
A Service Architecture for Sensor Data Provisioning for

Context-Aware Mobile Applications

Bernardo Gonçalves
1
, José G. Pereira Filho

1
 Giancarlo Guizzardi

1,2

1
Computer Science Department

Federal University of Espírito Santo
(UFES), Vitória (ES), Brazil

{bgoncalves, zegonc}@inf.ufes.br

 2
Laboratory for Applied Ontology

 ISTC-CNR
 Trento, Italy

 guizzardi@loa-cnr.it

ABSTRACT
One of the main issues that inhibit the development of context-

aware mobile applications is the lack of systematic methods for

sensor data acquisition. This lack, however, is a result of the

diversity of sensor data and its acquisition devices. In face of this,

there is a need for general engineering solutions in order to

address the common sensor data acquisition concerns. This paper

presents a service-oriented architecture that allows the rapid

prototyping of sensor data provisioning systems. This architecture

is then applied to the Healthcare domain for providing cardiac

signals in the scope of a context-aware telemonitoring system. The

architecture is defined by entity and behavior models through a

service-oriented design (SOD) language that has tool support.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design- distributed

systems, hierarchical design, real-time systems and embedded

systems; D.2.11 [Software Engineering]: Software Architectures

– domain-specific architectures; D.2.13 [Software Engineering]:

Reusable Software – domain engineering, reuse models.

Keywords
Context-aware mobile computing, Pervasive computing, Domain

engineering, sensor data acquisition, service-oriented architecture.

1. INTRODUCTION
The effort to develop context-aware mobile applications has been

increasing with the introduction of novel application domains and

usage scenarios. Similarly to other development practices, the

development of such applications can be facilitated by

infrastructural support for handling recurrent challenges of design

and technology in a generic manner. With this in mind, several

middleware platforms for supporting context-aware services have

been proposed [3], [4], [9]. As a rule, the approach taken in such

initiatives focus on sensor data (or context data) usage and

abstract sensor data acquisition by assuming that context-aware

platforms should be supplied by context sources (or sensor data

providers). Thus, one may wonder what these context sources are.

Considering this particular issue, most efforts in the literature

focus on context interpretation, context services management,

subscription and privacy control, among others. In contrast, a

general perspective of sensor data acquisition from heterogeneous

devices remains quite unaddressed as a research topic. We argue

that the diversity of data types and acquisition devices constitutes

a special challenge in the development of context-aware

applications and platforms, which motivates a more systematic

approach to handle sensor data provisioning. As an example,

consider sensor data acquisition in a hospital environment. In

such place, several sort of data is acquired, either data presented

as discrete such as temperature and blood pressure or continuous

data such as cardiac signals. These data may require an integrated,

simultaneous and/or homogeneous treatment.

We advocate that, in fact, there is a need for capturing common

problems and solutions regarding sensor data acquisition. These

solutions can be adapted and customized whenever a particular

requirement has to be addressed. This paper elaborates on a

systematic method for sensor data acquisition and provisioning in

mobile and pervasive scenarios. Our proposal constitutes a

service-oriented architecture, named Context Wrapper, to

support sensor data provisioning for context-aware mobile

applications. This architecture is a result of an approach

concerned with domain engineering analysis and design phases.

We took into account the sensor data acquisition requirements

obtained from the analysis phase and used the service-oriented

computing paradigm to produce it.

We have used a service-oriented design (SOD) methodological

support that is proposed by Quartel et al. in [14]. The architecture

proposed is defined by an entity model as well as a behavior

model. Both them were conceived using the Interaction System

Design Language (ISDL) [10]. The combination of ISDL with a

tool support, has allowed us to check the consistency of the

architecture behavior through simulation. In addition, we have

adopted and followed design-quality principles in order to drive

our work and then constitute objective criteria to later evaluate it.

As a proof of concept, the proposed architecture is applied to

develop ECG Wrapper [8], a cardiac signals provisioning system

for patients’ heart telemonitoring in the TeleCardio project [2].

The developed system serves then as a context data wrapper to the

Infraware platform [13] - a middleware for supporting services to

context-aware mobile applications. In fact, as previously

mentioned, Healthcare constitutes a rich field of application due

to its diversity of data and devices. The applicability of the

architecture is also discussed in other pervasive scenarios.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

1946

The paper is organized as follows. Section 2 brings in sensor data

acquisition issues; Section 3 introduces the SOD methodological

support we have used; Section 4 presents the proposed

architecture; Section 5 states a proof of concept in the Healthcare

domain; Section 6 shows the applicability of the architecture in

three other scenarios; Section 7 discusses our proposal based on

the methodological support we have used and Section 8 discusses

related work; lastly, Section 9 concludes the paper.

2. ASPECTS OF SENSOR DATA

ACQUISITION
A domain is characterized by a set of problems or functions that

applications related to it should address. In this work, we deal

with the sensor data acquisition domain, which comprises aspects

of sensors communication, data processing, persistence,

conversion into a desirable format and delivery for data

consumers. Following we introduce a discussion on these core

technical challenges as a result of a domain analysis activity.

2.1 Sensor Communication
Obtaining data from sensor devices by computer communication

is a natural requirement in pervasive computing scenarios.

However, in these scenarios, it has a different purpose than in

traditional computer communications. In the latter case,

communication involves typical interconnection between

computers, printers, routers, etc, by which a substantial quantity

of data is bi-directionally transmitted. In this case the emphasis is

on higher transmission rates for supporting faster downloads (e.g.

of multimedia data) by final users; these aspects are addressed by

IEEE 802.11 and 802.15.1 standards (e.g. under Wi-fi and

Bluetooth technologies respectively). In contrast, sensor data

transmission mostly involves control and monitoring as it is

required by context-aware systems and wearable computers; these

aspects rather are addressed by the IEEE 802.15.4 standard (e.g.

under ZigBee [22]). It is quite common in this case that sensor

devices integrate each other in a local wireless sensor network,

whereby desirable requirements are reliability, adaptability,

latency and scalability [18], as opposed to transmission rates up to

11 or 54 Mbps. That is because sensor devices are committed to

low transmission rates to keep as far as it is possible their

batteries. In case the sensor data provisioning system is embedded

in the sensor device (e.g. a wearable system), this kind of sensor

communication does not make sense anymore.

2.2 Data Processing
The context data obtained from sensor devices may be processed

to carry out some brief data handling and/or to perform data

analysis in order to enhance its semantics. In both cases the data

processing depends of whether we have discrete or continuous

data. The latter (e.g., waveform) calls for signal processing on

account of noise filtering and/or patterns recognition. As an

example, consider the electrocardiogram (ECG) signal processing

such as in the work of Andreão [1]. Discrete data as location and

temperature, otherwise, calls for the usage of statistical functions

on data samples, e.g., an average or standard deviation in given

time window, to obtain a cue, i.e., a reference value, reducing this

way, the amount of data obtained from sensor devices as well as

to increase the reliability of the data acquired [17]. It is important

to consider, however, that the data processing function introduced

here deal with a single piece of data acquired by a single sensor

box. Therefore, it is an orthogonal function to context reasoning

typically performed by context-aware middleware that combines

multiple pieces of information to infer a new one. In fact, data

processing transforms sensor data to contextual information at a

higher abstraction level enabling it for direct context

interpretation by combining multiple pieces of information. An

example of such data processing feature can be found in [11].

2.3 Data Wrapping
The wrapping issue constitutes to encapsulate the context data in

an appropriate format. Considering pervasive scenarios and thus,

the need for data delivery over a communication channel, the

design of such model has to take into account the following non-

functional sub-requirements: (i) interoperability between

heterogeneous systems; (ii) flexibility, for allowing minimal effort

in modifications; (iii) lightness of data as quite as possible, for

reaching efficient transmission; (iv) truthfulness, for being

consistent with the real world domain which is captured by it; and

(v) readability, for permitting evaluation of its domain experts.

Indeed, this model is related to an abstract and to a transfer syntax

by means of (i, ii, iv and v) and (iii) requirements respectively.

These two perspectives focus on data representation and data

transmission and are addressed in the OSI reference model, for

example, by the application and presentation layers. The XML

technology is quite suitable for addressing this requirement.

Despite it does not meet the transfer syntax sub-requirement due

to the rather large size of XML files, this drawback may be

avoided through a compression procedure for reaching size

reduction of the XML document as it is showed by Erfianto in [6].

2.4 Data Persistence
Sensor data have often spatio-temporal aspects to be considered,

as far as user profile, and different abstraction levels as a result of

data processing and/or context interpretation. In addition, context

data is acquired from different devices, and have diverse types and

heterogeneous formats. Therefore, their persistence has to be done

in such a way that client applications could later have access to

them in a standardized manner, remarkably by remote queries

through the Internet. The XML format may also be used for

sensor data persistence. It can be mapped into a tabular model for

reaching applications’ querying support. In fact, it is suitable not

only for interoperation over the Internet but also between

heterogeneous platforms in general. However, the spatio-temporal

aspect of sensor data asks for a special management as discussed

by Sashima et al. [16]. A suitable management of this sort of data

is, indeed, an open topic of research.

2.5 Graphical User Interface
For usability, it is rather common in context-aware systems the

acquisition not only of implicit data obtained from sensor devices,

but also of explicit data obtained from graphical user interfaces

(GUI). By means of a GUI the user can insert either personal data

or some context related data to combine with data acquired from

sensor devices. The explicit data should be encapsulated jointly

with implicit data in a model that copes with the issues just

mentioned (in the two previous subsections).

1947

2.6 Data Delivery
As a rule, a sensor data acquisition system is part of a larger

telematics system including middleware platforms and end-user

applications. These components are usually physically distributed.

That is why the data acquired by the acquisition system has to be

delivered over a communication channel to its data consumers,

whether they are directly final applications or a context-aware

middleware. On one side, because we are speaking of context-

awareness, these data should be delivered not only on consumer

requests, but also on event in case there is relevance for one or

more consumers. The RMI Java standard can be used to this end

(i.e., remote procedure calling). It allows event-driven messages

coming from the data provider to listener applications. On the

other side, due to the regular configuration changes, this delivery

function should maintain weak coupling between data providers

and consumers. Moreover, the delivery service, in general, should

be public whether in the Internet or at least in the environment

monitored by the sensor devices to allow consumer applications to

discovery and to use it. These are the reasons why, jointly with

RMI, web services (WS) technologies [20] sound suitable for

addressing such a delivery service, rather than, e.g., TCP/IP. In

fact, a WS deploys the data available on the web through a

standardized interface for answering then data requests coming

from applications. In contrast, TCP/IP tightly connects the data

provider and consumer inhibiting thus an open access to sensor

data such as it is required in many ubiquitous scenarios.

3. THE SOD METHODOLOGICAL

SUPPORT
In face of the issues just mentioned, in the domain design phase

we have used a SOD methodological support to propose a service

architecture for sensor data provisioning. The methodology

consists of (i) using ISDL, (ii) validating the architecture by using

a tool, and also (iii) the adoption of a design-quality metrics.

The ISDL modeling technique [14] is aimed at modeling systems

at higher abstraction levels. In ISDL, a model comprises two

viewpoints: an entity model and a behavior model, to describe the

system respectively in its structural and behavioral aspects. In this

way, a service architecture is presented in terms of an ISDL entity

model that expresses an external perspective of the whole system

as well as by a behavior model (see Figure 1) of each layer for

expressing each (inter) action that occurs either in itself or at its

boundaries. Moreover, despite the causality relations connection

(inter) actions, each of these (inter) actions may be characterized

by three attributes: (i) information – what is produced by the

(inter) action, (ii) time – the time the result of the (inter) action

becomes available (if successful), and (iii) location – where the

(inter) action takes place. In this paper these attributes are

expressed by the variables µ, π, and λ respectively. A tutorial on

ISDL can be found at [10].

Since we are talking about a formal language, we could reach

preciseness, unambiguity and clarity. For the same reason, we are

able to validate such architecture with respect to consistency of

the system behavior. We can then use AMBER, a business

process design language based on ISDL that has tool support in

Testbed Studio [5]. Finally, let us consider the following objective

criteria advocated by Vissers et al. to assess the quality of a

service design [19]:

• Generality: a function should be designed in its most general
form. Thus, specific cases should be covered via instantiation

of a general function by either adding restrictions and/or

parameters settings.

• Propriety: do not introduce what is immaterial, i.e., functions
which have no direct call for.

• Orthogonality: to strive for separation of concerns, i.e., to
define separate functions for addressing independent needs.

• Parsimony: to design a single general function for addressing
each requirement, rather than collapsing multiple functions

for the same requirement.

• Abstraction: to focus on an abstraction level suitable for the
goals of the phase or step of the design process, leaving out

details that were deemed irrelevant in such a phase.

• Open-endedness: the service design can be easily extended in
a later stage with no damage to its original design.

These criteria, in fact, sound suitable as an evaluation metrics for

SOD as much as for architecture design in general. On the next

section we present the Context Wrapper architecture. This

architecture may be instantiated for several sensor data types for

carrying out data acquisition from a sensor device, data

processing, wrapping, persistence and delivery.

4. CONTEXT WRAPPER
The Context Wrapper architecture has a layered design that

hierarchically organizes the system’s functions. As it is norm in

this architectural style, each layer should provide service to the

adjacent layer above by building upon the services offered by the

layer adjacent below. Following, we introduce both the entity

model and the behavior model of Context Wrapper.

4.1 Context Wrapper Entity Model
By using an entity model we can represent the system parts and

their relationships by means of the structure of entities

interconnected by interaction points. Figure 2 shows the Context

Wrapper entity model. The Context Wrapper is composed by the

following entities:

• Sensors Communication layer (SC): lays up communication
protocol with a sensor device;

• Data Processing layer (DP): carries out data processing
including data filtering and/or cueing;

• Graphical User Interface (GUI): allows user to insert
explicit data (this is an optional entity);

Figure 1. Part of the ISDL behavior metamodel [14].

1948

• Wrapping layer (WP): encapsulates context data (and
possibly explicit user data) into a suitable format, and

subsequently, performs data persistence;

• Delivery layer (DV): committed to context data delivery to
consumers (either middleware or directly final applications).

Each Context Wrapper layer abstracts functionalities from its

lower layer to its upper layer by means of the service it provides.

The Sensor Device (SD) and Data Consumer (DC) entities

interact with Context Wrapper entities at their boundaries to

supply and consume sensor data, respectively. These interactions

as much as the internal interactions take place at service access

points (SAP) through service primitives (SP).

4.2 Context Wrapper Behavior Model
Complementing the entity model, by means of a behavior model

we can state the functionally of the identified system parts and

how they interact [19]. In this way, we present a constraint-

oriented model of the Context Wrapper behavior, which is the

combination of its sub-behaviors. This approach focus on the

interaction contribution of each entity involved in an interaction.

Following, the behavior of each system layer is introduced as well

as its possible configurations that meet specific needs. It is worth

to remark, however, that the system layers may provide either a

connection-less or connection-oriented service, which may be

confirmed or not. Such a choice depends on the type of sensor

data as much as the specific purpose of each application scenario.

For brevity, we do not consider here service primitives neither

concerned with connection establishment and release nor data

confirmation, leaving the choice for such configurations open for

the designer of specific systems. We then can focus on the major

functions of the Context Wrapper entities. Analogously to the OSI

model, the Context Wrapper architecture as a whole may be seen

as three sets of layers: lower level layers, i.e., SC and DP;

convergence layer, i.e., WP; and upper level layer, i.e., DV.

4.2.1 Lower Level Layers Behavior
The lower level layers, i.e., SC and DP, provide services

committed to lower abstraction level functions such as hardware

interconnection and data processing. The SC function is just

passing ContextData data units from SD entity to DP entity

(Figure 3): one Dreq1 data request triggered at SD_SAP enables

one Dind1 data indication at SC_SAP. When Dind1 arrives at

SC_SAP, the Processing action calls a DataProcessingOf

function. Thereby, sensor data assumes an information character

on account of its enhanced semantics and also of the checking if

an event has taken place. Then, one Dreq2 SP takes place at

DP_SAP to move the ContextInfo data unit to WP entity.

Notice at the bottom of Figure 3 that the interaction between SD

and SC has a µ information attribute of the ContextData type and

a λ location attribute of the SAP type. The latter is shown only in

one entity of the interaction. Furthermore, a constraint on the

arrow in SC entity express that the µDind1 information result of

the interaction between SC and DP must receives the µDreq1

information result. A similar constraint must be satisfied for the

arrow that enables a Processing action as far as for the arrow that

enables an interaction between DP and WP entities.

4.2.2 Convergence & Upper Level Layers Behavior
The convergence layer handles sensor data flow from lower level

layers to the upper level layer, as well as the upper level layer

requesting for data. As a client, WP layer is connected to DP layer

through DP_SAP, whereby the former receives data units

(ContextInfo) from the latter through the Dreq2 SP, see Figure 4.

Thereafter, data units are embedded into a suitable format by the

WrapData action and then stored by the StoreData action. In the

meantime, WP may be receiving user data from GUI entity at

G_SAP by means of Dreq3 SP. This information is also wrapped

into a suitable format and stored in the same way as context

information. In case context information is flagged true for an

event (it may be just the end up of a time cycle) WP plays the role

of provider and the WrapData action also moves these data

(ContextInfo and UserData) to WP_SAP by means of Dreq4 SP.

Hence, Dreq4 triggers a Dind3 indication at DV_SAP, which

connects DV layer to data consumers. Notice in Figure 4 that

either an interaction between DP and WP through Dreq2 SP or an

interaction between GUI and WP through Dreq3 SP enables a

WrapData action as long as constraints are satisfied.

From a top-down standpoint, WP as a provider may receive Dind2

indications of Dreq5 data requests came from data consumers

through DV layer. Then, WP performs a RetrieveData action to

move the data requested to WP_SAP by means of a Dreq4 SP to

be in turn delivered to data consumers by a Dind3 SP at DV_SAP,

as illustrated by Figure 4. On the next section, the architecture just

presented is instantiated on the design of the ECG Wrapper, an

 Figure 3. Behavior of the lower level layers.

Figure 2. Context Wrapper entity model.

1949

ECG data provisioning system. This system is applied for

patients’ heart telemonitoring in a real scenario in the scope of

TeleCardio project [2]. We elaborate on the derivation of ECG

Wrapper from the Context Wrapper architecture in order to

validate our proposal.

5. ECG WRAPPER: A CASE STUDY
The ECG Wrapper design took into account specific requirements

related to ECG signal provisioning with telemonitoring purpose as

follows. A mobile sensor device (e.g. Holter monitor) can acquire

ECG signal obtained from electrodes placed at the body surface of

a patient. In TeleCardio, this device must transmit this ECG data

to a computer nearby where the ECG Wrapper system shall be

built on. This data transmission should be carried on over a

wireless link for giving mobility for the patient. Then a signal

processing must take place in order to reach noise filtering and to

perform ECG analysis. This signal processing can detect abnormal

events on the patient’s heart activity and also support physicians’

decision making. Thereafter, the ECG data should be embedded

into an appropriate platform-independent format possibly in

combination with user data obtained from a GUI. Finally, this

populated model should be delivered to data consumers, i.e.,

healthcare applications. There are multiple technology solutions

to meet those requirements. The ECG Wrapper architecture may

be directly derived from Context Wrapper by addressing its layers

with the chosen technologies.

5.1 ECG Wrapper Entity Model
The ECG Wrapper entity model resembles the Context Wrapper

one (Figure 2). Nevertheless, although it has the same entities,

they are addressed by specifically technology solutions as follows:

• The Sensors Communication (SC) layer is addressed by
ZigBee [22], a wireless communication protocol based on

the IEEE 802.15.4-2003 Low Rate WPAN standard. As we

pointed out in Subsection 2.1, this technology is suitable for

monitoring and remote control purpose, i.e., low data

transmission rate and low power consumption.

• The Data Processing (DP) layer comprises an ECG analysis
system [1] that carries out the reception and processing of the

raw signal through an ECG segmentation and classification

approach based on hidden Markov models (HMM). In doing

so, this system reaches noise filtering and event detection.

• A GUI entity allows user data acquiring such as patient
anamnesis and recording session parameters configuration.

• Wrapping (WP) layer encapsulates ECG processed data as
well as patient and recording session data into the ecgAware

model [7], an ECG XML-based markup language. Once these

data are embedded in XML files, they are locally stored.

• Delivery (DV) layer is addressed by the RMI Java standard
for remote procedure calling (e.g., “log on Infraware

platform”, “an event has been detected”) and by the WS

technology [20] for making ECG data units (i.e., XML files)

available on the web.

The sensor device (SD) constitutes a mobile Holter monitor

equipped with a ZigBee radiofrequency (RF) transmitter. The

ECG data is consumed by a health context-aware application

through intermediation of the Infraware platform [13].

5.2 ECG Wrapper Behavior Model
Analogously to the entity model, the ECG Wrapper behavior

model is straightforwardly derived from the Context Wrapper

behavior model. However, on the ECG Wrapper design we can

bring in an enhanced specification of the service provided, by

presenting a more tangible behavior description. This is presented

in the sequel by following a temporal ordering of one of the

TeleCardio scenarios, whereby an ECG recording session is

monitored remotely by a health context-aware application.

Before the beginning of an ECG recording session, a user such as

a healthcare professional may insert patient personal data and

electronic patient record data through a GUI. In addition, the user

may provide some data about the recording session. Examples

include the expected duration of the session, blood pressure

acquired up to that point and so on. Those data are then embedded

into the ecgAware format and stored. The system procedure for

those operations has the same behavior as the one depicted in

Figure 4, i.e., the Context Wrapper behavior.

At this point, the recording session can be started; during the first

30 seconds of ECG data acquisition, the SC service connects the

SD and DP entities. Such a connection establishment is required

because, in this scenario, ECG data units should be transmitted

from the sensor device to SC layer at each 30 seconds, which is a

short time interval that justifies keeping resources reservation.

Once the connection is established, the data transfer phase is

initiated, in which data request, indication and confirm SPs are

performed for moving data from SD to DP through a confirmed

service. A data confirm following each data indication is required

taking into consideration the ECG data type, i.e., continuous data

such that it only has a meaning as a whole, and therefore, all data

units must arrive at its destination. With regard to data transfer,

Figure 4. Behavior of the WP and DV layers.

1950

the ECG Wrapper behavior is also more specific than the Context

Wrapper one. In this case, we have to consider a timeout

constraint stating that the Dind1 at SC_SAP has to happen at most

∆max time units after Dreq1 has happened on SD_SAP. This is

because SC entity provides a confirmed service. The DP layer

service is also connection-oriented and links SC and WP entities.

DP works on demand by processing data units received at

SC_SAP and moving them to WP entity through DP_SAP. Except

by the timeout constraint, SC and DP behaviors in ECG Wrapper

are the same as in Context Wrapper (Figure 3).

As a result of the Processing action, an ECG data unit is

segmented and classified. Abnormal events can then be detected

in order to identify an emergency situation. Thereafter, a

WrapData action encapsulates such an ECG information unit into

an ecgAware instance, stores it by means of a StoreData action,

and forwards it to DV layer. While this whole procedure is carried

out for each ECG data unit, one or more data requests may come

from the DC entity asking for pieces of information kept in a data

repository at the WP layer. The whole behavior related to the

convergence and upper level layers in ECG Wrapper follows

directly the Context Wrapper behavior shown by Figure 4. At the

end of the recording session all ECG information units stored in

the WP repository are aggregated accordingly to ecgAware model

into a single ECG record. Also at this point, a termination phase

eliminates the connection between SD and DP entities.

We have implemented ECG Wrapper in the context of TeleCardio

project. It supplies a client web-based application with the ECG

data obtained from a patient during recording sessions of 48h

duration. This application is aware to the patient’s context,

changing its behavior as a reaction to event indications triggered

by the ECG Wrapper.

6. APPLICABILITY OF THE CONTEXT

WRAPPER IN OTHER SCENARIOS
The Context Wrapper architecture may be instantiated in several

mobile and pervasive computing usage scenarios, whereby the

same recurrent sensor data acquisition requirements take place. A

representative set of such scenarios are:

i. For building an intelligence environment such as eye-
tracking system [21], several video cameras may be

distributed to set up a network that captures local images.

From those cameras, low level data such pixels information

may be acquired through sensors communication; thereafter,

data analysis by means of image processing techniques is

required. They may be either simple algorithms for light and

color measuring to infer that one room is lighted or complex

methods to detect movement, conversation and nearby

people or objects in order to infer whether a meeting is

taking place. In both cases there is a need for wrapping and

delivering such contextual information for end-applications

or even for an infrastructure of additional computational

resources for reasoning, such as a computer cluster.

ii. Consider the application of pervasive computing either for
tourism guide, or user assistance in fieldwork environments

such as biodiversity surveys or archeological excavation

[12]. In such scenarios, the following requirements are

common: (i) the need for acquiring user location through a

satellite navigation system, i.e., sensors communication; (ii)

to carry out an average of recent acquired values, as well as

to process the cue value obtained for mapping it into a

coordination system, e.g., a chart (data processing); (iii) to

wrap this contextual information possibly in combination

with user inserted data according to a truthful model of the

domain; and (iv) to delivery this populated model through a

communication channel, e.g., the Internet, for its data

consumer.

iii. For user assistance in entertainment scenarios such as
cinemas and theaters, it is quite useful, for example,

monitoring of light and sound in the environment for several

inferences [17]. Therefore, contextual data has to be acquired

from sensors by an interface, and then subsequently

processed in order to map it into a discrete scale, embedded

into one suitable model and delivered for its listeners.

These scenarios exhibit the quite generality of the proposed

architecture constituting a subset of the domains in which the

Context Wrapper can be employed.

7. DISCUSSION
Let us look at how the Context Wrapper architecture design fits in

the design-quality principles we have adopted:

• Generality: the architecture functions are, in fact, quite
general for handling sensor data provisioning issues. We

have demonstrated this concern on the ECG Wrapper case

study in Section 5 by adding constraints and configuring

parameters as well as in Section 6 by discussing some

scenarios.

• Propriety: with sensor data acquisition requirements
discussed in Section 2 in mind, we did not introduce in the

Context Wrapper functions which have no direct call for.

• Orthogonality: the proposed architecture conveys separation
of concerns; we designed a single layer for addressing each

independent issue. One could state that data persistence and

wrapping were collapsed into the same layer. However, this

design choice reflects the close relation of these two issues

that, indeed, were addressed by the StoreData and WrapData

different functions, respectively.

• Parsimony: we have designed a single general function for
addressing each requirement, rather than designing multiple

alternative functions for the same requirement.

• Abstraction: we focus on a high abstraction level of the
system (see Figure 2), leaving out details that were deemed

irrelevant in such a phase of the design process. In fact, this

abstraction level we have adopted is in consonance with such

a domain engineering approach, which has a more general

scope than a single application.

• Open-endedness: the Context Wrapper design may be
extended either at a later stage or for the design of specific

cases with no jeopardizing its original design, as we have

demonstrated in the ECG Wrapper case study.

We also have used the tool support of AMBER to check

consistency in the Context Wrapper behavior. The simulation we

carried out has also validated the architecture, see Figure 5. Such

simulation has allowed us to follow the architecture workflow in

1951

order to see whether deadlocks take place or even to evaluate cost

paths looking for optimization.

8. RELATED WORK
There quite a few research initiatives in mobile, pervasive and

context-aware computing literature indeed correlated with our

proposal. That is to say, there are few works that tackle in an

integrated way basic tenets of sensor data acquisition such as the

issues we outlined in Section 2. The work of Dey et al. [4], for

example, has been very influential to our research. However, it

focuses on context usage, leaving out context acquisition itself

still quite vague. Pascoe’s work [12], likewise, provides a worth

contribution to the field, but it does not elaborate on details the

sensor data acquisition; his proposal neither is application-

independent. Raento et al. in turn tackles the non-trivial problem

of providing a quite general architecture (including a sensor data

acquisition module) for off-the-shelf hardware [15]. However,

only few sensor data types (the ones which cellular phones are

able to sense) are considered. Overall, the platform proposed in

[15] constitutes a very human-centered software artifact specific

for smartphones. In our work, otherwise, we have strived for

proposing an architecture focused on the challenge of sensor data

acquisition and provisioning itself whatever are the final-

applications purposes, scenarios or devices used.

9. CONCLUSIONS
Our work has used a domain engineering approach to address the

sensor data acquisition problem. As a result of the analysis and

design phases, we have compiled a requirements specification and

proposed a sensor data provisioning architecture by using a SOD

methodological support. Both contributions cover a gap in

literature w.r.t. systematic methods for sensor data acquisition that

supports context-aware mobile applications. Context Wrapper is a

service architecture that meets sensor data acquisition

requirements. By using such an architecture either through service

configuration or extension, we can reach a rapid prototyping of

specific sensor data provisioning systems. This feature was shown

in a case study involving ECG data acquisition in a real scenario.

Furthermore, we have discussed the applicability of Context

Wrapper in a representative set of pervasive scenarios. Future

work includes investigating how to add autonomic computing

tenets to Context Wrapper architecture.

10. ACKNOWLEDGMENTS
This research has received financial support from FAPES (grant

no. 31024866/2005) and CNPq (grant no. 50.6284/04-2). We

would like to thank João Paulo Almeida for his valuable

comments and careful reading of this manuscript.

11. REFERENCES
[1] Andreão, R. et al. ECG Signal Analysis through Hidden Markov

Models. IEEE Transactions on Biomedical Engineering, vol. 53, n.

8, 2006.

[2] Andreão, R., et al. TeleCardio - Telecardiologia a Serviço de
Pacientes Hospitalizados em Domicílio. In X Brazilian Conference

in Health Informatics (CBIS’06), Florianópolis, Brazil, 2006.

[3] Chen, H. An Intelligent Broker Architecture for Pervasive Context-
Aware Systems. Ph.D. Thesis, University of Maryland, USA, 2004.

[4] Dey, A., et al. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-aware Applications.

Human-Computer Interaction Journal, 16(2-4):97-166, 2001.

[5] Eertink, H, et al. A Business Process Design Language. In World
Congress on Formal Methods (1), pp. 76-95, 1999.

[6] Erfianto, B. Design of a Vital Sign Protocol Format Using XML and
ASN.1. M.Sc. Thesis. University of Twente, The Netherlands, 2004.

[7] Gonçalves, B., et al. EcgAware: An ECG Markup Language for
Ambulatory Telemonitoring and Decision Making Support. In Proc. of

the International Conf. on Health Informatics, Funchal, Portugal, 2008.

[8] Gonçalves, B., et al. ECG Data Provisioning for Telehomecare
Monitoring. In Proc. of the 23rd ACM Symposium on Applied

Computing (SAC’08), Fortaleza, Brazil, 2008.

[9] Gu, T., et al. A service-oriented middleware for building context-
aware services. Journal of Network and Computer Applications, 2005.

[10] IDSL home. http://isdl.ctit.utwente.nl/, n.d.

[11] Laerhoven, v. K. On-line Adaptive Context Awareness Starting
From Lowlevel Sensors. Ph.D. Thesis, University of Brussels, 1999.

[12] Pascoe, J. Adding Generic Contextual Capabilities to Wearable
Computers. In Proc. of the 2nd IEEE International Symposium on

Wearable Computers (ISWC’98), pp. 92-99, Pittsburgh, PA, 1998.

[13] Pereira Filho, J. G., et al. Infraware: um Middleware de Suporte a
Aplicações Móveis Sensíveis ao Contexto. In Proc. of the 24th

Brazilian Symposium of Computer Networks, Curitiba, Brazil, 2006.

[14] Quartel, D., et al. Methodological Support for Service-oriented
Design with ISDL. In Proceedings of the 2nd International

Conference on Service-Oriented Computing (ICSOC), 2004.

[15] Raento, M., et al. ContextPhone: a Prototyping Platform for Context-
aware Mobile Applications. IEEE Pervasive Computing, 51-59, 2005.

[16] Sashima, A., et al. Spatio-Temporal Sensor Data Management for
Context-aware Services. In Proc. of the 1st International Workshop

on Advanced Data Processing in Ubiquitous Computing, 2006.

[17] Schmidt, A.; Laerhoven, K. How to build smart appliances?. IEEE
Personal Communications, 2001.

[18] Tilak, S., et al. A taxonomy of wireless micro-sensor network
models. In Proceedings of the ACM Workshop on Wireless Security,

ACM Press, pp 28-36, 2002.

[19] Vissers, C., et al. The architectural design of distributed systems.
Lecture Notes, University of Twente, The Netherlands, 2000.

[20] WS architecture. W3C website: http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/#id226089.

[21] Zhai, S. What's in the eyes for attentive input. Communications of
the ACM, 46(3), 2003.

[22] ZigBee Specification. Available at http://www.zigbee.org/.

Figure 5. Snapshot of Context Wrapper behavior simulation.

1952

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

