [12].

In order to deal with the problem of vocabulary diversity in

related standards, we decided to develop a Software

Measurement Ontology (SMO). This reference ontology is

represented using the ontologically well-founded UML

modeling profile proposed in [12, 13]. This profile comprises

a number of stereotyped classes and relations implementing a

metamodel that reflects the structure and axiomatization of the

Unified Foundational Ontology (UFO) [12, 13].

The SMO is partially presented in this paper. The focus

here is on measurement at high maturity levels, more

specifically on software process behavior analysis. This

domain reference ontology was built based on the Unified

Foundational Ontology (UFO) [12, 13]. Besides, the SMO was

developed based on the vocabulary used in several standards

and specific requirements of software measurement at high

maturity levels. These requirements were identified in a study

based on systematic review of the literature.

This paper is organized as follows. Section II discusses

software measurement and process behavior analysis. Section

III presents the concepts of the Unified Foundational Ontology

considered relevant for this paper. Section IV presents an

overview of the Software Measurement Ontology and details

its fragment that treats software process behavior. Section V

discusses related works, and Section VI presents our

conclusions and future work.

II. SOFTWARE MEASUREMENT AND PROCESS BEHAVIOR

ANALYSIS

Software Measurement is a primary tool for managing

projects. It is also a key discipline in evaluating the quality of

software products and the performance and capability of

organizational software processes [9].

For performing software measurement, initially, an

organization must plan it. Based on its goals, the organization

has to define which entities (processes, products and so on) to

consider for software measurement and which of their

properties (size, cost, time, etc.) are to be measured. The

organization has also to define which measures are to be used

to quantify those elements. For each measure, an operational

definition should be specified, indicating, among others, how

the measure must be collected and analyzed. Once planned,

measurement can start. Measurement execution involves

collecting data for the defined measures, according to their

operational definitions. Once data are collected, they should

be analyzed, also following the guidelines established by the

corresponding operational definitions. Finally, the

measurement process and its products should be evaluated in

order to identify potential improvements.

Depending on the organization’s maturity level, software

measurement is performed in different ways. In the initial

maturity levels, such as the levels 2 and 3 of CMMI, the focus

is on developing and sustaining a measurement capability that

is used to support project management information needs [6].

In high maturity levels, such as CMMI levels 4 and 5,

measurement is performed for the purpose of statistical

process control (SPC), in order to understand the process

behavior and to support software process improvement efforts

[5, 6]. SPC uses a set of statistical techniques to determine if a

process is under control, considering the statistical point of

view. A process is under control if its behavior is stable, i.e., if

their variations are within the expected limits, calculated from

historical data. The behavior of a process is described by data

collected for performance measures defined to this process.

A process under control is a stable process and, as such,

has repeatable behavior. So, it is possible to predict its

performance in future executions and, thus, to prepare

achievable plans and to improve the process continuously. On

the other hand, a process that varies beyond the expected

limits is an unstable process and the causes of these variations

(said special causes) must be investigated and addressed by

improvement actions in order to stabilize the process. Once

the processes are stable, their levels of variation can be

established and sustained, being possible to predict their

results. Thus, it is also possible to identify the processes that

are capable of achieving the established goals and the

processes that are failing in meeting the goals. In this case,

actions to change the process in order to make it capable

should be carried out [5].

Figure 1 summarizes the process behavior analysis using

SPC principles. First, it is necessary to understand the business

goals recorded in the strategic planning. Next, the processes

related to business goals are identified and the measures used

to provide quantitative information about the processes

performance are defined. Data are collected for the measures,

stored and used for analyzing the processes behavior using

statistical techniques. If a process is unstable, the special

causes should be treated. If it is incapable, it should be

changed. Finally, if it is capable, it can be improved

continuously [5].

Figure 1. Process behavior analysis (adapted from [5]).

Although SPC is not new to the industry in general, its use

in software organizations is recent. In this context, SPC is

viewed as an evolution of the software measurement.

However, software measurement is also considered a

relatively young discipline. The terminologies used by

different measurement approaches and standards are diverse,

and the problem of terminology harmonization still needs to

be solved in this domain [14]. Besides, there are measurement

aspects that are not addressed, mainly aspects of measurement

at high maturity levels, which include process behavior

analysis. Thus, we need to establish a common

conceptualization of the software measurement domain,

including aspects related to measurement at high maturity

levels. To achieve this common conceptualization, ontologies

can be used.

A domain ontology can be used to establish a common

conceptualization about certain domain. Thus, a software

measurement ontology, providing a coherent set of concepts,

relations and axioms constraining their interpretation, is of

great value [15]. Furthermore, as discussed in the introduction

of this paper, we are interested in a domain reference

ontology, grounded in a foundational ontology. So, for

developing our Software Measurement Ontology, we decided

to use the Unified Foundational Ontology (UFO) [12, 13],

briefly presented in the next section.

III. THE UNIFIED FOUNDATIONAL ONTOLOGY

UFO is a foundational ontology that has been developed

based on a number of theories from Formal Ontology,

Philosophical Logics, Philosophy of Language, Linguistics

and Cognitive Psychology. It is composed by three main parts.

UFO-A is an ontology of endurants. A fundamental

distinction in UFO-A is between Particulars (Individuals) and

Universals (Types). Particulars are entities that exist in reality

possessing a unique identity, while Universals are patterns of

features, which can be realized in a number of different

particulars [12]. UFO-B is an ontology of perdurants (events).

UFO-C is an ontology of social entities (both endurants and

perdurants) built on the top of UFO-A and UFO-B. One of its

main distinctions is between agents and objects. Agents are

capable of performing actions with some intention, while

objects only participate in events [13].

A complete description of UFO falls outside the scope of

this paper. However, in the sequel we give a brief explanation

of its concepts that are important for this paper. These

concepts belong to UFO-A and UFO-C parts. The description

is based on [12, 13, 15]. Figure 2 shows a fragment of UFO-A.

The concepts that are directly used here are shown detached in

grey.

An entity is something perceivable or conceivable. It is the

most general concept in UFO. Universals are patterns of

features that can be realized in a number of different entities

(e.g., Person). Particulars are entities that exist in reality,

possessing a unique identity (e.g., the person Mary). The

model depicted in Figure 1 focus on universals. Universals can

be first order universals, i.e., universals whose instances are

particulars, or high order universals, which are universals

whose instances are also universals. Endurant universals are

universals that persist in time maintaining their identity.

Endurant universals can be monadic universals or relations.

Monadic universals, in turn, can be further categorized into

substantial universals and moment universals (properties). A

moment
1
 is an endurant that is existentially dependent of

another endurant, in the way, for example, that the color of an

apple depends on the apple in order to exist. Existential

dependence can also be used to differentiate intrinsic and

relational moments. Intrinsic moments are dependent of one

single endurant (e.g., color). Relators depend on a plurality of

endurants (e.g., an employment) and, for this reason, provide

the material connection between these endurants. In other

words, we can say that they are the foundation for material

relations such as “working at”. Thus, material relations require

relators in order to be established. Formal relations, in

contrast, hold directly between individuals (e.g., the relation

part-of).

Figure 2. An UFO-A fragment focusing on universals.

A quality universal is an intrinsic moment universal that is

associated with a quality structure. A quality structure can be

understood as a measurement structure (or a space of values)

in which individual qualities can take their values. A quale is a

point (a value) in a quality structure. For instance, the quality

universal Weight is associated to a space of values that is a

liner structure isomorphic to the positive half-line of the real

numbers. For the same quality universal, there can be

potentially many quality structures associated with it, but a

quality structure is always associated with a unique quality

universal. An instrument (e.g., weight in grams) is used to

associate a quality universal to values (qualia) in a quality

structure. For a given quality universal, there can be different

quality structures associated with different instruments.

1 The word moment in UFO-A is derived from the german term Momente and

it bears no relation to the notion of time instant. It is related to the ways things
are.

Finally, Situations are special types of endurants. They are

taken here to be synonymous to what is named state of affairs

in the literature, i.e., a portion of reality that can be

comprehended as a whole (e. g., “John being with fever and

influenza”).

Figure 3 shows a fragment of UFO including substantial

universals as well as some concepts of UFO-C.

 Figure 3. An UFO fragment including concepts from UFO-A and UFO-C.

While persisting in time, substantials can instantiate several

substantial universals. Some of these types a substantial

instantiates necessarily (i.e., in every possible situation) and

define what the substantial is. These are the types named kind

(for general substantials) and subkind. There are, however,

types that a substantial instantiates in some circumstances but

not in other circumstances. These are named phases and roles.

A phase is a type instantiated in a given time period but not

necessarily in all periods. A role is a type instantiated in a

given context, such as the context of a given event

participation or a given relation. For instance, Person can be

considered a kind, while Child and Adult would be phases of

person, and Student would be a role that a person plays when

enrolled in some educational institution.

Taking into account kinds, an important distinction in UFO

is between agents and objects. According to UFO-C, an object

kind is a non-agentive substantial universal. Its instances

(objects) do not act. They can only participate in actions.

Object kinds can be categorized into physical object (e.g.,

Book) and social object (e.g., Language). A normative

description kind is a social object kind whose instances define

one or more rules/norms recognized by at least one social

agent (e.g., a method describing a set of directives on how to

perform some activity within an organization). An agent kind

is a substantial universal that is capable to perform actions

with some intention. Agent kinds can also be further

categorized into physical agent (e.g., Person) and social agent

(e.g., Team). Organization kind is a specialization of social

agent kind

Intentional Moment Universal is a special kind of intrinsic

moment universal that are inherent to agents and have a

propositional content called Proposition. Intentional moments

in which the intentionality is “intending something” are called

Intention. An intention characterizes a situation desired by the

agent (e.g., an organization O can have the intention “to be

successful”). Intentions cause the agent to perform Actions.

The propositional content of an intention is a Goal (e.g., the

propositional content of the intention “to be successful” could

be “to be among the ten best software organizations of its

country”). Intentional moments are related to situations. This

relation is defined as follows: a situation in the real world can

satisfy the propositional content of an intentional moment, i.e.,

satisfy, in the logical sense, the proposition that represents the

propositional content. For example, the situation “the

organization O is the fifth best software organization of its

country” satisfies the propositional content “to be among the

ten best software organizations of its country”.

IV. A SOFTWARE MEASUREMENT ONTOLOGY

For developing the Software Measurement Ontology

(SMO), we used the SABiO (Systematic Approach for

Building Ontologies) method [16]. This method has been used

for the last ten years in the development of a number of

domain ontologies in areas ranging from Harbor Management

to Software Process to Electrocardiogram domain. SABiO

prescribes an iterative process comprising the following

activities: (i) purpose identification and requirement

specification that concerns to clearly identify the ontology

purpose and its intended uses, i.e., the competence of the

ontology by means of competency questions; (ii) ontology

capture, when relevant concepts, relations, properties and

constraints should be identified and organized; (iii) ontology

formalization, which comprises the definition of formal

axioms in First-Order Logic; (iv) integration of existing

ontologies, which involves the search for existing ontologies

with reuse and integration in mind; (v) ontology evaluation,

for identifying inconsistency as well as verifying the

truthfulness with the ontology purpose; (vi) ontology

documentation.

It is important to highlight that competency questions play

a prominent role in this method by defining the scope and

purpose of the domain conceptualization being developed, and

serving as a testbed for ontology evaluation, since the

competency questions are the questions the ontology is

supposed to answer [16].

Another important feature of this method is that it suggests

the use of a conceptual model written in a UML profile and a

dictionary of terms to aid communication with domain experts.

Concerning the UML profile, in this paper, we do not use the

UML profile originally proposed by SABiO. Since our focus

is on developing a domain reference ontology grounded in a

foundational ontology, we have used an extension of the

ontologically well-founded UML modeling profile proposed

in [12, 13]. This profile comprises a number of stereotyped

classes and relations implanting a metamodel that reflects the

structure and axiomatization of UFO [12, 13].

Since the software measurement domain is strongly related

to domains of software processes and organizations, we

looked up to ontologies in these domains. We decided to use

the software process ontology described in [13] that is already

grounded in UFO. Concerning the domain of software

organizations, we decided to reuse the software organization

ontology proposed by Villela et al. [2]. This ontology,

however, was not developed grounded in a foundational

ontology, and thus we had to, first, reengineer it [17].

Since the scope of the SMO is very complex, we applied a

decomposition mechanism allowing building the ontology in

parts. Thus, SMO was divided into six sub-ontologies [15].

The Measurable Entities & Measures sub-ontology is the core

of the SMO and it is presented in [15]. It treats the entities that

can be submitted to measurement, their properties that can be

measured, and the measures used to measure them. The

Measurement Goals sub-ontology deals with the alignment of

measurement to organizational goals. The Operational

Definition of Measures sub-ontology addresses the detailed

definition of operational aspects of measures, including data

collection and analysis. The Software Measurement sub-

ontology refers to the measurement per se, i.e., collecting and

storing data for measures. The Measurement Results sub-

ontology handles the analysis of the collected data for getting

information to support decision making. Finally, the Software

Process Behavior sub-ontology refers to applying the

measurement results in the analysis of the behavior of the

organizational software processes.

In this paper we discuss part of the Software Process

Behavior sub-ontology, presenting some of its competency

questions, conceptual models and axioms. Also, its evaluation

is briefly discussed. Since process behavior analysis is

strongly related to goals monitoring, we also present a

fragment of the Measurement Goals sub-ontology. The

definitions of the concepts of the SMO shown in this paper

were mainly based on ISO/IEC 15939 [9], PSM [10] and IEEE

Std 1061 [18].

A. The Measurement Goals Sub-ontology

Measurement should be aligned to organizational goals in

order to produce useful data for analyzing process

performance and consequently to monitor goals. Thus, the

Measurement Goals sub-ontology should be able to answer,

among others, the following competency questions:

CQ1. Based on which business goals is a software goal

defined?

CQ2. Based on which goals is a measurement goal defined?

CQ3. Which are the information needs identified from a

goal?

CQ4. Which measures can be used as indicators for

monitoring the achievement of a goal?

CQ5. Which measures attend an information need?

Figure 4 shows the conceptual model that addresses the

competency questions listed above. The concepts reused from

the Software Organization Ontology [17] are identified in this

model preceded by SOO. The concepts from the Measurable

Entities & Measures sub-ontology [15] are identified preceded

by MEM. The distinctions made in UFO are shown as

stereotypes in the concepts of the SMO, indicating that they

are subtypes of concepts of UFO, as defined in [12]. When a

concept does not have a stereotype, it means that this concept

is of the same type of its super-type.

Figure 4. Fragment of the Measurement Goals sub-ontology.

An Intention is the purpose for which actions are planned

and performed [17]. A Goal is the propositional content of an

intention [17]. The main intention of an organization is its

Mission. An Organization is a social agent which employs

human resources for performing actions to achieve its goals

[17].

In the context of software measurement, a goal can be a

business goal, a software goal or a measurement goal. A

Business Goal expresses the intention for which strategic

actions are planned and performed (e.g., “increase 10% the

number of clients”). A Software Goal expresses the intention

for which actions related to software area are planned and

performed (e.g., “achieve the CMMI level 4”). A

Measurement Goal expresses the intention for which actions

related to software measurement are planned and performed

(e. g., “monitor the critical processes behavior”). Software and

measurement goals are defined based on business goals.

Measurement goals can be also defined directly from software

goals.

Information Needs are identified from goals and they are

attended by Measures. For instance, the measurement goal

“improve the adherence to projects plans” could identify the

information need “know the requirements stability after their

approval by the client”, which could be attended by the

measure “requirements changing rate”.

Measures can be used in order to indicate the achievement

of goals. In this case, the measure fulfills the role of an

indicator. Considering the example cited above, if the measure

“requirements changing rate” is used for monitoring the

achievement of the goal “improve the adherence to projects

plans”, then, in this context, it is an indicator.

During the development of the SMO, several constraints

were identified and, since the conceptual models are not

capable to capture several of them, we defined axioms to make

them explicit. We used the axiom classification suggested by

SABiO [16] that considers two classes of axioms: derivation

axioms, which allow new knowledge to be derived from the

previously existing knowledge, and consolidation axioms, that

define constraints for establishing a relation consistently. In

the sequel, we present two axioms of the Measurement Goals

sub-ontology.

The axiom MG-A1 is a consolidation axiom and it says

that if a measure m is an indicator of the achievement of the

goal g, then there should exist an information need in,

identified from the goal g, that is attended by m.

MG-A1: (m Measure, g Goal) (indicator(m, g)

(in Information Need) (identifies(g, in) (attends(m, in))

The axiom MG-A2 is a derivation axiom and it says that if

a measurement goal mg is defined based on the software goal

sg and sg is defined based on the business goal bg, then mg is

also defined based on bg.

MG-A2: (mg Measurement Goal, sg Software Goal,

bg Business Goal) (isDefinedBasedOn (mg, sg)

isDefinedBasedOn (sg, bg) isDefinedBasedOn (mg, bg))

B. The Software Process Behavior Sub-ontology

As said before, data are collected for measures and they

are analyzed aiming to provide information that support

decision-making. In high maturity levels, this information is

applied in software process behavior analysis. Thus, the

Software Process Behavior sub-ontology should be able to

answer, among others, the following competency questions:

CQ1. For a given measure, which is the performance baseline

of a standard software process?

CQ2. Which are the lower and upper limits of a process

performance baseline?

CQ3. Which measurement analysis has identified a process

performance baseline?

CQ4. From which measured values is a process performance

baseline determined?

CQ5. In which context is a process performance baseline

established?

CQ6. Which are the process performance baselines used to

define a process performance model?

CQ7. Which is the specified performance for a standard

software process considering a given measure?

CQ8. Which are the lower and upper limits of a specified

process performance?

CQ9. Which is the capacity of a standard software process

concerning a given measure?

CQ10. From which process performance baseline is a process

capability obtained?

CQ11. In relation to which specified process performance is a

process capability calculated?

CQ12. Which is the procedure used to determine a process

capability?

CQ13. Concerning process behavior, which are the types of

standard software process?

CQ14. Which specified process performance does a capable

standard software process attend?

Figure 5 shows a fragment of the conceptual model of the

Software Process Behavior sub-ontology that addresses the

competency questions CQ1 to CQ6. The concepts arising from

the Software Process Ontology [12], the Operational

Definition of Measures sub-ontology, the Measurement sub-

ontology and the Measurement Analysis sub-ontology are

respectively identified preceded by SPO, ODM, M and MA.

For talking about process behavior, first, we have to

introduce some concepts regarding measurement analysis. A

Measurement Analysis is an action that analyses Measurement

Results, i.e. measured values collected during a measurement.

A Measurement Analysis adopts a Measurement Analysis

Procedure that can suggest the use of analytical methods for

representing and analyzing the measured values. Analytical

Method is sub-kind of Method, a concept from Software

Process Ontology [13], which describes systematic procedures

for performing an activity (a normative description in UFO).

Histograms and bar charts are examples of analytical methods.

Analytical methods that use principles of statistical control to

represent and analyze values are said Statistical Control

Methods. The XmR and mXmR charts [5] are examples of

statistical control methods.

 Figure 5. Fragment I of the Software Process Behavior sub-ontology.

Concerning process behavior, in a measurement analysis

that adopts a statistical control method, it is possible to

identify a Process Performance Baseline to a Stable Standard

Software Process regarding to a Measure. Therefore, Process

Performance Baseline is existentially dependent of both Stable

Standard Software Process and Measure, and it corresponds to

a relator universal in UFO. The relations that take place

between a relator and the endurants it mediates are called

mediations in UFO. Thus, the relations has (between Standard

Software Process and Process Performance Baseline) and is

established to (between Process Performance Baseline and

Measure) are mediation relationships.

 A standard software process is a description of a type of

software process, defined in the context of an organization

(e.g., the description of the Requirements Management

process of the organization Org). It is a concept from Software

Process Ontology [13] and it is a normative description in

UFO, since it defines one or more rules/norms recognized by

at least the organization that adopts it.

 A process performance baseline is identified from twenty

or more measurement results. It is the range of results

achieved by a Stable Standard Software Process, obtained

from measured values of a particular measure. This range is

used as a reference for process performance analysis and it is

defined by two limits: process performance baseline upper

limit and process performance baseline lower limit. The limits

values are part of the Scale of the measure considered for

establishing the baseline. When a standard software process

has a process performance baseline, we have a stable standard

software process. For instance, consider the analysis of

measured values of the measure “requirements change rate”,

related to the Requirements Management standard software

process of the organization Org. Using XmR control chart, this

measurement analysis could identify a process performance

baseline composed by upper and lower limits 0,1 and 0,25,

respectively. Thus, in this context, the Requirements

Management process is considered a stable standard process.

A process performance baseline is established in a

particular context (Context of Process Performance Baseline)

that is a situation in UFO. In the previous example, we have

the following situation for the first process performance

baseline established to the Requirements Management

standard process: “The data used to establish the baseline were

collected in six small projects with the same team, under usual

conditions. In the analysis, two points collected on exceptional

situations were excluded”.

Process performance baselines are used to define Process

Performance Models. Process Performance Model is a

specific type of Predictive Model. Predictive model, in turn, is

a concept from the Operational Definition of Measure sub-

ontology and it is a normative description in UFO. It describes

a procedure for predicting the value of a measure by

quantifying its relations with others measures (e.g., the

Putnam Model (E = S
3
/ Ck

3
T

4
) [19] that predicts the measure

development effort from the measures of size, time and used

technologies). Process performance models use process

performance baselines to establish and quantify the relations

between measures.

As said before, several axioms were defined in order to

make explicit constraints that are not captured in the

conceptual models. Regarding to the model shown in Figure 5,

among others, the following consolidation axioms hold.

The axiom SPB-A1 says that if a process performance

baseline ppb is identified from a measurement analysis ma,

then ma should adopt a statistical control method scm.

SPB-A1: (ppb Process Performance Baseline, ma

Measurement Analysis) (isIdentifiedFrom(ppb, ma)

(scm Statistical Control Method) adopts(ma, scm))

 The axiom SPB-A2 says that if a process performance

baseline ppb is established to the measure m and ppb is

identified from a measurement analysis ma, then ma should

analyze the measure m.

SPB-A2: (ppb Process Performance Baseline, m

Measure, ma Measurement Analysis)

(isEstablishedTo(ppb,m) isIdentifiedFrom(ppb, ma)

(analyses(ma, m))

 The axiom SPB-A3 says that if a scale value sv is a lower

limit or an upper limit of a process performance baseline ppb

established to the measure m that has as scale s, then sv should

be a value of the scale s.

SPB-A3: (sv Scale Value, ppb Process Performance

Baseline, m Measure, s Scale)

((processPerformanceBaselineLowerLimit(sv, ppb)

processPerformanceBaselineUpperLimit(sv, ppb))

isEstablishedTo (ppb, m) has(m, s) isPart(sv, s))

 Figure 6 shows the conceptual model that addresses the

competency questions CQ7 to CQ14. In this model, it is

important to note that Process Capability is a relator universal

in UFO and that it mediates a quaternary material relation

between Stable Standard Software Process, Measure, Process

Performance Baseline and Specified Process Performance.

For best visualization, the model shows only the

corresponding mediation relations (is determined by, is

established to, is calculated in relation to and is established in

relation to).

A Specified Process Performance is the range that

describes the expected results of a standard software process,

considering a particular measure. It is a relator universal in

UFO, since it is existentially dependent of both Standard

Software Process and Measure. A specified process

performance is defined by two limits: specified process

performance upper limit and specified process performance

lower limit. As well as baseline limits, the specified process

performance limits are part of the Scale of the measure used

for defining the specified process performance. Returning to

our previous example, consider the Requirements

Management standard process of the organization Org. It

could have a specified process performance defined in relation

to the measure “requirements change rate”, given by the upper

and lower limits 0 and 0,25, respectively.

Figure 6. Fragment II of the Software Process Behavior sub-ontology.

Process Capability characterizes the ability of a stable

standard software process to achieve the process performance

specified for it, considering a particular measure. Process

Capability is obtained from a process performance baseline

and a specified process performance, and thus, it should be

established to the same measure considered by them.

A process capability is determined by applying a Process

Capability Determination Procedure. This kind procedure

defines a logical sequence of operations used to determine the

capacity of a standard software process and to identify if it is a

capable process. The following is an example of a process

capability determination procedure: “Calculate the process

capability index using the calculation formula Cp = (ULb –

LLb)/(ULs – LLs), where Cp = process capability index, ULb

= process performance baseline upper limit, LLb = process

performance baseline lower limit, ULs = specified process

performance upper limit and LLs = specified process

performance lower limit. If Cp is ≤ 1, verify if the process

performance baseline limits are within the specified process

performance limits. In affirmative case, the process is capable.

Otherwise, the process is not capable”.

When the process capability revels that the process is

capable of achieving the expected performance, we have a

Capable Standard Software Process. Regarding the examples

cited before, consider applying the process capability

determination procedure to the Requirement Management

standard process of the organization Org. As a result, we

obtained a capability index 0,6. Besides, the process

performance baseline limits are within the specified process

performance limits. So, this Requirement Management

standard process is a capable standard process with respect to

the measure “requirements change rate”.
With respect to the conceptual model shown in Figure 6,

the following axioms hold. Axioms SPB-A4 and SPB-A5 are

consolidation axioms; axiom SPB-A6 is a derivation axiom.

The axiom SPB-A4 says that if a process capability pc is

established in relation to a measure m and it is obtained from a

process performance baseline ppb, then ppb should be

established to the measure m.

SPB-A4: (pc Process Capability, ppb Process

Performance Baseline, m Measure)

(isEstablishedInRelationTo(pc, m) isObtainedFrom (pc,ppb)

 isEstablishedTo(ppb, m))

The axiom SPB-A5 says that if a process capability pc is

established in relation to a measure m and it is calculated in

relation to a specified process performance spp, then spp

should be defined in relation to the measure m.

SPB-A5: (pc Process Capability, spp Specified

Process Performance, m Measure)

(isEstablishedInRelationTo(pc, m)

isCalculatedInRelationTo(pc,spp)

isDefinedInRelationTo(spp, m))

The axiom SPB-A6 says that if a process capability pc

characterizes as capable the standard software process ssp and

pc is calculated in relation to a specified process performance

spp, then ssp attends spp

SPB-A6: (pc Process Capability, ssp Standard

Software Process, spp Specified Process Performance)

(characterizes(pc,ssp) isCalculatedInRelationTo(pc,spp)

attends(ssp, spp))

C. Evaluating the Software Process Behavior Sub-ontology

For evaluating the SMO ontology as a whole, we adopted

two strategies. First, we checked if the ontology was able to

answer the competency questions posed to it (verification).

Aiming a minimum ontological commitment, we also verified

if the ontology has only the concepts, axioms and relations

needed to answer the competency questions. Second, we

validated it with domain experts by using them as basis for

defining a strategy to support organizations to obtain and

maintain measurement repositories suitable for statistical

process control (SPC), as well as to perform measurements

appropriately in this context. This strategy is composed of

three components [20]: the SMO itself, an Instrument for

Evaluating the Suitability of a Measurement Repository to

SPC, and a Body of Recommendations for Software

Measurement. The instrument and the body of

recommendations have already been evaluated by experts and

used in real cases. The preliminary results point out to its

usefulness and also to an agreement of the vocabulary used.

Regarding the ontology verification, we checked it

manually, since SMO is a reference ontology and it is not

implemented in any computational language. Thus, during

ontology verification, we related the concepts, relations and

axioms of the SMO to the competency questions answered by

them, as well as we used individuals (extracted from measure

repositories of organizations) to evaluate if the ontology was

actually able to represent concrete situations of the real world.

Table 1 shows an example of the evaluation of the Process

Software Behavior sub-ontology, considering the competency

questions CQ2 and CQ10. Table 2 shows one of the

instantiations we performed.

TABLE 1. ONTOLOGY EVALUATION.

QC Concept A Relation Concept B Axioms

CQ2

Process

Performance
Baseline

establishes

Scale Value
 (process

performance
baseline lower

limit)

SPB-A3
Process

Performance

Baseline

establishes

Scale Value
(process

performance
baseline upper

limit)

Process

Performance
Baseline

is established

to
Measure

Measure has Scale

CQ10

Process

Capability

is obtained

from

Process

Performance
Baseline

SPB-A4
Process

Capability
is established
in relation to

Measure

Process

Performance

Baseline

is established
to

Measure

 Concerning CQ2 – Which are the lower and upper limits of

a process performance baseline? – the relations “establishes”

are the main responsible for answering this question.

However, these relations are constrained by the scale of the

measure for which the process performance baseline is

established (SPB-A3).

 Regarding CQ10 – From which process performance

baseline is a process capability obtained? – the relation “is

obtained from” is the main responsible for answering this

question. However, this relation should respect axiom SPB-A4

that establishes that the process performance baseline and the

process capability should be established in relation to the same

measure.

V. RELATED WORKS

Concerning the domain of software measurement, there are

some initiatives committed with ontology-based modeling and

formalization of this domain. Two of them are the ones

described in [14] and [21]. These works are focused on the

basic aspects of measurement and are very in line with our

Measurable Entities & Measures sub-ontology. A comparison

between these proposals and this sub-ontology can be found in

[15]. However, these works did not focus on measurement

aspects related to high maturity levels and did not address the

software process behavior analysis. Furthermore, as a rule,

such initiatives are not committed to the use of a foundational

ontology as their basis, and, consequently, they rely on models

of low expressivity.

TABLE 2. ONTOLOGY INSTANTIATION.

Concept Instance

Standard Software

Process
Project Management Process of the organization Org

Stable Standard
Software Process

Project Management Process of the organization Org

Measure Schedule adherence

Process Performance

Baseline
PPB-02

Process Performance
Baseline Lower Limit

0,85

Process Performance

Baseline Upper Limit
0,95

Context of Process
Performance Baseline

Second baseline established to the Project

Management process. It was established after changes
in the management process (were introduced standup

meetings, in order to improve the monitoring

activities). The data was collected in 4 small projects
performed in parallel. The projects teams were

homogeneous.

Specified Process

Performance
SPP-01

Specified Process

Performance Lower

Limit
0,80

Specified Process

Performance Upper

Limit
1,00

Process Capability

Determination
Procedure

Calculate the process capability index using the

calculation formula Cp = (ULb – LLb)/(USs – LLs),
where Cp = process capability index, ULb = process

performance baseline upper limit, LLb = process
performance baseline lower limit, USs = specified

process performance upper limit and LLs = specified

process performance lower limit. If Cp is ≤ 1, verify if
the process performance baseline limits are within the

specified process performance limits. In affirmative

case, the process is capable. Otherwise, the process is
not capable.

Process Capability PC-01

Capable Standard

Software Process
Project Management Process of the organization Org

VI. CONCLUSIONS

In a competitive marketplace, organizations constantly

question themselves about the achievement of their business

goals. For objectively and accurately answering this question,

they need to know the performance of their processes related

to these goals. A measurement program aligned to the

business goals supplies the information needed for knowing

the processes behavior and, thus, monitoring the business

goals achievement. Regarding software organizations, the

process behavior analysis is a practice of matured

organizations that apply statistical techniques on measurement

data.

Nowadays, there are several standards and models that

address software measurement. However, the vocabulary used

is diverse and some software measurement aspects are not

treated, especially aspects related to software measurement at

high maturity levels. Aiming to provide a common vocabulary

to the software measurement domain, in several maturity

levels, we developed a Software Measurement Ontology

(SMO). Since we were interested in a reference domain

ontology [11], we developed SMO grounded in the Unified

Foundational Ontology [12, 13]. This paper presented a SMO

sub-ontology: the Software Process Behavior sub-ontology. A

part of the Measurement Goals sub-ontology was also

presented.

Although several researchers argue in favor of using a

foundational ontology as basis for developing domain

ontologies [12, 22, 23], few works have explored this use.

This is the case of the software measurement domain, in which

the proposed ontologies are, in general, lightweight ontologies.

We chose UFO because it has been used to evaluate, re-design

and integrate (meta) models of conceptual modeling languages,

as well as to evaluate, re-design and give real-world semantics

to domain ontologies [13, 15, 24].

Currently, the SMO is being used as a conceptual

specification for developing and integrating tools and

measurement repositories of the High Maturity Environment

at LENS (Software Engineering Laboratory) in COPPE/UFRJ.

This environment aims to support software organizations to

carry out process improvement practices, especially in high

maturity levels. Besides, SMO is being used in the

development of an approach for defining and monitoring

strategically aligned software improvement goals [25], which

uses information provided by software process behavior

analysis. Finally, we start the use of SMO in the definition of

a conceptual architecture to software measurement.

Acknowledgement. This research is funded by the Brazilian

Research Funding Agencies FAPES (Process Number

45444080/09) and CNPq (Process Number 481906/2009-6).

REFERENCES

[1] M. E. Porter, Competitive Strategy: Techniques for Analyzing
Industries and Competitors, Free Press, 2004.

[2] K. Villela, A. R. Rocha, G. H. Travassos, G.H. et al., “The use of an
enterprise ontology to support knowledge management in software
development environments”, Journal of the Brazilian Computer Society,
Porto Alegre, Brazil, 11(2): 45-59, 2005.

[3] P. Jalote, Software Project Management in Practice, Addison Wesley,
2002.

[4] P. Huang, H. Lei, L. Lim, “Real time business performance monitoring
and analysis using metric network”, In Proceedings of IEEE
International Conference on e-Business Engineering, pp. 442-449,
Shanghai, China, 2006.

[5] W.A. Florac, A.D. Carleton, Measuring the Software Process: Statistical
Process Control for Software Process Improvement, Addison-Wesley,
Boston USA, 1999.

[6] CMMI Product Team, CMMI for Development Version 1.2, Software
Engineering Institute, Pittsburgh USA, 2006.

[7] ISO/IEC 12207 - Systems and Software Engineering - Software Life
Cycle Process, 2008.

[8] M. Montoni, A. R. Rocha and K. C. Weber, "MPS.BR: a successful
program for software process improvement in Brazil", Software Process
Improvement and Practice, 14, 289-300, 2009.

[9] ISO/IEC 15939, Systems and Software Engineering – Measurement
Process, 2007.

[10] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, F. Hall,
Practical Software Measurement: Objective Information for Decision
Makers, Addison-Wesley, Boston USA, 2002.

[11] G. Guizzardi, On Ontology, ontologies, Conceptualizations, Modeling
Languages and (Meta)Models, In O. Vasilecas, J. Edler, A. Caplinskas
(Org.). Frontiers in Artificial Intelligence and Applications, Databases
and Information Systems IV. IOS Press, Amsterdam, 2007.

[12] G. Guizzardi, Ontological Foundations for Structural Conceptual Models
Universal Press, The Netherlands, 2005.

[13] G. Guizzardi, R.A Falbo and R.S.S. Guizzardi, "Grounding software
domain ontologies in the Unified Foundational Ontology (UFO): the
case of the ODE software process ontology", In Proceedings of the XI
Iberoamerican Workshop on Requirements Engineering and Software
Environments, 244-251, 2008.

[14] M.F. Bertoa, A. Vallecillo, F. García, "An ontology for software
measurement", In: C. Calero, F. Ruiz, M. Piatini (Eds.), Ontologies for
Software Engineeri ing and Software Technology, Springer-Verlag
Berlin Heidelberg, 2006.

[15] M. P. Barcellos, R. A. Falbo, R. Dalmoro, "A well-founded software
measurement ontology", In Proceedings of the 6th International
Conference on Formal Ontology in Information Systems (FOIS 2010),
Toronto - Canadá, 2010.

[16] R.A. Falbo, C.S. Menezes and A.R.C. Rocha, "A systematic approach
for building ontologies", In Proceedings of the 6th Ibero-American
Conference on Artificial Intelligence, LNCS, vol. 1484, 1998.

[17] M.P. Barcellos, R.A. Falbo, "Using a foundational ontology for
reengineering a software enterprise ontology", In Proceedings of the
Joint International Workshop on Metamodels, Ontologies, Semantic
Technologies, and Information Systems for the Semantic Web, 2009.

[18] IEEE, 1998, Std 1061 – IEEE Standard for a Software Quality Metrics
Methodology.

[19] Putnam, L., 1978, "A general empirical solution to the macro software
sizing and estimation problem", IEEE Transactions on Software
Engeneering, pp. 345-361, 1978.

[20] M. P. Barcellos, A.R.C. Rocha, R.A. Falbo, "An ontology-based
approach for software measurement and suitability measures basis
evaluation to apply statistical software process control in high maturity
organizations", In Proceedings of the ER2009 PhD Colloquium, 2009.

[21] M.A.Martin, L. Olsina, "Towards an ontology for software metrics and
indicators as the foundation for a cataloging web system", First Latin
American Web Congress, 2003.

[22] N. Guarino,"Formal ontology and information systems", In Proceedings
of International Conference in Formal Ontology and Information
Systems, pp 3-15, 1998.

[23] J.M. Fielding, J. Simon, W. Ceusters, B. Smith, "Ontological theory for
ontology engineering", In Proceedings of the Ninth International
Conference on the Principles of Knowledge Representation and
Reasoning, Whistler, Canada, 2004.

[24] Falbo, R. A., Nardi, J. C., "Evolving a Software Requirements
Ontology", In Proceedings of the XXXIV Conferencia Latinoamericana
de Informática, Santa Fe, Argentina, pp 300-309, 2008.

[25] Barreto, A.O.S., Rocha, A.R., “Defining and monitoring strategically
aligned software improvement goals”, In Proceedings of the 11th
International Conference on Product Focused Software Process
Improvement, Ireland, 2010, in press.

