
A Systematic Approach to Platform-Independent Design
Based on the Service Concept

João Paulo Almeida, Marten van Sinderen, Luís Ferreira Pires, Dick Quartel
Centre for Telematics and Information Technology, University of Twente

PO Box 217, 7500 AE Enschede, The Netherlands
{almeida, sinderen, pires, quartel}@cs.utwente.nl

Abstract
This paper aims at demonstrating the benefits and

importance of the service concept in the model-driven
design of distributed applications. A service defines the
observable behaviour of a system without constraining the
system’s internal structure. We argue that by specifying
application-level interaction aspects as a service, and
designing application parts in terms of this service, the
design of application parts is not constrained by
interaction patterns provided by a middleware platform.
Therefore, a level of platform-independence can be
achieved, so that the design of application parts can be
reused across a large set of middleware platforms. The
service concept is also used in our approach to describe
an abstract platform that defines what characteristics of a
potential target middleware platform are considered in
platform-independent design. We discuss the trade-offs a
designer is confronted with in the definition of an abstract
platform, and discuss alternatives for platform-specific
realization.

Keywords: platform-independence, middleware, Model
Driven Architecture, service concept

1. Introduction

Model Driven Architecture (MDA) development is
increasingly gaining support as an approach to manage
system and software complexity in distributed application
design [7]. MDA development focuses first on the
functionality and behaviour of a distributed application,
which results in platform-independent models (PIMs) of
the application that abstract from the technologies and
platforms that will be used to implement the application.
Subsequent steps lead to a mapping from PIMs to a
platform-specific implementation (PSI), possibly via
platform-specific models (PSMs). The main advantages of
MDA development – software stability, software quality
and return on investment – stem from the possibility to
derive different PSIs (via different PSMs) from the same

PIMs, and to automate to some extent the model
transformation process.

The concept of platform-independence plays a central
role in MDA development. We believe that platform-
independence can only be defined once a set of target
platforms is known, such that their general capabilities
and their irrelevant technological and engineering details
can be established. This leads to the observation that there
can be several PIMs, including various levels of PIMs,
dependent on whether one wants to consider different sets
of target platforms. Another observation is that different
application characteristics or different sets of target
platforms generally lead to different types of
(intermediate) models, design structures or patterns, and
model transformations.

The objective of this paper is to investigate what types
of models can be useful in the MDA development
trajectory, how these models are related, and which
criteria should be used for their application. More
specifically, we aim at demonstrating the benefits and
importance of the service concept in a model-driven
design trajectory. Since a service is a design that defines
the observable behaviour of a system without constraining
the system’s internal structure, it is possible to describe
systems without relying on support provided by a
particular concrete middleware platform. In this respect,
the service concept is particularly useful in the definition
of application interaction aspects, and in the definition of
general capabilities of middleware platforms. By using
this approach to middleware application development, a
level of platform-independence can be achieved, so that
the design of application parts can be reused across a
large set of middleware platforms.

This paper is further structured as follows: Section 2
presents the service concept; Section 3 discusses the
notion of platform independence; Section 4 advocates the
use of application interaction systems to capture platform-
independent interaction aspects; Section 5 presents our
proposed model-driven design trajectory, and Section 6
applies this design trajectory to an example. Finally,

Section 7 presents our conclusions and outlines some
future work.

2. The Service Concept

The Webster’s dictionary provides a definition of
system particularly applicable to distributed systems: A
system is a regularly interacting or interdependent group
of items forming a unified whole.

This definition indicates two different perspectives of a
system: an integrated and a distributed perspective. The
integrated perspective considers a system as a whole or
black box. This perspective only defines what function a
system performs for its environment. The distributed
perspective defines how this function is performed by an
internal structure in terms of system parts (which are also
systems) and their relationships. Figure 1 depicts both
system perspectives.

system
part

system
part

system
part

system

Figure 1. Integrated and distributed

perspective of a system
We call the integrated perspective of a system a service

[22]. A service is a design that defines the observable
behaviour of a system in terms of the interactions that
may occur at the interfaces between the system and the
environment and the relationships between these
interactions. A service does not disclose details of an
internal organization that may be given to
implementations of the system [23].

Since the concept of system is recursive, in the sense
that a system part is a system in itself, the service concept
can be applied recursively in a system. The recursive
application of the service concept allows a designer to
consider the behaviour of a system at different related
decomposition levels. In general, the number of

decomposition levels and the particular choices for
decomposition depend on particular system requirements
and objectives of a designer.

When interactions between system parts have to be
explicitly designed, the concept of interaction system is
introduced. An interaction system supports the set of
related interactions between two or more systems parts
[14, 16]. An interaction system consists of parts of system
parts and their means of interaction, as depicted in
Figure 2.

parts of
system parts

interaction
system

means of
interaction

Figure 2. Interaction system from a

distributed perspective
The complexity of interaction systems and thus the

involvement of system part, varies, depending on the
interactions that need to be considered. For example,
when interactions concern application interworking, the
interaction system will be more complex than when bit
transfer is considered.

An interaction system is a system in itself, and
therefore the behaviour of an interaction system can be
defined as a service, as depicted in Figure 3. The service
specification serves as a starting point for the design of an
interaction system that supports the service.

interaction
system

Figure 3. Interaction system from an

integrated perspective
Interaction system design and the service concept play

an important role in the design of protocol systems [22].
A systematic design method for protocols [21] consists of
(i) defining the service to be supported by a service
provider in terms of the service primitives that occur at
service access points, and the relationships between
service primitives; and, (ii) decomposing this service in
terms of a structure of protocol entities and a lower level

service. This resulting structure, which we call a protocol,
has to be a correct implementation of the service. This can
be assessed formally, if both the service and protocol are
specified using some formal language.

Interaction systems that satisfy basic communication
needs between software components have been referred to
as connectors in the software architecture literature [1].

3. Platform-independence

3.1. Middleware-centred Development

In middleware-centred development, a system is
structured in terms of a middleware platform and a
collection of application parts, often called objects or
components. A middleware platform provides a (limited)
set of interaction patterns to support the interaction of
application parts. There are several different types of
middleware platforms, each one offering different types
of interaction patterns. Examples of these patterns are
request/response, message passing and message queues.
Examples of middleware platforms are CORBA/CCM [9,
10], .NET [6], and Web Services [24, 25].

Design methods based on the re-use of middleware
platforms often consist of partitioning the application into
application parts and defining the interconnection aspects
by defining interfaces between parts, e.g., by using object-
oriented techniques and abstracting from distribution
aspects. The available constructs to build interfaces are
constrained by the interaction patterns supported by the
targeted platform. Examples of these constructs are
operation invocation, event sources and sinks, and
message queues.

The predominance of this structuring strategy
emphasizes a structuring of applications in terms of the
choice of interaction patterns provided by a particular
middleware platform. The design of the application is
therefore platform-specific, not only in the sense that the

design depends on particular technological conventions
adopted by the middleware platform, but also in the sense
that the structure of the application depends on the set of
interaction patterns provided.

3.2. MDA approach

In order to shield the design of applications from the
choice of platform and guarantee the re-use of designs
across different platforms, the concept of platform-
independence has been introduced in the MDA approach
adopted by the Object Management Group (OMG) and
others.

Platform-independence is a quality of a model that
relates to the extent to which the model relies on
characteristics of a particular platform. In this paper, we
assume that models are used to specify both the behaviour
and structure of a system or system part, and that several
platform-independent models may be used in conjunction
to specify a design. A consequence of the use of platform-
independent models is the ability to refine the design or
implement it on a number of target platforms.

The term platform is used to refer to technological and
engineering details that are irrelevant to the fundamental
functionality of a system (part) [8]. In order to refer to
platform-independent or platform-specific models, one
must define what a platform is, i.e., one must define
which technological and engineering details are irrelevant
in a particular context. For the purpose of this paper, we
assume that a platform corresponds to some specific
middleware technology.

Ideally one could strive for PIMs that are absolutely
neutral with respect to all different classes of middleware
technologies. However, we foresee that at a certain point
in the development trajectory, different sets of platform-
independent modelling concepts may be used, each of
which is needed only with respect to specific classes of
target middleware platforms. Figure 4 illustrates an MDA
design trajectory, in which such a highly abstract and

platform selection

.

.

.
.
.
.

platform-independent
design

platform-specific
design

request/response

asynchronous
messaging

MQSeries

JMS

CORBA JavaRMI

design

design alternatives

Figure 4. An MDA design trajectory

neutral PIM is depicted as the starting point of the
trajectory. In Figure 4, the platform-independent models
are defined that facilitate the transformation to two
particular classes of middleware platforms, namely
request/response (object-based) and asynchronous
messaging (message-oriented) platforms, respectively.

In an MDA design trajectory, a designer should clearly
define the abstraction levels at which PIMs and PSMs
have to be defined. The choices of platforms should also
be made explicit in each step in the MDA design
trajectory. Furthermore, the choice of design concepts for
platform-independent should be carefully considered,
taking into account the common characteristics of the
target platforms and the complexity of the transformations
that are necessary in order to generate PSMs from PIMs.

4. Application Interaction Systems

Instead of defining the interconnection of application
parts directly in terms of the interaction systems provided
by a middleware platform, it is possible to identify
application interaction systems that support application-
level interactions between application parts. Figure 5
illustrates the view of an application where an application
interaction system is identified.

application
interaction
system

interaction
systems provided
by middleware

Figure 5. Application interaction systems

Whether or not the design of application interaction
systems is considered explicitly depends on the
application requirements and on the objectives of the
designer [14]. In the following situations, interaction
system design should be considered:
• if the relation between system parts is complex. In this

case, proper attention should be given to the design of
the relation between system parts. This is possible if
this relation is made a separate object of design, i.e., if
the interaction system of the system parts is
considered separately. Consideration of the interaction
system is possible at different abstraction levels in
order to cope with the complexity of the relation. The
interaction system provided by the middleware plays
an important role at lower levels of abstraction.

• if it is more likely that interactions are changed than
just the contributions to interactions by individual
system parts. This is the case if several different

middleware platforms are envisioned as alternatives to
support the interactions. An interaction mechanism
can only be replaced by another equivalent interaction
mechanism if the relevant characteristics of the
mechanism are clearly indicated in the design. This is
naturally supported with interaction system design.
A starting point in the design of an application

interaction system is the specification of its service,
capturing the succinct description of the interaction
system from an external perspective. The design of the
application interaction system may, in principle, have any
internal structure as long as it provides the required
service. For example, it may make use of a data transport
service via an application protocol as in a protocol
approach [15]. Nevertheless, we observe that the
middleware leverages the reuse of a large building block
that provides an interoperability architecture across
programming languages, operating systems, network
technologies and provides facilities to define application-
level information attributes. Therefore, we argue that
interaction systems provided by the middleware should be
considered for building application interaction systems.

Nevertheless, if we structure the design of an
application interaction system in terms of the constructs
provided by a particular middleware platform, the design
of the application interaction system would not be suitable
for realizing this design on multiple platforms. Therefore,
we define a platform-independent service design in terms
of an abstract platform. Later, platform-independent
design is realized on top of a concrete-platform.

4.1. Example: Floor-control Service

In order to illustrate the use of an application service in
a design trajectory, we introduce our running example, the
floor-control problem. In this example, several
application parts share a set of named resources. Each of
these resources can only be used by a single application
part at a time, and hence application parts have to
coordinate their behaviours in order to ensure that there is
no concurrent use of a resource. Application parts are
assumed to be cooperative, i.e., they do not use the
resources indefinitely. In addition, no pre-emption of
control over a resource is necessary.

The service must be specified in such a way that
interaction requirements between application parts are
satisfied without unnecessarily constraining
implementation freedom. This freedom includes the
structure of the application interaction system (the system
that eventually supports the floor-control service) and
other technology aspects such as middleware platforms,
operating systems and programming languages.
Therefore, services are described in terms of the relations
between interactions that occur at the interfaces between
the interaction system and the environment. An
interaction is an abstract concept that is defined as a

5. Design Trajectory common unit of activity performed by two or more
system parts. Interactions related in a service description
are local, i.e., they occur at a local interface that
interconnects an application part and the application
interaction system directly [4, 12].

5.1. Milestones in Model-driven Design

We define the following milestones in the MDA
trajectory: The floor-control service relates the following

interactions: request, granted and free. These
interactions occur at the interfaces between the floor-
control service and each of the application parts, which
we call subscribers. A result of the occurrence of each of
these interactions is the establishment of the resource
identification and the identification of the subscriber. The
latter is implied by the location where the interaction
occurs. The following relations between interactions are
informally identified:

Service definition. The service definition sets the
boundaries of the application interaction system to be
designed. Services are specified at a level of abstraction at
which the supporting infrastructure is not considered. In
our case, the infrastructure is the middleware platform,
and therefore, service specifications are middleware-
platform-independent by definition. The service concept
defines a platform-independent level that is also
“paradigm”-independent (as in [2]), in the sense that a
service may be implemented by a broad set of middleware
platforms that support different interaction patterns.
Service definitions are positioned at the top of the design
trajectory identified in Figure 4. Application parts that use
the service, and therefore rely on the service definition,
may be defined at the same level of platform-
independence.

• Local constraint 1: the occurrence of granted follows
the occurrence of request (for a given resource
identification);

• Local constraint 2: the occurrence of free follows the
occurrence of granted (for a given resource
identification);

• Remote constraint: a resource is only granted to one
subscriber at a time. Platform-independent service design. The platform-

independent service design consists of the platform-
independent service logic, which is structured in terms of
service components, and an abstract-platform definition.
The choice of abstract platform must consider the
portability requirements, since it defines the
characteristics of the platform upon which service
components may rely. The level of abstraction at which
the platform-independent service logic is specified
depends on the abstract platform definition. Figure 7
illustrates the design trajectory with the service definition
and platform-independent service design milestones.

The floor-control service is illustrated in Figure 6.

floor-control service subscribers

subscribers
Interactions:
request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);

Figure 6. The floor-control service

Platform-
independent

Service Design

Service
Logic

Service
Definition

Abstract -
Platform

Definition

app.
part

app.
part

app.
part

app.
part

app.
part

app.
part

Service
Definition

Service
Logic

Abstract -
Platform
Definition

conforms to

Figure 7. Milestones in the design trajectory

Platform-specific service design. The platform-
independent service design is transformed into a platform-
specific service design, which is structured in terms of
platform-specific service components and a concrete-
platform definition. This transformation may be
straightforward when the selected platform corresponds
(directly) to the abstract platform definition. This
milestone is discussed further in Section 5.4.

Abstract -
Platform

Definition

(2) needs of designers

Concrete-
Platform

Definition
Concrete-
Platform

Definition

(3) divergence between
abstract platform and

concrete platforms
(1) portability
requirements

Concrete-
Platform

Definition

The approach outlined in this section suggests a top-
down design trajectory, starting from service definition to
service design. However, this does not exclude the use of
bottom-up knowledge. Bottom-up experience is what
allow designers to re-use middleware infrastructures, by
defining an abstract platform that can be realized in terms
of these concrete middleware platforms, and to find
appropriate service designs that implement the required
service. Stable abstractions for service design should be
derived from knowledge obtained from the solution space
(as in a synthesis-based design method [17]).

Figure 8. Forces in the choice of abstract
platform

The forces exercised by factors (2) and (3) are often
contradictory:

5.2. Choice of Abstract Platform

(i) Raising the provided support to observe the needs of
designers may increase the gap between the abstract
platform and concrete platforms. This is the case, for
example, for the support of multicast message
exchange in the abstract platform, when a concrete
platform supports only the request/response
interaction pattern.

The choice of abstract platform defines which
(platform-independent) properties or aspects are actually
considered and which (platform-dependent) properties or
aspects are abstracted from in the design of service
components, explicitly defining the notion of platform-
independence for the considered design.

In order to define an abstract platform, one must
carefully observe: (ii) Reducing the gap between support provided by the

abstract platform and concrete platform may lead to an
abstract platform that handicaps the designer. This is
the case, for example, for a “minimalist” abstract
platform that supports a common denominator of a
broad class of middleware platforms such as point-to-
point one-way message exchange. Patterns such as
request/response and multicast message exchange are
expected to be built in the service logic.

1. Portability requirements for the platform-
independent design. The abstract platform should be
generic enough to allow a mapping to different target
platforms. The actual set of middleware platforms is
mostly determined by business and strategic
arguments;

2. The needs of application designers. The abstract
platform should provide facilities that ease platform-
independent service design; and, Differences in the architectural concepts used to build

platform-independent designs and those concepts
supported by the target platform may result in the use of
intricate combinations of implementation constructs in the
target platform. This may have an impact on the
complexity of the mapping between platform-independent
and platform-specific design and on some quality
attributes of platform-specific design. It is questionable
whether transformations from disparate abstract and
concrete platforms would provide platform-specific
designs with appropriate quality properties, such as, e.g.,
traceability from the platform-independent design, time
performance, and maintainability.

3. The extent to which abstract platform and target
concrete platforms are different. It should be possible
to obtain platform-specific realizations from
platform-independent designs with acceptable quality
attributes.

Figure 8 illustrates the factors that influence the choice
of abstract platform.

Shortening the gap between an abstract platform and
concrete platforms is a challenging activity. Introducing
new concrete platforms because of portability
requirements may mean that the gap between the abstract
platform and the newly introduced concrete platform is

large. Besides that, shortening the gap between an abstract
platform and a particular concrete platform may enlarge
the gap between the abstract platform and other concrete
platforms.

When this is not the case, more effort has to be
invested in platform-specific realization. In general, we
distinguish two ways of proceeding with platform-specific
realization:
1. A recursive application of service definition and

design, preserving the border between platform-
independent design and the abstract platform. The
abstract-platform definition functions as service
definition for the recursion. The functionality of the
abstract platform is leveraged with the introduction of
abstract-platform service logic, which is a platform-
specific model defined in terms of the concrete
platform. (This is equivalent to building-up support in
the concrete platform, so that the concrete platform
corresponds directly to the abstract platform.)

5.3. Abstract Platform Representation

An abstract platform may be defined implicitly by the
selection of concepts used to describe platform-
independent models. For example, the use of
asynchronous message exchange (or “signals”) in
languages such as SDL [5] or the U2P UML 2.0
submission [18,19] implicitly defines an abstract platform
that provides reliable asynchronous message exchange.

An abstract platform may also be explicitly identified
in a service definition. When this is the case, it is possible
to view platform-independent design as a composition of
service components and the abstract platform. We identify
the following benefits of defining the service of an
abstract platform explicitly:

2. Direct transformation with no preservation of the
border between abstract platform and platform-
independent design. For each concept represented in
a platform-independent model, there should be a
corresponding concept or a corresponding
combination of concepts in the target platform. • Defining an abstract-platform draws attention to

considering the trade-offs presented in Section 5.2; Figure 9 illustrates these two approaches to platform-
specific realization. • Abstract-platform service definitions can be used as a

starting point for platform-specific realization, as
discussed in Section 5.4 and exemplified in Section
6.2; and,

The recursive application of service definition and
design (approach 1) provides clear traceability between
platform-independent and platform-specific design.
Abstract-platform service logic can be reused in the
realization of other platform-independent designs that rely
on the same abstract platform. An argument against this
approach is that it may be harder to satisfy time-
performance requirements than with direct transformation
(approach 2). Furthermore, recursive application may
sacrifice intuitiveness for developers that are accustomed
to a particular concrete platform.

• An abstract-platform service defines explicitly the
notion of platform-independence adopted for a design.

5.4. Platform-specific Realization

Platform-specific realization may be straightforward
when the selected concrete platform corresponds
(directly) to the abstract platform definition.

app.
part

app.
part

app.
part

Service
Logic Abstract -

Platform

app.
part

app.
part

app.
part

Platform-Indep.
Service Logic

Abstract -Platform
Definition

app.
part

app.
part

app.
part

Platform-Specific
Service Logic

Concrete -
Platform Concrete -

Platform
Abstract -Platform

Service Logic

(1) (2)

Figure 9. Alternative approaches to platform-specific realization

6. Examples

Using the floor-control service as defined in Section
4.1 as a starting point, we follow the design trajectory for
two different abstract platforms: an abstract platform that
supports message exchange and an abstract platform that
supports the request/response pattern. We consider
different design solutions for the floor-control service,
illustrating that the service specification is to a large
extent implementation-independent. For each platform-
independent design obtained, we consider realizations in
two concrete platforms: CORBA [10] and the Java
Message Service (JMS) point-to-point domain [20].
Figure 10 illustrates the design trajectories followed in
our examples.

callback-
based

Platform-
independent floor-

control solution

Abstract-platform

service

Floor-control

service

polling
-based

request /
response

message
exchange

+

Platform-
independent floor-

control solution

Abstract-platform

service

+

section 6.1 section 6.2

Platform-specific
floor-control

solution

Concrete-platform

service

+

Platform-specific
floor-control

solution

Concrete-platform

service

+

CORBA

JMS

Platform-specific
floor-control

solution

Concrete-platform

service

+

CORBA

Abstract-platform
service logic

Concrete-platform
service

+

JMS

Platform-
indepedent floor-
control solution

+

Figure 10. Example trajectories

6.1. Callback-based solution with Message
Exchange Abstract Platform

6.1.1. Abstract Platform: Message Exchange. Initially,
let us consider an abstract platform that supports message
exchange. We identify two interactions that are related by
the abstract platform:
• send, with attributes: destination and payload; and
• receive, with attribute payload.

An occurrence of receive follows an occurrence of
send. The interaction receive is executed at the location
specified by the attribute destination of send. The attribute
payload represents the information to be sent. The value
of the attribute payload for an occurrence of receive is the

value of the attribute payload for the related occurrence of
send.

6.1.2. Platform-independent design. The abstract
platform is used in our callback-based solution to
exchange messages between subscriber service
components and the controller service component. The
structure of the platform-independent design is depicted in
Figure 11.

subscriber subscriber

Abstract Platform

Message Exchange

subscriber
service

component

subscriber
service

component

controller
service

component

subscriber
service

component

subscriber

send(
Location destination,
Object payload);
receive(
Object payload);

request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);

interactions supported by
the abstract platform

floor-control service
provider

Figure 11. Structure of the callback-based

floor-control service provider
The controller service component centralizes the

control of the access to the resources. When a subscriber
requests for access to a resource, by executing the
interaction request, the subscriber service component
sends a request message to the controller with the
identification of the resource. This is done in interaction
with the abstract platform through the send interaction,
which is followed by the occurrence of the receive
interaction on the interface of the controller service
component. Eventually, when the resource is to be
granted to the subscriber, the controller sends a grant
message to the subscriber service component. When the
subscriber wants to release the resource, a free interaction
is executed, resulting in the sending of a free message to
the controller. A successful execution of a request for a
resource is illustrated in Figure 12.

subscriber1 floorControlSC1

request(Res1)

grant(Res1)

abstractPlatform controller

send(controller,
<Request, Res1,

floorControlSC1>) receive(<Request, Res1,
floorControlSC1>)

send(floorControlSC1,
<Grant, Res1>)

receive(<Grant, Res1>)

floor-control service provider
Figure 12. A resource is requested and

granted (Platform-independent design)

6.1.3 R
indepen
straightf
correspo
defined
request
illustrate
destinati
identifie
destined
destined
destinati
queue, a
queue (q
and qSe

The
obtained
exchang
no retur
for a res
illustrate

subsc

g
For

consider
[11] in a
subscriber1 floorControlSC1

request(Res1)

grant(Res1)

qSenderContr controller

send(<Request, Res1,
floorControlSC1>)

return(<Request, Res1, floorControlSC1>)

send(<Grant, Res1>)
return(<Grant, Res1>)

qReceiverS1 qReceiverContr qSenderS1

receive()

receive()

floor-control service provider

realized internally by the JMS provider

Figure 13. A resource is requested and granted (JMS-specific realization)
ealization. A realization of the platform-
dent design in the JMS platform is
orward. The service provided by JMS
nds directly to the service provided by the
abstract platform. A successful execution of a
for a resource in our realization in JMS is
d in Figure 13. In the JMS platform, the
on of a message is addressed by a queue
r. In this solution, there is a queue for messages
 to the controller and a queue for messages
 to each subscriber. The addressing of the
on for a message is done through selection of a
nd the instantiation of a message producer for the
SenderContr for the queue directed to controller
nderS1 for the queue directed to subscriber1).
realization in the CORBA platform can be
 through a simple transformation: message
e is realized through an operation invocation with
n parameters. A successful execution of a request
ource in our realization in the CORBA platform is
d in Figure 14.

riber1 floorControlSC1

request(Res1)

grant(Res1)

controller

request(Res1,
floorControlSC1)

granted (Res1)

floor-control service provider
Figure 14. A resource is requested and
ranted (CORBA-specific realization)
the CORBA realization, we could have also
ed the use of the CORBA Notification Service
 similar way as we have used JMS to accomplish

message exchange. This illustrates our observation that
there are many possible ways to realize a platform-
independent design even for a particular concrete
platform.

6.2. Polling-based solution with
Request/Response Abstract Platform

6.2.1. Abstract Platform: Request/Response. Let us
consider an abstract platform that supports the
request/response pattern. We identify four interactions
that are related to each other through the abstract
platform:
• request, with attributes: target, operation and

argument_list. The attributes represent, respectively,
the identifier of the target object, the identifier of the
requested operation and the argument list for the
request;

• request_ind, with attributes: operation and
argument_list;

• response, with attribute return_parameters, which
represents the list of return parameters; and,

• response_ind, with attribute return_parameters.
The occurrence of request_ind follows the occurrence

of request, the occurrence of response follows the
occurrence of request_ind, and the occurrence of
response_ind follows the occurrence of response.

This is a generalization of the service provided by
request/response platforms. These platforms provide some
infrastructure to generate customized stubs that in
conjunction with the middleware core provide
specializations of the service as presented in this section.

6.2.2. Platform-independent design. The abstract
platform is used in our polling-based solution to enable
the subscriber service components to issue invocations to
the controller. The structure of the platform-independent
design is depicted in Figure 15, which is identical to

Figure 11 except for the abstract platform and its
primitive interactions.

user part
(subscriber)

user part
(subscriber)

Abstract Platform

Request/Response

subscriber
service

component

subscriber
service

component

controller
service

component

subscriber
service

component

user part
(subscriber)

request(Location target, OperationId operation,
Object[] arguments_list);
request_ind(OperationId operation,
Object[] arguments_list);
response(Object[] return_argument);
response_ind(Object[] return_argument);

request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);

interactions supported by
the abstract platform

floor-control service
provider

Figure 15. Structure of the callback-based

floor-control service provider
The subscriber service components poll the controller

for a certain resource by invoking its operation
request_permission, which returns the Boolean value true
when the resource is available, and false otherwise. When
the subscriber wants to release the resource, the operation
free of the controller’s interface is invoked. A successful
execution of a request for a resource is illustrated at the
top of Figure 16.

6.2.3. Realization. A realization of the platform-
independent design in terms of the CORBA platform is
straightforward. The realization in terms of the JMS
platform deserves more attention, since this platform does
not support the request/response pattern directly.

We have applied the approach 1 to realization as
presented in Section 5.4: the abstract platform service
specification is used as a starting point for a recursive
application of service design. The diagram at the bottom
of Figure 16 illustrates a successful execution of a request
for a resource, in a realization with the abstract platform
realized in terms of the JMS platform. The occurrence of
a request interaction results in the sending of a request
message to the controller, containing the identification of
the request, the name of the operation to be invoked, and
the parameters for the operation. The identification of the

subscriber1 floorControlSC1

request(Res1)

grant(Res1)

abstractPlatform controller

request(controller,
request_permission,

<Res1, floorControlSC1>) request_ind(
request_permission,

<Res1, floorControlSC1>)

response(<true, Res1>)

response_ind(<true, Res1>)

floor-control service provider

floorControlSC1 abstPlatSC2 controller

request(controller,
request_permission,

<Res1, floorControlSC1>) request_ind(
request_permission,

<Res1, floorControlSC1>)

response(<true>)

response_ind(<true, Res1>)

abstPlatSC1subscriber1

request(Res1)

grant(Res1)

qSenderContr

return(<request, ReqID1,
request_permission,

Res1,
floorControlSC1>)

return(<response, ReqID1, true>)

qReceiverS1

qReceiverContr

qSenderS1

receive()

receive()

send(< request, ReqID1,
request_permission,

Res1,
floorControlSC1>)

send(<response,
ReqID1, true>)

abstract platform

floor-control service provider

realized internally by the JMS provider

Figure 16. A resource is requested and granted

request is used by the abstract platform service
components to correlate request and response messages.

A solution based on direct transformation (approach 2)
would also be possible, embedding functionality to
correlate request and response in the floor control service
components. In this case, the structure of the platform-
independent design would not be directly recognizable in
the platform-specific design.

6.3. Symmetric solutions

Both platform-independent solutions we have explored
are asymmetric implementations of the floor-control
service. Asymmetric solutions are characterized by
separate controller and subscriber roles. The controller
centralizes the coordination of access to shared resources,
while subscribers must request the controller for access to
a resource.

In addition to the asymmetric solutions we have
presented, we identify a class of symmetric solutions to
the floor-control service. In symmetric solutions, there is
no controller, and all application parts have identical roles
in the coordination. An example of a symmetric solution
is based on token passing. In this solution, a list with the
set of available resources circulates among the
subscribers. Each subscriber examines the list with the set
of identifiers of available resources, removes the identifier
of the resource desired and forwards the list by invoking
an operation on the interface of the following subscriber.
When a subscriber wants to release a resource, it inserts
the identifier of the resource to be released in the list.

These solutions have been investigated and are
approached in the same way as the asymmetric solutions
presented here. They are further ignored in this paper.

6.4. Discussion

Among the solutions discussed for the floor-control
problem, the floor-control service is a stable abstraction,
and shields the design of subscribers from the particular
way in which the service is implemented. We have shown
that the floor-control service is neutral, both with respect
to premature commitments to particular design solutions
(callback-, polling-, or token-based) and with respect to
premature commitments to a particular middleware
interaction pattern (as provided by CORBA and JMS).

It is irrelevant for the design of subscriber application
parts whether the design of the floor-control solution is
symmetric or asymmetric, callback-, polling-, or token-
based, or whether the platform is CORBA or JMS.

For the design of the application interaction system
itself, we have used abstract platform definitions. This
allowed us to target CORBA and JMS from the same
platform-independent design. Moreover, by using the
abstract platform service specification as a starting point
for a recursive application of service design (approach 1
for platform-specific realization), we have obtained

software components that can be reused on top of
different platforms.

Our approach focuses on the behavioural aspects of
platform-independent design. Therefore, in the
presentation of our examples, we have not explored issues
related to the treatment of information value types.
Nevertheless, we acknowledge that these issues are an
important aspect of MDA development.

7. Conclusions

We have argued the case for a more prominent role of
service specifications and interaction system design in the
model-driven development of distributed applications.
The service concept allows us to provide support for a
designer to define precisely the notion of platform-
independence adopted for a design, based on the
definition of an abstract platform.

By defining application interaction systems with
service specifications, and designing application parts that
rely on the service definition, we achieve a high level of
platform-independence. Consequently, the design of
application parts can be reused across a large set of
middleware platforms. Furthermore, particular
implementations of the application interaction system are
irrelevant for the design of application parts that use the
interaction system.

We have identified the use of the service concept in
different milestones of the model-driven development
trajectory. Service specifications have to be expressed in a
suitable modelling language. Cariou et al. [3] have
recently explored the notion of “medium” which
corresponds to the notion of application interaction
system we adopt, focussing on the use of UML to
represent such media. We intend to propose extensions or
usages of UML with respect to the representation of the
service concept, both for the representation of the service
of application interaction systems and the service of
abstract and concrete platforms.

Acknowledgements

This work is partly supported by the European
Commission, in context of the IST project MODA-TEL
(http://www.modatel.org) and the ‘Telematica Instituut’,
in the context of the Dutch national project ArCo
(http://arco.ctit.utwente.nl/). We also thank the
anonymous reviewers for their useful comments and
suggestions for improvements.

http://www.modatel.org/
http://arco.ctit.utwente.nl/

References

[1] R. J. Allen, and David Garlan, “A Formal Basis for
Architectural Connection”, ACM Transactions on Software
Engineering and Methodology, vol. 6, n. 3, July 1997, pp.
213-219.

[2] C. Burt et al., “Quality of Service Issues Related to
Transforming Platform Independent Models to Platform
Specific Models”, Proceedings Sixth International
Conference on Enterprise Distributed Object Computing,
Lausanne, Switzerland, Sept. 2002, pp. 212-223.

[3] E. Cariou, A. Beugnard, and J. M. Jézéquel, “An
Architecture and a Process for Implementing Distributed
Collaborations”, Proceedings Sixth International
Conference on Enterprise Distributed Object Computing,
September 2002, Lausanne, Switzerland, Sept. 2002, 132-
143.

[4] L. Ferreira Pires, Architectural Notes: a framework for
distributed systems development, Ph.D. Thesis, University
of Twente, Enschede, The Netherlands, 1994, available at
http://www.cs.utwente.nl/~pires/thesis/

[5] International Telecommunications Union (ITU),
Specification and description language (SDL), ITU-T
Recommendation Z.100, Geneva, Switzerland, Aug. 2002.

[6] Microsoft Corporation, Microsoft .NET Remoting: A
Technical Overview, July 2001, available at
http://msdn.microsoft.com/library/default.asp?url=/library/e
n-us/dndotnet/html/hawkremoting.asp

[7] Object Management Group, Model driven architecture
(MDA), OMG document ormsc/01-07-01, July 2001.

[8] Object Management Group, Generic RFP template, OMG
document ab/02-04-06, April 2002.

[9] Object Management Group, CORBA Component Model,
v3.0, OMG document formal/02-06-65, July 2002.

[10] Object Management Group, Common Object Request
Broker Architecture: Core Specification, Version 3.0,
OMG document formal/02-12-06, Dec. 2002.

[11] Object Management Group, Notification Service
Specification, v1.0.1, OMG document formal/02-08-04,
Aug. 2002.

[12] D.A.C. Quartel. Action relations. Basic design concepts for
behaviour modelling and refinement, Ph.D. Thesis,
University of Twente, Enschede, The Netherlands, 1998, at
http://www.cs.utwente.nl/~quartel/publications/PhD/

[13] D.A.C. Quartel, L. Ferreira Pires, M. van Sinderen, H.M.
Franken, and C.A. Vissers. On the role of basic design
concepts in behaviour structuring. Computer Networks and
ISDN Systems, vol. 29 (1997) 413-436.

[14] M. van Sinderen. On the Design of Application Protocols.
Ph.D. Thesis. University of Twente, Enschede, The
Netherlands, March, 1995, available at
http://www.cs.utwente.nl/~sinderen/publications/
thesis.html.

[15] M. van Sinderen and L. Ferreira Pires, “Protocols versus
objects: can models for telecommunications and distributed
processing coexist?”, Proceedings Sixth IEEE Computer
Society Workshop on Future Trends of Distributed
Computing Systems, Tunisia, October 1997, 8-13.

[16] M. van Sinderen, L. Ferreira Pires, C.A. Vissers, and J.-P.
Katoen, “A design model for open distributed processing
systems”. Computer Networks and ISDN Systems 27 (1995)
1263-1285.

[17] B. Tekinerdogan, Synthesis-Based Software Architecture
Design, Ph.D. Thesis, University of Twente, March, 2000,
available at http://www.cs.utwente.nl/~bedir/PhDThesis/

[18] U2 Partners. UML 2.0: Infrastructure, 3rd revised
submission, OMG document ad/2003-03-01, March, 2003.

[19] U2 Partners' UML 2.0: Superstructure, 3rd revised
submission, OMG document ad/2003-04-01, April, 2003.

[20] Sun Microsystems, Java(TM) Message Service
Specification Final Release 1.1, April 2002, available at
http://java.sun.com/products/jms/docs.html

[21] C. A. Vissers, L. Ferreira Pires, D. A. Quartel, M. van
Sinderen. The Architectural Design of Distributed Systems,
Lecture Notes, University of Twente, Enschede, The
Netherlands, Nov. 2002.

[22] C.A. Vissers, and L. Logrippo, “The importance of the
service concept in the design of data communications
protocols”. Proceedings Fifth IFIP WG6.1 International
Conference on Protocol Specification, Testing and
Verification, June 1985, 3-17.

[23] C. A. Vissers, G. Scollo, M. van Sinderen, and E.
Brinksma, “Specification styles in distributed systems
design and verification”. Theoretical Computer
Science, 89:179–206, 1991.

[24] World Wide Web Consortium, Web Services Description
Language (WSDL) 1.1, W3C Note, March 2001, available
at http://www.w3.org/TR/wsdl

[25] World Wide Web Consortium, Simple Object Access
Protocol (SOAP) 1.1, W3C Note, May 2000, available at
http://www.w3.org/TR/SOAP/

http://wwwhome.ctit.utwente.nl/~pires/thesis/index.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://www.cs.utwente.nl/~quartel/publications/PhD/
http://www.cs.utwente.nl/~sinderen/publications/�thesis.html
http://www.cs.utwente.nl/~sinderen/publications/�thesis.html
http://www.cs.utwente.nl/~bedir/PhDThesis/
http://java.sun.com/products/jms/docs.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP/

	Introduction
	The Service Concept
	Platform-independence
	Middleware-centred Development
	MDA approach

	Application Interaction Systems
	Example: Floor-control Service

	Design Trajectory
	Milestones in Model-driven Design
	Choice of Abstract Platform
	Abstract Platform Representation
	Platform-specific Realization

	Examples
	Callback-based solution with Message Exchange Abstract Platform
	Polling-based solution with Request/Response Abstract Platform
	Symmetric solutions
	Discussion

	Conclusions

